PROBLEM SET 5

Suggested reading

As usual, chapter and section indications in Lee refer to the 2003 edition and may differ in the 2013 edition.

- Baum: §2.8-2.10
- Friedrich and Agricola: §2.1-2.5 and §3.2-3.6
- Lee: Chapter 12 ("Exterior Derivatives"), Chapter 13 (skip "The Orientation Covering", then up to "Boundary Orientations"), Chapter 14 (up to "Stokes's Theorem")

Problems

1. Given an n-dimensional vector space V, we denote by $\Lambda^{k} V^{*} \subset V_{k}^{0}$ the vector space of alternating k multilinear maps $V \times \ldots \times V \rightarrow \mathbb{R}$. For a definition of the wedge product $\Lambda: \Lambda^{k} V^{*} \times \Lambda^{\ell} V^{*} \rightarrow \Lambda^{k+\ell} V^{*}$, we write

$$
\alpha \wedge \beta=\frac{(k+\ell)!}{k!\ell!} \operatorname{Alt}(\alpha \otimes \beta)
$$

where the skew-symmetric projection Alt : $V_{k}^{0} \rightarrow \Lambda^{k} V^{*}$ is defined by

$$
\operatorname{Alt}(\omega)\left(v_{1}, \ldots, v_{k}\right):=\frac{1}{k!} \sum_{\sigma \in S_{k}}(-1)^{|\sigma|} \omega\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)
$$

with S_{k} denoting the group of permutations of $\{1, \ldots, k\}$ and the even/odd parity of each permutation $\sigma \in S_{k}$ labeled by $|\sigma|=0$ or 1 respectively.
(a) Show that a set of dual vectors $\alpha^{1}, \ldots, \alpha^{k} \in \Lambda^{1} V^{*}=V^{*}$ is linearly independent in V^{*} if and only if $\alpha^{1} \wedge \ldots \wedge \alpha^{k} \neq 0$.
Hint: Given $c_{1}, \ldots, c_{k} \in \mathbb{R}$, how can you simplify the expression $\sum_{i=1}^{k} c_{i} \alpha^{i} \wedge \alpha^{2} \wedge \ldots \wedge \alpha^{k}$?
(b) Prove by induction on k that if $\alpha^{1}, \ldots, \alpha^{k} \in V^{*}$ are linearly independent, then

$$
\alpha^{1} \wedge \ldots \wedge \alpha^{k}=\sum_{\sigma \in S_{k}}(-1)^{|\sigma|} \alpha^{\sigma(1)} \otimes \ldots \otimes \alpha^{\sigma(k)}
$$

Then explain why the linear independence assumption is unnecessary.
Hint: Extend $\alpha^{1}, \ldots, \alpha^{k}$ to a basis of V^{*} and evaluate forms using its dual basis.
2. The following topological fact lies in the background of the notion of orientations on vector spaces or manifolds: For all $n \in \mathbb{N}$, the group $\mathrm{GL}(n, \mathbb{R})$ of real invertible n-by- n matrices has exactly two connected components. Let's prove it.
Recall that in general, a topological space X is said to be path-connected if for every pair of points $x, y \in X$, there exists a continuous map $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=y$. A subset $A \subset X$ is then called a connected component if it is path-connected and is not contained in any strictly larger path-connected subset 1 It should be clear that if the statement about $\mathrm{GL}(n, \mathbb{R})$ having two components is true, then the two components are

$$
\operatorname{GL}_{+}(n, \mathbb{R}):=\{\mathbf{A} \in \operatorname{GL}(n, \mathbb{R}) \mid \operatorname{det} \mathbf{A}>0\} \quad \text { and } \quad \operatorname{GL}_{-}(n, \mathbb{R}):=\{\mathbf{A} \in \operatorname{GL}(n, \mathbb{R}) \mid \operatorname{det} \mathbf{A}<0\}
$$

(a) Show that $\mathrm{GL}_{+}(n, \mathbb{R})$ is path-connected if and only if $\mathrm{GL}_{-}(n, \mathbb{R})$ is path-connected.

[^0](b) Show that for every $\mathbf{A} \in \mathrm{GL}_{+}(n, \mathbb{R})$, there exists a continuous path from \mathbf{A} to a matrix in the special orthogonal group
$$
\mathrm{SO}(n):=\left\{\mathbf{A} \in \mathrm{GL}(n, \mathbb{R}) \mid \mathbf{A}^{T} \mathbf{A}=\mathbb{1} \text { and } \operatorname{det} \mathbf{A}=1\right\} .
$$
(c) It will now suffice to show that $\mathrm{SO}(n)$ is path-connected for all $n \in \mathbb{N}$. We shall prove this by induction. For $n=1$ it is obvious, so assume now that $\mathrm{SO}(n-1)$ is path-connected. Let $\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right)$ denote the standard basis of unit vectors on \mathbb{R}^{n}, which we can also regard as points in the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$. Since matrices $\mathbf{A} \in \mathrm{SO}(n)$ act on \mathbb{R}^{n} by orthogonal transformations, we can define a continuous map
$$
\pi: \mathrm{SO}(n) \rightarrow S^{n-1}: \mathbf{A} \mapsto \mathbf{A} \mathbf{e}_{1}
$$

Show that π is surjective.
Hint: You may take for granted the existence of the Gram-Schmidt orthogonalization algorithm.
(d) Show that for each $\mathbf{v} \in S^{n-1}, \pi^{-1}(\mathbf{v})$ is homeomorphic to $\mathrm{SO}(n-1)$.

Hint: Start with the case $\mathbf{v}=\mathbf{e}_{1}$, and then for more general $\mathbf{v} \in S^{n-1}$, write $\mathbf{v}=\mathbf{A} \mathbf{e}_{1}$ for some $\mathbf{A} \in \operatorname{SO}(n)$, using part (c).
(e) Show that S^{n-1} is path-connected. (This is easy.)
(f) Suppose $\mathbf{v}:[0,1] \rightarrow S^{n-1}$ is a continuous path. Show that for every $t_{0} \in[0,1]$ and every $\mathbf{A}_{0} \in \pi^{-1}\left(\mathbf{v}\left(t_{0}\right)\right)$, there exists a neighborhood $\mathcal{U} \subset[0,1]$ of t_{0} and a continuous path $\mathcal{U} \rightarrow \mathrm{SO}(n)$: $t \mapsto \mathbf{A}(t)$ such that $\mathbf{A}\left(t_{0}\right)=\mathbf{A}_{0}$ and $\pi(\mathbf{A}(t))=\mathbf{v}(t)$ for all $t \in \mathcal{U}$.
Hint: Gram-Schmidt is useful again here.
(g) Observe that since $[0,1]$ is compact, it can be covered by finitely many of the neighborhoods from part (f). Use this, and the assumption that $\mathrm{SO}(n-1)$ is path-connected, to show that $\mathrm{SO}(n)$ is path-connected.

If you like algebraic topology, you may be interested to know that you have just carried out the first step in proving that $\pi: \mathrm{SO}(n) \rightarrow S^{n-1}$ is a Serre fibration, and you then secretly made use of the " π_{0} part" of its homotopy exact sequence to prove $\pi_{0}(\mathrm{SO}(n)) \cong \pi_{0}(\mathrm{SO}(n-1))$. Whatever that means.
3. Recall that if M is a smooth oriented n-manifold (possibly with boundary), $\omega \in \Omega^{n}(M)$ is a differential n-form with compact support and $A \subset M$ is an open or closed subset 2^{2} one can define the integral of ω over A as

$$
\int_{A} \omega=\sum_{\alpha \in I} \int_{x_{\alpha}\left(\mathcal{U}_{\alpha} \cap A\right)} \varphi_{\alpha}^{*}\left(\psi_{\alpha} \omega\right)
$$

where $\left\{\mathcal{U}_{\alpha} \xrightarrow{x_{\alpha}} x_{\alpha}\left(\mathcal{U}_{\alpha}\right) \subset \mathbb{R}^{n}\right\}_{\alpha \in I}$ is a finite collection of orientation-preserving charts such that each $\mathcal{U}_{\alpha} \subset M$ has compact closure,

$$
\operatorname{supp}(\omega) \subset N:=\bigcup_{\alpha \in I} \mathcal{U}_{\alpha}
$$

φ_{α} denotes the diffeomorphisms $x_{\alpha}^{-1}: x_{\alpha}\left(\mathcal{U}_{\alpha}\right) \rightarrow \mathcal{U}_{\alpha}$ for each α, and $\left\{\psi_{\alpha}: N \rightarrow[0,1]\right\}_{\alpha \in I}$ is a partition of unity on N subordinate to the open cover $\left\{\mathcal{U}_{\alpha}\right\}_{\alpha \in I}$. We've seen in lecture that the result does not depend on our choice of charts and partition of unity. We would now like to establish a few more properties of this integral, some of which were stated in lecture but not proved.
(a) If M has boundary, show $\int_{M} \omega=\int_{M \backslash \partial M} \omega$. Similarly, show that if $X \subset M$ is a finite union of submanifolds with dimensions at most $n-1$, then

$$
\int_{M} \omega=\int_{M \backslash X} \omega .
$$

[^1](b) Show that if $M=A \cup B$ where $A, B \subset M$ are each closed or open subsets and $A \cap B=\emptyset$, then
$$
\int_{M} \omega=\int_{A} \omega+\int_{B} \omega .
$$

Observe that by part (a), this formula remains true if $M=A \cup_{\Sigma} B$, meaning $\Sigma \subset M$ is an ($n-1$)-dimensional submanifold with $\Sigma=A \cap B$ and $M=A \cup B$.
(c) If \bar{M} denotes the same smooth manifold as M but endowed with the opposite orientation, prove

$$
\int_{\bar{M}} \omega=-\int_{M} \omega
$$

Hint: Given an orientation-preserving chart $x_{\alpha}: \mathcal{U}_{\alpha} \rightarrow x_{\alpha}\left(\mathcal{U}_{\alpha}\right) \subset \mathbb{R}^{n}$ on M, what is the easiest way to produce from this an orientation-reversing chart?
(d) Prove the general change of variables formula: if M and N are smooth n-manifolds, $f: M \rightarrow N$ is an orientation-preserving diffeomorphism, $\omega \in \Omega^{n}(N)$ is an n-form with compact support and $A \subset M$ is an open or closed subset,

$$
\int_{A} f^{*} \omega=\int_{f(A)} \omega .
$$

Caution: Always remember that this is only true when f is both a diffeomorphism and orientation preserving! How does the formula change if f is still a diffeomorphism but reverses orientation?
(e) The definition of $\int_{M} \omega$ via partitions of unity is cumbersome, and in practice we almost always use something simpler. One commonly occurring situation is as follows: suppose M is a compact n-manifold with a chart

$$
\mathcal{U}:=M \backslash X \xrightarrow{x} x(\mathcal{U}) \subset \mathbb{R}^{n}
$$

where the subset $X \subset M$ is a finite union of compact submanifolds that each have dimension at most $n-1$. In this case part (a) shows

$$
\int_{M} \omega=\int_{M \backslash X} \omega
$$

and it now seems intuitive that one could use the change of variables formula and compute

$$
\int_{M \backslash X} \omega=\int_{x(\mathcal{U})} \varphi^{*} \omega,
$$

where $\varphi:=x^{-1}$. However, the validity of this formula is not immediately obvious since ω need not have compact support on $M \backslash X$. One possible remedy is to find a sequence of compact subsets $A_{k} \subset M \backslash X$ for $k \in \mathbb{N}$ such that

$$
A_{k} \subset A_{k+1} \text { for all } k \quad \text { and } \quad \bigcup_{k \in \mathbb{N}} A_{k}=M \backslash X
$$

Show that under this assumption, $\int_{A_{k}} \omega=\int_{x\left(A_{k}\right)} \varphi^{*} \omega$ and $\lim _{k \rightarrow \infty} \int_{A_{k}} \omega=\int_{M \backslash X} \omega$, hence

$$
\int_{M} \omega=\int_{x(\mathcal{U})} \varphi^{*} \omega
$$

where the latter is understood as an improper integral over the noncompact open set $x(\mathcal{U}) \subset \mathbb{R}^{n}$.
(f) Use part (e) to show the following: if M is a closed (i.e. compact without boundary) and oriented 1-manifold, and $\gamma:[a, b] \rightarrow M$ is a smooth map such that $\gamma(a)=\gamma(b)=p \in M$ and $\left.\gamma\right|_{(a, b)}$ is an orientation-preserving diffeomorphism $(a, b) \rightarrow M \backslash\{p\}$, then for any $\lambda \in \Omega^{1}(M)$,

$$
\int_{M} \lambda=\int_{a}^{b} \lambda(\dot{\gamma}(t)) d t
$$

Now go back to Problem Set 4 and think again about \#3(b).
4. The standard spherical coordinates on \mathbb{R}^{3} are defined in terms of the Cartesian coordinates (x, y, z) via the relations

$$
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta
$$

One can make various choices in order to define (r, θ, ϕ) as a chart on some open subset $\mathcal{U} \subset \mathbb{R}^{3}$, e.g. one option is to set

$$
\mathcal{U}_{0}=\mathbb{R}^{3} \backslash\{x \geq 0 \text { and } y=0\}
$$

so that we obtain a diffeomorphism $(r, \theta, \phi): \mathcal{U}_{0} \rightarrow(0, \infty) \times(0, \pi) \times(0,2 \pi) \subset \mathbb{R}^{3}$. Alternatively, setting

$$
\mathcal{U}_{1}=\mathbb{R}^{3} \backslash\{x \leq 0 \text { and } y=0\}
$$

one can regard (r, θ, ϕ) instead as a diffeomorphism $\mathcal{U}_{1} \rightarrow(0, \infty) \times(0, \pi) \times(-\pi, \pi) \subset \mathbb{R}^{3}$. Notice that r and θ are both well defined on $\mathcal{U}_{0} \cup \mathcal{U}_{1}$; for ϕ this is not true, and the two charts described above define two versions of the coordinate $\phi: \mathcal{U}_{0} \cap \mathcal{U}_{1} \rightarrow \mathbb{R}$ which differ on certain regions, though only by addition of the constant 2π. As a consequence, the 1 -forms $d r, d \theta$ and $d \phi$ are well defined everywhere on \mathbb{R}^{3} except at the z-axis, where all conceivable definitions of both θ and ϕ become singular.
Note: This situation is analogous to what we saw in $\# 3$ on Problem Set 4, where the 1-form λ could be interpreted as $d \phi$ with respect to the polar coordinates (r, ϕ) on \mathbb{R}^{2} and is well defined on $\mathbb{R}^{2} \backslash\{0\}$, even though ϕ itself requires a smaller domain in order define a smooth real-valued function.
(a) Compute formulas for $d x, d y$ and $d z$ in terms of $d r, d \theta$ and $d \phi$. On what subsets of \mathbb{R}^{3} are these formulas valid?
(b) Show that on the complement of the z-axis,

$$
d x \wedge d y \wedge d z=r^{2} \sin \theta d r \wedge d \theta \wedge d \phi
$$

(c) Restricting to the unit sphere $S^{2}=\{r=1\} \subset \mathbb{R}^{3},(\theta, \phi)$ and (ϕ, θ) can now be regarded as charts on the intersection of S^{2} with either of \mathcal{U}_{0} or \mathcal{U}_{1}. The 1-forms $d \theta$ and $d \phi$ are thus well defined on the entire sphere except at the north and south poles $\{z= \pm 1\} \subset S^{2}$. Assuming \mathbb{R}^{3} carries its canonical orientation and S^{2} inherits the natural orientation as the boundary of the unit ball, which chart is orientation preserving: (θ, ϕ) or (ϕ, θ) ?
(d) For $p \in S^{2}$, use the canonical identification of $T_{p} \mathbb{R}^{3}$ with \mathbb{R}^{3} to define $\nu(p) \in T_{p} \mathbb{R}^{3}$ as the outwardpointing unit vector in \mathbb{R}^{3} orthogonal to the subspace $T_{p} S^{2} \subset \mathbb{R}^{3}$. Show that ν is the same as the coordinate vector field ∂_{r} at every point along S^{2} where the coordinates (r, θ, ϕ) can be defined.
(e) We can now define a (positively oriented) area form ω on S^{2} in terms of the standard volume form on \mathbb{R}^{3} by

$$
\omega:=\iota_{\nu}\left(\left.d x \wedge d y \wedge d z\right|_{T S^{2}}\right),
$$

in other words, for $p \in S^{2}$ and $X, Y \in T_{p} S^{2}, \omega(X, Y):=d x \wedge d y \wedge d z(\nu(p), X, Y)$. Show that

$$
\omega=\sin \theta d \theta \wedge d \phi
$$

away from the north and south poles.
(f) Use the results of Problem 3 to compute

$$
\int_{S^{2}} \omega=4 \pi
$$

by integrating over a suitable open subset on which a chart (θ, ϕ) can be defined.
(g) Find a 1-form λ on $S^{2} \backslash\{z= \pm 1\}$ such that $\omega=d \lambda$ on this region. In this case we say λ is a primitive of ω.
(h) Given $\epsilon>0$ small, consider the compact subset

$$
A_{\epsilon}=\{\epsilon \leq \theta \leq \pi-\epsilon\} \subset S^{2}
$$

Use Stokes' theorem and the primitive λ from part (g) to compute $\int_{A_{\epsilon}} \omega$, then take the limit as $\epsilon \rightarrow 0$ and make sure you get the right answer. (If you don't get the right answer, it probably means you're not paying careful enough attention to orientations.)

[^0]: ${ }^{1}$ Technically, the notions of "connectedness" and "path-connectedness" of topological spaces are not generally equivalent, but one has to consider fairly weird spaces before this distinction becomes relevant. For manifolds they are equivalent notions, and since $\mathrm{GL}_{ \pm}(n, \mathbb{R})$ can each be identified with open subsets of an n^{2}-dimensional Euclidean space, they are both manifolds and we will therefore not worry about this distinction any further.

[^1]: ${ }^{2}$ More generally, one can make sense of this discussion whenever $A \subset M$ is a Borel subset of M, but I don't really want to get into measure theory here.

