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PROBLEM SET 13

Suggested reading

Lecture notes (on the website): Chapter 6, up to §6.3.1

Problems

1. Recall that in Problem Set 11 #1, we computed the geodesics on the Poincaré half-plane (H, h), defined
as H := {(z,y) € R? | y > 0} with the Riemannian metric h = y%gE, where ¢gg denotes the standard

Euclidean metric on R2.

(a) Write down the natural volume form on H determined by the metric h, i.e. the unique 2-form

that evaluates to 1 on any positively oriented orthonormal basis. Show that with respect to this
volume form, any region of the form [a, b] X [¢,00) C H for —0o < a < b < 0o and ¢ > 0 has finite
area, while regions of the form [a, b] x (0,c] C H have infinite area.

By drawing pictures, show that the sum of the angles in a geodesic triangle in (H,h) can be
arbitrarily small. (By “geodesic triangle” we mean a compact region in H bounded by three
geodesic segments.)

Compute all components (with respect to the obvious coordinates) of the Riemann curvature
tensor for the Levi-Civita connection on (H, h).

Compute the Gaussian curvature of (H, h).
Hint: The answer should be a negative constant. Why is this consistent with part (b)?

2. An isometry of a Riemannian manifold (M, g) is a diffeomorphism ¢ : M — M such that p*g = g.
The isometries of (M, g) form a topological group Isom(M, g). Its structure in a neighborhood of the
identity map can be understood by considering smooth 1-parameter families ¢; € Isom(M,g) with
o = Id. In particular, differentiating this with respect to t at ¢t = 0 gives a vector field

X(p) = o)

which must satisfy £Lxg = 0 due to the condition p;g = g. A vector field satisfying this condition is
called a Killing vector field. Intuitively, we think of it as an “infinitessimal isometry”.

(a)

Show that if V is any symmetric connection on TM — M, X € Vec(M), A € Q' (M) andY € TM,
then (ExA)(Y) = (VxA)(Y) + )\(VyX)

Hint: Choose a smooth map a(s,t) € M defined for (s, t) € R? near the origin such that Osa(s,t) =
X(a(s,t)) and 8,a(0,0) =Y. It will be crucial that the connection is symmetric, so VsOya =
Vtasa.

Generalize the above result to the formula

(LxT)(Vi... Vi) = (VxT) (V.. ... Vi) + (V3 X, Yo ... Yi)
+T(Y1,VY2X, .. ,Yk) + ... +T(Y1, c.. ,kal,Vka),

valid for any covariant tensor field 7' € T'(TY M).

Applying the formula above with the Levi-Civita connection so that Vg = 0, we find Lxg = 0 if
and only if

forallpe M and Y, Z € T,M. This is called the Killing equation.



The bundle metric on TM — M defines for each p € M a so-called musical isomorphism
b T, M T MY =Y’
Y*(Z) = g(Y, 2).

Thus a vector field X € Vec(M) gives rise to a 1-form X” € Q'(M), and this is a one-to-one
correspondence. Show that for any X € Vec(M) and Y € TM,

(VyX)’ = Vy(X).

Then show that X satisfies the Killing equation if and only if the tensor field VX € I'(T9M)
defined by VX*(Y, Z) := (Vy X")(Z) is antisymmetric.
By the above result, solving the Killing equation is equivalent to finding a 1-form A € Q! (M) such
that

VAY,Z)+ VAZ,Y)=0. (1)
Suppose y(s) € M is a geodesic through v(0) = p € M. Show that if A\ € Q!(M) satisfies
Equation (), then as a section of T*M along v, it also satisfies the second order linear differential
equation
or to be more precise, for any Y € T, oM, (V,VA)(Y) = AMR(Y(s),Y)¥(s)). Here R(X,Y)Z
denotes the Riemann curvature tensor R : TM & TM & TM — TM defined by the Levi-Civita
connection on TM — M.
Hint: This is tricky, but here are some tips to get you started. If Y (s) € T, M is a parallel
vector field along vy, then show that (V2\)(Y) = 82 (A(Y)). One can extend ¥(s) to a smooth map
af(s,t) with a(s,0) = y(s) so that ya(s,0) = Y (s). Then in terms of covariant partial derivatives,
Equation () says

(VA (0ra(s, t) + (Vid)(0sa(s, t) = 0.

The rest follows from intelligent use of commuting (or non-commuting) partial derivatives, in-
cluding the symmetry of the connection and the definition of the curvature tensor.

We now appeal to a general fact about second order linear differential equations: if x(¢) € R"
satisfies an equation of the form

x(t) = A()x(t)
for some smooth family of linear maps A(t) € R™*™, then x(t) is uniquely determined by its
initial position x(0) and velocity %(0). Use this and Equation (@) to show that if A satisfies (D)
and there is a point p € M at which A\, =0 and V), =0, then A = 0.

The previous conclusion together with the linearity of the Killing equation imply a uniqueness
statement for the Killing equation: in particular, if M is connected, there is an upper bound (in
terms of dim M = n) on the possible dimension of the space of Killing vector fields. What is this
bound?

Caution: This is a uniqueness result but says nothing about existence—there are cases where
the Killing equation has no nontrivial solutions. The trouble is that while the theory of ODEs
guarantees local existence of 1-forms A that satisfy Equation (2)) along a geodesic -y, these need
not generally extend to 1-forms on an open set that satisfy ().

Let us apply the uniqueness result to the case M = R™ with the standard Euclidean metric ( , )
on T,R™ = R". In this case there is a well known family of isometries called the Euclidean group
E(n), which consists of all diffeomorphisms ¢ : R™ — R™ of the form

o(x) =Ax+b

for A € O(n) and b € R™. Differentiating any smooth 1-parameter family ¢; € E(n) with ¢o = Id
gives a Killing vector field

X0 = o]

Show that all Killing vector fields on Euclidean n-space are of this form.



