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PROBLEM SET 13

Suggested reading

Lecture notes (on the website): Chapter 6, up to §6.3.1

Problems

1. Recall that in Problem Set 11 #1, we computed the geodesics on the Poincaré half-plane (H, h), defined
as H := {(x, y) ∈ R

2 | y > 0} with the Riemannian metric h = 1
y2 gE , where gE denotes the standard

Euclidean metric on R
2.

(a) Write down the natural volume form on H determined by the metric h, i.e. the unique 2-form
that evaluates to 1 on any positively oriented orthonormal basis. Show that with respect to this
volume form, any region of the form [a, b]× [c,∞) ⊂ H for −∞ < a < b < ∞ and c > 0 has finite
area, while regions of the form [a, b]× (0, c] ⊂ H have infinite area.

(b) By drawing pictures, show that the sum of the angles in a geodesic triangle in (H, h) can be
arbitrarily small. (By “geodesic triangle” we mean a compact region in H bounded by three
geodesic segments.)

(c) Compute all components (with respect to the obvious coordinates) of the Riemann curvature
tensor for the Levi-Civita connection on (H, h).

(d) Compute the Gaussian curvature of (H, h).
Hint: The answer should be a negative constant. Why is this consistent with part (b)?

2. An isometry of a Riemannian manifold (M, g) is a diffeomorphism ϕ : M → M such that ϕ∗g = g.
The isometries of (M, g) form a topological group Isom(M, g). Its structure in a neighborhood of the
identity map can be understood by considering smooth 1-parameter families ϕt ∈ Isom(M, g) with
ϕ0 = Id. In particular, differentiating this with respect to t at t = 0 gives a vector field

X(p) =
d

dt
ϕt(p)

∣

∣

∣

∣

t=0

,

which must satisfy LXg ≡ 0 due to the condition ϕ∗

t g = g. A vector field satisfying this condition is
called a Killing vector field. Intuitively, we think of it as an “infinitessimal isometry”.

(a) Show that if∇ is any symmetric connection on TM → M , X ∈ Vec(M), λ ∈ Ω1(M) and Y ∈ TM ,
then (LXλ)(Y ) = (∇Xλ)(Y ) + λ(∇Y X).
Hint: Choose a smooth map α(s, t) ∈ M defined for (s, t) ∈ R

2 near the origin such that ∂sα(s, t) =
X(α(s, t)) and ∂tα(0, 0) = Y . It will be crucial that the connection is symmetric, so ∇s∂tα =
∇t∂sα.

(b) Generalize the above result to the formula

(LXT )(Y1, . . . , Yk) = (∇XT )(Y1, . . . , Yk) + T (∇Y1
X,Y2, . . . , Yk)

+ T (Y1,∇Y2
X, . . . , Yk) + . . .+ T (Y1, . . . , Yk−1,∇Yk

X),

valid for any covariant tensor field T ∈ Γ(T 0
kM).

(c) Applying the formula above with the Levi-Civita connection so that ∇g ≡ 0, we find LXg ≡ 0 if
and only if

g(∇Y X,Z) + g(Y,∇ZX) = 0

for all p ∈ M and Y, Z ∈ TpM . This is called the Killing equation.
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The bundle metric on TM → M defines for each p ∈ M a so-called musical isomorphism

♭ : TpM →T ∗

pM : Y 7→ Y ♭

Y ♭(Z) := g(Y, Z).

Thus a vector field X ∈ Vec(M) gives rise to a 1-form X♭ ∈ Ω1(M), and this is a one-to-one
correspondence. Show that for any X ∈ Vec(M) and Y ∈ TM ,

(∇Y X)♭ = ∇Y (X
♭).

Then show that X satisfies the Killing equation if and only if the tensor field ∇X♭ ∈ Γ(T 0
2M)

defined by ∇X♭(Y, Z) := (∇Y X
♭)(Z) is antisymmetric.

(d) By the above result, solving the Killing equation is equivalent to finding a 1-form λ ∈ Ω1(M) such
that

∇λ(Y, Z) +∇λ(Z, Y ) = 0. (1)

Suppose γ(s) ∈ M is a geodesic through γ(0) = p ∈ M . Show that if λ ∈ Ω1(M) satisfies
Equation (1), then as a section of T ∗M along γ, it also satisfies the second order linear differential
equation

∇2
sλ = λ(R(γ̇, ·)γ̇), (2)

or to be more precise, for any Y ∈ Tγ(s)M , (∇s∇sλ)(Y ) = λ(R(γ̇(s), Y )γ̇(s)). Here R(X,Y )Z
denotes the Riemann curvature tensor R : TM ⊕ TM ⊕ TM → TM defined by the Levi-Civita
connection on TM → M .

Hint: This is tricky, but here are some tips to get you started. If Y (s) ∈ Tγ(s)M is a parallel
vector field along γ, then show that (∇2

sλ)(Y ) = ∂2
s (λ(Y )). One can extend γ(s) to a smooth map

α(s, t) with α(s, 0) = γ(s) so that ∂tα(s, 0) = Y (s). Then in terms of covariant partial derivatives,
Equation (1) says

(∇sλ)(∂tα(s, t)) + (∇tλ)(∂sα(s, t)) = 0.

The rest follows from intelligent use of commuting (or non-commuting) partial derivatives, in-
cluding the symmetry of the connection and the definition of the curvature tensor.

(e) We now appeal to a general fact about second order linear differential equations: if x(t) ∈ R
n

satisfies an equation of the form
ẍ(t) = A(t)x(t)

for some smooth family of linear maps A(t) ∈ R
n×n, then x(t) is uniquely determined by its

initial position x(0) and velocity ẋ(0). Use this and Equation (2) to show that if λ satisfies (1)
and there is a point p ∈ M at which λp = 0 and ∇λp = 0, then λ ≡ 0.

(f) The previous conclusion together with the linearity of the Killing equation imply a uniqueness
statement for the Killing equation: in particular, if M is connected, there is an upper bound (in
terms of dimM = n) on the possible dimension of the space of Killing vector fields. What is this
bound?

Caution: This is a uniqueness result but says nothing about existence—there are cases where
the Killing equation has no nontrivial solutions. The trouble is that while the theory of ODEs
guarantees local existence of 1-forms λ that satisfy Equation (2) along a geodesic γ, these need
not generally extend to 1-forms on an open set that satisfy (1).

(g) Let us apply the uniqueness result to the case M = R
n with the standard Euclidean metric 〈 , 〉

on TpR
n ∼= R

n. In this case there is a well known family of isometries called the Euclidean group

E(n), which consists of all diffeomorphisms ϕ : Rn → R
n of the form

ϕ(x) = Ax+ b

for A ∈ O(n) and b ∈ R
n. Differentiating any smooth 1-parameter family ϕt ∈ E(n) with ϕ0 = Id

gives a Killing vector field

X(x) =
d

dt
ϕt(x)

∣

∣

∣

∣

t=0

.

Show that all Killing vector fields on Euclidean n-space are of this form.
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