Problem Set 2

To be discussed: 2.-3.11.2021

Problem 1

Identifying the complex plane \mathbb{C} with \mathbb{R}^2 via the correspondence $\mathbb{C} \ni x + iy \leftrightarrow (x, y) \in \mathbb{R}^2$, we can regard S^1 as the unit circle in \mathbb{C} , which equivalently means the set of all complex numbers of the form $e^{i\theta}$ for $\theta \in \mathbb{R}$. The quotient group $\mathbb{R}^n/\mathbb{Z}^n$ then admits a natural bijection to the n-torus $\mathbb{T}^n = S^1 \times \ldots \times S^1$, given by

$$\mathbb{R}^n/\mathbb{Z}^n \to \mathbb{T}^n : [(\theta_1, \dots, \theta_n)] \mapsto (e^{2\pi i \theta_1}, \dots, e^{2\pi i \theta_n}).$$

- (a) Use the same trick as in Problem Set 1 #3(b) to define a natural smooth structure on $\mathbb{R}^n/\mathbb{Z}^n$, making it a smooth *n*-manifold.
- (b) Prove that the bijection $\mathbb{R}^n/\mathbb{Z}^n \to \mathbb{T}^n$ defined above is a diffeomorphism.

Problem 2

Show that for two smooth manifolds M, N and any two points $p \in M$ and $q \in N$, there is a canonical vector space isomorphism $T_{(p,q)}(M \times N) = T_pM \times T_qN$.

Problem 3

- (a) Find a diffeomorphism from the tangent bundle TS^1 to the product manifold $S^1 \times \mathbb{R}$.
- (b) More generally, find a diffeomorphism from $T\mathbb{T}^n$ to $\mathbb{T}^n \times \mathbb{R}^n$ for arbitrary $n \in \mathbb{N}$. Hint: The diffeomorphism is somewhat easier to see if you take advantage of Problem 1 and replace \mathbb{T}^n with $\mathbb{R}^n/\mathbb{Z}^n$.

Problem 4

For this problem, let us make use of Problem 1 and redefine \mathbb{T}^n to mean $\mathbb{R}^n/\mathbb{Z}^n$; in the special case n=1, this means $S^1=\mathbb{R}/\mathbb{Z}$. We can then define a smooth map $f:\mathbb{T}^2\to S^1$ by

$$f([(s,t)]) := [3s + \sin(2\pi t)].$$

- (a) Using the diffeomorphisms of Problem 3 to identify $T\mathbb{T}^n$ with $\mathbb{T}^n \times \mathbb{R}^n$, write down an explicit formula for the tangent map $Tf: T\mathbb{T}^2 \to TS^1$ as a map $\mathbb{T}^2 \times \mathbb{R}^2 \to S^1 \times \mathbb{R}$.
- (b) Show that f is a submersion. The implicit function theorem thus implies that for any $p \in S^1$, $f^{-1}(p)$ is a smooth submanifold of \mathbb{T}^2 . Verify this for $f^{-1}([0])$ in particular, i.e. what precisely is this set? To which well-known manifold is it diffeomorphic?

Notational digression:

For the next two problems, we denote by $\mathbb{R}^{n \times n}$ the vector space of real n-by-n matrices. It contains the *general linear group*, $GL(n,\mathbb{R}) \subset \mathbb{R}^{n \times n}$, which consists of all invertible matrices, and is an open subset since it is $\det^{-1}(\mathbb{R}\setminus\{0\})$, where $\det: \mathbb{R}^{n \times n} \to \mathbb{R}$ is the determinant map. The latter is a polynomial function of the matrix entries, and is therefore smooth.

Problem 5

We consider the *n*-dimensional orthogonal group $O(n) = \{ \mathbf{A} \in \mathbb{R}^{n \times n} \mid \mathbf{A}^T \mathbf{A} = 1 \}$, where

1 is the *n*-by-*n* identity matrix and \mathbf{A}^T denotes the transpose of \mathbf{A} . This is precisely the set of all linear transformations $\mathbb{R}^n \to \mathbb{R}^n$ which preserve the Euclidean inner product, which means geometrically that they preserve lengths of vectors and angles between them. We will show in this problem that O(n) is a smooth submanifold of $\mathbb{R}^{n \times n}$.

(a) The set of all symmetric matrices

$$\Sigma(n) := \left\{ \mathbf{A} \in \mathbb{R}^{n \times n} \mid \mathbf{A} = \mathbf{A}^T \right\} \subset \mathbb{R}^{n \times n}$$

forms a linear subspace of $\mathbb{R}^{n\times n}$. Defining a map $f: \mathbb{R}^{n\times n} \to \Sigma(n)$ by $f(\mathbf{A}) := \mathbf{A}^T \mathbf{A}$, the orthogonal group is the level set $O(n) = f^{-1}(\mathbb{1})$. The entries of $f(\mathbf{A})$ are quadratic functions of the entries of \mathbf{A} , thus f is clearly a smooth map. Show that its derivative at any $\mathbf{A} \in \mathbb{R}^{n\times n}$ is the linear map

$$Df(\mathbf{A}): \mathbb{R}^{n \times n} \to \Sigma(n): \mathbf{H} \mapsto \mathbf{A}^T \mathbf{H} + \mathbf{H}^T \mathbf{A}.$$

Hint: In theory you can do this by computing all the partial derivatives of f with respect to the entries of \mathbf{A} , but it's much, much easier to use the definition of the derivative, i.e. regarding $\mathbb{R}^{n\times n}$ and $\Sigma(n)$ simply as vector spaces, show that a "remainder" formula of the form

$$f(\mathbf{A} + \mathbf{H}) = f(\mathbf{A}) + Df(\mathbf{A})\mathbf{H} + R(\mathbf{H}) \cdot |\mathbf{H}|$$

with $\lim_{\mathbf{H}\to 0} R(\mathbf{H}) = 0$ is satisfied. One useful thing you may want to assume: for a reasonable choice of norm on $\mathbb{R}^{n\times n}$, matrix products satisfy $|\mathbf{A}\mathbf{B}| \leq |\mathbf{A}||\mathbf{B}|$.

- (b) Show that $Df(\mathbf{A})$ is surjective if $\mathbf{A} \in \mathrm{O}(n)$. In fact, you won't even need to assume $\mathbf{A} \in \mathrm{O}(n)$, but it is useful to assume that \mathbf{A} is invertible (which is automatically true for orthogonal matrices).
- (c) It follows now from the implicit function theorem that O(n) is a smooth submanifold of $\mathbb{R}^{n\times n}$. What is its dimension? (For a sanity check I will tell you: dim O(2)=1 and dim O(3)=3.)
- (d) Show that $T_1 O(n) \subset T_1 \mathbb{R}^{n \times n} = \mathbb{R}^{n \times n}$ is the space of all antisymmetric matrices \mathbf{H} , i.e. those which satisfy $\mathbf{H}^T = -\mathbf{H}$.

Problem 6

The set $SL(n, \mathbb{R}) = \{ \mathbf{A} \in \mathbb{R}^{n \times n} \mid \det(\mathbf{A}) = 1 \}$ is called the *special linear group*.

(a) Show that the derivative of det : $\mathbb{R}^{n \times n} \to \mathbb{R}$ at 1 is given by the *trace*:

$$D(\det)(1)\mathbf{H} = \operatorname{tr}(\mathbf{H}).$$

Hint: Write $\mathbf{H} \in \mathbb{R}^{n \times n}$ in terms of n column vectors as $(\mathbf{v}_1 \cdots \mathbf{v}_n)$, so

$$\det(\mathbb{1} + t\mathbf{H}) = \det(\mathbf{e}_1 + t\mathbf{v}_1 \quad \cdots \quad \mathbf{e}_n + t\mathbf{v}_n),$$

where $\mathbf{e}_1, \dots, \mathbf{e}_n$ denotes the standard basis of \mathbb{R}^n . Differentiate this expression with respect to t at t = 0, using the fact that the determinant of a matrix is linear in each of its columns.

- (b) Use the relation $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A}) \cdot \det(\mathbf{B})$ to generalize the formula in part (a) to $D(\det)(\mathbf{A})\mathbf{H} = \det(\mathbf{A}) \cdot \operatorname{tr}(\mathbf{A}^{-1}\mathbf{H})$ for any $\mathbf{A} \in \operatorname{GL}(n, \mathbb{R})$.
- (c) Prove that $SL(n,\mathbb{R})$ is a smooth submanifold of $\mathbb{R}^{n\times n}$, compute its dimension, and show $T_{\mathbb{I}} SL(n,\mathbb{R}) = \{ \mathbf{H} \in \mathbb{R}^{n\times n} \mid \text{tr}(\mathbf{H}) = 0 \}.$
- (d) Is 0 a regular value of the map $\det : \mathbb{R}^{n \times n} \to \mathbb{R}$? Is $\det^{-1}(0)$ a submanifold of $\mathbb{R}^{n \times n}$? Hint: Show that if $M := \det^{-1}(0)$ is a submanifold, then $T_0M = \mathbb{R}^{n \times n}$.