
Differential Geometry I Humboldt-Universität zu Berlin

C. Wendl Winter Semester 2016–17

PROBLEM SET 2

Suggested reading

This week I’m suggesting reading some sections in Helga Baum’s Vorlesungsskript for Differentialgeometrie I
(see https://www.mathematik.hu-berlin.de/~baum/Skript/diffgeo1.pdf) instead of Friedrich and
Agricola, as the former fits better with our lecture. As usual, chapter and section indications in Lee refer to
the 2003 edition and may differ in the 2013 edition.
(Actually the original version of this problem sheet did erroneously refer to the 2013 edition, but that mistake
has been corrected in this updated version!)

• Baum: §2.3–2.5

• Lee: Chapter 3, Chapter 4 (excluding “The Lie Algebra of a Lie Group”), Chapter 17 (up to “The
Fundamental Theorem on Flows”) and Chapter 18 (up to “Commuting Vector Fields”).

By now I’m sure you’ve noticed that Lee contains quite a lot more material than we can cover in lecture—it
is probably worth reading all of it someday, but you shouldn’t feel you need to learn all of it right now.

Problems

1. Denote by R
n×n the vector space of all real n-by-n matrices; this is isomorphic to R

n2

. The n-
dimensional orthogonal group O(n) ⊂ R

n×n is the set of all real n-by-n matrices A with the property

ATA = 1,

where 1 is the n-by-n identity matrix and AT denotes the transpose of A, i.e. if A has entries Aij ,
then the corresponding entries of AT are Aji. This is precisely the set of all linear transformations
R

n → R
n which preserve dot products v ·w, which means geometrically that they preserve lengths of

vectors and angles between them. We will show in this problem that O(n) is a smooth submanifold of
R

n×n.

(a) Let Σ(n) ⊂ R
n×n denote the set of all real symmetric n-by-n matrices, i.e. those which satisfy

A = AT . Show that Σ(n) is a linear subspace of Rn×n (i.e. it is closed under addition and scalar
multiplication). What is its dimension?

(b) Consider the map
f : Rn×n → Σ(n) : A 7→ ATA.

The orthogonal group is then precisely O(n) = f−1(1). The entries of f(A) are quadratic functions
of the entries of A, thus f is clearly a smooth map. Show that its derivative at any A ∈ R

n×n is
the linear map

df(A) : Rn×n → Σ(n) : H 7→ ATH+HTA.

Hint: in theory you can do this by computing all the partial derivatives of f with respect to the
entries of A, but it’s much, much easier to use the definition of the derivative, i.e. regarding R

n×n

and Σ(n) simply as Euclidean spaces, use the definition of df stated in Problem Set 1. One useful
thing you may assume: defining the “length” |A| of a matrix via identification with vectors in

R
n2

, this length satisfies |AB| ≤ |A||B|.

(c) Show that df(A) is surjective if A ∈ O(n). In fact, you won’t even need to assume A ∈ O(n), but
it is useful to assume that A is invertible (which is automatically true for orthogonal matrices). It
is also crucial that the target space is Σ(n) rather than the entirety of Rn×n—df(A) is certainly
not surjective onto R

n×n.

(d) It follows now from the implicit function theorem that O(n) is a smooth submanifold of Rn×n.
What is its dimension? (For a sanity check I will tell you: dimO(2) = 1 and dimO(3) = 3.)
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(e) Since O(n) is embedded into R
n×n as a smooth submanifold, we can regard the tangent space

T1O(n) to the identity as a linear subspace of Rn×n, i.e. “tangent vectors” to O(n) are literally
n-by-n matrices. Show that every matrix H ∈ T1O(n) is antisymmetric, i.e.

HT = −H.

Can you now say precisely which space of matrices T1O(n) is?

2. For this problem define the circle S1 to be R/Z, i.e. the set of equivalence classes [t] of real numbers
t ∈ R, where s ∼ t if and only if s − t ∈ Z. There is a natural projection map π : R → S1 : t 7→ [t].
The tangent bundle TS1 can then be identified with S1 × R as follows: any tangent vector X ∈ TS1

is a velocity vector γ̇(0) for some smooth path γ : (−ǫ, ǫ) → S1, and this path can be lifted (in
multiple ways) to a smooth path γ̃ : (−ǫ, ǫ) → R such that π ◦ γ̃ = γ. Now identify the tangent vector
X = γ̇(0) ∈ TS1 with the pair (

γ(0),
dγ̃

dt

∣∣∣∣
t=0

)
∈ S1 × R.

This gives a bijection TS1 ∼= S1 × R. (Take a moment to convince yourself of this.)

Next we define the 2-torus as T2 = S1 × S1 = R
2/Z2 and, using the same ideas as above, identify its

tangent bundle with (S1 × S1)× (R× R) = T
2 × R

2. Consider now the smooth map

F : T2 → S1 : ([s], [t]) 7→ [3s+ sin(2πt)].

It’s well defined since equivalent pairs (s, t) ∼ (s′, t′) give rise to equivalent images 3s + sin(2πt) ∼
3s′ + sin(2πt′).

(a) Using the identifications described above, write down an explicit expression for TF : TT2 → TS1

as a map T
2 × R

2 → S1 × R.

(b) Show that F is a submersion. A slight generalization of the implicit function theorem then implies
that for any p ∈ S1, F−1(p) is a smooth submanifold of T2. Verify this for F−1([0]) in particular,
i.e. what precisely is this set? To which well known manifold is it diffeomorphic?

3. (a) Denote by x the standard coordinate on R and consider the smooth vector field

X(x) = x2
∂

∂x
.

Find an expression for the flow ϕt
X as a function of x. Given x ∈ R, what is the largest interval

t ∈ (−t0, t0) for which ϕt
X(x) is defined? Is there any value of t for which ϕt

X is well defined on
all of R?

This illustrates one of the dangerous things about flows: in general ϕt
X is only locally defined.

The trouble here is that our manifold R is not compact; on compact manifolds, ϕt
X is a globally

defined diffeomorphism for all t ∈ R.

(b) Consider now a continuous but nonsmooth vector field on R:

X(x) =
√
|x|

∂

∂x
.

Find two distinct solutions to the initial value problem

{
γ̇(t) = X(γ(t)),

γ(0) = 0.

This shows that flows are not necessarily well defined when X is not smooth. That’s one of a few
reasons why we always assume vector fields are smooth.
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4. Suppose M is a manifold with two charts x = (x1, . . . , xn) and (x̃1, . . . , x̃n) defined over the same
open set U ⊂ M . We can then think of x̃1, . . . , x̃n as a set of n real-valued smooth functions of the
n variables (x1, . . . , xn), or vice versa; in particular the derivative of x̃ with respect to x at any point

in U is the n-by-n matrix with entries ∂x̃i

∂xj . Regarding the coordinate vector fields ∂
∂xj and ∂

∂x̃j as
derivations, the chain rule then implies

∂

∂xj
=

∑

i

∂x̃i

∂xj

∂

∂x̃i
. (1)

(a) The components of a vector X ∈ TpM for p ∈ U with respect to the coordinates x1, . . . , xn are
defined to be the unique real numbers X1, . . . , Xn such that X =

∑
j X

j ∂
∂xj . Show that these

are related to the components X̃j with respect to x̃1, . . . , x̃n by

X̃ i =
∑

j

∂x̃i

∂xj
Xj.

(b) If X is a smooth vector field, its components with respect to the coordinates x1, . . . , xn are the n
smooth functions Xj : U → R such that X =

∑
j X

j ∂
∂xj on U . The Lie derivative LX on functions

f ∈ C∞(M) can then be written in coordinates as

LXf =
∑

j

Xj ∂f

∂xj
.

Use this to derive the coordinate expression for the Lie bracket of two vector fields:

[X,Y ]i =
∑

j

(
Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj

)
.

At this point one could (and many classical differential geometry books do) use the above ex-
pression to define the Lie bracket, but one then has to use the formula of part (a) to verify that
the resulting definition of [X,Y ] doesn’t depend on the choice of coordinates. That’s rather a
headache and I won’t ask you to do it, though I considered it.

(c) The polar coordinates (r, θ) defined by

x = r cos θ, y = r sin θ

define a pair of smooth vector fields ∂
∂r

and ∂
∂θ

on R
2 \ {0}. Show that

∂

∂r
=

1√
x2 + y2

(
x
∂

∂x
+ y

∂

∂y

)
,

and write down ∂
∂θ

similarly in terms of the (x, y)-coordinates.

(d) Use the expressions for ∂
∂r

and ∂
∂θ

in (x, y)-coordinates together with part (b) to show that

[
∂

∂r
,
∂

∂θ

]
= 0.

Then explain why this fact was already practically obvious.

5. This problem deals again with the torus T2 = S1 × S1 = R
2/Z2 as defined in Problem 2. To simplify

notation, we shall drop the usual brackets that indicate equivalence classes and denote points on T
2 by

(x, y) for x, y ∈ R: it should be understood that we really mean ([x], [y]) ∈ S1 × S1. In this notation,
there are well defined vector fields ∂

∂x
and ∂

∂y
which span every tangent space of T2. Consider now the

vector fields

X(x, y) =
∂

∂x
, Y (x, y) = sin(2πx)

∂

∂y
.
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(a) Compute [X,Y ]. (It is not zero.)

(b) Find the diffeomorphisms ϕt
X : T2 → T

2 and ϕt
Y : T2 → T

2 for arbitrary t ∈ R.

(c) Fix a point (x, y) ∈ T
2 and consider the “parallelogram map”

α(s, t) := ϕ−t
Y ◦ ϕ−s

X ◦ ϕt
Y ◦ ϕs

X(x, y)

for real numbers s and t close to 0. Show that ∂sα(0, 0) and ∂tα(0, 0) are both 0. Now write
∂sα(0, t) = f1(t) ∂x + f2(t) ∂y and show that

∂tf1(0) ∂x + ∂tf2(0) ∂y = [X,Y ](x, y).

Informally, what this says is that the bracket [X,Y ] at a given point (x, y) is essentially the
“second derivative” of the composition of flows:

∂t∂s
(
ϕ−t
Y ◦ ϕ−s

X ◦ ϕt
Y ◦ ϕs

X(x, y)
)∣∣

s=t=0

This expression doesn’t quite make sense as written, but one can make sense of it, and the equality
here illustrates a more general theorem, a proof of which can be found e.g. in Spivak pp. 159–163.
Observe in any case that it’s clearly true if the flows commute, for then α(s, t) is constant in s
and t.
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