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PROBLEM SET 13

SOLUTIONS TO PROBLEM 2

2. (a) Choose a smooth path γ(s) ∈ M with γ̇(0) = Y ∈ TpM , and extend it using the flow ϕt
X of X to

a smooth map
α(s, t) = ϕt

X(γ(s))

for real parameters s and t near 0. This satisfies α(s, 0) = γ(s), ∂tα(s, t) = X(α(s, t)) and
∂sα(0, t) = Tϕt

X(Y ). Then

(LXλ)(Y ) =
d

dt
λ(Tϕt

X(Y ))

∣

∣

∣

∣

t=0

=
d

dt
λ(∂sα(0, t))

∣

∣

∣

∣

t=0

.

Regarding ∂sα(0, t) as a vector field along the path t 7→ α(0, t) = ϕt
X(p), we can apply a Leibnitz

rule for the covariant derivative and transform the latter expression into

(∇tλ)(∂sα(0, t))|t=0 + λ(∇t∂sα(0, t)|t=0 = (∇Xλ)(Y ) + λ(∇t∂sα(0, 0))

= (∇Xλ)(Y ) + λ(∇s∂tα(0, 0)) = (∇Xλ)(Y ) + λ(∇Y X).

Note: There is another way to prove the desired identity in this part, though it seems less suitable
for the generalization required in part (b). But indeed, since λ is a differential 1-form, one can
use Cartan’s formula LXλ = dιXλ+ ιXdλ = d (λ(X)) + dλ(X, ·), giving

(LXλ)(Y ) = LY (λ(X)) + dλ(X,Y ) = LY (λ(X)) + LX (λ(Y ))− LY (λ(X))− λ([X,Y ])

= LX (λ(Y ))− λ(∇XY −∇Y X)

= (∇Xλ)(Y ) + λ(∇XY )− λ(∇XY ) + λ(∇Y X)

= (∇Xλ)(Y ) + λ(∇Y X).

Here we used the formula dλ(X,Y ) = LX(λ(Y ))−LY (λ(X))−λ([X,Y ]) in the first line and then
used the symmetry of the connection to replace the Lie bracket by ∇XY −∇Y X .

(b) For a more general covariant tensor field T ∈ Γ(T 0
kM), we apply a similar argument as in part (a),

constructing for each Y1, . . . , Yk ∈ TpM a map αj(s, t) such that ∂sαj(0, t) = Tϕt
X(Yj), which

defines a vector field along the path t 7→ ϕt
X(p). The argument is then the same as in part (a),

except the Leibnitz rule gives a separate term for each Yj .

(c) Choose any vector field Z and take the Lie derivative of g(X,Z) in the direction of Y : using the
various Leibnitz rules,

LY [g(X,Z)] = g(∇Y X,Z) + g(X,∇Y Z) = (∇Y X)♭(Z) +X♭(∇Y Z)

= LY

[

X♭(Z)
]

= (∇Y (X
♭))(Z) +X♭(∇Y Z),

thus (∇Y X)♭ = ∇Y (X
♭).

In light of this, we shall from now on drop unnecessary parentheses. The tensor field ∇X♭ is
antisymmetric if

0 = ∇X♭(Y, Z) +∇X♭(Z, Y ) = ∇Y X
♭(Z) +∇ZX

♭(Y ) = g(∇Y X,Z) + g(∇ZX,Y ),

which is the Killing equation.

(d) Note that if we are trying to show (∇2
sλ)(Y ) = λ(R(γ̇, Y )γ̇), both sides of this expression are

C∞-linear with respect to Y , so it suffices to establish that for every s0 in the domain of the
geodesic γ and every vector Y0 ∈ Tγ(s0)M , there exists an extension of Y0 to a smooth vector
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field Y along γ satisfying Y (s0) = Y0 and (∇2
sλ)(Y ) = λ(R(γ̇, Y )γ̇). In particular, we are free to

choose Y (s) ∈ Tγ(s)M to be a parallel vector field along γ, so that

∂s[λ(Y )] = (∇sλ)(Y ) + λ(∇sY ) = (∇sλ)(Y )

and similarly ∂2
s [λ(Y )] = (∇2

sλ)(Y ). Our aim will thus be to show that if Y is parallel and ∇λ is
antisymmetric,

∂2
s (λ(Y )) = λ(R(γ̇, Y )γ̇).

Assume α(s, t) is a smooth map defined for real parameters s and t near 0 such that α(s, 0) = γ(s)
and ∂tα(s, 0) = Y (s); such a map can easily be constructed, e.g. via the exponential map

α(s, t) = expγ(s)(tY (s)).

Now

∂s (λ(Y )) = (∇sλ)(∂tα(s, 0)) = ∇λ(∂sα(s, 0), ∂tα(s, 0)) = −∇λ(∂tα(s, 0), ∂sα(s, 0))

= −(∇tλ)(∂sα(s, 0)),

while
∂t (λ(∂sα(s, t)))|t=0 = (∇tλ)(∂sα(s, 0)) + λ(∇t∂sα(s, 0)).

Note that ∇t∂sα(s, 0) = ∇s∂tα(s, 0) = ∇sY (s) = 0, thus combining these two expressions gives

∂s (λ(Y )) = − ∂t (λ(∂sα(s, t)))|t=0 .

Differentiating this with respect to s and exchanging ∂s with ∂t,

∂2
s (λ(Y )) = − ∂t∂s (λ(∂sα(s, t)))|t=0 .

The antisymmetry of ∇λ also implies (∇sλ)(∂sα(s, t)) = ∇λ(∂sα(s, t), ∂sα(s, t)) = 0, thus

∂s (λ(∂sα(s, t))) = (∇sλ)(∂sα(s, t)) + λ(∇s∂sα(s, t)) = λ(∇s∂sα(s, t)),

and inserting this into the previous expression, together with the fact that γ(s) = α(s, 0) is a
geodesic,

∂2
s (λ(Y )) = − ∂t (λ(∇s∂sα(s, t)))|t=0 = −(∇tλ)(∇s∂sα(s, 0))− λ(∇t∇s∂sα(s, 0))

= −λ(∇t∇s∂sα(s, 0)).

Finally, we use the Riemann tensor to interchange covariant partials:

∇s∇t∂sα(s, 0)−∇t∇s∂sα(s, 0) = R(∂sα(s, 0), ∂tα(s, 0))∂sα(s, 0) = R(γ̇(s), Y (s))γ̇(s),

and thus −∇t∇s∂sα(s, 0) = R(γ̇(s), Y (s))γ̇(s)−∇s∇t∂sα(s, 0). This last term is also

−∇s∇t∂sα(s, 0) = −∇s∇s∂tα(s, 0) = −∇2
sY (s) = 0

since Y (s) is parallel. We conclude

∂2
s (λ(Y )) = λ(R(γ̇(s), Y (s))γ̇(s))

as claimed.

(e) Assume ∇λ is antisymmetric and there is a point p ∈ M at which λp = 0 and ∇λp = 0. Then
along any geodesic γ(s) through γ(0) = p, λ satisfies the second order linear differential equation
of part (d). Choosing a coordinate chart (x1, . . . , xn) near p, this equation can be expressed via
the components λi in the form

d2

ds2
λi(γ(s)) = A

j
i (s)λj(γ(s)),
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where Aj
i (γ(s)) is a set of smooth functions determined by the components of the Riemann tensor

along γ(s). Since λi(γ(0)) and
d
dsλi(γ(s))

∣

∣

s=0
both vanish, the unique solution to this differential

equation is λi(γ(s)) ≡ 0. This shows that λ vanishes in an open neighborhood of p, as one can
use geodesics through p to hit every point in such a neighborhood. If M is connected, it follows
that λ ≡ 0.

The statement of the problem should really have assumed that M is connected, but you probably
figured that out.

(f) By part (e), there is a unique solution λ ≡ 0 such that both λ and ∇λ vanish at any given point
p ∈ M . Since the Killing equation is linear, it follows that any two solutions λ1 and λ2 that match
up to first order at p are identical. Recalling that ∇λp ∈ Λ2T ∗

pM due to the Killing equation,
the space of Killing vector fields is therefore no larger than the space T ∗

pM ⊕ Λ2T ∗

pM , which has
dimension

n+

(

n

2

)

= n+
n(n− 1)

2
=

n(n+ 1)

2
.

(g) The Euclidean group has dimension

dimE(n) = dimO(n) + dimR
n =

(n− 1)n

2
+ n =

n(n+ 1)

2
,

and this gives rise to a n(n+1)
2 -dimensional space of Killing vector fields. By part (f), this is the

largest possible dimension of such a space, and is therefore all of them.

As a matter of interest: one can use arguments similar to those of part (d) to show that the
Killing equation is equivalent to a certain n-dimensional distribution on the vector bundle T ∗M⊕
Λ2T ∗M → M , and in fact defines a linear connection on this bundle. Then a Killing vector
field is equivalent to a flat section of T ∗M ⊕ Λ2T ∗M with respect to this special connection.
Generically, there will be no such flat sections, and thus no Killing vector fields, because the
special connection may have nontrivial curvature. On the other hand, a space of Killing vector
fields with the maximal allowed dimension will exist if the special connection is flat, which is
true only if (M, g) is particularly symmetric, e.g. has constant curvature. These considerations
are fundamental in cosmology, which starts from the assumption that the global structure of the
universe is as symmetric as possible.
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