C. Wendl

PROBLEM SET 13

Suggested reading

Lecture notes (on the website): Chapter 6, up to §6.3.1

Problems

1. Recall that in Problem Set $11 \# 1$, we computed the geodesics on the Poincaré half-plane (\mathbb{H}, h), defined as $\mathbb{H}:=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ with the Riemannian metric $h=\frac{1}{y^{2}} g_{E}$, where g_{E} denotes the standard Euclidean metric on \mathbb{R}^{2}.
(a) Write down the natural volume form on \mathbb{H} determined by the metric h, i.e. the unique 2-form that evaluates to 1 on any positively oriented orthonormal basis. Show that with respect to this volume form, any region of the form $[a, b] \times[c, \infty) \subset \mathbb{H}$ for $-\infty<a<b<\infty$ and $c>0$ has finite area, while regions of the form $[a, b] \times(0, c] \subset \mathbb{H}$ have infinite area.
(b) By drawing pictures, show that the sum of the angles in a geodesic triangle in (\mathbb{H}, h) can be arbitrarily small. (By "geodesic triangle" we mean a compact region in \mathbb{H} bounded by three geodesic segments.)
(c) Compute all components (with respect to the obvious coordinates) of the Riemann curvature tensor for the Levi-Civita connection on (\mathbb{H}, h).
(d) Compute the Gaussian curvature of (\mathbb{H}, h).

Hint: The answer should be a negative constant. Why is this consistent with part (b)?
2. An isometry of a Riemannian manifold (M, g) is a diffeomorphism $\varphi: M \rightarrow M$ such that $\varphi^{*} g=g$. The isometries of (M, g) form a topological group $\operatorname{Isom}(M, g)$. Its structure in a neighborhood of the identity map can be understood by considering smooth 1-parameter families $\varphi_{t} \in \operatorname{Isom}(M, g)$ with $\varphi_{0}=\mathrm{Id}$. In particular, differentiating this with respect to t at $t=0$ gives a vector field

$$
X(p)=\left.\frac{d}{d t} \varphi_{t}(p)\right|_{t=0}
$$

which must satisfy $\mathcal{L}_{X} g \equiv 0$ due to the condition $\varphi_{t}^{*} g=g$. A vector field satisfying this condition is called a Killing vector field. Intuitively, we think of it as an "infinitessimal isometry".
(a) Show that if ∇ is any symmetric connection on $T M \rightarrow M, X \in \operatorname{Vec}(M), \lambda \in \Omega^{1}(M)$ and $Y \in T M$, then $\left(\mathcal{L}_{X} \lambda\right)(Y)=\left(\nabla_{X} \lambda\right)(Y)+\lambda\left(\nabla_{Y} X\right)$.
Hint: Choose a smooth map $\alpha(s, t) \in M$ defined for $(s, t) \in \mathbb{R}^{2}$ near the origin such that $\partial_{s} \alpha(s, t)=$ $X(\alpha(s, t))$ and $\partial_{t} \alpha(0,0)=Y$. It will be crucial that the connection is symmetric, so $\nabla_{s} \partial_{t} \alpha=$ $\nabla_{t} \partial_{s} \alpha$.
(b) Generalize the above result to the formula

$$
\begin{aligned}
& \left(\mathcal{L}_{X} T\right)\left(Y_{1}, \ldots, Y_{k}\right)=\left(\nabla_{X} T\right)\left(Y_{1}, \ldots, Y_{k}\right)+T\left(\nabla_{Y_{1}} X, Y_{2}, \ldots, Y_{k}\right) \\
& +T\left(Y_{1}, \nabla_{Y_{2}} X, \ldots, Y_{k}\right)+\ldots+T\left(Y_{1}, \ldots, Y_{k-1}, \nabla_{Y_{k}} X\right),
\end{aligned}
$$

valid for any covariant tensor field $T \in \Gamma\left(T_{k}^{0} M\right)$.
(c) Applying the formula above with the Levi-Civita connection so that $\nabla g \equiv 0$, we find $\mathcal{L}_{X} g \equiv 0$ if and only if

$$
g\left(\nabla_{Y} X, Z\right)+g\left(Y, \nabla_{Z} X\right)=0
$$

for all $p \in M$ and $Y, Z \in T_{p} M$. This is called the Killing equation.

The bundle metric on $T M \rightarrow M$ defines for each $p \in M$ a so-called musical isomorphism

$$
\begin{gathered}
b: T_{p} M \rightarrow T_{p}^{*} M: Y \mapsto Y^{b} \\
Y^{b}(Z):=g(Y, Z) .
\end{gathered}
$$

Thus a vector field $X \in \operatorname{Vec}(M)$ gives rise to a 1 -form $X^{b} \in \Omega^{1}(M)$, and this is a one-to-one correspondence. Show that for any $X \in \operatorname{Vec}(M)$ and $Y \in T M$,

$$
\left(\nabla_{Y} X\right)^{b}=\nabla_{Y}\left(X^{b}\right)
$$

Then show that X satisfies the Killing equation if and only if the tensor field $\nabla X^{b} \in \Gamma\left(T_{2}^{0} M\right)$ defined by $\nabla X^{b}(Y, Z):=\left(\nabla_{Y} X^{b}\right)(Z)$ is antisymmetric.
(d) By the above result, solving the Killing equation is equivalent to finding a 1-form $\lambda \in \Omega^{1}(M)$ such that

$$
\begin{equation*}
\nabla \lambda(Y, Z)+\nabla \lambda(Z, Y)=0 \tag{1}
\end{equation*}
$$

Suppose $\gamma(s) \in M$ is a geodesic through $\gamma(0)=p \in M$. Show that if $\lambda \in \Omega^{1}(M)$ satisfies Equation (1), then as a section of $T^{*} M$ along γ, it also satisfies the second order linear differential equation

$$
\begin{equation*}
\nabla_{s}^{2} \lambda=\lambda(R(\dot{\gamma}, \cdot) \dot{\gamma}) \tag{2}
\end{equation*}
$$

or to be more precise, for any $Y \in T_{\gamma(s)} M,\left(\nabla_{s} \nabla_{s} \lambda\right)(Y)=\lambda(R(\dot{\gamma}(s), Y) \dot{\gamma}(s))$. Here $R(X, Y) Z$ denotes the Riemann curvature tensor $R: T M \oplus T M \oplus T M \rightarrow T M$ defined by the Levi-Civita connection on $T M \rightarrow M$.
Hint: This is tricky, but here are some tips to get you started. If $Y(s) \in T_{\gamma(s)} M$ is a parallel vector field along γ, then show that $\left(\nabla_{s}^{2} \lambda\right)(Y)=\partial_{s}^{2}(\lambda(Y))$. One can extend $\gamma(s)$ to a smooth map $\alpha(s, t)$ with $\alpha(s, 0)=\gamma(s)$ so that $\partial_{t} \alpha(s, 0)=Y(s)$. Then in terms of covariant partial derivatives, Equation (1) says

$$
\left(\nabla_{s} \lambda\right)\left(\partial_{t} \alpha(s, t)\right)+\left(\nabla_{t} \lambda\right)\left(\partial_{s} \alpha(s, t)\right)=0 .
$$

The rest follows from intelligent use of commuting (or non-commuting) partial derivatives, including the symmetry of the connection and the definition of the curvature tensor.
(e) We now appeal to a general fact about second order linear differential equations: if $\mathbf{x}(t) \in \mathbb{R}^{n}$ satisfies an equation of the form

$$
\ddot{\mathbf{x}}(t)=\mathbf{A}(t) \mathbf{x}(t)
$$

for some smooth family of linear maps $\mathbf{A}(t) \in \mathbb{R}^{n \times n}$, then $\mathbf{x}(t)$ is uniquely determined by its initial position $\mathbf{x}(0)$ and velocity $\dot{\mathbf{x}}(0)$. Use this and Equation (2) to show that if λ satisfies (1) and there is a point $p \in M$ at which $\lambda_{p}=0$ and $\nabla \lambda_{p}=0$, then $\lambda \equiv 0$.
(f) The previous conclusion together with the linearity of the Killing equation imply a uniqueness statement for the Killing equation: in particular, if M is connected, there is an upper bound (in terms of $\operatorname{dim} M=n$) on the possible dimension of the space of Killing vector fields. What is this bound?
Caution: This is a uniqueness result but says nothing about existence - there are cases where the Killing equation has no nontrivial solutions. The trouble is that while the theory of ODEs guarantees local existence of 1-forms λ that satisfy Equation (22) along a geodesic γ, these need not generally extend to 1 -forms on an open set that satisfy (11).
(g) Let us apply the uniqueness result to the case $M=\mathbb{R}^{n}$ with the standard Euclidean metric \langle, on $T_{p} \mathbb{R}^{n} \cong \mathbb{R}^{n}$. In this case there is a well known family of isometries called the Euclidean group $\mathrm{E}(n)$, which consists of all diffeomorphisms $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ of the form

$$
\varphi(\mathbf{x})=\mathbf{A x}+\mathbf{b}
$$

for $\mathbf{A} \in \mathrm{O}(n)$ and $\mathbf{b} \in \mathbb{R}^{n}$. Differentiating any smooth 1-parameter family $\varphi_{t} \in \mathrm{E}(n)$ with $\varphi_{0}=\mathrm{Id}$ gives a Killing vector field

$$
X(\mathbf{x})=\left.\frac{d}{d t} \varphi_{t}(\mathbf{x})\right|_{t=0} .
$$

Show that all Killing vector fields on Euclidean n-space are of this form.

