PROBLEM SET 6

Suggested reading

As usual, chapter and section indications in Lee refer to the 2003 edition and may differ in the 2013 edition.

- Friedrich and Agricola: §2.6 and §3.8-3.9
- Lee: Chapter 15 (up to "Homotopy Invariance") and Chapter 18 ("Lie derivatives of Tensor Fields")

Problems

1. Let's start with something easy: suppose M is a compact oriented n-manifold with boundary, $\alpha \in$ $\Omega^{k}(M)$ and $\beta \in \Omega^{\ell}(M)$ with $k+\ell=n-1$. Prove the n-dimensional integration by parts formula:

$$
\int_{M} d \alpha \wedge \beta=\int_{\partial M} \alpha \wedge \beta-(-1)^{k} \int_{M} \alpha \wedge d \beta
$$

2. In lecture last Thursday I got the definition of orientations somewhat muddled, so here is a corrected version. Assume M is a smooth n-manifold (possibly with boundary), and denote by $\mathcal{A}=\left\{\left(\mathcal{U}_{\alpha}, x_{\alpha}\right)\right\}_{\alpha \in I}$ its maximal atlas of smoothly compatible charts $x_{\alpha}: \mathcal{U}_{\alpha} \rightarrow x\left(\mathcal{U}_{\alpha}\right) \subset \mathbb{H}^{n}$. An orientation on M is then a choice of subatlas $\mathcal{A}_{+} \subset \mathcal{A}$, i.e. a subcollection $\left\{\left(\mathcal{U}_{\alpha}, x_{\alpha}\right)\right\}_{\alpha \in I_{+}}$with $I_{+} \subset I$, satisfying the following conditions:

- $M=\bigcup_{\alpha \in I_{+}} \mathcal{U}_{\alpha}$;
- For every $\alpha, \beta \in I_{+}$, the transition map $x_{\alpha} \circ x_{\beta}^{-1}$ is orientation preserving;
- \mathcal{A}_{+}is maximal in the sense that every $(\mathcal{U}, x) \in \mathcal{A}$ for which $x \circ x_{\alpha}^{-1}$ is orientation preserving for every $\left(\mathcal{U}_{\alpha}, x_{\alpha}\right) \in \mathcal{A}_{+}$also belongs to \mathcal{A}_{+}.

Given an orientation $\mathcal{A}_{+} \subset \mathcal{A}$, we refer to the charts in \mathcal{A}_{+}as orientation preserving (or "positively oriented"), and define the collection $\mathcal{A}_{-} \subset \mathcal{A}$ of orientation-reversing charts by the condition that $(\mathcal{U}, x) \in \mathcal{A}_{-}$if and only if $x \circ x_{\alpha}^{-1}$ is an orientation-reversing map for every $\left(\mathcal{U}_{\alpha}, x_{\alpha}\right) \in \mathcal{A}_{+}$. Notice that $\mathcal{A}_{+} \cap \mathcal{A}_{-}=\emptyset$, though it is also possible for a $\operatorname{chart}(\mathcal{U}, x) \in \mathcal{A}$ to be in neither \mathcal{A}_{+}nor \mathcal{A}_{-}, e.g. this may happen if \mathcal{U} has more than one connected component, as x could restrict to an orientation-preserving chart on one connected component of its domain and an orientation-reversing chart on a different component ${ }^{1}$ It remains true however that an orientation on M determines orientations of all the vector spaces $T_{p} M$ for $p \in M$, namely via the requirement that for any $(\mathcal{U}, x) \in \mathcal{A}_{+}$, the vector space isomorphism

$$
\left.x_{*}\right|_{T_{p} M}: T_{p} M \rightarrow T_{x(p)} \mathbb{R}^{n}
$$

should be orientation preserving with respect to the canonical orientation on $T_{x(p)} \mathbb{R}^{n}$ defined via its natural identification with \mathbb{R}^{n}.
(a) Show that if M is an oriented manifold, then every chart $x: \mathcal{U} \rightarrow \mathbb{H}^{n}$ whose domain is connected is either orientation preserving or orientation reversing.
(b) The Klein bottle \mathbb{K}^{2} is a smooth 2-manifold which can be defined as the following quotient of the torus $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ (see Figure 1 :

$$
\mathbb{K}^{2}:=\mathbb{T}^{2} / \sim \quad \text { where }[(\theta, \phi)] \sim[(\theta+1 / 2,-\phi)] \text { for all }[(\theta, \phi)] \in \mathbb{T}^{2}
$$

Find a pair of charts $\left(\mathcal{U}_{1}, x_{1}\right)$ and $\left(\mathcal{U}_{2}, x_{2}\right)$ on \mathbb{K}^{2} such that the subsets \mathcal{U}_{1} and \mathcal{U}_{2} are both connected but $\mathcal{U}_{1} \cap \mathcal{U}_{2}$ has two connected components, and the transition map $x_{1} \circ x_{2}^{-1}$ is neither orientation preserving nor orientation reversing.

[^0]

Figure 1: The image of a (non-injective) immersion of the Klein bottle into \mathbb{R}^{3}. (Picture borrowed from The Manifold Atlas, http://www.map.mpim-bonn.mpg.de/2-manifolds)
(c) Explain why part (b) implies that \mathbb{K}^{2} is not orientable, i.e. it does not admit an orientation.
(d) Find a continuous path $\gamma:[0,1] \rightarrow \mathbb{K}^{2}$ with $\gamma(1)=\gamma(0)=: p$ and a continuous family of bases $\left(X_{1}(t), X_{2}(t)\right)$ of $T_{\gamma(t)} \mathbb{K}^{2}$ such that $\left(X_{1}(0), X_{2}(0)\right)$ and $\left(X_{1}(1), X_{2}(1)\right)$ determine distinct orientations of the vector space $T_{p} \mathbb{K}^{2}$, i.e. they are not related to each other by any continuous family of bases of $T_{p} \mathbb{K}^{2}$.
3. If M and N are oriented manifolds of dimensions m and n respectively, the product orientation of $M \times N$ is uniquely determined by the following property: given any point $(p, q) \in M \times N$ and any positively oriented bases $\left(X_{1}, \ldots, X_{m}\right)$ of $T_{p} M$ and $\left(Y_{1}, \ldots, Y_{n}\right)$ of $T_{q} N$, the basis $\left(X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}\right)$ of $T_{(p, q)}(M \times N)$ is positively oriented. This definition uses the fact that there is a natural isomorphism $T_{(p, q)}(M \times N)=T_{p} M \times T_{q} N$; take a moment to convince yourself that this is true, and that the resulting notion of product orientation is well defined. Then show:
(a) $M \times N=(-1)^{m n} N \times M$, where for any oriented manifold Q, we denote by $-Q$ the same manifold with its orientation reversed.
(b) If M and/or N has boundary, then assuming all boundaries carry the natural boundary orientations and products carry the natural product orientations,

$$
\partial(M \times N)=(\partial M \times N) \cup(-1)^{m}(M \times \partial N)
$$

Remark: If both M and N have nonempty boundary then we are cheating slightly with this notation, as $M \times N$ is not technically a manifold with boundary, but a more general object called a "manifold with boundary and corners". (In particular its structure near $\partial M \times \partial N$ does not fit the definition of a manifold with boundary). There is no need to worry about this detail right now-just show that the boundary orientations indicated above are correct at all points on the boundary of $(M \times N) \backslash(\partial M \times \partial N)$.
4. Recall that if $\left(x^{1}, \ldots, x^{n}\right): \mathcal{U} \rightarrow \mathbb{R}^{n}$ is a chart defined on an open subset in some n-manifold M, any k-form $\omega \in \Omega^{k}(M)$ can be written on \mathcal{U} as

$$
\omega=\omega_{i_{1} \ldots i_{k}} d x^{i_{1}} \otimes \ldots \otimes d x^{i_{k}}=\frac{1}{k!} \omega_{i_{1} \ldots i_{k}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}=\sum_{i_{1}<\ldots<i_{k}} \omega_{i_{1} \ldots i_{k}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}
$$

where the first two expressions use the Einstein summation convention and the third one does not. Here the component functions $\omega_{i_{1} \ldots i_{k}}: \mathcal{U} \rightarrow \mathbb{R}$ can be written in terms of the coordinate vector fields $\partial_{1}, \ldots, \partial_{n}$ as $\omega_{i_{1} \ldots i_{k}}=\omega\left(\partial_{i_{1}}, \ldots, \partial_{i_{k}}\right)$. In order to write down a coordinate formula for the exterior derivative, we introduce the following notation: given any collection of functions $T_{i_{1} \ldots i_{k}}$ on \mathcal{U} labeled by the indices i_{1}, \ldots, i_{k}, define

$$
T_{\left[i_{1} \ldots i_{k}\right]}:=\frac{1}{k!} \sum_{\sigma \in S_{k}}(-1)^{|\sigma|} T_{i_{\sigma(1)} \ldots i_{\sigma(k)}},
$$

so for instance if $T_{i_{1} \ldots i_{k}}$ are the components of a tensor field T, then $\operatorname{Alt}(T)_{i_{1}, \ldots, i_{k}}=T_{\left[i_{1} \ldots i_{k}\right]}$, and the wedge product of $\alpha \in \Omega^{k}(M)$ and $\beta \in \Omega^{\ell}(M)$ can now be written in coordinates as

$$
(\alpha \wedge \beta)_{i_{1} \ldots i_{k} j_{1} \ldots j_{\ell}}=\alpha_{\left[i_{1} \ldots i_{k}\right.} \beta_{\left.j_{1} \ldots j_{\ell}\right]} .
$$

(a) Prove that the exterior derivative $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfies

$$
(d \omega)_{i_{1} \ldots i_{k+1}}=(k+1) \partial_{\left[i_{1}\right.} \omega_{\left.i_{2} \ldots i_{k+1}\right]} .
$$

(b) Show that for $\lambda \in \Omega^{1}(M)$ and $\omega \in \Omega^{2}(M)$, the above formula reduces to

$$
(d \lambda)_{i j}=\partial_{i} \lambda_{j}-\partial_{j} \lambda_{i}, \quad \text { and } \quad(d \omega)_{i j k}=\partial_{i} \omega_{j k}+\partial_{j} \omega_{k i}+\partial_{k} \omega_{i j} .
$$

(c) It now follows from Problem Set $4 \# 1$ (a) that the exterior derivative of a 1 -form λ can also be written as

$$
d \lambda(X, Y)=L_{X}(\lambda(Y))-L_{Y}(\lambda(X))-\lambda([X, Y]) .
$$

Indeed, the right hand side is C^{∞}-linear with respect to vector fields $X, Y \in \operatorname{Vec}(M)$ and thus defines a tensor field, whose component functions we've seen match the formula from part (b). Prove the corresponding formula for the exterior derivative of a 2 -form,

$$
\begin{aligned}
d \omega(X, Y, Z)=L_{X}(\omega(Y, Z))+L_{Y}(\omega(Z, X))+ & L_{Z}(\omega(X, Y)) \\
& -\omega([X, Y], Z)-\omega([Y, Z], X)-\omega([Z, X], Y) .
\end{aligned}
$$

Remark: Similar formulas exist for the exterior derivatives of k-forms for all $k>2$, though I cannot recall ever having needed to use them.
5. Recall that the k th de Rham cohomology group $H_{\mathrm{dR}}^{k}(M)$ of a smooth manifold M is a real vector space defined as the kernel of $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ modulo the image of $d: \Omega^{k-1}(M) \rightarrow \Omega^{k}(M)$. Here we adopt the convention $\Omega^{-1}(M)=\{0\}$ so that this is also well defined for $k=0$. Show that the map

$$
H_{\mathrm{dR}}^{1}\left(S^{1}\right) \rightarrow \mathbb{R}:[\lambda] \mapsto \int_{S^{1}} \lambda
$$

is a well-defined vector space isomorphism.
Hint: You might find some inspiration on Problem Set 4, \#3.
6. Given a volume form $\mu \in \Omega^{n}(M)$ on an n-manifold M, one can define volumes of compact regions $\mathcal{U} \subset M$ by

$$
\operatorname{Vol}(\mathcal{U}):=\int_{\mathcal{U}} \mu .
$$

The divergence of a vector field $X \in \operatorname{Vec}(M)$ can then be defined in terms of the Lie derivative of μ with respect to $X:$ let $\operatorname{div}(X): M \rightarrow \mathbb{R}$ be the unique real-valued function such that

$$
L_{X} \mu=\operatorname{div}(X) \mu .
$$

Note that this is well defined since $L_{X} \mu$ is an n-form and the space $\Lambda^{n} T_{p}^{*} M$ of n-forms at each point $p \in M$ is 1-dimensional. Observe also that $d \mu=0$ since $\Omega^{n+1}(M)=\{0\}$, so Cartan's formula implies $\operatorname{div}(X) \mu=d \iota_{X} \mu$, which matches the formula we saw in lecture for the case $M=\mathbb{R}^{n}$.
(a) Show that if $\varphi_{X}^{t}: M \rightarrow M$ denotes the flow of X, then for any compact region $\mathcal{U} \subset M$,

$$
\frac{d}{d t} \operatorname{Vol}\left(\varphi_{X}^{t}(\mathcal{U})\right)=\int_{\varphi_{X}^{t}(\mathcal{U})} \operatorname{div}(X) \mu .
$$

(b) Show that in the case $M=\mathbb{R}^{3}$ with $\mu=d x \wedge d y \wedge d z$ and $\mathbf{X}=X^{x} \partial_{x}+X^{y} \partial_{y}+X^{z} \partial_{z} \in \operatorname{Vec}\left(\mathbb{R}^{3}\right)$ in standard Cartesian coordinates (x, y, z),

$$
\operatorname{div}(\mathbf{X})=\partial_{x} X^{x}+\partial_{y} X^{y}+\partial_{z} X^{z} .
$$

The latter expression is sometimes also denoted by $\nabla \cdot \mathbf{X}$.
Note: One can show more generally that if $\mu=d x^{1} \wedge \ldots \wedge d x^{n}$ on \mathbb{R}^{n} then $\operatorname{div}(X)=\partial_{i} X^{i}$.
(c) Recall that on \mathbb{R}^{3}, the gradient of a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the vector field

$$
\operatorname{grad}(f)=\nabla f:=\left(\partial_{x} f\right) \partial_{x}+\left(\partial_{y} f\right) \partial_{y}+\left(\partial_{z} f\right) \partial_{z}
$$

and the curl of a vector field $\mathbf{X}=X^{x} \partial_{x}+X^{y} \partial_{y}+X^{z} \partial_{z}$ is the vector field

$$
\operatorname{curl}(\mathbf{X})=\nabla \times \mathbf{X}:=\left(\partial_{y} X^{z}-\partial_{z} X^{y}\right) \partial_{x}+\left(\partial_{z} X^{x}-\partial_{x} X^{z}\right) \partial_{y}+\left(\partial_{x} X^{y}-\partial_{y} X^{x}\right) \partial_{z}
$$

Using the relations of these operations to differential forms and the exterior derivative, deduce from $d^{2}=0$ the formulas

$$
\nabla \times(\nabla f)=0 \quad \text { and } \quad \nabla \cdot(\nabla \times \mathbf{X})=0
$$

for all $f \in C^{\infty}\left(\mathbb{R}^{3}\right)$ and $\mathbf{X} \in \operatorname{Vec}\left(\mathbb{R}^{3}\right)$.
(d) Use the Poincaré lemma to deduce that on \mathbb{R}^{3}, any vector field with zero curl is the gradient of a function, and any vector field with zero divergence is the curl of another vector field.
(e) Find an example of a vector field \mathbf{X} on $\mathbb{R}^{3} \backslash\{x=y=0\}$ that has zero curl but is not the gradient of a function.
7. In this problem we shall work through a proof of the fact that for a smooth map $f: M \rightarrow N$, the induced homomorphism on de Rham cohomology

$$
f^{*}: H_{\mathrm{dR}}^{k}(N) \rightarrow H_{\mathrm{dR}}^{k}(M)
$$

depends on f only up to smooth homotopy. Recall that two maps $f, g: M \rightarrow N$ are smoothly homotopic if there exists a smooth homotopy between them, meaning a smooth map $h:[0,1] \times M \rightarrow N$ such that $h(0, \cdot)=f$ and $h(1, \cdot)=g$.
Assume throughout the following that $h: \mathbb{R} \times M \rightarrow N$ is a smooth map, let $f_{t}:=h(t, \cdot): M \rightarrow N$ and $j_{t}: M \hookrightarrow \mathbb{R} \times M: p \mapsto(t, p)$ for each $t \in \mathbb{R}$, and define

$$
\Phi: \Omega^{k}(N) \rightarrow \Omega^{k-1}(\mathbb{R} \times M): \omega \mapsto \iota_{\partial_{t}}\left(h^{*} \omega\right):=h^{*} \omega\left(\partial_{t}, \ldots\right)
$$

where $t: \mathbb{R} \times M \rightarrow \mathbb{R}$ denotes the standard coordinate function on the first factor (i.e. the natural projection $\mathbb{R} \times M \rightarrow \mathbb{R})$ and $\partial_{t} \in \operatorname{Vec}(\mathbb{R} \times M)$ is the corresponding coordinate vector field. Notice that the flow $\varphi_{s}: \mathbb{R} \times M \rightarrow \mathbb{R} \times M$ is well defined for all times $s \in \mathbb{R}$ and is very simple, namely $\varphi_{s}(t, p)=(t+s, p)$. We also define

$$
\Phi_{t}:=j_{t}^{*} \Phi: \Omega^{k}(N) \rightarrow \Omega^{k-1}(M)
$$

for every $t \in \mathbb{R}$, and let ω denote an arbitrary k-form on N.
(a) Use Cartan's formula to derive the expression

$$
\begin{equation*}
L_{\partial_{t}}\left(h^{*} \omega\right)=d \Phi \omega+\Phi d \omega . \tag{1}
\end{equation*}
$$

(b) For any $(t, p) \in \mathbb{R} \times M$, the tangent space $T_{(t, p)}(\mathbb{R} \times M)$ has a subspace of codimension 1 that is naturally identified with $T_{p} M$, namely the space of all vectors tangent at (t, p) to the submanifold $\{t\} \times M$. With this understood, show that for all tuples $\left(X_{1}, \ldots, X_{k}\right) \in T_{p} M \subset T_{(t, p)}(\mathbb{R} \times M)$ and all $s \in \mathbb{R}$,

$$
\begin{equation*}
\left(h \circ \varphi_{s}\right)^{*} \omega\left(X_{1}, \ldots, X_{k}\right)=f_{t+s}^{*} \omega\left(X_{1}, \ldots, X_{k}\right) \tag{2}
\end{equation*}
$$

(c) Use (2) and the definition of the Lie derivative of k-forms to show that for all $(t, p) \in \mathbb{R} \times M$ and tuples $\left(X_{1}, \ldots, X_{k}\right) \in T_{p} M \subset T_{(t, p)}(\mathbb{R} \times M)$,

$$
\begin{equation*}
L_{\partial_{t}}\left(h^{*} \omega\right)\left(X_{1}, \ldots, X_{k}\right)=\frac{d}{d t} f_{t}^{*} \omega\left(X_{1}, \ldots, X_{k}\right) \tag{3}
\end{equation*}
$$

Combining this (1) and applying the operator j_{t}^{*}, this implies the formula

$$
\begin{equation*}
\frac{d}{d t} f_{t}^{*} \omega=d \Phi_{t} \omega+\Phi_{t} d \omega \quad \text { for all } \quad t \in \mathbb{R}, \omega \in \Omega^{k}(N) \tag{4}
\end{equation*}
$$

(d) Integrate (4) with respect to t in order to show that there exists a homomorphism $H: \Omega^{k}(N) \rightarrow$ $\Omega^{k-1}(M)$ satisfying $f_{1}^{*} \omega-f_{0}^{*} \omega=(d \circ H+H \circ d) \omega$ for all $\omega \in \Omega^{k}(N)$. Explain why this implies that f_{0}^{*} and f_{1}^{*} descend to the same map $H_{\mathrm{dR}}^{k}(N) \rightarrow H_{\mathrm{dR}}^{k}(M)$.

[^0]: ${ }^{1}$ I overlooked this detail in last Thursday's lecture, which is why even the revised definition I gave there was not quite right.

