Analysis III WiSe 2019–20

Übungsblatt 4

Schriftliche Abgabe: Dienstag 12. November 2019

Schreiben Sie jede Aufgabe bitte auf ein gesondertes Blatt, und schreiben Sie auf jedes Blatt ihren Namen, ihre Matrikelnummer und ihre Übungsgruppe (Wochentag + Zeit)

Aufgabe 4.1 (6 Punkte)

Sei $J \subset \mathbb{R}$ ein offenes Intervall. Eine Abbildung $F: J \times \mathbb{R}^n \to \mathbb{R}^n$ heißt **linear-beschränkt**, wenn es stetige Funktionen $p, q: J \to [0, \infty)$ gibt, so dass

$$||F(t, \mathbf{x})|| \le p(t)||\mathbf{x}|| + q(t)$$
 für alle $(t, \mathbf{x}) \in J \times \mathbb{R}^n$.

Zeigen Sie: ist F stetig, lokal Lipschitzstetig bzgl. \mathbf{x} und linear-beschränkt, so ist die eindeutig bestimmte maximale Lösung des Anfangswertproblems

$$\dot{\mathbf{x}}(t) = F(t, \mathbf{x}(t)), \qquad \mathbf{x}(t_0) = \mathbf{x}_0$$

für jedes $t_0 \in J$ und $\mathbf{x}_0 \in \mathbb{R}^n$ auf ganz J definiert.

Aufgabe 4.2 (3 Punkte)

Es seien $\mathbf{A}: J \to \mathbb{R}^{n \times n}$ und $\mathbf{w}: J \to \mathbb{R}^n$ stetige Funktionen auf einem offenen Intervall $J \subset \mathbb{R}$. Beweisen Sie: ist $\mathbf{\Phi}: J \to \mathrm{GL}(n,\mathbb{R})$ eine Fundmentalmatrix der linearen homogenen Differentialgleichung $\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t)$, so ist die eindeutige Lösung der linearen inhomogenen Differentialgleichung $\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{w}(t)$ mit der Anfangsbedingung $\mathbf{x}(t_0) = \mathbf{x}_0$ gegeben durch

$$\mathbf{x}(t) = \mathbf{\Phi}(t) \left(\mathbf{\Phi}(t_0)^{-1} \mathbf{x}_0 + \int_{t_0}^t \mathbf{\Phi}(s)^{-1} \mathbf{w}(s) \, ds \right).$$

Aufgabe 4.3 (3 + 3 + 3 Punkte)

Wir betrachten eine lineare Differentialgleichung zweiter Ordnung der Form

$$\ddot{x}(t) = f(t)x(t) + \frac{1}{t}\dot{x}(t),\tag{1}$$

wobei $f:(0,\infty)\to\mathbb{R}$ eine gegebene stetige Funktion ist.

- a) Beweisen Sie: für beliebig gegebene Werte $x_0, v_0 \in \mathbb{R}$ und $t_0 > 0$ existiert eine eindeutige Lösung $x:(0,\infty) \to \mathbb{R}$ zur Gleichung (1) mit den Anfangsbedingungen $x(t_0) = x_0$ und $\dot{x}(t_0) = v_0$.
- b) Es seien $x, y: (0, \infty) \to \mathbb{R}$ die (eindeutig bestimmte) Lösungen von (1) mit Anfangsbedingungen x(1) = 1, $\dot{x}(1) = 0$ und y(1) = 0, $\dot{y}(1) = 1$. Zeigen Sie, dass x und y linear unabhängige Funktionen auf $(0, \infty)$ sind, d.h. die Relation ax(t) + by(t) = 0 gilt für alle $t \in (0, \infty)$ mit Konstanten $a, b \in \mathbb{R}$ nur dann, wenn a = b = 0.
- c) Für die zwei Lösungen $x, y: (0, \infty) \to \mathbb{R}$ in Teilaufgabe (b), berechnen Sie eine explizite Formel für die Funktion $x(t)\dot{y}(t) \dot{x}(t)y(t)$.

Aufgabe 4.4 (4 Punkte)

Wir bezeichnen mit $(\tau, t, x) \mapsto \varphi^{\tau, t}(x)$ den Fluss der nichtlinearen Differentialgleichung $\dot{x}(t) = e^{tx}x(t)$. Geben Sie explizite Formeln für $\varphi^{\tau, t}(0)$ und $\partial_x \varphi^{\tau, t}(x)\big|_{x=0}$ für alle $\tau, t \in \mathbb{R}$. Hinweis: Welches Anfangswertproblem wird von der Funktion $t \mapsto \partial_x \varphi^{\tau, t}(x)\big|_{x=0}$ erfüllt?

Aufgabe 4.5 (2 + 4 Punkte)

Sei $F: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ eine glatte Funktion mit $F(t+1, \mathbf{x}) = F(t, \mathbf{x})$ für alle $(t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^n$. Eine Lösung $\mathbf{x}: \mathbb{R} \to \mathbb{R}^n$ zur Differentialgleichung $\dot{\mathbf{x}}(t) = F(t, \mathbf{x}(t))$ heißt **periodisch**, falls $\mathbf{x}(t+1) = \mathbf{x}(t)$ für alle $t \in \mathbb{R}$ gilt.

a) Beweisen Sie: eine Lösung $\mathbf{x}: \mathbb{R} \to \mathbb{R}^n$ ist periodisch genau dann, wenn $\mathbf{x}(0) = \mathbf{x}(1)$.

Eine periodische Lösung $\mathbf{x}: \mathbb{R} \to \mathbb{R}^n$ heißt **nicht entartet**, falls 1 kein Eigenwert der linearen Abbildung $D\varphi^{0,1}(\mathbf{x}(0)): \mathbb{R}^n \to \mathbb{R}^n$ ist, wobei $(\tau, t, \mathbf{y}) \mapsto \varphi^{\tau, t}(\mathbf{y})$ den Fluss bezeichnet.

b) Beweisen Sie: ist $\mathbf{x} : \mathbb{R} \to \mathbb{R}^n$ eine nicht-entartete periodische Lösung, dann existiert keine Folge $\mathbf{x}_k : \mathbb{R} \to \mathbb{R}^n$ periodischer Lösungen, die alle $\mathbf{x}_k \neq \mathbf{x}$ erfüllen aber punktweise gegen \mathbf{x} konvergieren, d.h. $\lim_{k\to\infty} \mathbf{x}_k(t) = \mathbf{x}(t)$ für alle $t \in \mathbb{R}$. Hinweis: für die Funktion $g(\mathbf{y}) := \varphi^{0,1}(\mathbf{y}) - \mathbf{y}$ ist $Dg(\mathbf{x}(0))$ invertierbar.

Insgesamt: 28 Punkte

Die folgenden Aufgaben werden teilweise in den Übungen besprochen, sind aber nicht schriftlich abzugeben.

Aufgabe 4.A

So wie in Aufgabe 3.A kann man lineare homogene Differentialgleichungssysteme erster Ordnung in der allgemeinerer Form

$$\mathbf{A}(t)\dot{\mathbf{x}}(t) + \mathbf{B}(t)\mathbf{x}(t) = 0$$

betrachten, wobei $\mathbf{A}, \mathbf{B}: J \to \mathbb{R}^{m \times n}$ gegebene stetige Funktionen auf einem offenen Intervall $J \subset \mathbb{R}$ sind. Ein solches System heißt **unterbestimmt**, falls m < n, d.h. es gibt mehr unbekannte Funktionen (die Komponenten von $\mathbf{x}(t)$) als zu erfüllende Gleichungen (bestimmt durch die Reihen von $\mathbf{A}(t)$ und $\mathbf{B}(t)$). Beweisen Sie: ist das System unterbestimmt und die Matrix $\mathbf{A}(t)$ für jedes $t \in J$ surjektiv, dann ist die Menge aller Lösungen ein unendlich-dimensionaler Vektorraum von Funktionen $J \to \mathbb{R}^n$.

Bemerkung: Analog heißt das System **überbestimmt**, falls m > n, und man kann zeigen, dass die "meisten" überbestimmten Systeme nur $\mathbf{x}(t) = 0$ als einzige Lösung haben. In der Vorlesung haben wir nur den Fall m = n mit $\mathbf{A}(t)$ immer invertierbar betrachtet: dann ist $\mathbf{A}\dot{\mathbf{x}} + \mathbf{B}\mathbf{x} = 0$ äquivalent zur Gleichung $\dot{\mathbf{x}} = -\mathbf{A}^{-1}\mathbf{B}\mathbf{x}$.

Aufgabe 4.B

Sei $\mathcal{U} \subset \mathbb{R}^2$ eine offene Teilmenge, die wegzusammenhängend ist, d.h. für zwei Punkte $\mathbf{x}_0, \mathbf{x}_1 \in \mathcal{U}$ existiert eine stetige Abbildung $\gamma : [0,1] \to \mathcal{U}$ mit $\gamma(0) = \mathbf{x}_0$ und $\gamma(1) = \mathbf{x}_1$. Für beliebig gegebene Punkte $\mathbf{x}_0, \mathbf{x}_1 \in \mathcal{U}$, beschreiben Sie die Konstruktion eines glatten Diffeomorphismus $\varphi : \mathcal{U} \to \mathcal{U}$, der $\varphi(\mathbf{x}_0) = \mathbf{x}_1$ erfüllt.

 $^{^1}$ Man kann zeigen, dass diese Bedingung durch kleine Störungen immer erfüllt werden kann, d.h. für jedes $\epsilon>0$ und jede stetige Funktion $\mathbf{A}:J\to\mathbb{R}^{m\times n}$ mit m< n gibt es eine stetige Funktion $\mathbf{A}_\epsilon:J\to\mathbb{R}^{m\times n}$, so dass $\mathbf{A}_\epsilon(t)$ für jedes $t\in J$ surjektiv ist und $\sup_{t\in J}\|\mathbf{A}(t)-\mathbf{A}_\epsilon(t)\|<\epsilon.$