DIFFERENTIAL GEOMETRY I C. WENDL Humboldt-Universität zu Berlin Winter Semester 2016–17

PROBLEM SET 5

Suggested reading

As usual, chapter and section indications in Lee refer to the 2003 edition and may differ in the 2013 edition.

- Baum: §2.8–2.10
- Friedrich and Agricola: §2.1–2.5 and §3.2–3.6
- Lee: Chapter 12 ("Exterior Derivatives"), Chapter 13 (skip "The Orientation Covering", then up to "Boundary Orientations"), Chapter 14 (up to "Stokes's Theorem")

Problems

1. Given an *n*-dimensional vector space V, we denote by $\Lambda^k V^* \subset V_k^0$ the vector space of alternating *k*multilinear maps $V \times \ldots \times V \to \mathbb{R}$. For a definition of the wedge product $\wedge : \Lambda^k V^* \times \Lambda^\ell V^* \to \Lambda^{k+\ell} V^*$, we write

$$\alpha \wedge \beta = \frac{(k+\ell)!}{k!\ell!} \operatorname{Alt}(\alpha \otimes \beta),$$

where the skew-symmetric projection Alt : $V_k^0 \to \Lambda^k V^*$ is defined by

$$\operatorname{Alt}(\omega)(v_1,\ldots,v_k) := \frac{1}{k!} \sum_{\sigma \in S_k} (-1)^{|\sigma|} \omega(v_{\sigma(1)},\ldots,v_{\sigma(k)}),$$

with S_k denoting the group of permutations of $\{1, \ldots, k\}$ and the even/odd parity of each permutation $\sigma \in S_k$ labeled by $|\sigma| = 0$ or 1 respectively.

- (a) Show that a set of dual vectors $\alpha^1, \ldots, \alpha^k \in \Lambda^1 V^* = V^*$ is linearly independent in V^* if and only if $\alpha^1 \wedge \ldots \wedge \alpha^k \neq 0$.
 - Hint: Given $c_1, \ldots, c_k \in \mathbb{R}$, how can you simplify the expression $\sum_{i=1}^k c_i \alpha^i \wedge \alpha^2 \wedge \ldots \wedge \alpha^k$?
- (b) Prove by induction on k that if $\alpha^1, \ldots, \alpha^k \in V^*$ are linearly independent, then

$$\alpha^1 \wedge \ldots \wedge \alpha^k = \sum_{\sigma \in S_k} (-1)^{|\sigma|} \alpha^{\sigma(1)} \otimes \ldots \otimes \alpha^{\sigma(k)}.$$

Then explain why the linear independence assumption is unnecessary. Hint: Extend $\alpha^1, \ldots, \alpha^k$ to a basis of V^* and evaluate forms using its dual basis.

2. The following topological fact lies in the background of the notion of orientations on vector spaces or manifolds: For all $n \in \mathbb{N}$, the group $\operatorname{GL}(n, \mathbb{R})$ of real invertible n-by-n matrices has exactly two connected components. Let's prove it.

Recall that in general, a topological space X is said to be *path-connected* if for every pair of points $x, y \in X$, there exists a continuous map $\gamma : [0,1] \to X$ with $\gamma(0) = x$ and $\gamma(1) = y$. A subset $A \subset X$ is then called a *connected component* if it is path-connected and is not contained in any strictly larger path-connected subset.¹ It should be clear that if the statement about $GL(n, \mathbb{R})$ having two components is true, then the two components are

$$\operatorname{GL}_{+}(n,\mathbb{R}) := \{ \mathbf{A} \in \operatorname{GL}(n,\mathbb{R}) \mid \det \mathbf{A} > 0 \} \quad \text{and} \quad \operatorname{GL}_{-}(n,\mathbb{R}) := \{ \mathbf{A} \in \operatorname{GL}(n,\mathbb{R}) \mid \det \mathbf{A} < 0 \}.$$

(a) Show that $GL_{+}(n,\mathbb{R})$ is path-connected if and only if $GL_{-}(n,\mathbb{R})$ is path-connected.

¹Technically, the notions of "connectedness" and "path-connectedness" of topological spaces are not generally equivalent, but one has to consider fairly weird spaces before this distinction becomes relevant. For manifolds they are equivalent notions, and since $GL_{\pm}(n,\mathbb{R})$ can each be identified with open subsets of an n^2 -dimensional Euclidean space, they are both manifolds and we will therefore not worry about this distinction any further.

(b) Show that for every $\mathbf{A} \in GL_+(n, \mathbb{R})$, there exists a continuous path from \mathbf{A} to a matrix in the special orthogonal group

$$SO(n) := \{ \mathbf{A} \in GL(n, \mathbb{R}) \mid \mathbf{A}^T \mathbf{A} = \mathbb{1} \text{ and } \det \mathbf{A} = 1 \}.$$

(c) It will now suffice to show that SO(n) is path-connected for all $n \in \mathbb{N}$. We shall prove this by induction. For n = 1 it is obvious, so assume now that SO(n - 1) is path-connected. Let $(\mathbf{e}_1, \ldots, \mathbf{e}_n)$ denote the standard basis of unit vectors on \mathbb{R}^n , which we can also regard as points in the unit sphere $S^{n-1} \subset \mathbb{R}^n$. Since matrices $\mathbf{A} \in SO(n)$ act on \mathbb{R}^n by orthogonal transformations, we can define a continuous map

$$\pi: \mathrm{SO}(n) \to S^{n-1}: \mathbf{A} \mapsto \mathbf{Ae}_1.$$

Show that π is surjective.

Hint: You may take for granted the existence of the Gram-Schmidt orthogonalization algorithm.

- (d) Show that for each $\mathbf{v} \in S^{n-1}$, $\pi^{-1}(\mathbf{v})$ is homeomorphic to SO(n-1). Hint: Start with the case $\mathbf{v} = \mathbf{e}_1$, and then for more general $\mathbf{v} \in S^{n-1}$, write $\mathbf{v} = \mathbf{A}\mathbf{e}_1$ for some $\mathbf{A} \in SO(n)$, using part (c).
- (e) Show that S^{n-1} is path-connected. (This is easy.)
- (f) Suppose $\mathbf{v} : [0,1] \to S^{n-1}$ is a continuous path. Show that for every $t_0 \in [0,1]$ and every $\mathbf{A}_0 \in \pi^{-1}(\mathbf{v}(t_0))$, there exists a neighborhood $\mathcal{U} \subset [0,1]$ of t_0 and a continuous path $\mathcal{U} \to \mathrm{SO}(n)$: $t \mapsto \mathbf{A}(t)$ such that $\mathbf{A}(t_0) = \mathbf{A}_0$ and $\pi(\mathbf{A}(t)) = \mathbf{v}(t)$ for all $t \in \mathcal{U}$. Hint: Gram-Schmidt is useful again here.
- (g) Observe that since [0, 1] is compact, it can be covered by finitely many of the neighborhoods from part (f). Use this, and the assumption that SO(n 1) is path-connected, to show that SO(n) is path-connected.

If you like algebraic topology, you may be interested to know that you have just carried out the first step in proving that $\pi : SO(n) \to S^{n-1}$ is a Serre fibration, and you then secretly made use of the " π_0 part" of its homotopy exact sequence to prove $\pi_0(SO(n)) \cong \pi_0(SO(n-1))$. Whatever that means.

3. Recall that if M is a smooth oriented *n*-manifold (possibly with boundary), $\omega \in \Omega^n(M)$ is a differential *n*-form with compact support and $A \subset M$ is an open or closed subset,² one can define the integral of ω over A as

$$\int_{A} \omega = \sum_{\alpha \in I} \int_{x_{\alpha}(\mathcal{U}_{\alpha} \cap A)} \varphi_{\alpha}^{*}(\psi_{\alpha}\omega),$$

where $\{\mathcal{U}_{\alpha} \xrightarrow{x_{\alpha}} x_{\alpha}(\mathcal{U}_{\alpha}) \subset \mathbb{R}^n\}_{\alpha \in I}$ is a finite collection of orientation-preserving charts such that each $\mathcal{U}_{\alpha} \subset M$ has compact closure,

$$\operatorname{supp}(\omega) \subset N := \bigcup_{\alpha \in I} \mathcal{U}_{\alpha},$$

 φ_{α} denotes the diffeomorphisms $x_{\alpha}^{-1} : x_{\alpha}(\mathcal{U}_{\alpha}) \to \mathcal{U}_{\alpha}$ for each α , and $\{\psi_{\alpha} : N \to [0,1]\}_{\alpha \in I}$ is a partition of unity on N subordinate to the open cover $\{\mathcal{U}_{\alpha}\}_{\alpha \in I}$. We've seen in lecture that the result does not depend on our choice of charts and partition of unity. We would now like to establish a few more properties of this integral, some of which were stated in lecture but not proved.

(a) If M has boundary, show $\int_M \omega = \int_{M \setminus \partial M} \omega$. Similarly, show that if $X \subset M$ is a finite union of submanifolds with dimensions at most n-1, then

$$\int_M \omega = \int_{M \setminus X} \omega.$$

²More generally, one can make sense of this discussion whenever $A \subset M$ is a *Borel* subset of M, but I don't really want to get into measure theory here.

(b) Show that if $M = A \cup B$ where $A, B \subset M$ are each closed or open subsets and $A \cap B = \emptyset$, then

$$\int_M \omega = \int_A \omega + \int_B \omega.$$

Observe that by part (a), this formula remains true if $M = A \cup_{\Sigma} B$, meaning $\Sigma \subset M$ is an (n-1)-dimensional submanifold with $\Sigma = A \cap B$ and $M = A \cup B$.

(c) If \overline{M} denotes the same smooth manifold as M but endowed with the opposite orientation, prove

$$\int_{\overline{M}} \omega = -\int_M \omega.$$

Hint: Given an orientation-preserving chart $x_{\alpha} : \mathcal{U}_{\alpha} \to x_{\alpha}(\mathcal{U}_{\alpha}) \subset \mathbb{R}^n$ on M, what is the easiest way to produce from this an orientation-reversing chart?

(d) Prove the general change of variables formula: if M and N are smooth n-manifolds, $f: M \to N$ is an orientation-preserving diffeomorphism, $\omega \in \Omega^n(N)$ is an n-form with compact support and $A \subset M$ is an open or closed subset,

$$\int_A f^* \omega = \int_{f(A)} \omega.$$

Caution: Always remember that this is only true when f is both a diffeomorphism and orientation preserving! How does the formula change if f is still a diffeomorphism but reverses orientation?

(e) The definition of $\int_M \omega$ via partitions of unity is cumbersome, and in practice we almost always use something simpler. One commonly occurring situation is as follows: suppose M is a compact n-manifold with a chart

$$\mathcal{U} := M \setminus X \xrightarrow{x} x(\mathcal{U}) \subset \mathbb{R}^n$$

where the subset $X \subset M$ is a finite union of compact submanifolds that each have dimension at most n-1. In this case part (a) shows

$$\int_M \omega = \int_{M \setminus X} \omega,$$

and it now seems intuitive that one could use the change of variables formula and compute

$$\int_{M\setminus X} \omega = \int_{x(\mathcal{U})} \varphi^* \omega,$$

where $\varphi := x^{-1}$. However, the validity of this formula is not immediately obvious since ω need not have compact support on $M \setminus X$. One possible remedy is to find a sequence of compact subsets $A_k \subset M \setminus X$ for $k \in \mathbb{N}$ such that

$$A_k \subset A_{k+1}$$
 for all k and $\bigcup_{k \in \mathbb{N}} A_k = M \setminus X$.
Show that under this assumption, $\int_{A_k} \omega = \int_{x(A_k)} \varphi^* \omega$ and $\lim_{k \to \infty} \int_{A_k} \omega = \int_{M \setminus X} \omega$, hence
 $\int_M \omega = \int_{x(\mathcal{U})} \varphi^* \omega$,

where the latter is understood as an improper integral over the noncompact open set $x(\mathcal{U}) \subset \mathbb{R}^n$.

(f) Use part (e) to show the following: if M is a closed (i.e. compact without boundary) and oriented 1-manifold, and $\gamma : [a, b] \to M$ is a smooth map such that $\gamma(a) = \gamma(b) = p \in M$ and $\gamma|_{(a,b)}$ is an orientation-preserving diffeomorphism $(a, b) \to M \setminus \{p\}$, then for any $\lambda \in \Omega^1(M)$,

$$\int_M \lambda = \int_a^b \lambda(\dot{\gamma}(t)) \, dt.$$

Now go back to Problem Set 4 and think again about #3(b).

4. The standard spherical coordinates on \mathbb{R}^3 are defined in terms of the Cartesian coordinates (x, y, z) via the relations

$$x = r \sin \theta \cos \phi, \qquad y = r \sin \theta \sin \phi, \qquad z = r \cos \theta.$$

One can make various choices in order to define (r, θ, ϕ) as a chart on some open subset $\mathcal{U} \subset \mathbb{R}^3$, e.g. one option is to set

$$\mathcal{U}_0 = \mathbb{R}^3 \setminus \{ x \ge 0 \text{ and } y = 0 \},\$$

so that we obtain a diffeomorphism $(r, \theta, \phi) : \mathcal{U}_0 \to (0, \infty) \times (0, \pi) \times (0, 2\pi) \subset \mathbb{R}^3$. Alternatively, setting

$$\mathcal{U}_1 = \mathbb{R}^3 \setminus \{ x \le 0 \text{ and } y = 0 \}$$

one can regard (r, θ, ϕ) instead as a diffeomorphism $\mathcal{U}_1 \to (0, \infty) \times (0, \pi) \times (-\pi, \pi) \subset \mathbb{R}^3$. Notice that r and θ are both well defined on $\mathcal{U}_0 \cup \mathcal{U}_1$; for ϕ this is not true, and the two charts described above define two versions of the coordinate $\phi : \mathcal{U}_0 \cap \mathcal{U}_1 \to \mathbb{R}$ which differ on certain regions, though only by addition of the constant 2π . As a consequence, the 1-forms dr, $d\theta$ and $d\phi$ are well defined everywhere on \mathbb{R}^3 except at the z-axis, where all conceivable definitions of both θ and ϕ become singular.

Note: This situation is analogous to what we saw in #3 on Problem Set 4, where the 1-form λ could be interpreted as $d\phi$ with respect to the polar coordinates (r, ϕ) on \mathbb{R}^2 and is well defined on $\mathbb{R}^2 \setminus \{0\}$, even though ϕ itself requires a smaller domain in order define a smooth real-valued function.

- (a) Compute formulas for dx, dy and dz in terms of dr, $d\theta$ and $d\phi$. On what subsets of \mathbb{R}^3 are these formulas valid?
- (b) Show that on the complement of the z-axis,

$$dx \wedge dy \wedge dz = r^2 \sin \theta \, dr \wedge d\theta \wedge d\phi.$$

- (c) Restricting to the unit sphere $S^2 = \{r = 1\} \subset \mathbb{R}^3$, (θ, ϕ) and (ϕ, θ) can now be regarded as charts on the intersection of S^2 with either of \mathcal{U}_0 or \mathcal{U}_1 . The 1-forms $d\theta$ and $d\phi$ are thus well defined on the entire sphere except at the north and south poles $\{z = \pm 1\} \subset S^2$. Assuming \mathbb{R}^3 carries its canonical orientation and S^2 inherits the natural orientation as the boundary of the unit ball, which chart is orientation preserving: (θ, ϕ) or (ϕ, θ) ?
- (d) For $p \in S^2$, use the canonical identification of $T_p \mathbb{R}^3$ with \mathbb{R}^3 to define $\nu(p) \in T_p \mathbb{R}^3$ as the outwardpointing unit vector in \mathbb{R}^3 orthogonal to the subspace $T_p S^2 \subset \mathbb{R}^3$. Show that ν is the same as the coordinate vector field ∂_r at every point along S^2 where the coordinates (r, θ, ϕ) can be defined.
- (e) We can now define a (positively oriented) area form ω on S^2 in terms of the standard volume form on \mathbb{R}^3 by

$$\omega := \iota_{\nu} \left(dx \wedge dy \wedge dz |_{TS^2} \right)$$

in other words, for $p \in S^2$ and $X, Y \in T_p S^2$, $\omega(X, Y) := dx \wedge dy \wedge dz(\nu(p), X, Y)$. Show that

$$\omega = \sin\theta \, d\theta \wedge d\phi$$

away from the north and south poles.

(f) Use the results of Problem 3 to compute

$$\int_{S^2} \omega = 4\pi$$

by integrating over a suitable open subset on which a chart (θ, ϕ) can be defined.

- (g) Find a 1-form λ on $S^2 \setminus \{z = \pm 1\}$ such that $\omega = d\lambda$ on this region. In this case we say λ is a *primitive* of ω .
- (h) Given $\epsilon > 0$ small, consider the compact subset

$$A_{\epsilon} = \{\epsilon \le \theta \le \pi - \epsilon\} \subset S^2.$$

Use Stokes' theorem and the primitive λ from part (g) to compute $\int_{A_{\epsilon}} \omega$, then take the limit as $\epsilon \to 0$ and make sure you get the right answer. (If you don't get the right answer, it probably means you're not paying careful enough attention to orientations.)