PROBLEM SET 7

Suggested reading

Lecture notes (on the website): Appendix B, Lie groups and Lie algebras

Problems

1. The goal of this problem is to prove Cartan's formula for the Lie derivative of a differential form

$$
\begin{equation*}
\mathcal{L}_{X} \omega=d \iota_{X} \omega+\iota_{X} d \omega \tag{1}
\end{equation*}
$$

Recall that for a k-form $\omega \in \Omega^{k}(M)$ on a smooth n-manifold $M, \mathcal{L}_{X} \omega \in \Omega^{k}(M)$ is defined as $\left.\partial_{t} \varphi_{t}^{*} \omega\right|_{t=0}$ where $\varphi_{t}: M \rightarrow M$ denotes the time t flow of the vector field $X \in \operatorname{Vec}(M)$.
(a) Use the definition of the Lie derivative to prove the relation

$$
d\left(\mathcal{L}_{X} \omega\right)=\mathcal{L}_{X}(d \omega)
$$

and the Leibniz rul ${ }^{2}$

$$
\begin{equation*}
\mathcal{L}_{X}(\alpha \wedge \beta)=\mathcal{L}_{X} \alpha \wedge \beta+\alpha \wedge \mathcal{L}_{X} \beta \tag{2}
\end{equation*}
$$

Observe that this formula determines the action of \mathcal{L}_{X} on arbitrary differential forms if we know how it acts on 0 -forms (i.e. smooth functions) and exact 1-forms (i.e. differentials of smooth functions).
(b) Show that (1) holds for all 0 -forms and exact 1 -forms.
(c) Fix an n-dimensional vector space V with basis v_{1}, \ldots, v_{n} and dual basis $\lambda^{1}, \ldots, \lambda^{n}$. For $v \in V$, define $\iota_{v}: \Lambda^{k} V^{*} \rightarrow \Lambda^{k-1} V^{*}$ by $\iota_{v} \alpha:=\alpha(v, \cdots)$. Show that for any $1 \leq i_{1}<\ldots<i_{k} \leq n$ and $j \in\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{k}\right\}$, if $\alpha:=\lambda^{i_{1}} \wedge \ldots \wedge \lambda^{i_{k}}$, then

$$
\iota_{v_{j}} \alpha=0 \quad \text { and } \quad \iota_{v_{j}}\left(\lambda^{j} \wedge \alpha\right)=\alpha
$$

Use this to deduce that for any fixed $v \in V, \iota_{v}$ satisfies the graded Leibniz rule

$$
\iota_{v}(\alpha \wedge \beta)=\iota_{v} \alpha \wedge \beta+(-1)^{|\alpha|} \alpha \wedge \iota_{v} \beta
$$

Hint: Show first that the formula holds whenever v is one of the basis vectors and α and β are both wedge products of dual basis vectors. Then appeal to the multilinearity of the map $V \times \Lambda^{k} V^{*} \rightarrow \Lambda^{k-1} V^{*}:(v, \alpha) \mapsto \iota_{v} \alpha$ to deduce the general case.
(d) For any fixed $X \in \operatorname{Vec}(M)$, use the graded Leibniz rules satisfied by d and ι_{X} to show that the operator $\left(d \circ \iota_{X}+\iota_{X} \circ d\right): \Omega^{k}(M) \rightarrow \Omega^{k}(M)$ also satisfies the Leibniz rule (21). Deduce that this operator matches \mathcal{L}_{X}.
2. Let \mathbb{F} denote either \mathbb{R} or \mathbb{C}. In this problem we will show that various commonly encountered groups of matrices are Lie groups, because they are both subgroups and smooth submanifolds of the general linear group $\mathrm{GL}(n, \mathbb{F})$. Recall that the latter is a Lie group because it is an open subset (and hence a submanifold) of the vector space $\mathbb{F}^{n \times n} \cong \mathbb{F}^{n^{2}}$ of n-by- n matrices with entries in \mathbb{F}, and the algebraic

[^0]operations $\mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \rightarrow \mathbb{F}^{n \times n}:(\mathbf{A}, \mathbf{B}) \mapsto \mathbf{A B}$ and $\mathrm{GL}(n, \mathbb{F}) \rightarrow \mathrm{GL}(n, \mathbb{F}): \mathbf{A} \mapsto \mathbf{A}^{-1}$ are smooth maps. We showed already in Problem Set $2 \# 1$ that $\mathrm{O}(n):=\left\{\mathbf{A} \in \mathrm{GL}(n, \mathbb{R}) \mid \mathbf{A}^{T} \mathbf{A}=\mathbb{1}\right\}$ is a smooth submanifold of $\mathrm{GL}(n, \mathbb{R})$ with dimension $n(n-1) / 2$ and $\mathfrak{o}(n):=T_{\mathbb{1}} \mathrm{O}(n)=\left\{\mathbf{A} \in \mathbb{R}^{n \times n} \mid \mathbf{A}+\mathbf{A}^{T}=0\right\}$. We continue now with the special linear $\operatorname{group} \operatorname{SL}(n, \mathbb{F}):=\left\{\mathbf{A} \in \mathbb{F}^{n \times n} \mid \operatorname{det}(\mathbf{A})=1\right\}$, which is a level set of the map
$$
\operatorname{det}: \mathbb{F}^{n \times n} \rightarrow \mathbb{F}
$$

Note that the latter is a polynomial function of the matrix entries, so it is clearly a smooth map; if we can show that its derivative $d(\operatorname{det})(\mathbf{A}): \mathbb{F}^{n \times n} \rightarrow \mathbb{F}$ is a surjective whenever $\operatorname{det}(\mathbf{A})=1$, then the implicit function theorem implies that $\operatorname{SL}(n, \mathbb{F})$ is a submanifold.
(a) If $\mathbf{A}(t) \in \mathbb{F}^{n \times n}$ is a smooth path of matrices with $\mathbf{A}(0)=\mathbb{1}$ and its time derivative is denoted by $\dot{\mathbf{A}}(t)$, show that

$$
\begin{equation*}
\left.\frac{d}{d t} \operatorname{det}(\mathbf{A}(t))\right|_{t=0}=\operatorname{tr}(\dot{\mathbf{A}}(0)) \tag{3}
\end{equation*}
$$

Hint: Think of $\mathbf{A}(t)$ as an n-tuple of column vectors

$$
\mathbf{A}(t)=\left(\begin{array}{lll}
\mathbf{v}_{1}(t) & \cdots & \mathbf{v}_{n}(t)
\end{array}\right)
$$

with $\mathbf{v}_{j}(0)=\mathbf{e}_{j}$, the standard basis vector. Then $\operatorname{det}(\mathbf{A}(t))$ is the evaluation of an alternating n-form on these vectors, which can be written using components. Write it this way and use the product rule.
(b) Show that if $\mathbf{A} \in \operatorname{GL}(n, \mathbb{F})$ then the derivative of det : $\mathbb{F}^{n \times n} \rightarrow \mathbb{F}$ at \mathbf{A} is

$$
d(\operatorname{det})(\mathbf{A}) \mathbf{H}=\operatorname{det}(\mathbf{A}) \cdot \operatorname{tr}\left(\mathbf{A}^{-1} \mathbf{H}\right)
$$

(c) Show that the aforementioned derivative is surjective, implying that $\operatorname{det}^{-1}(1) \subset \mathbb{F}^{n \times n}$ is a smooth submanifold of dimension $n^{2}-1$ if $\mathbb{F}=\mathbb{R}$, or $2 n^{2}-2$ if $\mathbb{F}=\mathbb{C}$.
(d) Show that $\mathfrak{s l}(n, \mathbb{F}):=T_{1} \mathrm{SL}(n, \mathbb{F})=\left\{\mathbf{A} \in \mathbb{F}^{n \times n} \mid \operatorname{tr}(\mathbf{A})=0\right\}$.
(e) Adapt the argument of Problem Set $2 \# 1$ to show that the unitary group $\mathrm{U}(n):=\{\mathbf{A} \in$ $\left.\operatorname{GL}(n, \mathbb{C}) \mid \mathbf{A}^{\dagger} \mathbf{A}=\mathbb{1}\right\}$ is a smooth n^{2}-dimensional submanifold of $\mathrm{GL}(n, \mathbb{C})$ with $\mathfrak{u}(n):=T_{\mathbb{1}} \mathrm{U}(n)=$ $\left\{\mathbf{A} \in \mathbb{C}^{n \times n} \mid \mathbf{A}+\mathbf{A}^{\dagger}=0\right\}$.
(f) Show that the special unitary $\operatorname{group} \operatorname{SU}(n):=\{\mathbf{A} \in \mathrm{U}(n) \mid \operatorname{det}(\mathbf{A})=1\}$ is a smooth $\left(n^{2}-1\right)$ dimensional submanifold of $\mathrm{U}(n)$.
Hint: What is the image of the map det: $\mathrm{U}(n) \rightarrow \mathbb{C}$?
3. You may by wondering why, when we talk about a general Lie group G with identity element $e \in G$, we tend to talk about left-invariant vector fields on G without ever mentioning right-invariant vector fields. The upshot of this problem will be that it doesn't really matter: both notions are equally good for the main things we want them for, namely defining the exponential map and the Lie algebra structure of $\mathfrak{g}:=T_{e} G$.
Let's denote $R_{g}: G \rightarrow G: h \mapsto h g$ for $g \in G$, and call $X \in \operatorname{Vec}(G)$ right-invariant if it satisfies

$$
X\left(R_{g}(h)\right)=\left(R_{g}\right)_{*} X(h)
$$

for all $g, h \in G$.
(a) Show that for every $X \in \mathfrak{g}$, there is a unique right-invariant vector field $X^{R} \in \operatorname{Vec}(G)$ satisfying $X^{R}(e)=X$.
(b) Show that if $X, Y \in \operatorname{Vec}(G)$ are both right-invariant, then so is $[X, Y] \in \operatorname{Vec}(G)$.
(c) Given $X \in \mathfrak{g}$, let X^{L} denote the unique left-invariant vector field with $X^{L}(e)=X$. Show that $X^{L}=X^{R}$ everywhere along the image of the curve $t \mapsto \exp (t X)$, and the latter is an integral curve (i.e. a flow line) of both.
(d) Show that for any $X, Y \in \mathfrak{g}$ and $f \in C^{\infty}(G)$,

$$
\mathcal{L}_{X^{R}} \mathcal{L}_{Y^{R}} f(e)=\left.\partial_{s} \partial_{t} f(\exp (t Y) \exp (s X))\right|_{s=t=0} .
$$

(e) Comparing the formula in part (d) with the corresponding formula involving left-invariant vector fields X^{L} and Y^{L}, show that for all $X, Y \in \mathfrak{g}$,

$$
\left[X^{L}, Y^{L}\right](e)=-\left[X^{R}, Y^{R}\right](e)
$$

The message of this result is the following: whether we choose to define [,] on \mathfrak{g} using leftinvariant or right-invariant vector fields, this choice only makes a difference of a sign. In actuality neither choice is better than the other, just as the commutator bracket for matrices could just as well be defined by $[\mathbf{A}, \mathbf{B}]=\mathbf{B A}-\mathbf{A B}$ instead of $\mathbf{A B}-\mathbf{B A}$. But the latter choice is the established convention, so in order to stay consistent with it, we use left-invariant vector fields to define [,] on \mathfrak{g}.
4. (a) Use Leibniz rules as in Problem 1 to show that for all $X, Y \in \operatorname{Vec}(M)$ and $\omega \in \Omega^{k}(M)$,

$$
\mathcal{L}_{[X, Y]} \omega=\mathcal{L}_{X} \mathcal{L}_{Y} \omega-\mathcal{L}_{Y} \mathcal{L}_{X} \omega .
$$

(b) For any closed manifold M and differential form $\omega \in \Omega^{k}(M)$, one can define a subgroup of the topological group Diff (M) of all diffeomorphisms $M \rightarrow M$ by

$$
\operatorname{Diff}(M, \omega):=\left\{\varphi \in \operatorname{Diff}(M) \mid \varphi^{*} \omega=\omega\right\}
$$

For example, $\operatorname{Diff}(M, \omega)=\operatorname{Diff}(M)$ if ω is identically zero. Show that if ω is a volume form on M and we define volumes of domains $\mathcal{U} \subset M$ by $\operatorname{Vol}(\mathcal{U}):=\int_{\mathcal{U}} \omega$, then $\operatorname{Diff}(M, \omega)$ is the group of orientation-preserving diffeomorphisms of M that also preserve volumes, i.e. that satisfy

$$
\operatorname{Vol}(\mathcal{U})=\operatorname{Vol}(\varphi(\mathcal{U}))
$$

for all domains $\mathcal{U} \subset M$.
(c) The example $\omega=0$ shows that $\operatorname{Diff}(M, \omega)$ cannot be expected to be finite-dimensional and will thus generally not be a Lie group. But formally, we can pretend it is one and define its "Lie algebra" as the vector space

$$
\mathfrak{d i f f}(M, \omega):=\left\{X \in \operatorname{Vec}(M)\left|X=\partial_{t} \varphi_{t}\right|_{t=0} \text { for some }\left\{\varphi_{t} \in \operatorname{Diff}(M, \omega)\right\}_{t \in(-\epsilon, \epsilon)} \text { with } \varphi_{0}=\operatorname{Id}\right\}
$$

where the family of diffeomorphisms $\varphi_{t}: M \rightarrow M$ is assumed to depend smoothly on the parameter t. Show that $\mathfrak{d i f f}(M, \omega)$ contains the linear subspace $\left\{X \in \operatorname{Vec}(M) \mid \mathcal{L}_{X} \omega=0\right\}^{3}$
(d) Show that if $X, Y \in \operatorname{Vec}(M)$ satisfy $\mathcal{L}_{X} \omega=\mathcal{L}_{Y} \omega=0$, then $\mathcal{L}_{[X, Y]} \omega=0$ as well. In other words, the subspace in part (c) is a Lie subalgebra of the Lie algebra of smooth vector fields $(\operatorname{Vec}(M),[]$,$) .$
(e) A 2-form $\omega \in \Omega^{2}(M)$ is called symplectic if it satisfies $d \omega=0$ and is nondegenerate, meaning that for every $p \in M$ and nonzero vector $X \in T_{p} M$, the linear map $\omega(X, \cdot): T_{p} M \rightarrow \mathbb{R}$ is nonzero. Show that if ω is a symplectic form, then the space $\left\{X \in \operatorname{Vec}(M) \mid \mathcal{L}_{X} \omega=0\right\}$ is infinite dimensional.
Hint: In lecture last Thursday we saw an example of a symplectic form on $\mathbb{R}^{2 n}$ and showed that for every smooth function $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$, the corresponding Hamiltonian flow preserves the symplectic form. Can you generalize this discussion to M ?
Second hint: The nondegeneracy condition implies that ω defines an isomorphism $\operatorname{Vec}(M) \rightarrow$ $\Omega^{1}(M): X \mapsto \iota_{X} \omega$. Why?

[^1]
[^0]: ${ }^{1}$ From now on, we use \mathcal{L}_{X} to denote the Lie derivative with respect to a vector field X; I've denoted it by L_{X} in previous problem sets and by something more like \mathscr{L}_{X} in lectures. I'm changing the font here so that it doesn't get confused with the left-multiplication diffeomorphisms $L_{g}: G \rightarrow G$ defined on a Lie group G.
 ${ }^{2}$ Notice that in contrast to the exterior derivative and the interior product treated in part (c), the Leibniz rule satisfied by \mathcal{L}_{X} does not include any annoying signs. This is consistent with our usual mnemonic if we think of $\mathcal{L}_{X}: \Omega^{k}(M) \rightarrow \Omega^{k}(M)$ as an object of degree zero (hence even), while $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ is an object of degree one (hence odd), so that exchanging the order of d with a form of odd degree causes a sign change, but no such thing happens with \mathcal{L}_{X}. The mnemonic applies similarly to $\iota_{X}: \Omega^{k}(M) \rightarrow \Omega^{k-1}(M)$ by thinking of the latter as an object of degree -1 , hence odd.

[^1]: ${ }^{3}$ Actually one can show that this subspace also contains $\mathfrak{d i f f}(M, \omega)$, but this requires one or two lemmas about the Lie derivative that we haven't proved, so never mind that for now.

