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Instructions

This homework will not be collected or graded, but it is highly advisable to at least think through all of the
problems before the next Wednesday lecture after they are distributed, as they will often serve as mental
preparation for the material in that lecture. Solutions will be discussed in the Übung.

1. The goal of this problem is to prove the main theorem stated in lecture about how to compute Tor
(i.e. Theorem 41.2 in the notes). In fact, at no extra cost we can prove the natural generalization of this
theorem for modules over an arbitrary commutative ring R with unit. Recall that for two R-modules
A and G, the R-module TorRpA,Gq is defined by

TorRpA,Gq “ H1pF˚ bR Gq,

where pF˚, f˚q is any projective resolution of A, so that pF˚ bR G, f˚ b 1q is understood to be a chain
complex of R-modules.1

(a) If A is a free R-module, construct a projective resolution pF˚, f˚q with Fn “ 0 for all n ě 1, and
conclude from this that TorRpA,Gq “ 0 for every R-module G.

(b) If pF˚, f˚q and pF 1
˚, f

1
˚q are projective resolutions of A and B respectively, construct a projective

resolution of A‘B using the modules Fn‘F 1
n, and conclude that TorRpA‘B,Gq – TorRpA,Gq‘

TorRpB,Gq for every R-module G.

(c) Suppose k P N has the property that no nonzero element x P R satisfies kx “ 0. Construct a
projective resolution of the quotient module R{kR with F1 “ F0 “ R and Fn “ 0 for all n ě 2,
and conclude from this that for every R-module G, TorRpR{kR,Gq is isomorphic to the kernel of

the map G
¨k
Ñ G.

(d) Prove that whenever G is a free R-module, TorRpA,Gq “ 0 for every R-module A.
Hint: If G is isomorphic to a direct sum of copies of R, what does that mean for the complex
F˚ bR G?

2. (a) Prove that for any space X with finitely-many path-components2 and any abelian group G,
H1pX ;Gq – H1pXq b G. Hint: H0pX ;Zq is always free.

(b) Prove that if X is path-connected and has finite fundamental group, then H1pX ;Qq “ 0.

3. Using product CW-complexes, describe a cell decomposition of the torus Tn for every n P N such that
the cellular boundary map vanishes.3 Use this to prove that for any axiomatic homology theory h˚

with coefficient group G,

hkpTnq – Gpn

kq

for all n P N and 0 ď k ď n.

4. As in Problem 3, describe a cell decomposition of ΣgˆS1 for which the cellular boundary map vanishes.
One can use this to compute H˚pΣg ˆS1q, but I would like a more concrete description of H2pΣg ˆS1q

1Recall also that the R-module tensor product AbR B is defined to satisfy praq b b “ rpab bq “ ab prbq for all r P R, a P A

and b P B, in addition to pa ` a1q b b “ a b b ` a1 b b and a b pb ` b1q “ a b b ` a b b1. For the precise definition of A bR B, see

the end of Lecture 42 in the notes.
2The assumption of finitely-many path-components can be lifted at the cost of proving a few more properties of the Tor

functor than we have proved.
3In both this and Problem 4, it is possible to apply the Künneth formula, but not necessary, due to the fact that the cellular

boundary map vanishes.
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in particular, meaning the following: show that H2pΣg ˆS1q is a free abelian group generated by 2g`1
submanifolds of the form

γ1 ˆ S1, . . . , γ2g ˆ S1 and Σg ˆ tconstu Ă Σg ˆ S1,

where γ1, . . . , γ2g are closed 1-dimensional submanifolds of Σg. Here, the homology class represented by
a closed orientable 2-dimensional submanifold S Ă Σg ˆS1 is understood to mean i˚rSs P H2pΣg ˆS1q,
with i : S ãÑ Σg ˆ S1 denoting the inclusion and rSs P H2pSq – Z a chosen generator.
Hint: You can choose your cell decomposition so that each of these submanifolds is presentable as a
subcomplex, and the inclusion is then a cellular map.

5. Recall that the topology of a CW-complex X is defined normally as the strongest topology for which
the characteristic maps of all cells Φα : Dk Ñ X are continuous. Given another CW-complex Y , let Z
and Z 1 denote the set X ˆ Y with two (potentially) different topologies: we assign to Z the product
topology, and to Z 1 the topology of the product CW-complex induced by the cell decompositions of X
and Y .

(a) Prove that every open set in Z is also an open set in Z 1, i.e. the identity map Z 1 Ñ Z is continuous.
Remark: In general, the identity map Z 1 Ñ Z might not be a homeomorphism!4

(b) Prove that the identity map Z 1 Ñ Z is a homeomorphism if X and Y are both compact.

(c) Prove that a subset K Ă Z is compact if and only if it is compact in Z 1, and the two subspace
topologies induced by Z and Z 1 on K are the same. Deduce from this that Z and Z 1 have the
same singular homology and cohomology groups.

6. This problem is intended to elucidate in differential-geometric terms the intuitive reason behind the
formula Bpekα ˆ eℓβq “ Bekα ˆ eℓβ ` p´1qkekα ˆ Beℓβ for the boundary map on product CW-complexes.5

Recall first that an orientation of a real n-dimensional vector space V means an equivalence class of
bases, where two bases are equivalent if they are connected to each other by a continuous family of
bases. The fact that the group GLpn,Rq has two connected components (determined by whether the
determinant is positive or negative) means that every real vector space of dimension n ą 0 has exactly
two choices of orientation.6 On an oriented vector space, we call a basis positive whenever it belongs
to the equivalence class determined by the orientation. A linear isomorphism V Ñ W between two
oriented vector spaces is called orientation preserving if it maps positive bases to positive bases,
and is otherwise orientation reversing.

A smooth n-manifold M has a tangent space TxM at every point x, which is an n-dimensional vector
space. If you haven’t seen this notion in differential geometry, then you should just picture M as a
regular level-set f´1p0q Ă Rk of some smooth function f : Rk Ñ Rk´n for some k P N; a famous
theorem of Whitney says that every smooth n-manifold can be described in this way if k ě 2n. The
tangent space TxM at each point x P M is then the n-dimensional linear subspace kerdfpxq Ă Rk. With
this notion understood, an orientation of M means a choice of orientation for every tangent space
TxM such that the orientations vary continuously with x, i.e. every point x0 P M has a neighborhood
U Ă M admitting a continuous family of bases tpv1pxq, . . . , vnpxqquxPU of the tangent spaces TxM such
that all of them are positive. If M and N are smooth manifolds of the same dimension, then any
smooth map f : M Ñ N has a derivative dfpxq : TxM Ñ TfpxqN at every point x P M , and we call
f an immersion if dfpxq is an isomorphism for every x P M . If M and N are both oriented, then
an immersion f : M Ñ N is called orientation preserving/reversing if dfpxq : TxM Ñ TfpxqN is
orientation preserving/reversing for every x P M .

(a) Convince yourself that S2 admits an orientation (i.e. it is orientable), but RP2 and the Klein
bottle do not.

4This is easily said, but writing down actual counterexamples is surprisingly difficult, e.g. it turns out that they must involve

uncountable many cells. For more on such bizarre issues, see https://arxiv.org/abs/1710.05296.
5For a direct proof of the formula itself, see Proposition 3B.1 on page 269 of Hatcher.
6Dimension zero must always be treated as a special case in orientation discussions. For this informal discussion we make

our lives easier by assuming all dimensions are positive.
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If V and W are both oriented vector spaces, we define the product orientation of V ‘ W to be
the one such that if pv1, . . . , vnq and pw1, . . . , wmq are positive bases of V and W respectively, then
pv1, . . . , vn, w1, . . . , wmq is a positive basis of V ‘W . This notion carries over immediately to a product
of manifolds M and N since for each px, yq P M ˆ N , Tpx,yqpM ˆ Nq can be naturally identified with
TxM ‘ TyN , hence orientations of M and N give rise to a product orientation of M ˆ N .

(b) Show that if M and N are oriented manifolds of dimensions m and n respectively, then for the
natural product orientations, the map M ˆN Ñ N ˆM : px, yq ÞÑ py, xq is orientation preserving
if either m or n is even, and orientation reversing if both m and n are odd.

If M is an n-manifold with boundary, then its boundary BM is naturally an pn ´ 1q-manifold, and for
each x P BM , the tangent space TxpBMq is naturally a codimension 1 linear subspace of TxM . The set
TxMzTxpBMq thus has two connected components, characterized as the tangent vectors in TxM that
point “outward” or “inward” with respect to the boundary. Now if M has an orientation, this induces
on BM the so-called boundary orientation, defined such that for any choice of outward pointing
vector ν P TxM , a basis pX1, . . . , Xn´1q of TxpBMq is positive (with respect to the orientation of BM)
if and only if the basis pν,X1, . . . , Xn´1q of TxM is positive with respect to the orientation of M . Take
a moment to convince yourself that this notion is well defined.

The simplest example is also the most relevant for our discussion of cell complexes: the closed n-disk
Dn is a compact n-dimensional smooth manifold with boundary BDn “ Sn´1. Since all the tangent
spaces to Dn are canonically isomorphic to Rn, Dn has a canonical orientation, and this determines a
canonical orientation for Sn´1.

Finally, consider a product M ˆ N of two smooth manifolds with boundary, with dimensions m and
n respectively. This is a slightly more general object called a “smooth manifold with boundary and
corners”; rather than defining this notion precisely, let us simply agree that in the complement of the
“corner” BM ˆ BN , the object M ˆN is a smooth manifold whose boundary BpM ˆNq is the union of
two smooth manifolds BM ˆN and M ˆBN of dimension m`n´1. The question is: what orientations
should these two pieces of BpM ˆ Nq carry?

(c) Assume M and N are both oriented, MˆN is endowed with the resulting product orientation and
BM and BN are each endowed with the boundary orientation. Show that the induced boundary
orientation on BpM ˆNq always matches the product orientation of BM ˆN , and that it matches
the product orientation of M ˆ BN if and only if m is even.

Remark: The result of part (c) can be summarized as follows. If M has an orientation and we denote
the same manifold with the opposite orientation by ´M , then for any two oriented manifolds M and
N of dimensions m and n respectively,

BpM ˆ Nq “ pBM ˆ Nq Y p´1qmpM ˆ BNq.

If you apply this to the case M “ Dm and N “ Dn and consider that the degree of a map Sk Ñ Sk

changes sign if you compose it with an orientation-reversing homeomorphism, you may now be able to
imagine the reason for the sign in the cellular boundary formula Bpekα ˆeℓβq “ Bekα ˆeℓβ ` p´1qkekα ˆ Beℓβ.
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