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Suggested reading

Lecture notes (on the website): Appendix B, Lie groups and Lie algebras

Problems

1. The goal of this problem is to prove Cartan’s formula for the Lie derivative of a differential form,1

LXω = dιXω + ιXdω. (1)

Recall that for a k-form ω ∈ Ωk(M) on a smooth n-manifold M , LXω ∈ Ωk(M) is defined as ∂tϕ
∗
tω|t=0

where ϕt : M → M denotes the time t flow of the vector field X ∈ Vec(M).

(a) Use the definition of the Lie derivative to prove the relation

d(LXω) = LX(dω)

and the Leibniz rule2

LX(α ∧ β) = LXα ∧ β + α ∧ LXβ. (2)

Observe that this formula determines the action of LX on arbitrary differential forms if we know
how it acts on 0-forms (i.e. smooth functions) and exact 1-forms (i.e. differentials of smooth
functions).

(b) Show that (1) holds for all 0-forms and exact 1-forms.

(c) Fix an n-dimensional vector space V with basis v1, . . . , vn and dual basis λ1, . . . , λn. For v ∈ V ,
define ιv : ΛkV ∗ → Λk−1V ∗ by ιvα := α(v, · · · ). Show that for any 1 ≤ i1 < . . . < ik ≤ n and
j ∈ {1, . . . , n} \ {i1, . . . , ik}, if α := λi1 ∧ . . . ∧ λik , then

ιvjα = 0 and ιvj (λ
j ∧ α) = α.

Use this to deduce that for any fixed v ∈ V , ιv satisfies the graded Leibniz rule

ιv(α ∧ β) = ιvα ∧ β + (−1)|α|α ∧ ιvβ.

Hint: Show first that the formula holds whenever v is one of the basis vectors and α and β
are both wedge products of dual basis vectors. Then appeal to the multilinearity of the map

V × ΛkV ∗ → Λk−1V ∗ : (v, α) 7→ ιvα to deduce the general case.

(d) For any fixed X ∈ Vec(M), use the graded Leibniz rules satisfied by d and ιX to show that the
operator (d ◦ ιX + ιX ◦ d) : Ωk(M) → Ωk(M) also satisfies the Leibniz rule (2). Deduce that this
operator matches LX .

2. Let F denote either R or C. In this problem we will show that various commonly encountered groups
of matrices are Lie groups, because they are both subgroups and smooth submanifolds of the general
linear group GL(n,F). Recall that the latter is a Lie group because it is an open subset (and hence a

submanifold) of the vector space Fn×n ∼= Fn2

of n-by-n matrices with entries in F, and the algebraic

1From now on, we use LX to denote the Lie derivative with respect to a vector field X; I’ve denoted it by LX in previous
problem sets and by something more like LX in lectures. I’m changing the font here so that it doesn’t get confused with the
left-multiplication diffeomorphisms Lg : G → G defined on a Lie group G.

2Notice that in contrast to the exterior derivative and the interior product treated in part (c), the Leibniz rule satisfied by
LX does not include any annoying signs. This is consistent with our usual mnemonic if we think of LX : Ωk(M) → Ωk(M) as
an object of degree zero (hence even), while d : Ωk(M) → Ωk+1(M) is an object of degree one (hence odd), so that exchanging
the order of d with a form of odd degree causes a sign change, but no such thing happens with LX . The mnemonic applies
similarly to ιX : Ωk(M) → Ωk−1(M) by thinking of the latter as an object of degree −1, hence odd.
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operations Fn×n × Fn×n → Fn×n : (A,B) 7→ AB and GL(n,F) → GL(n,F) : A 7→ A−1 are smooth
maps. We showed already in Problem Set 2 #1 that O(n) := {A ∈ GL(n,R) | ATA = 1} is a smooth
submanifold of GL(n,R) with dimension n(n−1)/2 and o(n) := T1O(n) = {A ∈ Rn×n | A+AT = 0}.

We continue now with the special linear group SL(n,F) := {A ∈ Fn×n | det(A) = 1}, which is a level
set of the map

det : Fn×n → F.

Note that the latter is a polynomial function of the matrix entries, so it is clearly a smooth map; if
we can show that its derivative d(det)(A) : Fn×n → F is a surjective whenever det(A) = 1, then the
implicit function theorem implies that SL(n,F) is a submanifold.

(a) If A(t) ∈ Fn×n is a smooth path of matrices with A(0) = 1 and its time derivative is denoted by
Ȧ(t), show that

d

dt
det(A(t))

∣

∣

∣

∣

t=0

= tr(Ȧ(0)). (3)

Hint: Think of A(t) as an n-tuple of column vectors

A(t) =
(

v1(t) · · · vn(t)
)

with vj(0) = ej, the standard basis vector. Then det(A(t)) is the evaluation of an alternating

n-form on these vectors, which can be written using components. Write it this way and use the

product rule.

(b) Show that if A ∈ GL(n,F) then the derivative of det : Fn×n → F at A is

d(det)(A)H = det(A) · tr(A−1H).

(c) Show that the aforementioned derivative is surjective, implying that det−1(1) ⊂ Fn×n is a smooth
submanifold of dimension n2 − 1 if F = R, or 2n2 − 2 if F = C.

(d) Show that sl(n,F) := T1 SL(n,F) = {A ∈ Fn×n | tr(A) = 0}.

(e) Adapt the argument of Problem Set 2 #1 to show that the unitary group U(n) := {A ∈
GL(n,C) |A†A = 1} is a smooth n2-dimensional submanifold of GL(n,C) with u(n) := T1 U(n) =
{A ∈ Cn×n | A+A† = 0}.

(f) Show that the special unitary group SU(n) := {A ∈ U(n) | det(A) = 1} is a smooth (n2 − 1)-
dimensional submanifold of U(n).
Hint: What is the image of the map det : U(n) → C?

3. You may by wondering why, when we talk about a general Lie group G with identity element e ∈ G,
we tend to talk about left-invariant vector fields on G without ever mentioning right-invariant vector
fields. The upshot of this problem will be that it doesn’t really matter: both notions are equally
good for the main things we want them for, namely defining the exponential map and the Lie algebra
structure of g := TeG.

Let’s denote Rg : G → G : h 7→ hg for g ∈ G, and call X ∈ Vec(G) right-invariant if it satisfies

X(Rg(h)) = (Rg)∗X(h)

for all g, h ∈ G.

(a) Show that for every X ∈ g, there is a unique right-invariant vector field XR ∈ Vec(G) satisfying
XR(e) = X .

(b) Show that if X,Y ∈ Vec(G) are both right-invariant, then so is [X,Y ] ∈ Vec(G).

(c) Given X ∈ g, let XL denote the unique left-invariant vector field with XL(e) = X . Show that
XL = XR everywhere along the image of the curve t 7→ exp(tX), and the latter is an integral
curve (i.e. a flow line) of both.
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(d) Show that for any X,Y ∈ g and f ∈ C∞(G),

LXRLY Rf(e) = ∂s∂tf(exp(tY ) exp(sX))|s=t=0 .

(e) Comparing the formula in part (d) with the corresponding formula involving left-invariant vector
fields XL and Y L, show that for all X,Y ∈ g,

[XL, Y L](e) = −[XR, Y R](e).

The message of this result is the following: whether we choose to define [ , ] on g using left-

invariant or right-invariant vector fields, this choice only makes a difference of a sign. In actuality

neither choice is better than the other, just as the commutator bracket for matrices could just

as well be defined by [A,B] = BA − AB instead of AB − BA. But the latter choice is the

established convention, so in order to stay consistent with it, we use left-invariant vector fields to
define [ , ] on g.

4. (a) Use Leibniz rules as in Problem 1 to show that for all X,Y ∈ Vec(M) and ω ∈ Ωk(M),

L[X,Y ]ω = LXLY ω − LY LXω.

(b) For any closed manifold M and differential form ω ∈ Ωk(M), one can define a subgroup of the
topological group Diff(M) of all diffeomorphisms M → M by

Diff(M,ω) :=
{

ϕ ∈ Diff(M)
∣

∣ ϕ∗ω = ω
}

.

For example, Diff(M,ω) = Diff(M) if ω is identically zero. Show that if ω is a volume form on M
and we define volumes of domains U ⊂ M by Vol(U) :=

∫

U
ω, then Diff(M,ω) is the group of

orientation-preserving diffeomorphisms of M that also preserve volumes, i.e. that satisfy

Vol(U) = Vol(ϕ(U))

for all domains U ⊂ M .

(c) The example ω = 0 shows that Diff(M,ω) cannot be expected to be finite-dimensional and will
thus generally not be a Lie group. But formally, we can pretend it is one and define its “Lie
algebra” as the vector space

diff(M,ω) :=
{

X ∈ Vec(M)
∣

∣

∣
X = ∂tϕt|t=0 for some {ϕt ∈ Diff(M,ω)}t∈(−ǫ,ǫ) with ϕ0 = Id

}

,

where the family of diffeomorphisms ϕt : M → M is assumed to depend smoothly on the param-
eter t. Show that diff(M,ω) contains the linear subspace {X ∈ Vec(M) | LXω = 0}.3

(d) Show that if X,Y ∈ Vec(M) satisfy LXω = LY ω = 0, then L[X,Y ]ω = 0 as well. In other words,
the subspace in part (c) is a Lie subalgebra of the Lie algebra of smooth vector fields (Vec(M), [ , ]).

(e) A 2-form ω ∈ Ω2(M) is called symplectic if it satisfies dω = 0 and is nondegenerate, meaning
that for every p ∈ M and nonzero vector X ∈ TpM , the linear map ω(X, ·) : TpM → R is
nonzero. Show that if ω is a symplectic form, then the space {X ∈ Vec(M) | LXω = 0} is infinite
dimensional.

Hint: In lecture last Thursday we saw an example of a symplectic form on R2n and showed that for

every smooth function H : R2n → R, the corresponding Hamiltonian flow preserves the symplectic

form. Can you generalize this discussion to M?

Second hint: The nondegeneracy condition implies that ω defines an isomorphism Vec(M) →
Ω1(M) : X 7→ ιXω. Why?

3Actually one can show that this subspace also contains diff(M,ω), but this requires one or two lemmas about the Lie
derivative that we haven’t proved, so never mind that for now.
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