
Differential Geometry I Humboldt-Universität zu Berlin

C. Wendl Winter Semester 2016–17

PROBLEM SET 5

Suggested reading

As usual, chapter and section indications in Lee refer to the 2003 edition and may differ in the 2013 edition.

• Baum: §2.8–2.10

• Friedrich and Agricola: §2.1–2.5 and §3.2–3.6

• Lee: Chapter 12 (“Exterior Derivatives”), Chapter 13 (skip “The Orientation Covering”, then up to
“Boundary Orientations”), Chapter 14 (up to “Stokes’s Theorem”)

Problems

1. Given an n-dimensional vector space V , we denote by ΛkV ∗ ⊂ V 0
k the vector space of alternating k-

multilinear maps V × . . .×V → R. For a definition of the wedge product ∧ : ΛkV ∗×ΛℓV ∗ → Λk+ℓV ∗,
we write

α ∧ β =
(k + ℓ)!

k!ℓ!
Alt(α⊗ β),

where the skew-symmetric projection Alt : V 0
k → ΛkV ∗ is defined by

Alt(ω)(v1, . . . , vk) :=
1

k!

∑
σ∈Sk

(−1)|σ|ω(vσ(1), . . . , vσ(k)),

with Sk denoting the group of permutations of {1, . . . , k} and the even/odd parity of each permutation
σ ∈ Sk labeled by |σ| = 0 or 1 respectively.

(a) Show that a set of dual vectors α1, . . . , αk ∈ Λ1V ∗ = V ∗ is linearly independent in V ∗ if and only
if α1 ∧ . . . ∧ αk 6= 0.
Hint: Given c1, . . . , ck ∈ R, how can you simplify the expression

∑k

i=1 ciα
i ∧ α2 ∧ . . . ∧ αk?

(b) Prove by induction on k that if α1, . . . , αk ∈ V ∗ are linearly independent, then

α1 ∧ . . . ∧ αk =
∑
σ∈Sk

(−1)|σ|ασ(1) ⊗ . . .⊗ ασ(k).

Then explain why the linear independence assumption is unnecessary.
Hint: Extend α1, . . . , αk to a basis of V ∗ and evaluate forms using its dual basis.

2. The following topological fact lies in the background of the notion of orientations on vector spaces
or manifolds: For all n ∈ N, the group GL(n,R) of real invertible n-by-n matrices has exactly two

connected components. Let’s prove it.

Recall that in general, a topological space X is said to be path-connected if for every pair of points
x, y ∈ X , there exists a continuous map γ : [0, 1] → X with γ(0) = x and γ(1) = y. A subset
A ⊂ X is then called a connected component if it is path-connected and is not contained in any strictly
larger path-connected subset.1 It should be clear that if the statement about GL(n,R) having two
components is true, then the two components are

GL+(n,R) := {A ∈ GL(n,R) | detA > 0} and GL−(n,R) := {A ∈ GL(n,R) | detA < 0}.

(a) Show that GL+(n,R) is path-connected if and only if GL−(n,R) is path-connected.

1Technically, the notions of “connectedness” and “path-connectedness” of topological spaces are not generally equivalent,
but one has to consider fairly weird spaces before this distinction becomes relevant. For manifolds they are equivalent notions,
and since GL±(n,R) can each be identified with open subsets of an n2-dimensional Euclidean space, they are both manifolds
and we will therefore not worry about this distinction any further.
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(b) Show that for every A ∈ GL+(n,R), there exists a continuous path from A to a matrix in the
special orthogonal group

SO(n) := {A ∈ GL(n,R) | ATA = 1 and detA = 1}.

(c) It will now suffice to show that SO(n) is path-connected for all n ∈ N. We shall prove this
by induction. For n = 1 it is obvious, so assume now that SO(n − 1) is path-connected. Let
(e1, . . . , en) denote the standard basis of unit vectors on R

n, which we can also regard as points in
the unit sphere Sn−1 ⊂ R

n. Since matrices A ∈ SO(n) act on R
n by orthogonal transformations,

we can define a continuous map

π : SO(n) → Sn−1 : A 7→ Ae1.

Show that π is surjective.
Hint: You may take for granted the existence of the Gram-Schmidt orthogonalization algorithm.

(d) Show that for each v ∈ Sn−1, π−1(v) is homeomorphic to SO(n− 1).
Hint: Start with the case v = e1, and then for more general v ∈ Sn−1, write v = Ae1 for some
A ∈ SO(n), using part (c).

(e) Show that Sn−1 is path-connected. (This is easy.)

(f) Suppose v : [0, 1] → Sn−1 is a continuous path. Show that for every t0 ∈ [0, 1] and every
A0 ∈ π−1(v(t0)), there exists a neighborhood U ⊂ [0, 1] of t0 and a continuous path U → SO(n) :
t 7→ A(t) such that A(t0) = A0 and π(A(t)) = v(t) for all t ∈ U .
Hint: Gram-Schmidt is useful again here.

(g) Observe that since [0, 1] is compact, it can be covered by finitely many of the neighborhoods from
part (f). Use this, and the assumption that SO(n− 1) is path-connected, to show that SO(n) is
path-connected.

If you like algebraic topology, you may be interested to know that you have just carried out the first
step in proving that π : SO(n) → Sn−1 is a Serre fibration, and you then secretly made use of the
“π0 part” of its homotopy exact sequence to prove π0(SO(n)) ∼= π0(SO(n− 1)). Whatever that means.

3. Recall that ifM is a smooth oriented n-manifold (possibly with boundary), ω ∈ Ωn(M) is a differential
n-form with compact support and A ⊂ M is an open or closed subset,2 one can define the integral of
ω over A as ∫

A

ω =
∑
α∈I

∫
xα(Uα∩A)

ϕ∗
α(ψαω),

where {Uα
xα−→ xα(Uα) ⊂ R

n}α∈I is a finite collection of orientation-preserving charts such that each
Uα ⊂M has compact closure,

supp(ω) ⊂ N :=
⋃
α∈I

Uα,

ϕα denotes the diffeomorphisms x−1
α : xα(Uα) → Uα for each α, and {ψα : N → [0, 1]}α∈I is a partition

of unity on N subordinate to the open cover {Uα}α∈I . We’ve seen in lecture that the result does not
depend on our choice of charts and partition of unity. We would now like to establish a few more
properties of this integral, some of which were stated in lecture but not proved.

(a) If M has boundary, show

∫
M

ω =

∫
M\∂M

ω. Similarly, show that if X ⊂ M is a finite union of

submanifolds with dimensions at most n− 1, then

∫
M

ω =

∫
M\X

ω.

2More generally, one can make sense of this discussion whenever A ⊂ M is a Borel subset of M , but I don’t really want to
get into measure theory here.
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(b) Show that if M = A ∪B where A,B ⊂M are each closed or open subsets and A ∩B = ∅, then∫
M

ω =

∫
A

ω +

∫
B

ω.

Observe that by part (a), this formula remains true if M = A ∪Σ B, meaning Σ ⊂ M is an
(n− 1)-dimensional submanifold with Σ = A ∩B and M = A ∪B.

(c) If M denotes the same smooth manifold as M but endowed with the opposite orientation, prove∫
M

ω = −

∫
M

ω.

Hint: Given an orientation-preserving chart xα : Uα → xα(Uα) ⊂ R
n on M , what is the easiest

way to produce from this an orientation-reversing chart?

(d) Prove the general change of variables formula: if M and N are smooth n-manifolds, f : M → N

is an orientation-preserving diffeomorphism, ω ∈ Ωn(N) is an n-form with compact support and
A ⊂M is an open or closed subset, ∫

A

f∗ω =

∫
f(A)

ω.

Caution: Always remember that this is only true when f is both a diffeomorphism and orientation
preserving! How does the formula change if f is still a diffeomorphism but reverses orientation?

(e) The definition of
∫
M
ω via partitions of unity is cumbersome, and in practice we almost always

use something simpler. One commonly occurring situation is as follows: suppose M is a compact
n-manifold with a chart

U :=M \X
x

−→ x(U) ⊂ R
n

where the subset X ⊂ M is a finite union of compact submanifolds that each have dimension at
most n− 1. In this case part (a) shows ∫

M

ω =

∫
M\X

ω,

and it now seems intuitive that one could use the change of variables formula and compute∫
M\X

ω =

∫
x(U)

ϕ∗ω,

where ϕ := x−1. However, the validity of this formula is not immediately obvious since ω need not
have compact support on M \X . One possible remedy is to find a sequence of compact subsets
Ak ⊂M \X for k ∈ N such that

Ak ⊂ Ak+1 for all k and
⋃
k∈N

Ak =M \X.

Show that under this assumption,

∫
Ak

ω =

∫
x(Ak)

ϕ∗ω and lim
k→∞

∫
Ak

ω =

∫
M\X

ω, hence

∫
M

ω =

∫
x(U)

ϕ∗ω,

where the latter is understood as an improper integral over the noncompact open set x(U) ⊂ R
n.

(f) Use part (e) to show the following: if M is a closed (i.e. compact without boundary) and oriented
1-manifold, and γ : [a, b] → M is a smooth map such that γ(a) = γ(b) = p ∈ M and γ|(a,b) is an
orientation-preserving diffeomorphism (a, b) →M \ {p}, then for any λ ∈ Ω1(M),

∫
M

λ =

∫ b

a

λ(γ̇(t)) dt.

Now go back to Problem Set 4 and think again about #3(b).
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4. The standard spherical coordinates on R
3 are defined in terms of the Cartesian coordinates (x, y, z)

via the relations
x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

One can make various choices in order to define (r, θ, φ) as a chart on some open subset U ⊂ R
3,

e.g. one option is to set
U0 = R

3 \ {x ≥ 0 and y = 0},

so that we obtain a diffeomorphism (r, θ, φ) : U0 → (0,∞)× (0, π)× (0, 2π) ⊂ R
3. Alternatively, setting

U1 = R
3 \ {x ≤ 0 and y = 0},

one can regard (r, θ, φ) instead as a diffeomorphism U1 → (0,∞)× (0, π)× (−π, π) ⊂ R
3. Notice that

r and θ are both well defined on U0 ∪ U1; for φ this is not true, and the two charts described above
define two versions of the coordinate φ : U0 ∩ U1 → R which differ on certain regions, though only by
addition of the constant 2π. As a consequence, the 1-forms dr, dθ and dφ are well defined everywhere
on R

3 except at the z-axis, where all conceivable definitions of both θ and φ become singular.

Note: This situation is analogous to what we saw in #3 on Problem Set 4, where the 1-form λ could
be interpreted as dφ with respect to the polar coordinates (r, φ) on R

2 and is well defined on R
2 \ {0},

even though φ itself requires a smaller domain in order define a smooth real-valued function.

(a) Compute formulas for dx, dy and dz in terms of dr, dθ and dφ. On what subsets of R3 are these
formulas valid?

(b) Show that on the complement of the z-axis,

dx ∧ dy ∧ dz = r2 sin θ dr ∧ dθ ∧ dφ.

(c) Restricting to the unit sphere S2 = {r = 1} ⊂ R
3, (θ, φ) and (φ, θ) can now be regarded as charts

on the intersection of S2 with either of U0 or U1. The 1-forms dθ and dφ are thus well defined
on the entire sphere except at the north and south poles {z = ±1} ⊂ S2. Assuming R

3 carries
its canonical orientation and S2 inherits the natural orientation as the boundary of the unit ball,
which chart is orientation preserving: (θ, φ) or (φ, θ)?

(d) For p ∈ S2, use the canonical identification of TpR
3 with R

3 to define ν(p) ∈ TpR
3 as the outward-

pointing unit vector in R
3 orthogonal to the subspace TpS

2 ⊂ R
3. Show that ν is the same as the

coordinate vector field ∂r at every point along S2 where the coordinates (r, θ, φ) can be defined.

(e) We can now define a (positively oriented) area form ω on S2 in terms of the standard volume
form on R

3 by
ω := ιν (dx ∧ dy ∧ dz|TS2) ,

in other words, for p ∈ S2 and X,Y ∈ TpS
2, ω(X,Y ) := dx ∧ dy ∧ dz(ν(p), X, Y ). Show that

ω = sin θ dθ ∧ dφ

away from the north and south poles.

(f) Use the results of Problem 3 to compute ∫
S2

ω = 4π

by integrating over a suitable open subset on which a chart (θ, φ) can be defined.

(g) Find a 1-form λ on S2 \ {z = ±1} such that ω = dλ on this region. In this case we say λ is a
primitive of ω.

(h) Given ǫ > 0 small, consider the compact subset

Aǫ = {ǫ ≤ θ ≤ π − ǫ} ⊂ S2.

Use Stokes’ theorem and the primitive λ from part (g) to compute
∫
Aǫ

ω, then take the limit as

ǫ → 0 and make sure you get the right answer. (If you don’t get the right answer, it probably
means you’re not paying careful enough attention to orientations.)
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