
Differential Geometry I Humboldt-Universität zu Berlin
C. Wendl Winter Semester 2016–17

PROBLEM SET 3

Suggested reading

As usual, chapter and section indications in Lee refer to the 2003 edition and may differ in the 2013 edition.
(And unlike last week, I really mean it this time.)

• Baum: §2.5–2.6

• Lee: Chapter 7, Chapter 8 (“Embedded Submanifolds”), Chapter 11 (up to “Tensors and Tensor Fields
on Manifolds”)

For an overview of the multilinear algebra underlying tensors, you might also find Appendix A of my Lecture
Notes on Bundles and Connections useful; it is now posted on the course website, along with a convenient
link to Helga Baum’s Volesungsskript.

Problems

1. The purpose of this problem is to unpack the meaning of a few definitions that we saw in last Thursday’s
lecture. Recall that a smooth map f : M → N is called an immersion or a submersion if its derivative
f∗ : TpM → Tf(p)N at every point p ∈ M is injective or surjective respectively. We say f : M → N
is an embeddeing if it is an injective immersion that is a homeomorphism onto its image. The latter
condition means in particular that f−1 : f(M) → M is continuous, where f(M) ⊂ N is assumed to
carry the topology (or metric if you prefer) that it inherits as a subset of N . We often use the notation

f : M # N or f : M ↪→ N

to indicate that f is an immersion or embedding respectively. Finally, a subset M ⊂ N in a smooth
manifold N is called a submanifold of N if it is a topological manifold (with the topology it inherits
from N) and admits a smooth structure such that the natural inclusion M ↪→ N is an embedding.
Achtung! You will occasionally see subtle discrepancies between different books in some of these
definitions. The conventions adopted here are consistent with both Lee and Baum, but slightly different
from e.g. Warner. Lee also uses the term “immersed submanifold”, which I prefer to avoid, but it is
useful occasionally.

The following problem is likely to seem somewhat difficult, though most of the answers may be found
in this week’s suggested reading, so you can appeal to the books for help if necessary. But try it on
your own first.

(a) Suppose U ⊂ Rm is an open subset and f : U → Rn is a smooth map with df(x) : Rm → Rn

injective for some x ∈ U . Find a smooth map f̃ : U×Rn−m → Rn such that df̃(x) : Rm⊕Rn−m →
Rn is invertible.

(b) Use problem (1a) and the inverse function theorem to prove that if f : M # N is an immersion
between smooth manifolds, then every point p ∈M has an open neighborhood U ⊂M such that
f |U : U ↪→ N is an embedding. We say in this case that f is a “local embedding”.
Hint: Since the statement is local and all manifolds can be described locally via charts, it suffices
to consider the special case where N = Rn and M is an open subset of Rm.

(c) Find an example of an injective immersion f : R # T2 := R2/Z2 that is not an embedding.
Hint: Define it so that its image is dense in T2, then convince yourself that f−1 : f(R) → R
cannot be continuous with respect to the topology that f(R) inherits from T2.

(d) Find an example of an injective immersion f : (−1, 1) # R2 that is not an embedding. Hint: ∞.

(e) Show that a subset M ⊂ N of a smooth manifold N is a submanifold if and only if it is the image
of an embedding.
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(f) Show that if f : M # N is an injective immersion and M is compact, then f is an embedding.

(g) If you are sufficiently ambitious, use what you learned in problems (1a) and (1b) to establish the
following alternative characterization of submanifolds. Given a smooth n-manifold N , show that
a subset M ⊂ N is an m-dimensional submanifold of N if and only if for every p ∈M there exists
an open neighborhood U ⊂ N of p and a chart x : U → Rn such that

M ∩ U =
{
q ∈ U

∣∣ x(q) ∈ Rm × {0} ⊂ Rn
}
.

In other words, the local coordinates x = (x1, . . . , xn) characterize M near p as the set of all
points whose last n−m coordinates vanish. A chart with this property is called a slice chart.
Question for thought: In constructing slice charts for a given embedded submanifold M ⊂ N ,
where do you need to use the assumption that the inclusion M ↪→ N is a homoemorphism onto
its image?

Since the remainder of this problem set deals with tensors, we need to clarify some notational conventions
that differ in various books. The notation that I use in class and in my lecture notes is as follows. If V is a
vector space, V k

` denotes the vector space of tensors on V that are covariant of rank ` and contravariant of
rank k, i.e. multilinear maps

V × . . .× V︸ ︷︷ ︸
`

×V ∗ × . . .× V ∗︸ ︷︷ ︸
k

→ R

where we denote the dual space V ∗ = Hom(V,R) = V 0
1 . Replacing V with a tangent space TpM , we call the

corresponding tensor space (T k
` M)p and define the tensor bundle T k

` M to be the union of these spaces for
all p ∈M . In particular, T 1

0M is the usual tangent bundle TM , and T 0
1M is the cotangent bundle

T ∗M := T 0
1M,

made up of the dual spaces T ∗pM to the tangent spaces TpM . A tensor of type (k, `) on TpM is then simply

an element of (T k
` M)p, and a tensor field1 of type (k, `) smoothly assigns to each p ∈ M an element of

(T k
` M)p. The space of tensor fields of this type is denoted Γ(T k

` M), literally, “sections of the bundle T k
` M”.

We’ll define precisely what section means when we discuss bundles in earnest later in the semester.
Here’s a brief glossary of some notational differences between our discussion and that of Lee’s book. Each
choice has its own logic, and neither is perfect. You will find further differences in the book by Agricola-
Friedrich and in Baum’s Vorlesungsskript, e.g. what we call V k

` is called T (`,k)(V ) by Baum.

our notation Lee’s notation

V 0
k , T

0
kM, (T 0

kM)p = T k(V ), T kM,T k(TpM)

V k
0 , T

k
0M, (T k

0M)p = Tk(V ), TkM,Tk(TpM)

V k
` , T

k
` M, (T k

` M)p = T `
k(V ), T `

kM,T `
k(TpM)

tensor of type (k, `) = tensor of type
(`
k

)
Yes, that’s right, the k and ` are flipped—I swear it’s not my fault. My logic (and I’m not the only one)
is that the covariant tensors, i.e. those which act on vectors but not on dual vectors, should be indicated
by a lower index because their components have lower indices. Similarly it makes sense to say TM = T 1

0M
instead of T 0

1M because the components of tangent vectors have upper indices.

2. Let V and W be vector spaces, and for k ∈ N denote by Homk(V,W ) the vector space of k-multilinear
maps V × . . .× V︸ ︷︷ ︸

k

→ W . Find a natural isomorphism Homk(V, V ) → V 1
k , and prove that it is an

isomorphism.
Note: there are multiple isomorphisms that one could write down, but only one that is truly natural.
To prove it’s an isomorphism, remember it suffices to show that the map is linear and injective, and
that dim Homk(V, V ) = dimV 1

k . What are these dimensions actually? If it simplifies things, you may
as well assume V = Rn.

1One often omits the word “field” from “tensor field” when there’s no danger of confusion.
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3. Let M be an n-dimensional manifold with an open set U ⊂M and coordinate chart x = (x1, . . . , xn) :
U → Rn. Recall that the coordinate functions xj : U → R define derivations ∂j := ∂

∂xj and differentials
dxj , which give bases of TpM and T ∗pM respectively at every point p ∈ U . With these, an arbitrary

tensor field T ∈ Γ(T k
` M) can be expressed over U via its nk+` component functions T i1...ik

j1...j`
: U →

R, defined by
T i1...ik

j1...j`
= T (∂j1 , . . . , ∂j` , dx

i1 , . . . , dxik).

We then have
T = T i1...ik

j1...j`
dxj1 ⊗ . . .⊗ dxj` ⊗ ∂i1 ⊗ . . .⊗ ∂ik ,

using the Einstein summation convention: recall that since this expression contains k + ` pairs of
matching upper and lower indices, there’s an implied summation over each one. Literally then (we’ll
write it out just this once), this means

T =

n∑
i1=1

. . .

n∑
ik=1

n∑
j1=1

. . .

n∑
j`=1

T i1...ik
j1...j`

dxj1 ⊗ . . .⊗ dxj` ⊗ ∂i1 ⊗ . . .⊗ ∂ik .

That’s why we usually don’t write it out literally.

(a) Consider a tensor field S of type (3, 2) and another T of type (2, 1), and recall that the tensor
product S ⊗ T is then a tensor field of type (5, 3) defined by

(S ⊗ T )(X,Y, Z, α, β, γ, θ, ω) = S(X,Y, α, β, γ) · T (Z, θ, ω)

for any tangent vectors X,Y, Z ∈ TpM and cotangent vectors α, β, γ, θ, ω ∈ T ∗pM . Find a formula

for the component functions (S ⊗ T )ijk`mpqr : U → R in terms of Sijk
pq and T `m

r . The answer
is quite simple—and though we’ve chosen tensors of relatively low rank to simplify the notation,
you can see what the answer for tensors of general type would be.

Now suppose x̂ = (x̂1, . . . , x̂n) : Û → Rn is another coordinate chart on some open subset Û ⊂ M

such that U ∩ Û 6= ∅. Denote by T̂ i1...ik
j1...j`

: Û → R the component functions for a tensor field

T ∈ Γ(T k
` M) in the new chart. As we mentioned in Problem Set 2, the basis vectors ∂

∂xj and ∂
∂x̂j in

TpM for any point p ∈ U ∩ Û are related to each other by

∂

∂xj
=
∂x̂i

∂xj
∂

∂x̂i
, (1)

where this time we’re using the summation convention to imply a summation over the repeated index i
(it’s considered a lower index in ∂

∂x̂i because it appears in the denominator). The partial derivatives
∂x̂i

∂xj for each i and j should best be understood as smooth functions U ∩ Û → R, though of course we’d

have to use the coordinates and express them as functions on the open set x(U ∩ Û) ⊂ Rn in order
to compute them. Let us be more explicit: denote by ∂

∂xj

∣∣
p

the actual vector in TpM which is the

value of the coordinate vector field ∂
∂xj ∈ Vec(U) at p ∈ U , and define ∂

∂x̂j

∣∣
p

similarly for p ∈ Û . Then

Equation (1) says that for all p ∈ U ∩ Û ,

∂

∂xj

∣∣∣∣
p

=
∂x̂i

∂xj
(p)

∂

∂x̂i

∣∣∣∣
p

.

(b) Derive a similar expression for the coordinate differentials dxj in terms of dx̂j and ∂xj

∂x̂i at points

in U ∩ Û . Hint: Use the chain rule!

(c) For a cotangent vector field λ ∈ Γ(T 0
1 ) and a covariant rank 2 tensor field T ∈ Γ(T 0

2M), use the
above relations between dxj and dx̂j to derive the transformation formulas

λ̂i = λj
∂xj

∂x̂i
and T̂ij = Tk`

∂xk

∂x̂i
∂x`

∂x̂j
,

relating the distinct sets of component functions over U ∩ Û .
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(d) For a contravariant rank 2 tensor field T ∈ Γ(T 2
0M), derive

T̂ ij =
∂x̂i

∂xk
∂x̂j

∂x`
T k`.

(e) Finally, for a tensor field A ∈ Γ(T 1
1M) of “mixed” type (1, 1), show that

Âi
j =

∂x̂i

∂xk
Ak

`

∂x`

∂x̂j
.

This formula has a nice interpretation using matrices: define the smooth matrix-valued function
A : U → Rn×n by setting the entry at the ith row and jth column of A(p) to Ai

j(p), and define

Â : Û → Rn×n similarly. We can also define the partial derivative matrix S : U ∩ Û → Rn×n

with entries Si
j = ∂x̂i

∂xj , and observe that by the inverse function theorem, S−1 is the matrix with

entries ∂xi

∂x̂j . Then the transformation formula above becomes

Â = SAS−1.
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