DIFFERENTIAL GEOMETRY I C. WENDL

PROBLEM SET 6

Suggested reading

As usual, chapter and section indications in Lee refer to the 2003 edition and may differ in the 2013 edition.

- Friedrich and Agricola: §2.6 and §3.8–3.9
- Lee: Chapter 15 (up to "Homotopy Invariance") and Chapter 18 ("Lie derivatives of Tensor Fields")

Problems

1. Let's start with something easy: suppose M is a compact oriented *n*-manifold with boundary, $\alpha \in \Omega^k(M)$ and $\beta \in \Omega^\ell(M)$ with $k + \ell = n - 1$. Prove the *n*-dimensional integration by parts formula:

$$\int_M d\alpha \wedge \beta = \int_{\partial M} \alpha \wedge \beta - (-1)^k \int_M \alpha \wedge d\beta.$$

- 2. In lecture last Thursday I got the definition of orientations somewhat muddled, so here is a corrected version. Assume M is a smooth n-manifold (possibly with boundary), and denote by $\mathcal{A} = \{(\mathcal{U}_{\alpha}, x_{\alpha})\}_{\alpha \in I}$ its maximal atlas of smoothly compatible charts $x_{\alpha} : \mathcal{U}_{\alpha} \to x(\mathcal{U}_{\alpha}) \subset \mathbb{H}^n$. An orientation on M is then a choice of subatlas $\mathcal{A}_+ \subset \mathcal{A}$, i.e. a subcollection $\{(\mathcal{U}_{\alpha}, x_{\alpha})\}_{\alpha \in I_+}$ with $I_+ \subset I$, satisfying the following conditions:
 - $M = \bigcup_{\alpha \in I_+} \mathcal{U}_{\alpha};$
 - For every $\alpha, \beta \in I_+$, the transition map $x_\alpha \circ x_\beta^{-1}$ is orientation preserving;
 - \mathcal{A}_+ is maximal in the sense that every $(\mathcal{U}, x) \in \mathcal{A}$ for which $x \circ x_{\alpha}^{-1}$ is orientation preserving for every $(\mathcal{U}_{\alpha}, x_{\alpha}) \in \mathcal{A}_+$ also belongs to \mathcal{A}_+ .

Given an orientation $\mathcal{A}_+ \subset \mathcal{A}$, we refer to the charts in \mathcal{A}_+ as orientation preserving (or "positively oriented"), and define the collection $\mathcal{A}_- \subset \mathcal{A}$ of orientation-reversing charts by the condition that $(\mathcal{U}, x) \in \mathcal{A}_-$ if and only if $x \circ x_\alpha^{-1}$ is an orientation-reversing map for every $(\mathcal{U}_\alpha, x_\alpha) \in \mathcal{A}_+$. Notice that $\mathcal{A}_+ \cap \mathcal{A}_- = \emptyset$, though it is also possible for a chart $(\mathcal{U}, x) \in \mathcal{A}$ to be in neither \mathcal{A}_+ nor \mathcal{A}_- , e.g. this may happen if \mathcal{U} has more than one connected component, as x could restrict to an orientation-preserving chart on one connected component of its domain and an orientation-reversing chart on a different component.¹ It remains true however that an orientation on M determines orientations of all the vector spaces T_pM for $p \in M$, namely via the requirement that for any $(\mathcal{U}, x) \in \mathcal{A}_+$, the vector space isomorphism

$$x_*|_{T_pM}: T_pM \to T_{x(p)}\mathbb{R}^n$$

should be orientation preserving with respect to the canonical orientation on $T_{x(p)}\mathbb{R}^n$ defined via its natural identification with \mathbb{R}^n .

- (a) Show that if M is an oriented manifold, then every chart $x : \mathcal{U} \to \mathbb{H}^n$ whose domain is *connected* is either orientation preserving or orientation reversing.
- (b) The *Klein bottle* \mathbb{K}^2 is a smooth 2-manifold which can be defined as the following quotient of the torus $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ (see Figure 1):

$$\mathbb{K}^2 := \mathbb{T}^2 / \sim$$
 where $[(\theta, \phi)] \sim [(\theta + 1/2, -\phi)]$ for all $[(\theta, \phi)] \in \mathbb{T}^2$.

Find a pair of charts (\mathcal{U}_1, x_1) and (\mathcal{U}_2, x_2) on \mathbb{K}^2 such that the subsets \mathcal{U}_1 and \mathcal{U}_2 are both connected but $\mathcal{U}_1 \cap \mathcal{U}_2$ has two connected components, and the transition map $x_1 \circ x_2^{-1}$ is neither orientation preserving nor orientation reversing.

¹I overlooked this detail in last Thursday's lecture, which is why even the revised definition I gave there was not quite right.

Figure 1: The image of a (non-injective) immersion of the Klein bottle into \mathbb{R}^3 . (Picture borrowed from *The Manifold Atlas*, http://www.map.mpim-bonn.mpg.de/2-manifolds)

- (c) Explain why part (b) implies that \mathbb{K}^2 is not orientable, i.e. it does not admit an orientation.
- (d) Find a continuous path $\gamma : [0,1] \to \mathbb{K}^2$ with $\gamma(1) = \gamma(0) =: p$ and a continuous family of bases $(X_1(t), X_2(t))$ of $T_{\gamma(t)}\mathbb{K}^2$ such that $(X_1(0), X_2(0))$ and $(X_1(1), X_2(1))$ determine distinct orientations of the vector space $T_p\mathbb{K}^2$, i.e. they are not related to each other by any continuous family of bases of $T_p\mathbb{K}^2$.
- 3. If M and N are oriented manifolds of dimensions m and n respectively, the product orientation of $M \times N$ is uniquely determined by the following property: given any point $(p,q) \in M \times N$ and any positively oriented bases (X_1, \ldots, X_m) of $T_p M$ and (Y_1, \ldots, Y_n) of $T_q N$, the basis $(X_1, \ldots, X_m, Y_1, \ldots, Y_n)$ of $T_{(p,q)}(M \times N)$ is positively oriented. This definition uses the fact that there is a natural isomorphism $T_{(p,q)}(M \times N) = T_p M \times T_q N$; take a moment to convince yourself that this is true, and that the resulting notion of product orientation is well defined. Then show:
 - (a) $M \times N = (-1)^{mn} N \times M$, where for any oriented manifold Q, we denote by -Q the same manifold with its orientation reversed.
 - (b) If M and/or N has boundary, then assuming all boundaries carry the natural boundary orientations and products carry the natural product orientations,

$$\partial (M\times N)=(\partial M\times N)\cup (-1)^m(M\times\partial N).$$

Remark: If both M and N have nonempty boundary then we are cheating slightly with this notation, as $M \times N$ is not technically a manifold with boundary, but a more general object called a "manifold with boundary and corners". (In particular its structure near $\partial M \times \partial N$ does not fit the definition of a manifold with boundary). There is no need to worry about this detail right now—just show that the boundary orientations indicated above are correct at all points on the boundary of $(M \times N) \setminus (\partial M \times \partial N)$.

4. Recall that if $(x^1, \ldots, x^n) : \mathcal{U} \to \mathbb{R}^n$ is a chart defined on an open subset in some *n*-manifold M, any k-form $\omega \in \Omega^k(M)$ can be written on \mathcal{U} as

$$\omega = \omega_{i_1\dots i_k} \, dx^{i_1} \otimes \dots \otimes dx^{i_k} = \frac{1}{k!} \omega_{i_1\dots i_k} \, dx^{i_1} \wedge \dots \wedge dx^{i_k} = \sum_{i_1 < \dots < i_k} \omega_{i_1\dots i_k} \, dx^{i_1} \wedge \dots \wedge dx^{i_k},$$

where the first two expressions use the Einstein summation convention and the third one does not. Here the component functions $\omega_{i_1...i_k} : \mathcal{U} \to \mathbb{R}$ can be written in terms of the coordinate vector fields $\partial_1, \ldots, \partial_n$ as $\omega_{i_1...i_k} = \omega(\partial_{i_1}, \ldots, \partial_{i_k})$. In order to write down a coordinate formula for the exterior derivative, we introduce the following notation: given any collection of functions $T_{i_1...i_k}$ on \mathcal{U} labeled by the indices i_1, \ldots, i_k , define

$$T_{[i_1...i_k]} := \frac{1}{k!} \sum_{\sigma \in S_k} (-1)^{|\sigma|} T_{i_{\sigma(1)}...i_{\sigma(k)}}$$

so for instance if $T_{i_1...i_k}$ are the components of a tensor field T, then $\operatorname{Alt}(T)_{i_1,...,i_k} = T_{[i_1...i_k]}$, and the wedge product of $\alpha \in \Omega^k(M)$ and $\beta \in \Omega^\ell(M)$ can now be written in coordinates as

$$(\alpha \wedge \beta)_{i_1 \dots i_k j_1 \dots j_\ell} = \alpha_{[i_1 \dots i_k} \beta_{j_1 \dots j_\ell]}$$

(a) Prove that the exterior derivative $d: \Omega^k(M) \to \Omega^{k+1}(M)$ satisfies

$$(d\omega)_{i_1...i_{k+1}} = (k+1)\partial_{[i_1}\omega_{i_2...i_{k+1}]}.$$

(b) Show that for $\lambda \in \Omega^1(M)$ and $\omega \in \Omega^2(M)$, the above formula reduces to

$$(d\lambda)_{ij} = \partial_i \lambda_j - \partial_j \lambda_i,$$
 and $(d\omega)_{ijk} = \partial_i \omega_{jk} + \partial_j \omega_{ki} + \partial_k \omega_{ij}.$

(c) It now follows from Problem Set 4 #1(a) that the exterior derivative of a 1-form λ can also be written as

$$d\lambda(X,Y) = L_X(\lambda(Y)) - L_Y(\lambda(X)) - \lambda([X,Y]).$$

Indeed, the right hand side is C^{∞} -linear with respect to vector fields $X, Y \in \text{Vec}(M)$ and thus defines a tensor field, whose component functions we've seen match the formula from part (b). Prove the corresponding formula for the exterior derivative of a 2-form,

$$d\omega(X,Y,Z) = L_X(\omega(Y,Z)) + L_Y(\omega(Z,X)) + L_Z(\omega(X,Y)) - \omega([X,Y],Z) - \omega([Y,Z],X) - \omega([Z,X],Y).$$

Remark: Similar formulas exist for the exterior derivatives of k-forms for all k > 2, though I cannot recall ever having needed to use them.

5. Recall that the *kth de Rham cohomology group* $H^k_{dR}(M)$ of a smooth manifold M is a real vector space defined as the kernel of $d: \Omega^k(M) \to \Omega^{k+1}(M)$ modulo the image of $d: \Omega^{k-1}(M) \to \Omega^k(M)$. Here we adopt the convention $\Omega^{-1}(M) = \{0\}$ so that this is also well defined for k = 0. Show that the map

$$H^1_{\rm dR}(S^1)\to \mathbb{R}:[\lambda]\mapsto \int_{S^1}\lambda$$

is a well-defined vector space isomorphism.

Hint: You might find some inspiration on Problem Set 4, #3.

6. Given a volume form $\mu \in \Omega^n(M)$ on an *n*-manifold M, one can define volumes of compact regions $\mathcal{U} \subset M$ by

$$\operatorname{Vol}(\mathcal{U}) := \int_{\mathcal{U}} \mu.$$

The divergence of a vector field $X \in \text{Vec}(M)$ can then be defined in terms of the Lie derivative of μ with respect to X: let $\text{div}(X) : M \to \mathbb{R}$ be the unique real-valued function such that

$$L_X \mu = \operatorname{div}(X) \mu.$$

Note that this is well defined since $L_X \mu$ is an *n*-form and the space $\Lambda^n T_p^* M$ of *n*-forms at each point $p \in M$ is 1-dimensional. Observe also that $d\mu = 0$ since $\Omega^{n+1}(M) = \{0\}$, so Cartan's formula implies $\operatorname{div}(X) \mu = d\iota_X \mu$, which matches the formula we saw in lecture for the case $M = \mathbb{R}^n$.

(a) Show that if $\varphi_X^t : M \to M$ denotes the flow of X, then for any compact region $\mathcal{U} \subset M$,

$$\frac{d}{dt}\operatorname{Vol}(\varphi_X^t(\mathcal{U})) = \int_{\varphi_X^t(\mathcal{U})} \operatorname{div}(X) \, \mu$$

(b) Show that in the case $M = \mathbb{R}^3$ with $\mu = dx \wedge dy \wedge dz$ and $\mathbf{X} = X^x \partial_x + X^y \partial_y + X^z \partial_z \in \operatorname{Vec}(\mathbb{R}^3)$ in standard Cartesian coordinates (x, y, z),

$$\operatorname{div}(\mathbf{X}) = \partial_x X^x + \partial_y X^y + \partial_z X^z.$$

The latter expression is sometimes also denoted by $\nabla \cdot \mathbf{X}$. Note: One can show more generally that if $\mu = dx^1 \wedge \ldots \wedge dx^n$ on \mathbb{R}^n then $\operatorname{div}(X) = \partial_i X^i$. (c) Recall that on \mathbb{R}^3 , the gradient of a function $f: \mathbb{R}^3 \to \mathbb{R}$ is the vector field

$$\operatorname{grad}(f) = \nabla f := (\partial_x f)\partial_x + (\partial_y f)\partial_y + (\partial_z f)\partial_z,$$

and the *curl* of a vector field $\mathbf{X} = X^x \partial_x + X^y \partial_y + X^z \partial_z$ is the vector field

 $\operatorname{curl}(\mathbf{X}) = \nabla \times \mathbf{X} := (\partial_y X^z - \partial_z X^y) \partial_x + (\partial_z X^x - \partial_x X^z) \partial_y + (\partial_x X^y - \partial_y X^x) \partial_z.$

Using the relations of these operations to differential forms and the exterior derivative, deduce from $d^2 = 0$ the formulas

$$\nabla \times (\nabla f) = 0$$
 and $\nabla \cdot (\nabla \times \mathbf{X}) = 0$

for all $f \in C^{\infty}(\mathbb{R}^3)$ and $\mathbf{X} \in \operatorname{Vec}(\mathbb{R}^3)$.

- (d) Use the Poincaré lemma to deduce that on R³, any vector field with zero curl is the gradient of a function, and any vector field with zero divergence is the curl of another vector field.
- (e) Find an example of a vector field \mathbf{X} on $\mathbb{R}^3 \setminus \{x = y = 0\}$ that has zero curl but is not the gradient of a function.
- 7. In this problem we shall work through a proof of the fact that for a smooth map $f: M \to N$, the induced homomorphism on de Rham cohomology

$$f^*: H^k_{\mathrm{dR}}(N) \to H^k_{\mathrm{dR}}(M)$$

depends on f only up to smooth homotopy. Recall that two maps $f, g: M \to N$ are smoothly homotopic if there exists a smooth homotopy between them, meaning a smooth map $h: [0,1] \times M \to N$ such that $h(0, \cdot) = f$ and $h(1, \cdot) = g$.

Assume throughout the following that $h : \mathbb{R} \times M \to N$ is a smooth map, let $f_t := h(t, \cdot) : M \to N$ and $j_t : M \hookrightarrow \mathbb{R} \times M : p \mapsto (t, p)$ for each $t \in \mathbb{R}$, and define

$$\Phi: \Omega^k(N) \to \Omega^{k-1}(\mathbb{R} \times M) : \omega \mapsto \iota_{\partial_t}(h^*\omega) := h^*\omega(\partial_t, \ldots),$$

where $t : \mathbb{R} \times M \to \mathbb{R}$ denotes the standard coordinate function on the first factor (i.e. the natural projection $\mathbb{R} \times M \to \mathbb{R}$) and $\partial_t \in \operatorname{Vec}(\mathbb{R} \times M)$ is the corresponding coordinate vector field. Notice that the flow $\varphi_s : \mathbb{R} \times M \to \mathbb{R} \times M$ is well defined for all times $s \in \mathbb{R}$ and is very simple, namely $\varphi_s(t,p) = (t+s,p)$. We also define

$$\Phi_t := j_t^* \Phi : \Omega^k(N) \to \Omega^{k-1}(M)$$

for every $t \in \mathbb{R}$, and let ω denote an arbitrary k-form on N.

(a) Use Cartan's formula to derive the expression

$$L_{\partial_t}(h^*\omega) = d\Phi\omega + \Phi d\omega. \tag{1}$$

(b) For any $(t, p) \in \mathbb{R} \times M$, the tangent space $T_{(t,p)}(\mathbb{R} \times M)$ has a subspace of codimension 1 that is naturally identified with T_pM , namely the space of all vectors tangent at (t, p) to the submanifold $\{t\} \times M$. With this understood, show that for all tuples $(X_1, \ldots, X_k) \in T_pM \subset T_{(t,p)}(\mathbb{R} \times M)$ and all $s \in \mathbb{R}$,

$$(h \circ \varphi_s)^* \omega(X_1, \dots, X_k) = f_{t+s}^* \omega(X_1, \dots, X_k).$$
⁽²⁾

(c) Use (2) and the definition of the Lie derivative of k-forms to show that for all $(t, p) \in \mathbb{R} \times M$ and tuples $(X_1, \ldots, X_k) \in T_p M \subset T_{(t,p)}(\mathbb{R} \times M)$,

$$L_{\partial_t}(h^*\omega)(X_1,\ldots,X_k) = \frac{d}{dt} f_t^*\omega(X_1,\ldots,X_k).$$
(3)

Combining this (1) and applying the operator j_t^* , this implies the formula

$$\frac{d}{dt}f_t^*\omega = d\Phi_t\omega + \Phi_t d\omega \quad \text{for all} \quad t \in \mathbb{R}, \ \omega \in \Omega^k(N).$$
(4)

(d) Integrate (4) with respect to t in order to show that there exists a homomorphism $H : \Omega^k(N) \to \Omega^{k-1}(M)$ satisfying $f_1^*\omega - f_0^*\omega = (d \circ H + H \circ d)\omega$ for all $\omega \in \Omega^k(N)$. Explain why this implies that f_0^* and f_1^* descend to the same map $H^k_{dR}(N) \to H^k_{dR}(M)$.