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PROBLEM SET 5

To be discussed: 22.11.2017

Instructions

This homework will not be collected or graded, but it is highly advisable to at least think through all of the
problems before the next Wednesday lecture after they are distributed, as they will often serve as mental
preparation for the material in that lecture. We will discuss the solutions in the Übung beforehand.

1. Fill in the details of the proof that the obvious inclusion induces an isomorphism H˚pDn, BDnq Ñ
H˚pRn,Rnzt0uq. Hint: Dn

ãÑ Rn and BDn
ãÑ Rnzt0u are homotopy equivalences. Use the five-lemma.

2. Recall that for a topological n-manifold M , a local orientation at a point x P M is a choice of
generator rM sx for the group HnpM,Mztxu;Zq – Z.

(a) Describe an example of a singular n-cycle that represents a local orientation rM sx. How could
you alter this cycle to make it represent the alternative local orientation ´rM sx?

(b) Prove (e.g. via Mayer-Vietoris) that H2pT2;Zq – Z. Show also that it has a generator rT2s P
H2pT2;Zq corresponding to an oriented triangulation of T2, such that the inclusion ix : pT2,Hq ãÑ
pT2,T2ztxuq at each point x P T2 induces an isomorphism ix˚ : H2pT2;Zq Ñ H2pT2,T2ztxu;Zq.

3. For any integer n ě 2, fix a generator rSn´1s P Hn´1pSn´1;Zq and use it to determine local orientations
rRnsx P HnpRn,Rnztxu;Zq for every point x P Rn via the natural isomorphisms HnpRn,Rnztxuq –
HnpDn

x , BDn
xq – Hn´1pBDn

xq, where Dn
x denotes the closed unit disk centered at x, whose boundary is

canonically identified with Sn´1. Recall that if f is any continuous map taking a neighborhood U Ă Rn

of x to a neighborhood V Ă Rn of y such that fpxq “ y but no other point in U maps to y, we define
the local degree degpf ;xq of f at x as the unique d P Z such that the homomorphism

f˚ : HnpU ,Uztxu;Zq Ñ HnpV ,Vztyu;Zq

sends rRnsx to drRnsy, where we use the obvious excision isomorphisms to view rRnsx and rRnsy as
elements of these respective groups. Note that this does not depend on the choice of generator rSn´1s.

(a) Show that if f : Rn Ą U Ñ V Ă Rn is a smooth map whose derivative dfpxq : Rn Ñ Rn at x P U is
an isomorphism, then degpf ;xq is 1 or ´1 depending on whether det dfpxq is positive or negative
respectively.
Hint: The differentiability of f implies that after a homotopy that does not change its local degree,

we can assume it is linear near x. Homotop it further to assume it is orthogonal.

(b) For n “ 2, identify R2 with C and consider a map f : C Ñ C of the form fpzq “ pz ´ z0qkgpzq for
some z0 P C, k P N and g a continuous map with gpz0q ‰ 0. Show that degpf ; z0q “ k.

(c) Can you modify the example in part (b) to produce one with degpf ; z0q “ ´k for k P N?
Hint: Try complex conjugation.

(d) Prove that if f : Rn Ą U Ñ V Ă Rn is continuous with fpxq “ y and degpf ;xq ‰ 0 for some
x P U , then for any neighborhood Ux Ă U of x, there exists an ǫ ą 0 such that every continuous
map f̃ : U Ñ V satisfying |f̃ ´ f | ă ǫ maps some point in Ux to y.
Hint: Consider the restriction of f to the boundary of some small ball about x, and normalize it

so that it maps to the sphere surrounding a small ball about y. This map between spheres is not

homotopic to a constant, right?

(e) Find an example of a smooth map f : R2 Ñ R2 that has an isolated zero at the origin with
degpf ; 0q “ 0 but admits arbitrarily small perturbations that are nowhere zero.

(f) Suppose f : Sn Ñ Sn is any continuous map, and p` P ΣSn “ C`Sn YSn C´Sn is the vertex of
the top cone in the suspension ΣSn – Sn`1, i.e. the point obtained by collapsing Sn ˆ t1u to form
C`Sn :“ pSn ˆ r0, 1sq

L

pSn ˆ t1uq. Recall that the suspended map Σf : ΣSn Ñ ΣSn is defined
by Σfprpx, tqsq “ rpfpxq, tqs. What is degpΣf ; p`q? Use this to give a new proof (different from
the one we saw in class) that degpΣfq “ degpfq.
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(g) Let f : S2 Ñ S2 denote the natural continuous extension to S2 :“ CYt8u of a complex polynomial
C Ñ C of degree n. What is degpfq?

(h) Pick a constant t0 P S1 and let A – S1 _ S1 denote the subset tpx, yq | x “ t0 or y “ t0u Ă
S1 ˆ S1 “ T2. Show that T2{A – S2, and that the quotient map T2 Ñ T2{A has degree ˘1
(depending on choices of generators forH2pT2;Zq andH2pS2;Zq; both are Z due to Problem 2(b)).

4. Prove that for every positive even integer n, every continuous map f : Sn Ñ Sn has at least one point
x P Sn where either fpxq “ x or fpxq “ ´x. Deduce that every continuous map RPn Ñ RPn has a
fixed point if n is even. Construct counterexamples to this statement for every odd n.
Hint: Consider linear transformations with no real eigenvalues.

5. Consider a chain complex pC˚, Bq with Ck “ 0 for k R t0, 1, 2u, C2 “ C0 “ Z and C1 “ Z2, and
boundary maps defined by B : C2 Ñ C1 : m ÞÑ p0, 2mq and B “ 0 : C1 Ñ C0.

(a) Compute both the homology and the cohomology of this complex, and compare. What are the
torsion subgroups1 of HkpC˚, Bq and HkpC˚, Bq for each k?

(b) How does the answer change if you take coefficients in Z2 or Q, i.e. replace pC˚, Bq and its dual
complex by their tensor products with Z2 or Q?

6. In lecture, we defined the reduced homology of a spaceX as the subgroup rH˚pXq :“ ker ǫ˚ Ă H˚pXq,
where ǫ˚ : H˚pXq Ñ H˚pP q is induced by the unique map ǫ : X Ñ P to the one-point space P . The
homomorphism ǫ˚ is surjective and admits right-inverses i˚ : H˚pP q Ñ H˚pXq, induced by any choice

of inclusion map i : P ãÑ X , thus we have a split exact sequence 0 Ñ rH˚pXq Ñ H˚pXq
ǫ˚

Ñ H˚pP q Ñ 0.

To define reduced cohomology, note that ǫ˚ : H˚pP q Ñ H˚pXq is injective with left-inverse i˚ :

H˚pXq Ñ H˚pP q, thus we can define rH˚pXq as the quotient coker ǫ˚ :“ H˚pXq{ im ǫ˚, so that the
split exact sequence now takes the form

0 ÝÑ H˚pP q
ǫ˚

ÝÑ H˚pXq ÝÑ rH˚pXq ÝÑ 0.

(a) Consider the following commutative diagram of abelian groups:

0 0 0

. . . rAn´1
rAn

rAn`1 . . .

. . . An´1 An An`1 . . .

. . . Bn´1 Bn Bn`1 . . .

0 0 0

f̃ f̃

f f

ǫ
g

ǫ
g

ǫ

Show by diagram-chasing that if all columns and the bottom two rows are exact, then the maps
indicated by dashed arrows also exist and the resulting top row is exact.

(b) Use the algebraic result in part (a) to verify that the long exact sequence of a pair and the
Mayer-Vietoris sequence in cohomology also make sense for reduced cohomology.

(c) Write down a formula for the augmentation map on singular 0-chains ǫ˚ : C0pXq Ñ C0pP q “ Z,

and show that rH˚pXq can also be defined as the homology of the augmented chain complex

. . . ÝÑ C2pXq
B

ÝÑ C1pXq
B

ÝÑ C0pXq
ǫ˚

ÝÑ Z ÝÑ 0,

defined so that C´1pXq :“ C0pP q “ Z. Then show that the cohomology of this complex is precisely
rH˚pXq. Give explicit descriptions of rH0pX ;Gq and rH0pX ;Gq for any coefficient group G.

1Recall that the torsion subgroup of an abelian group G is the set of all g P G such that ng “ 0 for some n P N.
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