Inhaltsbeschreibung / course description and syllabus
Moodle: https://moodle.hu-berlin.de/course/view.php?id=99581
WICHTIG: Die Lehrveranstaltung findet online per Zoom statt, und Sie
müssen sich beim Moodle-Kurs anmelden, um die Zugangsdaten für
die Zoom-Meetings zu erhalten. HU-Angehörige haben mit ihrem
HU-Benutzernamen und Passwort automatisch Zugang zum Moodle.
Nicht HU-Angehörige haben Zugang, indem sie auf den Link oben klicken
und dann ein HU-Moodle-Konto erstellen mit der externen Mailadresse als
Benutzername. Es gibt neuerdings einen
Einschreibeschlüssel für den Moodle-Kurs; wer noch nicht eingeschrieben
ist, kann mir per E-mail nach dem Einschreibeschlüssel fragen.
IMPORTANT:
The course will be conducted online via Zoom, and you will need to join the
moodle for the course in order to obtain the Zoom links for online lectures.
HU students can access moodle using their HU username and password.
Non-HU users can access it by following the above link and then setting up
a HU Moodle Account with their external e-mail address as a username.
There is now an enrolment key for the moodle;
if you haven't joined yet, you can e-mail me to ask for the key.
Lecture notes on Lp spaces etc. (last update: 11.11.20221)
These notes concern topics mainly from weeks 4 through 9 of the semester.
Lecture notes on Fredholm operators (uploaded 27.01.2021, last update 11.02 at 11:40)
These are typed notes for the contents of Lectures 22 and 23 (which are not covered in Reed and Simon).
They have now been revised to correct some errors in the discussion of the
Laplace operator in the original version.
Whiteboard notes:
Week 1:
Lecture 1 (3.11.2020)
Lecture 2 (5.11.2020)
Problem session 1 (5.11.2020)
Week 2:
Lecture 3 (10.11.2020)
Lecture 4 (12.11.2020)
Problem session 2 (12.11.2020)
Week 3:
Lecture 5 (17.11.2020)
Lecture 6 (19.11.2020)
Problem session 3 (19.11.2020)
Week 4:
Lecture 7 (24.11.2020)
Lecture 8 (26.11.2020)
Problem session 4 (26.11.2020)
Week 5:
Lecture 9 (1.12.2020)
Lecture 10 (3.12.2020)
Problem session 5 (3.12.2020)
Week 6:
Lecture 11 (8.12.2020)
Lecture 12 (10.12.2020)
Problem session 6 (10.12.2020)
Week 7:
Lecture 13 (15.12.2020)
Lecture 14 (17.12.2020)
Problem session 7 (17.12.2020)
Week 8:
Lecture 15 (5.01.2021)
Lecture 16 (7.01.2021)
Problem session 8 (7.01.2021)
Week 9:
Lecture 17 (12.01.2021)
Lecture 18 (14.01.2021)
Problem session 9 (14.01.2021)
Week 10:
Lecture 19 (19.01.2021)
Lecture 20 (21.01.2021)
Problem session 10 (21.01.2021)
Week 11:
Lecture 21 (26.01.2021)
Lecture 22 (28.01.2021)
Week 12:
Lecture 23 (2.02.2021)
Lecture 24 (4.02.2021)
Problem session 12 (4.02.2021)
(includes take-home midterm solutions!)
Week 13:
Lecture 25 (9.02.2021)
Lecture 26 (11.02.2021)
Problem session 13 (11.02.2021)
Week 14:
Lecture 27 (16.02.2021)
Lecture 28 (18.02.2021)
Problem session 14 (18.02.2021)
Week 15:
Lecture 29 (23.02.2021)
Lecture 30 (25.02.2021)
Problem session 15 (25.02.2021)
(includes nearly complete solutions for
Problem Set 12)
Ankündigungen / Announcements
Übungsblätter / Problem setsProblem sets will normally be posted in this spot every Thursday and can be submitted via the moodle until 15:15 on the following Thursday; solutions will then be discussed in the Übung. (See the moodle for more on the technical details of how to submit solutions.) You are welcome to work on the problems in groups, but must write up solutions (in German or English) individually -- group submissions are not accepted. The corrected submissions are posted on the moodle about a week after the due date. Questions about the grading can be directed to the grader, Laurenz Upmeier zu Belzen (upmeibel at mathematik dot hu dash berlin dot de).
Exam info (NEW)
Here is some advice for the final exam. Other useful links
|