GROMOV-WITTEN THEORY, WINTERSEMESTER 2022-2023, HU BERLIN

CHRIS WENDL

This is not a set of lecture notes, but merely a brief summary of the contents of each lecture,
with reading suggestions and a compendium of exercises. The suggested reading will usually not
correspond precisely to what was covered in the lectures, but there will often be a heavy overlap.

1. WEEK 1

Lecture 1 (18.10.2022): Rough sketch of the Gromov-Witten invariants. This lecture
was meant as a rough overview of the subject this course is about, so it contained very few precise
definitions and no complete proofs.

Counting lines through two points in C2 and CP?

Hy(CP") =~ Z generated by [L] € Hy(CP") for any line L < CP"

Definition: a rational curve of degree d € N in CP" is an equivalence class [f] of
holomorphic maps f : CP' — CP" with [f] := f.[CP'] = d[L] € Ho(CP"), where f ~ g
if and only if f = g o ¢ for some holomorphic diffeomorphism (i.e. biholomorphic map)
@ : CP* - CP'.

Statement of Kontsevich’s recursion formula for the number Ny of rational curves of degree
d in CP? through 3d — 1 generic points

Definition of the moduli space M ,,, (M, A) of holomorphic curves u : ¥ — M of genus g in
a complex manifold M, homologous to A € Hy(M), with m marked points (i,...,(n € 2,
quotiented by reparametrizations

Use of the evaluation map

ev = (evy,...,eUn) t Mg (M, A) - M*™ : [u, (C1,...,Cn)] — (w(C1), .. u(lm))

to define Ny as a count of ev= (py,...,pn) for M := CP?, A := d[L], m := 3d — 1 and

generic tuples (p1,...,pm) € M*™.

The almost complex structures J : TM — T'M on a complex manifold M and j : T — TS

on a Riemann surface ¥ (= “complex 1-dimensional manifold”)

u : ¥ — M is holomorphic & Tuoj = JoTu < dsu + Joyu = 0 in local holomorphic

coordinates s + it on regions in ¥ (cf. Exercise 1.1)

Brief sketch (to be discussed in detail later) of the local identification of M, ,,, (M, A) with

0;'(0) for a smooth nonlinear Fredholm section d; : B — £ of a Banach space bundle

E—-B

Riemann-Roch formula (to be discussed later) = linearization of 0 at a zero has complex

Fredholm index (n —3)(1 —g) +<{c1(TM),A)+ me Z

Convenient fictions:

(1) The linearization of d; is always surjective (so implicit function theorem then implies
Mg.m(M, A) is a smooth manifold of complex dimension (n—3)(1—g)+{c1 (T M), A)+
m

(2) Mgm(M,A) is compact
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One can then naively define Gromov-Witten invariants as multilinear maps GWg , 4 :
H* (M) xm _, Q by

GWymalar,. .. ,am) = Hevag x ... xay) = J eviag A...evE an,.
Mg,m(M,A)
Here a; ¢ M for each j = 1,...,m is any closed oriented submanifold representing the

homology class Poincaré dual to «j," chosen generically so that ev is transverse to a; x . . . x
Qm © M*™ and the differential forms in the integral are arbitrary choices of closed forms
representing the cohomology classes o; € H*(M). The two expressions are equivalent due
to Poincaré duality, and they make sense if and only if the dimensional condition

i laj| = dimg My, o(M, A) = 2(n — 3)(1 — g) + 2{c1 (T M), A) + 2m

j=1
is satisfied; if it isn’t, we set GWy , a(a1,...,apm) == 0.

Interpretation of (1.1): GWy n, a(a1, ..., ) is the algebraic count of holomorphic curves
u : X — M of genus g with marked points (1,...,(, € X satisfying the constraints
uw(¢;) € @; for j = 1,...,m. In practice, (1.1) is difficult to define rigorously because
Mg m(M, A) is hardly ever actually a compact smooth manifold of the correct dimension,
but mathematical definitions of GWy p, a(a1, ..., o) typically view it as some general-

ization of a homological intersection number. According to Witten [Wit88b], on the other
hand, the integral in (1.1) is also the result of computing a Feynman path integral via
stationary phase approximation in a certain kind of quantum field theory known as a
topological nonlinear sigma-model. Maybe someday I’ll understand what that means.

Lecture 2 (19.10.2022): Why symplectic manifolds? This was a continuation of the rough
overview from Lecture 1, intended mainly to explain why Gromov-Witten theory gives invariants
of symplectic rather than complex or almost complex manifolds.

¢ Convenient fiction 1: 0;M0 (transverse to the zero-section), which is equivalent to the

condition on surjectivity of the linearization mentioned last time. This could be arranged
if sufficiently generic perturbations of the Fredholm section 0;(u) := du + J o du o j were
allowed. On complex manifolds this cannot be done, because J is fixed, but sometimes it
is good enough to generically perturb J in the space

J(M):={J eT(End(TM)) | J*> = -1}

of smooth almost complex structures. This makes (M, J) an almost complex manifold, but

we can no longer assume it admits a complex atlas (i.e. that .J is integrable). Holomorphic

curves in (M, J) are then called J-holomorphic or pseudoholomorphic.

Convenient fiction 2: Mg ,,, (M, A) is compact... typically it is not (see Exercise 1.5),

though occasionally it is (Exercise 1.4). We will find that under the right set of assumptions,

Mg.m(M, A) always admits a natural compactification that is not too hard to describe.

Useful ingredient for compactness arguments: there is a notion of energy E(u) € R for

holomorphic curves u : ¥ — M such that

(1) E(u) = 0, with equality if and only if u is constant;

(2) There is an upper bound E(u) < C for all u € M (M, A), with C' depending only
on the homology class A € Ha(M).

ISuch submanifolds do not always exist, but by a theorem of Thom [Tho54], they do always exist after multiplying
a; by some natural number; this suffices for our purposes since the invariants we are trying to define have rational
values, not necessarily integers. (The real reason for them to have rational values has to do with symmetries that
we will talk about later.)
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Definition: w € Q?(M) tames J € J (M) if w(X,JX) > 0 for all X # 0 € TM. Under this
condition,

E(u) := fz u*w

satisfies property (1) above. If dw = 0 then it also satisfies property (2). This makes w a
symplectic form and (M, w) a symplectic manifold.

Definition: a symplectomorphism ¢ : (My,wy) — (M1,w;) is a diffeomorphism ¢ :
My — M, with ¢*w; = wy. We say (My,wo) and (M7,w,) are symplectically deforma-
tion equivalent if there is a diffeomorphism ¢ : My — M; such that wy and p*w; are
homotopic through a smooth 1-parameter family of symplectic forms.

Main “theorem” of the course (though we will prove a slightly less general version): on any
symplectic manifold (M, w), the maps GWg ;4 : H*(M)*™ — Q defined by counting J-
holomorphic curves for a generic choice of tame J € J(M) are independent of this choice,
and depend only on the symplectic deformation class of w.

Some early history:

(1) 19th century: origins of enumerative algebraic geometry

(2) 1982: Witten’s paper Supersymmetry and Morse theory [Wit82] helped popularize
what is now called Morse homology, which presents the singular homology of a smooth
manifold via a chain complex generated by critical points of a Morse function (this
later inspired Floer homology, see [AD14, Sch93]). It also was the first instance of
Witten’s distinctive paradigm in which topological invariants are interpreted as man-
ifestations of supersymmetric quantum mechanics.

(3) 1983: Donaldson defined invariants of smooth 4-manifolds (see [DK90]), proving many
breakthrough results on the distinction between smooth and continuous topology in
dimension four. This was the first example of using the topology of a moduli space
of solutions to a nonlinear elliptic PDE (in this case one from gauge theory) to define
invariants of the geometric setting in which the PDE lives. The Gromov-Witten
invariants follow the same idea, but with a different elliptic PDE in a different setting.

(4) 1985: Gromov’s paper Pseudoholomorphic curves in symplectic manifolds [Gro85]
demonstrated that for almost complex structures .J tamed by a symplectic form,
the moduli space of J-holomorphic curves encodes deep invariants of the symplectic
structure. This paper proved the famous nonsqueezing theorem and initiated the
modern field of symplectic topology.

(5) 1987-88: Inspired in part by Witten’s Morse theory paper, Floer produced two
versions of infinite-dimensional Morse homology, now known as instanton homology
[Flo88b] (a 3-dimensional analogue of Donaldson’s gauge-theoretic 4-manifold invari-
ants) and Hamiltonian Floer homology [Flo88a] (a symplectic invariant based on a
variant of Gromov’s J-holomorphic curves)

(6) 1988: Witten’s papers Topological quantum field theory [Wit88a] and Topological
sigma models [Wit88b] did for Floer’s homological version of Donaldson’s gauge-
theoretic invariants and Gromov’s holomorphic curve theory respectively what Wit-
ten’s 1982 paper had done for classical Morse theory, giving them new interpretations
as by-products of supersymmetric quantum field theories. The paper on sigma models
contained the first sketches of what were later called the Gromov-Witten invariants.

(7) 1993-94: Mathematically rigorous definitions of the Gromov-Witten invariants ap-
peared in parallel work of McDuff-Salamon [MS94] and Ruan-Tian [RT95, RT97].
These definitions were valid for symplectic manifolds satisfying a technical condition
(“semipositivity”) that is always satisfied up to dimension six, but not always in higher
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dimensions. The effort to remove such conditions and define GW for arbitrary sym-
plectic manifolds was a longer story that saw some progress later in the 90’s and
beyond, but remains a slightly controversial topic today.

(8) 1994: Kontsevich and Manin [KM94] wrote down a set of axioms satisfied by the
Gromov-Witten invariants (in the spirit of the Eilenberg-Steenrod axioms for homol-
ogy theories), from which impressive computations such as the Kontsevich recursion
formula can be deduced without needing to know how the invariants are constructed.

Gromov-Witten theory remains an active field of research today in both symplectic and
algebraic geometry.
e Some basics on symplectic manifolds:
— Statement of Darboux’s theorem (“there are no local symplectic invariants”)—we will
prove it next week.
— Hamiltonian vector fields: Symp(M,w) is a very large group
— Symplectomorphisms are volume preserving; do they also have special properties that
volume-preserving maps do not?
e Gromov’s nonqueezing theorem, and how it follows from the computation GWg 1 4(c) # 0
for A = [S? x {const}] € Ha(S? x T?"2) and a € H*"(S? x T?"~2) Poincar¢ dual to a
point.

Suggested reading. Nothing covered this week was intended to be essential to the remainder
of the course, since it was only an overview. An account similar (but not identical) to the proof
I sketched in class of Gromov’s nonsqueezing theorem can be found in [Wena, §5.1]; it differs in
that instead of citing a computation GWy 1 4(«) # 0 as a black box, it more directly proves the
existence of the required J-holomorphic curve (which is also the main step in that computation).
This uses results and methods that we will cover in detail later in the course.

In the mean time, if you’d like to shore up your knowledge of basic symplectic geometry, the
first few chapters of [MS17] are helpful, or alternatively, [CdSO1]. One particular topic we plan to
discuss in the Ubung next week is the standard symplectic form on CP™; you will find a description
of it in [Wen18, Example 1.4].

Exercises (for the Ubung on 25.10.2022).

Exercise 1.1. Suppose U c C is an open subset and f : i/ — C is a smooth function, where the
notion of smoothness is defined the same way as in first-year analysis after identifying C in the
obvious way with R?, so that f becomes a function of two real variables. With this understood,
the derivative of f at any point z € U gives a real-linear map

Df(z):C—C,
i.e. Df(z) respects addition and multiplication by real scalars, but not necessarily multiplication

by imaginary scalars; the latter would make D f(z) a complex-linear map. Show in fact that D f(2)
is complex linear at every point z € U if and only if f is holomorphic.

Remark. Exercise 1.1 yields the quickest generalization of the notion of a holomorphic map to
various other contexts, e.g. for an open subset 4/ < C™, a smooth map f : U — C™ is called
holomorphic if and only if its derivative Df(z) : C* — C™ is complex linear at every point. (One
can show that this is equivalent to the existence at every point of partial derivatives (fZJ; with

respect to the complex variables 21, ..., 2,.)

Exercise 1.2. If you were not previously familiar with complex manifolds and the fact that CP™
is one, write down an explicit atlas for CP™ consisting of C™-valued charts such that all transition
maps are holomorphic.
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Hint: One such chart comes from the inverse of the embedding C" — CP" : (z1,...,2,) — [1:
21t ... 20

Exercise 1.3. Prove that there is a natural equivalence between the notion of rational curves of
degree 1 in CP" (as defined in lecture via equivalence classes of holomorphic maps CP! — CP") and
the notion of “lines in CP™’. Take the latter to mean the image of any embedding S? — CP” that
is obtained by extending an embedding of the form C — C" : z +— za + b (with b # 0 € C") over
the point oo € S% := C U {0} using any of the embeddings C" < CP" defined by (21,...,2,) —
[1:z1:...:zp]0r [21: 129 :...: 2] ete.

The next two exercises both pretend that you know what the natural topology on the moduli
spaces Mg ., (M, A) is, which is a convenient fiction since we have not yet defined any such topology.
We will do so later; for now, don’t worry about it too much, and believe me when I tell you that
whatever educated guesses you make about the properties this topology should have, you are
probably right.

Exercise 1.4. Let P(T(CP?)) denote the space of complex lines through the origin in the fibers
of T(CP?); this is a compact manifold since it is a fiber bundle over CP? with fiber CP'. Prove
that the moduli space Mg o(CP?,[L]) is compact by showing that it is the image of a continuous
surjective map

P(T(CP?)) — Mo,o(CP?, [L])
that sends each line ¢ c Tp((CPz) at a point p € CP? to the unique line L ¢ CP? that passes
through p and is tangent at that point to L.

Exercise 1.5. Show that the evaluation map
ev : Mo 3(CP', [CP']) — (CP')*?
is a homeomorphism onto the complement of the so-called fat diagonal
A :={(p1,p2,p3) € (CP")** | p1 = pa, p2 = ps or p1 = p3} < (CP')

This proves that Mo’g((CED17 [CP']) is not compact, while at the same time providing you with a
pretty good guess as to what its natural compactification might be homeomorphic to.

x3

Exercise 1.6. Let o =[1:0:0] € CP?, and consider the holomorphic map
7 CP?\{zo} — CP" : [20: 21 : 20] = [21 : 22].
Show that the closure of each level set 7! (const) — CP? can be parametrized by a holomorphic

embedding CP' — CP? that passes through g, thus it defines a complex submanifold > c CP?
which is diffeomorphic to S2.

Additional topic for the Ubung: we will discuss the standard symplectic form on CP", whose
existence implies that all complex submanifolds of CP" (so in particular all smooth projective
varieties) are also symplectic manifolds. (ADDED LATER: We did not end up discussing the
symplectic form on CP" in the Ubung, but will instead discuss that in Lecture 4.)

2. WEEK 2

Lecture 3 (25.10.2022): Basics on symplectic manifolds. Following the first week’s overview,
this lecture can be considered the official beginning of the course, i.e. the part where one can expect
to see precise definitions and proofs.
e Quick review of symplectic forms, Hamiltonian vector fields (w(Xu, ) = —dH)
o The standard symplectic form wya = 3; dp’ A dg’ on R*™ 3 (¢',...,¢",p",...,p") and
Hamilton’s equations in coordinates
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The canonical 1-form Acan = 3, p/ dg’ on T*M (with local coordinates (¢, ...,¢" on M
giving coordinates for 1-forms p! dg* +...+p" dg" € T* M), and canonical symplectic form
Wean = dAcan
Symplectic linear algebra:
— The symplectic orthogonal complement W' of a subspace W < V with non-
degenerate w € A?2V*; why “complement” is a bad name but nonetheless dim W +
dim Wt* = dim V/
— Symplectic, isotropic, coisotropic and Lagrangian subspaces
— Existence of a symplectic basis e1, ..., en, fi,..., fn € V with w(e;, ;) =w(fi, f;) =0
and W(€i7 fJ) = 6ij
Darboux’s theorem: Near every point z in a symplectic 2n-manifold (M, w), there exists a
chart (¢',...,q¢", p',...,p") such that w = p dp? A dg’; proof by the Moser deformation
trick
Statements of other results provable via the Moser deformation trick:
— Lagrangian neighborhood theorem: Every Lagrangian submanifold L ¢ (M,w) has a
neighborhood symplectomorphic to a neighborhood of the zero-section in (7% L, wean )-
— Moser stability theorem: for M closed and {w }sc[o,1] a smooth family of cohomologous
symplectic forms, there exists for ¢ € [0,1] a smooth family of symplectomorphisms
P 1 (M,ywp) = (M, w;) with ¢y = Id.
The spaces J(F) (arbitrary), J,(F,w) (tame) and J(F,w) (compatible) of complex
structures on a symplectic vector bundle (F,w) — M, w € I'(A2E*) fiberwise nondegener-
ate
Almost complex structures and integrability: statement (without proof) of the Newlander-
Nirenberg theorem
Corollary (due originally to Gauss, and to be proved later by more direct means): All
almost complex structures on a surface are integrable, hence “Riemann surface” = “complex
1-manifold“ = “almost complex manifold of real dimension 2”

Lecture 4 (26.10.2022): Almost complex structures.

The spaces J,(V,w), J-(E,w) and J.(M,w) := J,(T'M,w) of tame complex structures
on a symplectic vector space (V,w), symplectic vector bundle (F,w) or symplectic man-
ifold (M, w) (for this case add the word “almost”); similar spaces of compatible complex
structures (remove the 7)

If J € J(V,w) and dim V = 2n, then (V,w, J) is isomorphic to (R?", wq, i); define i on R?"
via the identification with C” defined by (q*,...,q¢", p',...,p") < (p* +iq*,...,p" +iq")
Theorem: J,(E,w) and J(E,w) are nonempty and contractible spaces.

First proof for J(F,w), using convexity of the space of bundle metrics

Proposition: If dimg V' = 2n, then J (V) € End(V) is a smooth submanifold of dimension
2n? with tangent spaces 7,7 (V) = Endc(V,J) := {Y € End(V) | YJ = —JY'}; proof by
identification with the homogeneous space GL(2n,R)/GL(n,C)

Corollary: The map

1 1 -1
Y o U(Y) = Jy = (]1 + 2JY> J (11 + 2JY>

embeds a neighborhood of 0 in Endc(V, J) smoothly onto a neighborhood of J in J(V)
such that the derivative at 0 is the identity.
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e Sketch of second proof of contractibility of J(F,w) (and also J,(E,w)): Given J €
J-(E,w), the map Y — Jy identifies J,(F,w) with the space of smooth sections of
Endc(E, J) taking values in a fiberwise convex subset.

e Corollary: Topological invariants of complex vector bundles are also invariants of symplec-
tic vector bundles.

¢ Axiomatic characterization of the first Chern class ¢;(E) € H?(M) for a complex or
symplectic vector bundle £ — M:

(1) a(E®@F)=c1(F)+c(F)

(2) For f: N —» M, c;(f*E) = f*c1(E) € H?*(N)

(3) For a complex line bundle E — X over a closed Riemann surface, the first Chern
number ¢ (E) := {c1(F),[X]) € Z is the algebraic count of zeroes of any section
n € I'(E) with only finitely many:

#n(0):= ), ord(n;2) = ei(E),

zen=1(0)

where ord(n; z) € Z is the winding number of the loop S* — C\{0} : € + n(z + ec??)
for € > 0 small after choosing a local holomorphic coordinate on ¥ and trivialization
of E near z

¢ Corollary of the Poincaré-Hopf theorem: ¢ (T%) = x(X) for a closed Riemann surface

e The Fubini-Study symplectic form wps on CP" and its characterization via

ES
pr¥ wps = Wstd|7g2n+1

using the quotient projection pr : §2"+1 — §2n+l/gl — CP"
e Corollary: Every complex submanifold of CP" (e.g. all smooth complex projective varieties)
inherits a canonical symplectic form compatible with its complex structure.

Suggested reading. Almost everything mentioned this week can be found in the early chapters of
[MS17], and probably also in [CdS01]. For full details of the proof that 7. (E,w) is contractible, see
[Wena, Prop. 2.2.17]. If you like homotopy theory, you might prefer the more abstract alternative
proof (originating in Gromov’s paper [Gro85]) that is given one page earlier in my notes, though
our more direct proof (based on an idea of Sévennec) has some practical advantages that we’ll
occasionally make use of. Alternative presentations of the first Chern class can be found in many
places; the treatment in [MS17] is different from ours but also geared toward symplectic geometry,
and is phrased in terms of the Maslov index (a very useful concept if one wants to study Lagrangian
manifolds, though we don’t plan on it in this course).

Exercises (for the Ubung on 01.11.2022).

Exercise 2.1. Here is a coordinate-invariant way to express the canonical 1-form Aca, € QY(T*M)
on the cotangent bundle of a smooth n-manifold M. Using the derivative Tn : T(T*M) - TM
of the bundle projection 7 : T*M — M, define Acan : T(T*M) — R on a vector £ € T,,(T*M) at
aeT¥M for x € M by
)\can(g) = O‘(TW(E))
You could be forgiven for finding this concise definition too abstract to be revealing, but here is
another useful way to think about it. For bookkeeping purposes, let’s write elements of T*M as
pairs (¢,p) where g € M and p € T M. Any choice of connection on the vector bundle T*M — M
determines at each point (q,p) € T*M a splitting of T, ,)(T*M) into horizontal and vertical
subspaces
Tiqp)(T* M) = Hqp)(T* M) @ Vg p)(T* M),
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where T'm gives a natural isomorphism of H, ) (T*M) to T,M and V{, \(T*M) := T,(T; M) is
canonically isomorphic to T3 M. In this way, we obtain an isomorphism

Tiqp)(T*M) = T;M @ T M,

and can use it to write tangent vectors § € Ti, ) (T*M) as pairs (X, ), the two components
being interpreted as horizontal part X € T,M = H,,(T*M) and vertical part o € T, M =
Vig,p)(T*M). For example, if we use this notation to write a smooth path y(¢) € T*M in the form
~v(t) = (q(t),p(t)), then its derivative becomes

Y(t) = (4(t), Vep(t))
since the covariant derivative V;p(t) of a section p(t) € T;‘(t)M of T* M along a path ¢(t) € M is

the vertical part of the derivative of the corresponding path in the total space. With this notation
understood, we can now write Acan in the form

Aean(X,8) = p(X)  for (X, 8) € Ty (T*M) = T,M ® T} M.

If we had defined A, this way in the first place, we would now have to worry about whether it
depends on the choice of connection (since the horizontal-vertical splitting does), but our original
definition shows that this is not so.

(a) Verify that for any choice of local coordinates ¢',...,q" on a region U < M, taking
the induced chart (q¢',...,¢" p',...,p") on T* M|y as explained in the lecture, \ean =
Z?zl p?dg? on T*M]|y. In particular, the expression Z?:l p’ dg? for a 1-form on T*M is
therefore independent of the choice of local coordinates ¢!, ..., ¢" (though it does crucially
depend on how the other coordinates p!,...,p" are determined by these).

(b) Show that if the connection V on T* M — M used for the splitting of T(T* M) is induced
via duality from a symmetric connection on M, then the canonical symplectic form wc,, =
dMean € Q2(T*M) is given by the formula

wcan((Xa Ol), (K 6)) = Oé(Y) - 5(X)

Hint: It suffices to consider cases where each of (X, «) and (Y, 3) is either purely vertical
or purely horizontal. If you get stuck, see [Wen21, Lemma 23.14].

(¢c) Now suppose additionally that the symmetric connection on M is the Levi-Civita con-
nection for some Riemannian (or pseudo-Riemannian) metric { , ), and using the bundle
metric induced on T*M — M via duality, consider the Hamiltonian

H:T*"M - R, H(q,p) := %{p,p)
Show that the resulting Hamiltonian vector field Xy € X(T* M) is given by
Xn(q.p) = (1%, 0) € TM @ T M = Ty ) (T* M),
where T} M — T,M : oo — o* denotes the inverse of the “musical” isomorphism T, M —
T/M: X — X, :=(X,").

(d) Explain precisely what is meant by the statement, “The Hamiltonian system (7% M, wean, H)
is equivalent to the geodesic equation on (M,{, )).”

Exercise 2.2. Use the Moser deformation trick to prove the Moser stability theorem: if M is
closed and {w; }efo,17 is @ smooth family of symplectic forms that all represent the same de Rham
cohomology class, then for ¢ € [0,1] there exists a smooth family of symplectomorphisms ¢; :
(M, wp) = (M,w;) with ¢ = Id.

Hint: You will need to know that w; = wg + d\; for a smooth family of 1-forms \;. This follows
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from the assumption that [w;] € H3g (M) is independent of t, but is not so obvious; some hints on
how to prove it are given in [MS17, proof of Theorem 3.2.4].

Exercise 2.3. On a symplectic vector space (V,w), show that J € J(V,w) if and only if J €
Jr(V,w) and w(Ju, Jv) = w(u,v) for all u,ve V.

Exercise 2.4. In this exercise, we identify R?” with C" via the correspondence
RQ” 9 (q17"'7qn’p17"'7pn) « (pl +7:ql7"'7pn +iqn) eCn7
so that multiplication by i is regarded as a real-linear transformation i : R?" — R?" and GL(n, C)
becomes the subgroup {A € GL(2n,R) | Ai =iA}.
(a) Check that the standard symplectic form wya = 3, dp? A dg? on R?" can be written in
terms of the standard Hermitian inner product {u,v) = Zj @7 on C", namely as

wsta (X, Y) = Im{X, Y.
(b) Prove O(2n) n GL(n,C) = U(n).

Exercise 2.5. According to the Newlander-Nirenberg theorem, an almost complex structure J on
a manifold M is integrable if and only if the induced Nijenhuis tensor N; : TM ®@TM — TM,
given by

N;y(X,Y)=[JX,JY]-J[JX,Y]-J[X,JY] - [X,Y],
vanishes. Prove:

(a) The expression given above for N really does define a tensor field on M, i.e. it is C*-linear
in both X and Y.

(b) Nj vanishes whenever J is integrable (i.e. the “easy” direction of the Newlander-Nirenberg
theorem).

(c) N always vanishes if dimg M = 2.

(d) As mentioned in lecture, the vanishing of N; when dim M = 2 implies a classical result due
to Gauss that almost complex structures on surfaces are always integrable. Actually, what
Gauss proved was stated a bit differently: the theorem is that every Riemannian metric g
on a surface ¥ is conformally flat, meaning that every point p € ¥ has a neighborhood
U < ¥ such that (U, g) is isometric to (V, fgr) for some open subset ¥V < R2?, smooth
function f : V — (0,00) and the Euclidean metric gg. Prove that that statement is
equivalent to the one mentioned above about integrable almost complex structures.

Exercise 2.6. Suppose (M, w) is a symplectic manifold with a compatible almost complex struc-
ture J € J(M,w), g := w(+,J-) is the induced Riemannian metric and V denotes its Levi-Civita
connection. Show that for the induced connections on the vector bundles End(TM) and A?T* M,
VJ = 0 if and only if Vw = 0, and if either is true, then .J is integrable.? You may use the
Newlander-Nirenberg theorem as a black box.

Hint: Use the symmetry of the connection to write a new formula for the Nijenhuis tensor that
involves covariant derivatives instead of brackets.

Comment: The converse is also true: if J is integrable, then the Levi-Civita connection satisfies
VJ =0 and Vw = 0, hence parallel transport respects both J and w. For details, see [MS17, §4.2].

Exercise 2.7. In lecture we have been using the term symplectic vector bundle to mean any
smooth real vector bundle E — M that is equipped with a smooth section w € I'(A?E*) which is
nondegenerate on every fiber. In order to justify this terminology, one should prove the following:

?In this situation, g is called a K&hler metric and (M, J,g) is a K&hler manifold. Kihler geometry is
essentially the intersection of complex, Riemannian and symplectic geometry.
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every symplectic vector bundle (E,w) of rank 2n admits a system of local trivializations covering
M such that all transition functions take values in the linear symplectic group

Sp(2n) := {A € GL(2n,R) | wsta(Au, Av) = wya(u,v) for all u,v e R**}.

Prove this.

Hint: What should the term “symplectic local frame” on (F,w) mean, and can you show that they
always exist?

Comment: If (M,w) is a symplectic manifold, then (TM,w) is a symplectic vector bundle over
M in an obvious way, but (TM,w) would also be a symplectic vector bundle if w € Q*(M) is
nondegenerate but not closed. The result of this exercise proves that even in that case, one can
cover M with neighborhoods that admit symplectic frames. Whenever such a frame consists of
coordinate vector fields, the corresponding chart will be a so-called “Darboux chart”, i.e. one in
which w matches the standard symplectic form of R?". Darboux’s theorem shows that the latter
is possible if and only if w is closed.

Exercise 2.8. Assume (M, w) is a symplectic manifold.

(a) Prove the following result stated in lecture: Given subsets A € U c M that are closed and
open respectively, and given any Jy € J- (U, w), the space {J € J(M,w) | J = Jy on A} is
nonempty and contractible.

(b) Show if ¥ ¢ M is a symplectic submanifold (meaning w|rs, defines a symplectic form
on X), then there exists J € J(M,w) such that the action of J on TM |5 preserves TX.
Comment: This fact is the first step in the proof of various powerful results in [Gro85,
McD90] concerning symplectic 4-manifolds that contain symplectically embedded 2-spheres.
The point is: any 2-dimensional symplectic submanifold can in this way be regarded as
the image of an embedded J-holomorphic curve, and the properties of the moduli space of
such curves can have nontrivial consequenes.

Exercise 2.9. In lecture we defined the Fubini-Study symplectic form wps on CP" according to
the relation

&
pPr- wrs = wstd|TSQ"+17

where S?"*! is the unit sphere in C"*! = R?"*2 and pr : §?"+! — §2n+1/G1 = CP" denotes the
quotient projection.

(a) Compute the symplectic area of a line in CP", i.e. the integral {, wps over any line
L c CP", with its natural orientation as a complex submanifold. Equivalently, this is the
evaluation of the cohomology class [wrs] € H32g (M) on the generator [L] € Ho(M), which
is why the answer will not depend on which line you choose.

Hint: L is the image of a map C u {0} — CP", and the integral will not change if you
ignore the point at infinity and integrate only over C.

Solution:
I’'m writing up a solution here because every four or five years I find myself needing to do
this exercise again, but sometimes I forget the trick.

We can first show that the answer does not depend on the choice of n. This follows
from the observation that for any 1 < & < n and an embedding of the form

i:CPkHCPnZ[ZOZ...sz]H[Zoi...ZZk:OZ...10]7

the pullback via i of the Fubini-Study form of CP" is the Fubini-Study form of CP*. This
follows via the relation pr* wps = wstd|rg2n+1 from a similar statement about the pullback
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wstq under the embedding
7:CHY S e (20, .., 20) — (20,0, 28, 0,...,0),

after restricting the latter to an embedding of unit spheres S2¢*1 — §27+1  Gince the
image of the embedding CP! — CP"is a line, SL wrg will therefore be the same as Suﬂ WFS,
where in the latter integral we simply regard wps as a 2-form on CP', characterized by the
relation pr* wps = wsta|rs3, where
pr:S% — §3/81 = Cp*

is the quotient projection.

Next, let B2 ¢ R? denote the open unit ball, and suppose we can find an embedding
¢ : B? — 5% c C? such that prog : B2 — CP! is a diffeomorphism onto the complement
of one point p € CP*. (We’ll discuss in a moment how to find such an embedding.) If

we could pretend for a moment that wpg has compact support in CIP’I\{p} and p*wgq is
compactly supported on B2, we would then have

J ©*Wsta = ,[ ©* pr* wpg = f (proy)*wrs = J wrs = f WFS-
B2 B2 B2 CP\{p} cp?

To justify this result without any fictional compact support assumption, choose a smooth
function g : CP* — [0, 1] that equals 1 except in an arbitrarily small neighborhood of p and
has compact support in (CIPl\{p}; we can clearly arrange the integral Suﬂ\{p} Bwrs to be as
close to § p, wrs as we want. We then have pr*(fwrs) = (Bopr) pr* wrs = (Bopr)wsid|rss,
so that a repeat of the calculation above gives

j (B oprop)p*uwsa = f (B oprop)e® pr* wps = J (prow)* (Bwrs) = J Bwrs.
B2 B2 B? CP\{p}
Since B o proy : B? — [0,1] has compact support and equals 1 in an arbitrarily large
compact subset of B2, the first integral can be assumed as close as we like to SBQ 0¥ Wstd,
completing the justification.
Finally, here is a concrete choice of ¢ that will do the job:

¢: B> $%:(p,q) — (p+iq7v1—p2—q2)€<€2~

This traces out an embedded disk D < S2 < C?, and the integral we are now looking
for is {,, p*wsta = §pwsta. In coordinates (p1 + iqi,p2 + ig2) on C?, we have wyq =
dpy A dqi + dps A dga, and since ¢ never moves in the go-direction, the second term in wgpq
never contributes to SD wstd- What we are left with is SD dpy A dgy, which depends only on
the motion of ¢ in the p; and ¢ directions, thus it will not change if we replace ¢ with
the embedding ¢ : B2 — C? : (p,q) — (p + iq,0), tracing out a completely “fat” 2-disk
in C2. The answer is then the area of this disk, giving

J WFs = .
L
(b) Prove that {c;(T(CP?)),[L]) = 3.
Hint: Split T(CP?)|;, into a direct sum of the tangent and normal bundles of L.

3. WEEK 3

Lecture 5 (01.11.2022): The nonlinear Cauchy-Riemann equation and its linearization.

¢ Pseudoholomorphic maps f : (X, j) — (M, J) between almost complex manifolds, and why
we restrict to the case of curves (dim¢ X = 1)
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Statement of the local existence theorem for J-holomorphic curves: On any almost complex
manifold (M, J), for any p € M and X € T,M, there exists ¢ > 0 and a J-holomorphic
map u : (De,i) — (M, J) with u(0) = p and d,u(0) = X. (We will prove this within the
next few weeks.)
Corollary: All almost complex structures on a surface are integrable.
The nonlinear Cauchy-Riemann equation for v : (X,j) — (M, J) in local holomorphic
coordinates (s,t) on X: dsu(s,t) + J(u(s,t))oru(s,t) =0
Holomorphic vector bundles and linearization of Tu 4+ J oTwo j = 0 in the integrable case
Every holomorphic vector bundle £ — ¥ has a natural linear first-order differential oper-
ator

D:T(E) - Q" (%,E) := F(HoﬁdTZ,E))
that annihilates holomorphic sections (see Exercise 3.1).
The linearized Cauchy-Riemann operator

D, : T(u*TM) — Q" (2, u*TM)
of a J-holomorphic curve w : (3,j) — (M, J) in the non-integrable case, and the formula
D.n=Vn+Ju)oVnoj+VyJoTuoj

for V any symmetric connection on M (see Exercise 3.2)
Linear Cauchy-Riemann type operators D : I'(E) — Q%!(X, E) on a general complex
vector bundle F over a Riemann surface (X, j); the Leibniz rule

D(fn) = fDn+of(-)n, feC*(L,R), ne(E), of :=df +idf oje Q% (Z,C)

The difference between any two linear Cauchy-Riemann type operators is a bundle map
Local expression of linear Cauchy-Riemann type operators as ¢ + A : C*(0,C™) —
C*(0,C™) for 0 := 0, + i0; in coordinates s + it € O c C and a smooth function
A: O — Endg(C™) = GL(2m,R)

Statement of the linear local existence theorem: For any smooth function A : D —
Endg(C™) and any v € C™, the problem

@+A)f=0, f0)=v

admits a smooth solution f : D, — C™ for e > 0 sufficiently small.

Lecture 6 (02.11.2022): Some tools for the analysis of 0.

Outline (minus technical details on Banach spaces) of the proof of linear local existence
The spaces of test functions Z(U) := Cf(U) and distributions

9'(U) := {continuous linear functionals A : 2(U) > R : p — (A, )}

on an open domain Y < R"

Multi-index notation: for a = (ai,...,an), o] 1= 3 a;, 0% 1= 07 ... o is a differential
operator of order |af, 2% := z{' ... z2" € C is a monomial function of z = (z1,..., 2,) € C"
with degree |a

Examples of distributions:

(1) Locally integrable functions f € L (U): (f,¢) :=§, f¢

(2) Dirac d-function: (4, ¢) := ¢(0)

Derivatives of distributions:

(0N, ) = (=1)*(A, 7).
For f € LL (U), if the distributional derivative 0*f € 2’(U) is representable as a function,

loc
we call it a weak derivative of f.
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e Examples (see Exercise 3.3):
(1) feLL . (R) c 2'(R) given by f(x) = |z| has a weak first derivative, but its second
derivative is not a function
(2) f(z) =In|z|isin L{ (R) and its derivative is a function but is not locally integrable
(principal value integral)
(3) K(z) := 527 is in L{ (C) and has 0K = 4, but 0K := (0, — i0;)K is given by a
principal value integral
e Products of smooth functions with distributions: (fA, ) := (A, fp)
e Convolutions of test functions and distributions on R™: (f = A, ) := (A, f~ = ¢) where

f=(x) := f(—x) and
(f=g)():=| flz—y)g(y)dy,

Rn
and A= f:=f=A

e §x f=fforall fe P(R") (see Exercise 3.5)

o Lemma: If A € 2'(U) has first derivatives d1A,...,0,A € 2'(U) that are all representable
by continuous functions, then A is representable by a (unique) C'-function. (For the proof,
see e.g. [LLO1].)

e Lemma: For f € C3*(R") and A € Z'(R™), f = A is represented by the smooth function

(f#=M)(z) = (A, 72p),  where  Tup(y) := o(z —y).

e Corollary: the equation du = f for f € C(C) has a smooth solution u := K * f
e Definition of the Sobolev spaces

wWkP ) = {feLPU) | there exist weak derivatives 0° f € LP(U) for all |o| < k},
[flwes = Y 10 flles

lo| <k

e Theorem: For 1 < p < o0, the map CF (D) — CF(C) - C*(D) : f — (K = f)|® extends
to a bounded linear operator LP(D) — W2(DD), which is then a bounded right inverse of
0: WhP(D) — LP(D). (Proof next week.)

Suggested reading. Linear Cauchy-Riemann type operators and the derivation of D, are dis-
cussed in more detail in [Wena, §2.3-2.4]. For the basic theory of distributions, a good source is
[LLO1]; most of the proofs we skipped here can also be found in my notes from Functional Analysis
[Wen20a, §10].

Exercises (for the Ubung on 08.11.2022). Most of this week’s exercises are straightforward
verifications of statements made in lecture, and we will not plan to spend much time on these in the
Ubung unless explicitly requested. The major exception is Exercise 3.3(d), which is an essential
step in the regularity theory for the d-operator, so we will discuss that in detail. Whatever time
remains will be devoted to a general review of Fourier transforms in preparation for their use in
the next lecture.

Exercise 3.1. Assume X is a complex manifold (of any finite dimension) and E — ¥ is a complex
vector bundle of rank m € N. A smooth bundle atlas for £ — X is a collection of smooth
local trivializations {® : Ely, — Uy x C™}qer such that ¥ = |J,c; Ua, and the corresponding
transition functions gg, : Uy N Ug — GL(m,C) for (o, ) € I x I are characterized by the
relation

B50®, 1 (p,v) = (p,gpa(p)v) for all pe U, nUg and v e C™.
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The bundle atlas also associates to any section 1 : O — FE defined over an open subset O c ¥ a
collection of functions 7, : O N U, — C™ characterized by

@, (n(p)) = (p,na(p)) for all pe O N U,

which are related to each other by ns = ggane on Only Uz for any (o, §) € I xI. If the transition
functions are all holomorphic, we say that the bundle atlas defines a holomorphic structure on
E — 3 and call the latter a holomorphic vector bundle; in this case one also calls n: O - FE
a holomorphic section if the functions 7, are all holomorphic. This notion makes sense due to
the fact that products of holomorphic functions are also holomorphic.

Denote by Hom¢ (7Y, E) € Homg(T'Y, E) the vector bundle whose fiber over each point p € ¥ is
the space of complex-antilinear maps 7,3 — E,; sections of this bundle are often called E-valued
(0,1)-forms, and the space of such sections is denoted by”

Q¥ E) := T (Home (TS, E)).

One can similarly speak of the space of C™-valued (0, 1)-forms
Q%l(z,c™) c Ql(z,Cc™),

i.e. smooth C™-valued 1-forms A\ € Q'(X,C™) such that A\, : 7,5 — C™ is complex-antilinear
at each point p € ¥. The bundle atlas above associates to each A\ € Q%(X, E) a collection of
C™-valued (0,1)-forms A, € Q% (,,C™) according to the relation

D, (AMX)) = (p, Aa(X)) for all pEUy, X eT,X.

With this notation in place, prove the following: every holomorphic structure on £ — ¥ deter-
mines a first-order differential operator

D :I'(E) » Q" (%, E) = T'(Home (TS, E))

such that for each n € T'(F) and each local trivialization ®, : E
holomorphic bundle atlas,

u, — Uy x C™ in the given

(Dn)o = dng +idngy o j.
Moreover, a local section 1 : O — FE is then holomorphic if and only if Dn = 0, and D satisfies the
Leibniz rule
D(fn) = fDn+0df()n for all fe C*(X2,C) and n e T'(E),
where df := df +idf oj e Q%(%,C).
Exercise 3.2. As a warmup, suppose first that £ — M is a finite-dimensional smooth vector
bundle with a connection V, and s € I'(F) is a smooth section that vanishes at some point p € M.
(a) Show that the linear map Vs(p) : T,M — E, depends on the section s but not on the
choice of connection V. We sometimes denote this map by
Ds(p) : T,M — E,
and call it the linearization of s at p.

For the rest of the exercise, assume (3, 7) is a Riemann surface, (M, J) is an almost complex
manifold, and u : (X,j) — (M,J) is a J-holomorphic curve. In lecture we characterized the
associated linearized Cauchy-Riemann operator

D, : T(u*TM) — Q" (2, u*TM)
3The bundle Homg(TS, E) is also often denoted by A% T*SQE. The related bundle Home (TS, E) = AL 0T*%Q

E and space of bundle-valued (1,0)-forms QY(2, E) = TI'(Homc(TE, E)) are obtained by replacing the words
“complex-antilinear” with “complex-linear”.
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via the following property: for any smooth 1-parameter family of maps {u, : ¥ — M} ,c(_c o) with
up =u and 1 := dyup|,_, € I'(u*TM), for each z € ¥ and X € T.%,
Dun)(X) = V, [Tup(X) + J o Tu,(jX)]|

Po

for any connection V on TM — M. We also showed that if the connection V is chosen to be
symmetric, then an explicit formula for D, is given by

D.,n=Vn+J(u)oVnoj+ (VyJ)oTuoj.

(b) Show that the definition of D,, does not depend on the choice of connection Von TM — M.
(c) Verify that D, satisfies the Leibniz rule

D.(fn) = fDn+0of(-)n for all f e C*(X,R) and n e ['(u*TM),

and is thus a so-called linear Cauchy-Riemann type operator on u*TM — 3.

(d) Show that if J is integrable, then D, is the operator arising via Exercise 3.1 from the
natural holomorphic structure on the bundle «*T'M — X. In particular, D,, is in this case
complex linear (which is not true for linear Cauchy-Riemann type operators in general).

Exercise 3.3. Prove:

(a) The locally integrable function f(x) := |z| on R has weak derivative

1 ifz>0
! i )
fi(): {—1 if 2 <0,

(Note: weak derivatives are only defined almost everywhere, so we do not need to specify
a value for f" at 0.)
(b) The derivative of the function f’ from part (a) in the sense of distributions is 26 € 2'(R).
(c) The function g(z) := In|z| is in L{ (R), but its classical derivative (away from 0) is not,
and its derivative in the sense of distributions is given by the principal value integral

(¢',p) = p.V.J Mdm = lim Mdm,

R X e—0t |z]ze T

(d) On C with coordinates s + it, write®*

- 0 0
0:=0s+10;, = 2—, 0:=0s —10; = 2—,
e 0z Lo 0z
and consider the function K(z) := z--. Show that K € L{ (C), K = § in the sense of
distributions, and 0K can be written as a principal value integral of a function that is not

locally integrable, namely

C

™ z2 T =0t Jop, Z

where “dm” denotes the Lebesgue measure on C = R?,

4The operators p‘—; and (% are not partial derivatives in any conventional sense since z = s+it and Z = s—it cannot
be regarded as independent variables, but one obtains formulas for these operators as complex linear combinations
of the usual partial derivative operators ds and 0; via a formal application of the chain rule, regarding z and z
as functions of s and t. We take these formulas as definitions, and they are useful for computations whenever a
function on C is written in terms of z and 2, e.g. the usual derivative of a holomorphic function f : C — C is then

%7 while % vanishes due to the Cauchy-Riemann equations.
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Exercise 3.4. Verify that for the product of a smooth function f € C*(U) with a distribution
A e 2'(U) on some open domain U < R", the partial derivative operators 0; satisfy the usual
Leibniz rule

0;(fA) = (0;F)A + f 9;A,

where 0; f can be interpreted as a classical derivative, while 0;A is a distributional derivative.

Exercise 3.5. Check that for a smooth compactly supported function f € C§*(R"), the formula
(feh@)i=A[f"x9), [ (2):=[f(-2)

defines a continuous linear operator 2'(R") — 2'(R™) : A — f « A that matches the usual
convolution of functions

(F9)@)i= | fe=n)gtw)dy
when A is representable by a function. Prove aﬁb the formula
O(f+A)=0%f A= fxd%A,
where 0° f is interpreted as a classical derivative and 0“A as a distributional derivative.

Exercise 3.6. Prove f = § = f for all f e C*(R™).

4. WEEK 4

Lecture 7 (08.11.2022): The bounded right-inverse of 0.
e Solving du = f € CF(C) by u:= K » f € C*(C) for K(2) := 5

21z
e Why linear local existence requires the estimate |K * f|yw1.» < c|f|r» for p > 2
e Proof of |K * f|rr < ¢||f|z» by a variant of Young’s inequality (see Exercise 4.2)
o Brief review of the Fourier transform:

— Schwartz space
F(R") == {feC™(R") | 2%0° f(x) is bounded on R" for all multi-indices «, 3}
— The operators .#,.7* : /(R") - S (R"),

(FH0) = F0) = | 0D @) dn,  (FN@) = Flo)i= [ 0D pp)

— F7 1 =% and {f, Fg)1> = {(F*f,g)r> imply Plancherel’s theorem: . and .7 *
have unique extensions to bounded linear isometries L?(R") — L?(R")
— The relation (F f, ) = (f, F¢) for f,pe S (R") and (f,g) := ;. fg
e The space of tempered distributions

&'(R™) := {continuous linear functionals A : #(R") > C: o+ (A, 9)},

where p; — ¢ in .Z(R") means 70"y, converges uniformly on R™ to 2%0°¢p for all
multi-indices «, 8
e Examples of tempered distributions:
— The § function
— Any f e L. _(R") that has at most polynomial growth (e.g. not f(z) = elzl*)

loc

e The operator .7 : .&'(R") — ./ (R"™),
(A, 9) = (A, T ).

e The relation 6/37\ = —2m'pj1A\ for A € Z'(R™) (see Exercise 4.3)
e Lemma: For f € C{°(D) and K(z) := 52—, the function |(K = f)(z)| is bounded on C by
C'/|z| for some constant C' > 0. Corollary: K = f is both a smooth function and a tempered

distribution on C.
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e Proof of the estimate |0(K = f)|r2 < ¢|f|r2 via Fourier transform: If uw € C*(C) n &#'(C)
and du € L?(C), then du is also in L?(C) and ||0u > = |dul|r=.

e Why we call @ an elliptic operator: .7 (0u)(¢() = Q(¢)u(¢) for a polynomial function
Q@ : C - C such that Q(¢) # 0 for all ¢ # 0.

e The case p > 2: we need an estimate |0K = f|z» < ¢|f||z» for f € CF (D), where f — 0K xf
denotes the singular integral operator

1 f(Q)
0K = f)(2) i= —— hmf dm(¢).
(0K = f)(z) ) P e (©)
e Statement (without proof) of the Calderon-Zygmund inequality for singular integral oper-

ators
e Corollary: & : WhP(D) — LP(D) has a bounded right inverse given by (the unique extension
of) f— K = f for every p € (1,00).

Lecture 8 (09.11.2022): Linear elliptic regularity.
e The Holder spaces C*(U) for k € {0} UN and « € (0, 1),

[flown = 1flex + 3 1% floe where | floe == sup LE =W

e AT

Arzela-Ascoli = the inclusion C** () < C*(Uf) is compact, i.e. C**-bounded sequences
have C*-convergent subsequences.
e Useful properties of Sobolev spaces, part 1:

Assume k > 0 an integer, 1 < p < 00, i < R open and bounded such that o/ < R™ is a

smooth submanifold.

(1) Approximation: C*(U) is dense in WP (U).
Easier variant: if p; : R — [0,0) is an approximate identity and f € W"P(U/), then
p; * f is defined on each precompact open subset V c Y c U for large j, is smooth
and W*P-convergent to f on V. (We say p; * f — f in VV{ZCP onl.)
Remark: CF(U) is not dense in W*P(U) except when k = 0, but instead defines a
closed subspace

W(;c’p(u) := the W*P-closure of Cy ) Wk,p(u).

(2) Extension: Given V < V < U with 8V smooth, there exist bounded linear operators
E : WkP(V) —» WkP(U) such that Ef|y = f.

(3) Sobolev embedding theorem (case kp > n): For any o € (0, 1) satisfying o < k — 7,
there is a continuous linear inclusion map

WEP(U) — CO*(U),
and therefore also
WP (UY) — Ch(U) for all integers d = 0.

Corollary: (5o W*P(U) = C*(U)
(4) There is a continuous bilinear product map

CHU) x WHP(U) — WEPU) : (f.9) = fg,

hence an estimate of the form || fgllyr.r < | fllcr - glwr.s-
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e Fundamental elliptic estimate: For each p € (1,0), |ully1» < c|0u|r» holds for all u €

CF (D).

Corollary 1 (by density): Also holds for u € WO1 P (D).

Corollary 2 (since 90% = 0°0): ||ullyr» < ¢|Oullyr-1» for all u e WEP(D), k € N,
Proof is easy consequence of the boundedness of LP — WP : f +s K # f.

e Linear regularity theorem: Assume 1 < p < 00, m > k > 0 are integers, A € C™ (D, Endg(C™))
and f € W™P(ID,C"). Then every weak solution u € LP(D,C") to (0 + A)u = f is in
WP on D, and for each 0 < < 7/ < 1, there is a constant ¢ > 0 independent of u and
f such that

||UHWm+1,p(1ﬁ>1,) < C”UHWm,p(]f)r,) + C”fHWm,p(]f))r,)'

e Corollary: If A and f are smooth, so is u.

e Lemma: If u € W™P(D) and du = f € W™P(D), then u e W™+LP(D,.) for each r < 1.
Quick proof: After multiplying with a cutoff function, can assume without loss of generality
u has compact support in D. Choose an approximate identity p; and consider u; := p;*u €
CF (D), which converge in W™? to u. Also du; = p; # 0u = p; = f =: f; converge in W™
to f. Bound |u; — ug|wm+r.» via the fundamental elliptic estimate: implies wu; is also
Wm+LpP_Cauchy, thus u € W™+LP, (Accounting for the cutoff function, one obtains this
result for the original u on a slightly smaller domain.)

Suggested reading. For background details on Young’s inequality, approximate identities, Fourier
transforms and tempered distributions, see [LLO1] or [Wen20a]. A self-contained proof of the
Calderon-Zygmund inequality can be found in [Wena, §2.A]; it takes about seven pages.

For proofs of the essential properties of Sobolev spaces on bounded domains with smooth bound-
ary, see e.g. [Eva98]. There is also the more comprehensive treatment in [AF03], which will also
tell you what is known in cases where ¢/ c R™ is not bounded.

Our presentation of the linear regularity theorem follows [Wenc, §2.4.1], except that instead of
using difference quotients (which are not well suited for studying weak solutions of class LP), we
used mollifiers. The mollifier argument is a very easy special case of something that is standard
in the theory of elliptic operators on closed manifolds, e.g. a more general and harder version of it
can be found in [Ebe]. We will use difference quotients next week to handle the nonlinear case.

Exercises (for the Ubung on 15.11.2022). The most important exercises this week are the
first and the last, followed by Exercise 4.5 (on the Sobolev embedding theorem). If there is time to
spare in the Ubung, we will use it to discuss a few useful consequences of the Sobolev embedding
theorem involving continuous product pairings.

Exercise 4.1. In lecture we proved that for any smooth function A : D — Endg(C"), the equation
(0 + A)u = 0 admits solutions u : D, — C™ on sufficiently small disks D, < D having arbitrary
values at the point 0 € D; by elliptic regularity, such a solution will necessarily be smooth. Show
that if we allow weak solutions (i.e. solutions in the sense of distributions), then the local existence
result remains true under the weaker assumption that A : D — Endg(C") is of class L? for some
p > 2, and the solution might not be smooth, but will at least be continuous.

Remark: We will use this generalization next week in order to prove the similarity principle, an
important result about the local behavior of solutions to linear Cauchy-Riemann type equations.

Exercise 4.2. Prove the following variant of Young’s inequality: If f € LL (R") and Y = R" is a

loc
bounded open subset, then for each p € [1, 0] there exists a constant ¢ > 0 such that the estimate

1f# gl e @y < cllglLe
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holds for all g € LP(R™) with support contained in U. Note that on the left hand side, we only
consider the LP-norm over U, not over R™.

Hint: The case p = o is easy. If p < o0, let g € (1,00] such that % + % = 1, and apply Hélder’s
inequality to the function

1f(x—y)g@) = (=97 lg(y)| - | f@ — )] 7.

Exercise 4.3. Prove the following statements about Fourier transforms of tempered distributions.
(a) For any A € /(R") and j = 1,...,n, the relations

0/j7X = 27ripj1AX and ajT\ = F(—2miz;\)

hold, where both expressions to the right of the equal sign are interpreted in terms of
products of smooth polynomial functions on R™ with tempered distributions.

(b) Z(6) =1and F(1) = 6.

(c) The Fourier transform of any polynomial function P : R™ — C is a linear combination of
derivatives of the d-function, and vice versa.

The next part may require some knowledge of a basic result about the support of distributions.
By definition, the support supp(A) ¢ U of a distribution A € 2'(U) is the complement of the
union of all open subsets O < U such that A(p) = 0 whenever supp(¢) € O. A good example
to think about is the J-function 6 € 2'(R™), which vanishes on every test function supported
in R™\{0}, thus supp(d) = {0}. The same obviously holds for all derivatives of §. Conversely,
[Hor03, Theorem 2.3.4] says that every distribution with support contained in {0} is a linear
combination of derivatives of §.
(d) The function f(z) := 1/z belongs to L .(C) and defines a tempered distribution on C,
though globally, it belongs to neither L!(C) nor L?(C). Compute its Fourier transform—
show, in particular, that f is a very similar function that also has all of these properties.

Hint: f is closely related to our fundamental solution K for the d-equation, which satisfies
0K = 6.

Exercise 4.4. Given two vector bundles E,F — M over the field F € {R,C}, a linear map
L : T(E) — I'(F) is called a differential operator of order m (with smooth coefficients) if
choosing local trivializations of E and F over any region Y ¢ M together with a chart i/ — O c R"

identifies the map T'(E|y) £ I'(F|) with a map of the form
D1 cad™: C*(0,F*) - C*(0,F)
|a|<m
for smooth functions ¢, : © — Hom(F* F*), where we assume at least one of the ¢, with |a| = m
is nontrivial. The principal symbol of such an operator is the unique smooth fiber-preserving®
map o : T*M — Hom(E, F) such that for every pe M, \ € TyM,nel(E)and f e C*(M,R)
satisfying f(p) = 0 and (df), = A,

oF (np) = — LU ™))

We call L elliptic if for every p € M and every A # 0 € T M, the linear map ol(\): E, —» F, is
invertible.

5Here the term fiber-preserving means that for each p € M, oL maps T;M smoothly to the vector space
Hom(FEy, Fp). Note however that the word “linear” was not included; in general, the map T;f M — Hom(Ej, Fp)
will be a homogeneous polynomial of degree m, so it is linear if and only if L is a first-order operator.



20 CHRIS WENDL

(a) Convince yourself that the definition of o described above does not depend on any choices,
and moreover, that two operators of order m have the same principal symbol if and only
if the difference between them is an operator of order strictly less than m.
Hint: Just write down a formula for o* in local coordinates/trivializations.

(b) For M a complex manifold, E a complex vector bundles and D : T'(E) — I'(Homc¢(T'M, E))
a linear Cauchy-Riemann type operator, compute o” and show that D is elliptic if and
only if dim¢ M = 1.

Exercise 4.5. Find direct proofs of the following special cases of the Sobolev embedding theorem:

(a) If 2k > n, then there is a continuous linear inclusion
Wk,2(Rn) M CO(Rn)

Hint: Show first that f € L?>(R"™) belongs to W*2(R") if and only if the product of its
Fourier transform f € L?*(R™) with the polynomial function R" — R : p — (1 + |p|?)*/? is
also in L2(R™). Then prove that f € L'(R™) if 2k > n. (Why is that good enough?)

(b)) fl<p<wandd<a<1- %, then for any open interval & c R, there is a continuous
linear inclusion

Wyt (U) — C(U).

Hint: By density, it suffices to prove that estimates of the form | f|co < ¢|f|wr» and
|floe < ¢|flwie hold for all f € C§(U). Use the fundamental theorem of calculus, and
Hoélder’s inequality.

Exercise 4.6. Assume u; : D — C™ is a sequence of smooth solutions to equations of the form
(0 + Aj)u; = f
for C*-convergent sequences A; — A e C*(D,Endr(C")) and f; — fe C*(D,C"). Show:
(a) If there is a uniform bound |ju;|r» < C for some p € (1,), then u; has a subsequence
converging in C}5. on the open disk D.

(b) If u; is LP-convergent to some function u € LP(ID, C™), then the converence is also in C,
on D, and w is thus a smooth solution to (0 + A)u = f on D.

Remark: If the convergence in part (a) were in C* on the closed disk I instead of C}%. on D,
it would follow (why?) that solution spaces of the equation (0 + A)u = 0 on D) are always finite
dimensional. But that is false. It will become true when we consider equations of this type over
closed Riemann surfaces instead of the disk D.

5. WEEK 5

Ubung (15.11.2022). One extra result was discussed in the problem class this week that then
needed to be used in the subsequent lecture: it’s an improvement of Lecture 8’s linear local
regularity theorem, stating that if v € LP (1 < p < o0) is a weak solution to (8 + A)u = 0 with
A€ C™ on the disk D < C, then u is of class W™*1:4 on all smaller disks for every q € (1, 0), and
therefore (by the Sobolev embedding theorem) also of class C™. The point of this statement is
that we need not have ¢ = p, and the set of weak solutions of class LP to the equation (04 A)u = 0
is therefore the same for any p € (1, 0). The proof (see e.g. [Wenc, Corollary 2.23]) uses both the
kp > n and kp < n cases of the Sobolev embedding theorem; the latter gives inclusions W*» «s L4
for ¢ = p in a certain range.
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Lecture 9 (15.11.2022): The Fredholm property.

e Global corollary of linear regularity: for a linear Cauchy-Riemann type operator D :
I'(E) —» QY(Z,E) on a complex vector bundle E — ¥, every weak solution of class

LY . to Dn = 0 is smooth.

e Similarity principle: Given a solution n € T'(E) to Dy = 0, every point 2y € ¥ has a
neighborhood on which E admits a continuous local trivialization identifying n with a
holomorphic function. (Proof via local existence for complex-linear Cauchy-Riemann type
operators of class LS ; cf. Exercise 4.1.)

e Corollary: Unless n = 0, zeroes of n are isolated, and have positive order in the case
rankc(E) = 1.

e Corollary of the corollary: For a closed Riemann surface ¥ and a complex line bundle
E — ¥ with ¢;(F) < 0, every Cauchy-Riemann type operator on E is injective.

e The Banach spaces C*(E) and W*P?(E) of sections of a vector bundle £ — ¥ over a closed
manifold

e Cauchy-Riemann type operators D : C"*}(E) — C™(F) of class C™ for 0 < m < oo,
where F := Homg (TS, E); locally D = 0 + A for A e C™(D, Endg(C"))

e Bundle metrics { , ), L?-pairings (£, )2 = §5,(& ) dvol and the formal adjoint operator
D* : C™*(F) — C™(E) for a Cauchy-Riemann type operator D : C™T}(E) — C™(F)
of class C™:

& Dmprz =<D*E 12 for all n € I'(E), ¢ € I'(F).

o D* exists, is unique, and is also a Cauchy-Riemann type operator (see Exercise 5.2)

e Main theorem on the Fredholm property: For ¥ a closed Riemann surface, ¥ — ¥ a
complex vector bundle and D a Cauchy-Riemann type operator of class C™ on FE, the
kernels of the bounded linear operators D : W*P(E) — WF=LP(F) and D* : W*P(F) —
Wk=LP(E) for k € {1,...,m + 1} and p € (1,00) are finite-dimensional spaces of C™-
sections that do not depend on the choice of £ and p. Moreover, the targets of these
operators have splittings into closed L2-orthogonal subspaces

WHFL2(F) = im(D) @ ker(D*)  and ~ WFLP(E) = im(D*) @ ker(D).

e Corollary: D is a Fredholm operator for each k, p, i.e. ker(D) and coker(D) := W*=1P(F)/im(D) =~

ker(D*) are finite dimensional, and its kernel and Fredholm index
ind(D) := dim ker(D) — dim coker(D) = dim ker(D) — dim ker(D¥)

are independent of k£ and p.

e Proof that ker(D) is independent of k and p: If m = o0 and Dy = 0 for n € W*P(E),
local regularity implies n € [Ny W*P(E) = C*(E) = (,,W*I(E). For m < oo,
the proof requires the enhanced regularity result covered in the Ubung, which implies
ne ﬂ1<q<rﬁ Wm+17q(E)' ~

¢ Main tool: local regularity gave the estimate [[ulyy, 5, ) < | (0+A)u] @) Felulypnm

for u € W*?(D) and r < 1, which implies the global estimate
”nHW"’P(E) < CHDUHW’C*LP(F) + CHUHW’C*LP(E) for all n e Wk’p(E)~

e Useful properties of Sobolev spaces, part 1.5 (Rellich-Kondrachov):
On a bounded open domain &/ © R™ with d{ smooth, the inclusions W*?(Uf) — WF=1r ()
are compact.
Global corollary: For a vector bundle E over a closed manifold, the inclusions W*?(E) —
Wk-LP(E) are compact.
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e Lemma: Suppose X, Y, Z are Banach spaces, T : X — Y is a bounded linear operator and
K : X — Z is a compact linear operator, such that an estimate of the form

lzl|lx < c|Tz|y +c|Kx|z forall z € X

holds. Then kerT' c X is finite dimensional and im7 < Y is closed. (Proof by showing
bounded sequences in ker T' have convergent subsequences.)
e Corollary: D and D* have finite-dimensional kernels.

Lecture 10 (16.11.2022): Nonlinear regularity.

e Proof that WE=LP(F) = im(D) @ ker(D*) for a linear Cauchy-Riemann type operator
D : WrP(E) —» Wk=1?(Home(TX, E)) of class C™ (m > k — 1) on a complex vector
bundle E over a closed Riemann surface X.

o Useful properties of Sobolev spaces, part 2 (nonlinear):

Under the same assumptions as in part 1. ..
(1) Product pairings: If kp > n, k = m > 0 are integers and k —
is a continuous bilinear map

WEPU) x W™IU) — W™U) = (f,9) = fg.

2> m — 2 then there
P q’

(2) Compositions: If kp > n, Q < RY is an open set and we define
WhPU, Q) = {f e WFP(U,RN) | fUU) = Q},

which is an open subset of W*P?(U,R™) by the Sobolev embedding theorem, then
there is a continuous map

CHQ) x WEPU, Q) = WHPU) : (f,9) = fog.
e Regularity theorem for the inhomogeneous nonlinear Cauchy-Riemann equation
Osu(z) + J(z,u(2))0ru = f(2), given J: D x C" - J(C") and f: D — C".

Assume 1 < p < o0 and k € N satisfy kp > 2, m > 0 is an integer, J, Ji, Ja, ... are of class
C™ and f, f1, fa,... are of class W™P. Then:
(1) Every solution u € W*2(D) to dyu + J(-, u)dyu = f is of class Wb,
(Corollary: if J and f are smooth, so is u.)
(2) Given J; — J in the C™-topology and a sequence u; € WHP(D) of solutions to
(9Suj + Jj(-,uj)atuj = fjt )

(a) If |u;|wwr and || fj|lwm.» are uniformly bounded on D, then ||u;|yr+1.p is uni-
formly bounded on all compact subsets.

(Corollary: If J; — J and f; — fin C™, then u; converges in C}, to a solution
u to Osu + J(-,u)0u = f.)

(b) fu; > win W*P and f; — f in W™P, then u; also converges to u in WIZLCH’p.
(Corollary: All reasonable topologies on a moduli space of J-holomorphic curves
are equivalent.

e Proof of the ;""" "-bound on u; by a rescaling trick: for any 2, € D, choosing coordinates
such that u(zp) = 0 and J(29,0) = ¢, and then replacing u; with the function u,(z) :=
W for some « € (0,1) with a < k — % transforms dsu; + J(-,u;)0u; = f; into an
equation whose nonlinear part becomes vanishingly small.

o Sketch of the proof that u € WIZLCH’p via difference quotients
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Suggested reading.

Similarity principle: [Wena, §2.8]

Banach spaces of sections of a bundle over a closed manifold: [Wenb, §A.2]

The Fredholm property for Cauchy-Riemann type operators: [Wena, §3.3]; the presentation
there only considers operators of class C*, but there are no substantial differences in the
C™ case with m < 0.

Further useful properties of Sobolev spaces (products, composition, rescaling, difference
quotients): [Wenb, §A.1.3-A.1.4]

Nonlinear regularity theorem: [Wenc, §2.4.2]

Exercises (for the Ubung on 22.11.2022).

Exercise 5.1. Use the similarity principle to prove the following local results about J-holomorphic
maps u : (3,5) — (M, J) from a connected Riemann surface into an almost complex manifold.

(a) (Unique continuation) If u,v : (X,5) — (M, J) are two J-holomorphic maps with an inter-

(5.1)

section point u(zg) = v(zp) such that the derivatives of v and v at zp match to all orders
in some choice of local coordinates, then u = v.

Solution:

Since the question is purely local, we can choose coordinates near zy on X and near
u(20) = v(20) on M in order to assume without loss of generality that u and v are maps
D — C” satisfying

Osu + J(u)oru = dgv + J(v)0pv = 0 and u(0) = v(0) =0,

where J : C" — J(C") is a smooth almost complex structure on C™ with J(0) = i. (The
latter is possible because every complex structure on a vector space matches the standard
one under a suitable choice of basis, but since the almost complex structure on M might
not be integrable, we cannot assume J matches ¢ at more than one point. We are using
the knowledge that j is integrable, since dim > = 2, i.e. the coordinates we have chosen on
¥ near zp are holomorphic, so that jd, = 0; and jo, = —0s.)

Now add the assumption that in the chosen coordinates,

0%u(0) = 0%v(0)

for all multi-indices «; one can show that if this is true in some particular choice of
coordinates, then it is also true for all other choices. The function h :=v —u : D — C"
now satisfies 0*h(0) = 0 for all «, so Taylor’s formula implies that for every k € N, there
exists a constant C}, > 0 such that

|h(2)] < Cgl2|* for all z € D.

We will now show that h also satisfies a linear Cauchy-Riemann type equation, making it
subject to the similarity principle. Indeed, for each z € I, we find

Osh(2) + J(u(2))0:h(z) = [0sv(2) + J(v(2))0rv(2)] — [Osu(2) + J(u(2))dru(z)]
— [J(v(2)) = J(u(z))] drv(2)
—[J(v(2)) = J(u(2))] drv(z)

f ai )+ 7h(z)) dT) d,0(z)

|I
—~~
v
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(5.2)

CHRIS WENDL

where at the end we are defining the smooth function A : D — Endg(C") by

Dw = <J DJ(u(z) + Th(= ))wdT> dp(z) € C™,

If we also define .J : D — J(C") by J(z) := J(u(z)), this calculation shows that h satisfies
the linear PDE

Osh(2) + J(2)0:h(2) + A(2)h(z) = 0.

If J were identically equal to the standard complex structure 4, then (5.2) would precisely
match (6 + A)h = 0, our usual expression for a linear Cauchy-Riemann type equation
written in a local trivialization. The following observation shows that (5.2) is in fact
equivalent to an equation of that form. We can view h as a section of the trivial real
vector bundle D x C™ — D", which is also a complex vector bundle on which we define
the complex structure on the fiber over z € D to be J(z) : C* — C". As a complex vector
bundle, it admits a complex local trivialization on some neighborhood D, < D of 0, which
literally means a smooth map of the form

O:D xC" 5D xC": (2,0) = (2,¥(2)v)
such that for each z € D, ¥(z) is a complex-linear isomorphism from (C", .J(2)

In other words, ¥(z) : C* — C" is real-linear, invertible, and satisfies W(z)J(
This local trivialization identifies our section h with the function

f(z) :=¥(2)h(z) e C",

i

which then satisfies
Of = 0, (Wh) +i0, (Vh) = U dsh + iV dh + (0, +i 0, W) h
=Uoh+UT0h+ (0,9 4+i0,0)h=—TVAV ™ f + (0,0 +i0, V)T,

thus we obtain (04 B)f = 0 if we set B := WAU~! —(d¥)¥~!. This shows that A is indeed
in the kernel of a linear Cauchy-Riemann type operator on the bundle D x C* — D, so by
the similarity principle, one can find another local trivialization as described above such
that the function ¥ : D, — Endgr(C™) is continuous and f = ¥h is holomorphic. Since
U(z) is invertible for all z, h is then identically zero if and only if f is identically zero. If
it is not, then f has a zero of finite order at 0, implying that it satisfies an estimate of the
form

[f(2)] = 2™
on some neighborhood of 0 € D for some ¢ > 0 and m € N. Since V is continuous, it follows
that h also satisfies an estimate of this form, which contradicts (5.1).
(Critical points are isolated) If u : (X, j) — (M, J) is J-holomorphic and its first derivative
Toou: Ty — Ty(.y)M vanishes at some point zg € 3, then either u is constant or 2 has
a neighborhood U < ¥ such that w is immersed on U\{z}.

Solution:

As in part (a), we can assume after choosing coordinates that v is a map D — C™ satis-
fying dsu + J(u)du = 0 with w(0) = 0, where J : C* — J(C") satisfies J(0) = i. The
complex-linearity of Du(z) at each point implies that d;u vanishes wherever dsu does, so
the goal is to show that if d;u(0) = 0 but dsu is not identically zero, then the zero of dsu
at 0 is isolated. Applying d, to the equation dsu + J(u)du = 0 gives

0s(0su) + J(u)0r(dsu) + [DJ(u)dsu] Opu = 0,
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which can be rewritten in the form 0,(su) + J(dsu) + Adsu for smooth functions J : D —
J(C") and A : D — Endgr(C™). By the same argument used in part (a), the similarity
principle now implies that dsu is either identically zero or has isolated zeroes.

Exercise 5.2. Assume E — ¥ is a complex vector bundle over a Riemann surface (X, j), and let
Al’OT*E A071T*Z

denote the complex line bundles over ¥ whose fibers at a point z € ¥ are the spaces of complex-
linear and complex-antilinear maps 7, — C respectively. The complex dual bundle of T3 is thus
ALOT*Y and there are natural complex vector bundle isomorphisms

F :=Homc(TY, E) = A" T*SQE, and Homc (T, E) = AM'T*S Q@ E.

Choose Hermitian bundle metrics { , ) on E and T and observe that they determine real bundle
metrics

R
< ’ > = Re< ) >
that are invariant under the respective complex structures on these bundles, e.g. we have (X, Y )* =

(X, jYYR for all X,Y € T.¥ at a point z € ¥. Viewing ( , ¥ as a Riemannian metric on ¥, the
induced area form dvol € Q?(X) is then given by

dvol(X,Y) := (X, V)

(a) Show that the bundle metric on TY. determines a natural complex vector bundle isomor-
phism F = TY ® E, and thus determines a natural Hermitian bundle metric {, ) on F.

Solution:
To avoid confusion in the following, we will always write {( , )y for the chosen Her-
mitian bundle metric on any given complex vector bundle V' such as E, F' or TY, and
YR = Re(, Yy for its real part. We will also write ( , Ycn for the standard Hermitian
inner product on C", whose real part ( , )&, is then the standard Euclidean inner product
on R?" = C",

We already have a natural isomorphism F =~ A®'T*Y® E, so it suffices to observe that
the Hermitian bundle metric { , Y7y determines an isomorphism®

TY - A% T*%: X s ¢ X)rs.

The resulting isomorphism 7Y ® F — Homc (T, E) identifies X ® n for X € T.X and
n € E, at a point z € ¥ with the complex-antilinear map

T.Y > B, : Y = Y, X)rs - 1.

The tensor product 7> ® F inherits a natural Hermitian bundle metric from the bundle
metrics on 7Y and E such that

(X@nY ®@EHrser =X, Y)rs -(,§)peC

for X,Y € T.Y and 7, € E, at any point z € ¥. This determines a bundle metric { , Yg
on F' via the isomorphism above.

60ur convention here is that (X,Y) is complex linear with respect to Y and antilinear with respect to X. The
bijective real-linear bundle map TS — ALOT*Y : X (X, >y is thus not a complex bundle isomorphism, as it is
not complex linear. Real vector bundles are always isomorphic to their dual bundles, but this is not true of complex
bundles in general; one can show that it is not true in particular whenever the first Chern class is nonzero.
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In the following, we use the real parts of the bundle metrics on F and (via part (a)) F together
with the area form on ¥ to define real-valued L2-pairings for sections of E or F, which determine
the notion of formal adjoint operators. With this understood, suppose D : C™1(E) — C™(F) is
a linear Cauchy-Riemann type operator of class C"™ on E.

(b) Show that a formal adjoint D* : C™*(F) — C™(FE) for D exists, is unique, and can be
identified in suitable local trivializations and coordinates with operators of the form

—0+ A:C™YD,C") - C™(D,C"),
where 0 := 0; — i0; and A € C™ (D, Endg(C")).

Solution:

The existence and uniqueness of the formal adjoint is a general fact about differential op-
erators on Euclidean vector bundles. In the present context, one can see it as follows. As
preparation, we need to be fairly explicit about how to identify D locally with an operator
of the form 0 + A. Suppose U — ¥ is a region that can be identified with the unit disk
D c C via a choice of holomorphic coordinate, and that there also exists a trivialization
of E over U that identifies { , Y with the standard inner product { , Yc». These choices
identify T'(E]y) with C*(D,C") and ['(F|y) with Q%1(D,C"), i.e. we shall view the re-
striction of D to the region & c 3 as a Cauchy-Riemann type operator of class C™ on the
trivial vector bundle D x C™ — . The operator

Do : C*(D,C") — Q"Y(D,C™),  Dof:=df +idf oi

is a smooth Cauchy-Riemann type operator on this trivial bundle, so it follows that D and
D, differ by a zeroth-order term, meaning

Df = Dof + Af dz

for some function A : D — Endgr(C™). At this stage we have not yet fully trivialized the
bundle F' over U, but our coordinates and trivialization of E naturally determine such a
trivialization: it amounts to identifying Q°!(D, C") with C* (D, C") via the correspondence
gdz — g, and since

0f dz = (0sf +i0:f)(ds —idt) = Osf ds + 0, f dt +i (04 f ds — 0s f dt)
=df+7;df07:=D0f,

the expression above for D on the trivial bundle D x C" — D is now identified with the
operator

D=0+A:C""Y(D,C") - C™(D,C"),

where the assumption that D is of class C"™ means that A : D — Endg(C") is a C™-
function. So far this is nothing new, but I wanted to be explicit about the local trivialization
that we are using on F.

We assumed above that the trivialization of E|y, is chosen to identify {, g with {, ¢,
but we are not free to make any similar assumption about the bundle metrics on 7Y and F,
e.g. this would impose an extra condition on our holomorphic coordinate over U, which
might not be attainable. The good news however is that since 7Y has complex rank 1,
all Hermitian inner products at any point are real multiplies of each other, so under the
chosen identification of I'(T'X|y) with C* (D, C), we can write

<v>TE:h<7>CC
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for some smooth function h : D — (0, 00). Since (i-, )& = ds A dt on C, this same function
gives us a formula for the area form dvol, namely

dvol = hds A dt.

Similarly, under the isomorphism I'(TX|,) = C* (D, C), the vector field represented by a
function g : D — C is sent by the bundle isomorphism 7% — A%'T*Y : X — (., X)¢ to
the (0, 1)-form \ € Q%1(D, C) given by

A=(Y) = h(2)¢ 9(2))e = h(2)g(2)(, De = h(2)g(2) dz,

so in particular, this isomorphism identifies the (0, 1)-form dz with the vector field 1/h. Us-
ing the prescription of part (a) for defining { , »r, it follows that in our chosen trivialization
of F|y, with E-valued (0, 1)-forms written as functions f,g: D — C",

(rgyr = (/M @ 1, (/) @ yrsen = (1/h 1 /Wyrs - (frg)m = 1> g)cr

Putting all this together, if we restrict the defining relation §,(&, D) dvol = {.(D*¢, )}, d vol
for the formal adjoint operator to sections with compact support in &/ and write it in our
chosen trivializations, it takes the form

J %<f,(9+A)g>§n hds A dt = J (D*f, k. hds ndt  for f,ge CL(D,C").
D D

Writing 0 := d, — i0;, integration by parts allows us to rewrite the left hand side as
R

1
J =0+ AT, gOfn ds A dt = f <(—0 + ATHf, g> hds A dt,
D p \h cr
where for each z € D, AT (z) € Endg(C") denotes the transpose of A(z) with respect to the
standard Euclidean inner product. This can only be true for all f and g if D* : I'(F|y) —
T'(E|y) is given by the formula

_1
T h

In this way, the uniqueness of D* is established, and its existence can now also be deduced
by using a partition of unity to write any given pair of sections € T'(F) and £ € I'(F) as
finite sums of sections with compact supports in sufficiently small neighborhoods on which
suitable coordinates and trivializations are defined, then piecing together finitely-many
copies of (5.3) to produce a global formula for D*.

Finally, note that if we adjust our chosen local trivialization of E by multiplication with
the positive function A, then the local formula (5.3) for D* becomes —d + A7, and clearly
AT is of class C™ if A is.

For the rest of this exercise, let us assume for simplicity that m = oo. The conjugate E — X of
a complex vector bundle £ — 3 is defined as the same real vector bundle (since every complex
bundle is also a real bundle) but with the complex structure .J : E — E defined by multiplication
with —i instead of i.

(5.3) D* (=0 + AT) . c™ (D, C") —» C™(D,C").

(c) Show that the conjugate E of a complex vector bundle E is always isomorphic to the
complex dual bundle E*. What choices need to be made in order to define an explicit
isomorphism?

Solution:
Here is a useful notational device for dealing with conjugate bundles. Whenever n € E, let
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us write the same element as 77 € E whenever it is regarded as an element of the conjugate
bundle. In this way, the map

E—>E:ne—fq
can be understood as the identity map since E and E are the same set, and it is also a real
bundle isomorphism, but not a complex bundle isomorphism since the complex structures

on E and E are different. In fact,  — 7 is a complex-antilinear map E, — E, for each
z € X, so it satisfies the easy-to-remember formula

o =¢cn forall ce C,ne E,

where ¢ just means the usual complex conjugate of a complex number ¢ € C. With this
notation in place, we can choose a Hermitian bundle metric on FE, define a real-linear
bundle isomorphism by

EI_)E* :77'_’<777'>E7
and observe that it is also complex linear since for any ¢ € C, it sends c¢ij = ¢n to {¢n, yg =
C<na >
Show that the complex line bundle AV°T*Y @ A% T*Y is trivial.

Solution:
By part (c), AV°T*Y is isomorphic to T, thus it suffices to show that TS ® A»1T*Y is
trivial. The pairing

TEQAYT*S 5 C: X @M\ AX)

defines a complex-linear bundle map to the trivial complex line bundle; it is complex
linear due to the fact that both X\ and X ~— X are complex antilinear. This bundle map is
manifestly surjective on every fiber, and since TS @ A%'T*3 is a line bundle, it is therefore
also injective on every fiber.

Find an isomorphism between the complex vector bundles £ and Home (T, F) that
identifies the map —D* : I'(F) — T'(E) with a linear Cauchy-Riemann type operator
I(F) — QYY(%, F).

Solution:
To start with, we have a natural isomorphism F =~ A®!T*Y ® E. Here are some easy
observations:
e Analogously to part (c), any choice of Hermitian bundle metric on a bundle E deter-
mines an isomorphism

E— AYE* i (omm,
where A% E* is the bundle whose fiber over z € ¥ is the space of complex-antilinear
maps E, — C. (Similarly, Ab°E* is just fancy notation for the dual bundle E*.) A

special case of this is the observation from our solution to part (a) that the bundle
metric { , Yrs determines a bundle isomorphism
TS — AT*y,
¢ There is a natural isomorphism between the conjugate bundle of A®'T*% and AVOT*3,
and vice versa. Indeed, A®'T*Y is isomorphic to 7% and AMOT*Y is the dual space
or TY, which by part (c) is isomorphic to T3. Both of these isomorphisms de-
pend on the choice of bundle metric { , »rs, but it turns out that the resulting

isomorphism A%1T*Y — ALOT*Y does not depend on this choice. To see this, recall
that the isomorphism 7% — A%!T*Y sends X to {-, X)rx, while the isomorphism
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TY — AMT*Y sends X to (X, drs, so if we write A := (, X)ry € A®IT*Y, the
isomorphism A%IT*Y — AMOT*Y sends A to the dual vector u € AM9T*Y given by

p(Y) = (X, Y)rs = Y, Xy = A(Y),
giving rise to the choice-independent formula

O AGIT*Y - AVOT*S ®(\)Y :=\(Y) for e AYIT*Y, Y eT.%, ze X,

Similarly, an isomorphism from the conjugate of AL0T*% to A»1T*Y is given by
U ALOT*Y - ADIT*S U(R)Y := u(Y) for pe AMYOT*S, Y eT.%, 2z € X
e For any two complex bundles E, F' over 3, there is a natural isomorphism
EQF >EQF:n®{—n®&

In light of the natural isomorphism Homc (T, F) =~ AL°T*X®F and the fact from part (d)
that AM9T*Y @ A%IT*Y is a trivial line bundle, we have

Home (TS, F) = AMT*S @ F 2 A T*S @AY T*S Q@ F ~ E,
and thus
ExANOT*S®@F = ALT*S @ F = A»'T*Y @ F =~ Home(%, F)

as claimed. For the moment, let us use the isomorphism F =~ Homc (T3, F) to view
—D* : T'(F) —» I'(F) as an operator
—D* :T(F) — I'(Hom¢ (T, F)) =: QV0(%, F).
We claim that from this perspective, —D* satisfies the modified Leibniz rule
—D*(f§) = f(-=D*)¢ + (9f)¢ for all { e I(F), f e C*(3,R),
where we abbreviate
Of :=df —idf oje Q"9(%,C)

so that (0f)¢ can be understood as an F-valued (1,0)-form. Operators satisfying this
type of Leibniz rule are sometimes called anti-Cauchy-Riemann type operators on the
bundle F'. We will then show in a second step that an anti-Cauchy-Riemann type operator
on I is equivalent to a Cauchy-Riemann type operator on its conjugate bundle.

To prove the claim, suppose n € I'(E), £ € I'(F') and f € C™(X,R). By the defining
relation of the formal adjoint and the Leibniz rule for D, we have

jenmmm%MM=—jqmm%m@=—jgjwwdm
> > >
=—L@Dwm—@ﬁm%Wd
=—jaﬁam%dmuj@xwm%dml
> >

=fUGDﬂ&W%Hd+f®AWM$dmL
> >

The Leibniz rule —D*(f¢) = f(—D*)&+(0f)€ will now follow if and only if the last integral
in this expression can be rewritten as {((0f)&, )}, d vol, where we use the isomorphism
AYOT*Y ® F =~ E to identify (0f)¢ € Q9(X, F) with a section of E. Observe that since f
is real-valued, the complex-valued 1-forms 0f and 0f are related to each other by complex
conjugation. The desired relation is thus immediate from the following formula relating
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the bundle metrics on £ and F' under the natural isomorphisms in our picture: for all
2€8, A e AVOT*Y, ve E, and w € F,,

<w7;\®’l)>F = <)\®’LU,U>E,

where on the left hand side, complex conjugation gives \ € A%T*Y and we use the natural
isomorphism A%'T*Y® E, =~ F, to interpret A®v as an element of F,, while on the right
hand side, the isomorphism AMT*Y ® F, =~ E, interprets A @ w as an element of E,. To
verify this formula, note that A = (X, -)rx for a unique X € T,%, and we can also write
w=pRueA"T*S®E, = F, for some € AYOT*Y and u € E,, where yu = (Y, )rs
and thus 7 = (;, Y)ry for a unique Y € T, X. This yields

(W, A@V)p = (AR U, A ®Vypoirsngr = (i, AWaoarss - (U, v)E = Y, X)rs - (u, v)p.

Turning attention to the right hand side and recalling how the trivialization of AM'T*¥ ®
AYIT*Y was defined, we have

AW, vy =A@ u®u,vyp = ANY)u, vy = MY ){u,v)E,

and by definition A(Y) = (X, Y)rs = (Y, X)ry, thus the two sides match as claimed,
completing the proof that —D* : I'(F) — QY(X, F) is an anti-Cauchy-Riemann type
operator.

For the final step, we claim that on any complex vector bundle £ — X, there is a canon-
ical bijection relating Cauchy-Riemann type operators on F to anti-Cauchy-Riemann type
operators on E, which will therefore change —D* into a Cauchy-Riemann type operator
on F. To see the correspondence, write F := Homc (T, E) = A%'T*Y ® E as usual, and
associate to any linear map D : T'(E) — T'(F) the linear map D : T'(E) — I'(F) defined by

]_)ﬁ := D).
In light of the natural isomorphism F = AGIT*Y ® E =~ AOIT*L ® E =~ AVT*S ® E =~
Homg (TS, E), D can then be interpreted as a map I'(E) — Q“9(X, E), and from this

perspective, it is straightforward to show that D is an anti-Cauchy-Riemann type operator
if and only if D is of Cauchy-Riemann type.

(f) Compute a formula relating ¢;(E) and ¢q(F). (You will need this in Exercise 5.4 below.)

Solution:
We need a few basic facts about the first Chern number as preparation. We shall only
consider bundles over a closed Riemann surface, since that is what is required for our
purposes, but most of the following is also true more generally.

First, we claim that for any two complex line bundles E, F — X,

Cl(E®F) = Cl(E) +01(F).

Proof: just choose generic smooth sections n € T'(E) and £ € T'(F), preferably with disjoint
zero sets, and count (with signs!) the zeroes of n® & e N(E® F).

Caution: Unlike the very similar formula for the first Chern number of a direct sum,
the formula for ¢, (E ® F) is not true in general for bundles of higher rank!

Second, we claim that the first Chern numbers of any complex vector bundle F and its
dual bundle E* are related by

Cl(E*) = —Cl(E).
If F is a line bundle, we can conclude this from the observation that the pairing

E*QFE->C:A®n+~ A1)
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defines an isomorphism from E* ® E to the trivial complex line bundle; the latter has first
Chern number 0, so this implies

0= Cl(E* ®E) = Cl(E*) + Cl(E)

due to the first claim above. Now, if F has higher rank, then it can be split into a direct sum
of line bundles F1 ®...®E,,.” There is then a natural isomorphism E* =~ Ef®..®E",
so the direct sum property of ¢; together with the rank 1 case gives

Cl(E*) = Cl(Ef) + ... +61(E,:L) = —Cl(El) - ... — Cl(Em) = —Cl(E).

Finally, we note that E is always isomorphic to E*, thus

Cl(E) = —C1 (E)

Now let’s compute ¢1(F). We can write £ = E1 @ ... ® E,, for suitable line bundles
FE,, ..., E, — %, and using the isomorphism

FxAN'"T*SQExTSQFE=TES®(E1@®..®E,) = PTEQE,,
j=1
we use the direct sum property and the tensor product formula for line bundles to deduce
m m m
a(F) =Y a(lSQE;) = > [c(T) + a1 (E;)] = mey (TE) + ). e1(E))
j=1 j=1 j=1

=mc1(TE) + c1(E) = mx(2) + a1 (E),

where in the last step we have appealed to the Poincaré-Hopf theorem to introduce the
Euler characteristic. We conclude

c1(F) = —rankc(E) - x(X) — c1(E).
Exercise 5.3. In lecture we proved that the bounded linear map
D : W*?(E) - W5 1? (Home (TS, E))

defined via a linear Cauchy-Riemann type operator D of class C™ for m > k — 1 and p € (1,0)
on a complex vector bundle F — ¥ over a closed Riemann surface X has finite-dimensional kernel
and cokernel. Prove that when m = oo, this is also true for the linear map D : T'(E) — Q%(2, E),
and ind(D) := dim ker(D) — dim coker(D) € Z is the same as in the Sobolev space setting.

Hint: One cannot repeat the same arguments we used in lecture to prove this, because I'(E) and
0%1(X, E) are not Banach spaces. Try instead combining the result from lecture with regularity
results.

Solution:

Abbreviate F := Homc(TY, E). The linear regularity theorem proved in lecture implies that the
kernel of the map D : WFP(E) — W*=LP(F) is the same for every k € N and p € (1,00), and is
identical to the kernel of its restriction D : I'(E) — T'(F) to the space of smooth sections. The
same of course applies to the formal adjoint D*, and we claim

I'(F) = im(D) @ ker(D*),

"This is not true for arbitrary complex vector bundles, but is true whenever the base is a Riemann surface. The
reason is that if the base is only 2-dimensional, but the bundle has rank more than 1, then the total space has
real dimension strictly greater than 4, and generic perturbations of any section will therefore avoid intersecting the
zero-section, meaning that one can always find a nowhere-zero section. Such a section generates a rank 1 subbundle
E1 < E, so after choosing a bundle metric, one obtains a splitting £ = E; (—DEf—. If Ef- still has rank more than 1,
the same argument can now be repeated for Ef- to split it further.
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where im(D) is understood as the set of all Dn for smooth sections n € I'(E). Indeed, given
€ e I(F), ¢ also belongs to each of the Sobolev spaces WP (F), for which we established a similar
splitting in lecture, thus we can write & = Dn + « for some n € W**1P(E) and a uniquely
determined « € ker(D*). By regularity, o is smooth, so the right hand side of the equation
Dn = £ — a is also smooth, and the same regularity theorem then implies that 7 is smooth, which
proves the claim. We therefore obtain a natural isomorphism coker(D) = I'(F')/im(D) = ker(D*),
and since the latter is the same space in the smooth case as in the Sobolev setting, dim coker(D)
is therefore also the same.

Exercise 5.4. The Riemann-Roch formula states that for any linear Cauchy-Riemann type
operator D : ['(E) — Q%1(%, E) on a complex vector bundle E — X of rank n € N over a closed
connected Riemann surface ¥ of genus g > 0,°

ind(D) = (2 —2g)n + 2¢1(F) € Z,

where ¢1(E) in this context is an abbreviation for the first Chern number {c¢;(E),[X]) € Z. We
will prove this in full generality within the next few weeks, but the goal of this exercise is to prove
the case where ¥ has genus zero.

(a) Show that ind(Dg) = ind(D;) for any two linear Cauchy-Riemann type operators Dy, Dy :
['(E) — Q%(%, E) on the same bundle.
Hint: The following result from functional analysis may serve as a black box. If T : X - Y
is a Fredholm operator between two Banach spaces and K : X — Y is a compact operator,
then T' 4+ K is also Fredholm and has the same index as T

Solution:

We can write D1n = Dgn + An where A : E — F is a bundle map. (For simplicity
let’s assume Dy and D; are both of class C*, so that A is a smooth bundle map, but
this isn’t strictly necessary.) For any choice of Kk € N and p € (1,), the difference
D; — Dy : WFP(E) —» W* LP(F) thus takes the form

WHEP(E) - WELP . s An,

which in local trivializations looks like the product of a vector-valued function n : D — C™
of class WP with a smooth matrix-valued function A : D — Endg(C"). This map can
also be presented as the composition of the inclusion W*P(E) — W*~=LP(E) with the
bounded linear map
WHE=LP(E) - WE=LP . s A,

and this composition is a compact operator since, by the Rellich-Kondrashov theorem,
the inclusion W*P(E) < W*~1P(E) is compact. By the general functional-analytic fact
stated in the hint, it follows that ind(Dg) = ind(Dy).

(b) Use the similarity principle to prove that if ¢ = 0 and n = 1, then D is always injective or
surjective, depending on the value of ¢;(E).
Hint: Use the formal adjoint D* to characterize the surjectivity of D.

Solution:
If ¢;(E) < —1, then the similarity principle implies immediately that D is injective, be-
cause any nontrivial solution n € I'(E) to Dn = 0 would need to have isolated zeroes

8Since D is in general real linear but not complex linear, the dimensions in our definition of ind(D) are real
dimensions. In complex algebraic geometry, where Cauchy-Riemann type operators are always complex linear, the
Fredholm index is normally defined in terms of complex dimensions, thus the Riemann-Roch formula often appears
instead as ind(D) = n(1 — g) + c1(E).
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that all count positively, implying ¢;(E) > 0. If on the other hand ¢;(F) > —1, then the
calculation in Exercise 5.2(f) implies

c1(F) = —x(5%) —ci(E) = =2 — e1(E) < —1,

and since —D* is equivalent to a Cauchy-Riemann type operator on F, the same applica-
tion of the similarity principle implies that D* is injective, and D is therefore surjective.
(Observe that in the case of a line bundle over S? with ¢;(E) = —1, we are now done with
the calculation: D must in this case be an isomorphism, hence ind(D) = 0.)

Deduce the Riemann-Roch formula for ¢ = 0 and n = 1 by constructing for each integer
k > —1 a holomorphic vector bundle Ey — S? = C U {00} with ¢;(E}.) = k and computing
explicitly the dimension of its space of holomorphic sections.

Solution:

The following bit of topological background knowledge will be important: two complex
line bundles Ey, E1 — X over a closed connected Riemann surface ¥ are isomorphic if and
only if ¢1(Ep) = ¢1(E1). If you haven’t seen this fact before, here is a quick proof for
the case of bundles over S? = C u {o0}. First, we claim that if £ — S? has ¢;(E) = 0,
then F is trivial. Indeed, choose a section 1 € I'(E) that is nonzero at (and therefore also
in a neighborhood of) the point at c0. Over C = S?\{oo}, one can choose a connection
and use parallel transport along rays from the origin to construct a trivialization of FE,
so E|c is trivial and a choice of trivialization identifies the restricted section n|c with a
function n : C — C that has no zeroes outside of some compact disk Dp < C for R > 0
large. If n is chosen so that its zero-set is finite, then its algebraic count of zeroes is then
given by the winding number of 1 around the circle 0Dg, which must therefore be zero if
c1(F) = 0. But this winding condition implies that n can be modified in some compact
subset of the interior of Dg to a function that has no zeroes at all, thus producing a global
nowhere-zero section 1 € I'(E). On a line bundle, the existence of such a section implies
that the bundle is trivial, proving the claim. Now for any two line bundles Ey, E; — S?
with ¢1(Ep) = ¢1(E1), we have ¢ (Ey @ Ef) = ¢1(Fo) — c1(E1) = 0, implying that Ey ® Ef
is trivial. Since Ef ® Ej is also trivial (cf. the solution to Exercise 5.2(f)), it follows that

Eo EE()@(EII:@El) = (E()@Ef)@El EEl.

Now recall that by part (a), the index of a Cauchy-Riemann type operator on any complex
vector bundle depends only on the bundle, not on the choice of operator. It follows that
the Riemann-Roch formula for line bundles over S? will be established if we can show that
for every k € Z, there exists a specific line bundle Ej, — S? with ¢;(FEy) = k with a specific
Cauchy-Riemann type operator for which the formula is correct.

Here is a construction of such a bundle for arbitrary k € Z. Let E(V) and E?) denote
two copies of the trivial holomorphic line bundle C x C — C, and define

Ep = (EM L E®)/(2,0) ~ ®p(z,0),
where ®, : E(1)|C\{O} — E(2)|C\{0} is a bundle isomorphism covering the biholomorphic
map z — 1/z and defined by ®,(z,v) = (1/z, gr(z)v), with
1
gr(2)v = L

The function gx(z) is a holomorphic transition map, so Fj has a natural holomorphic
structure and thus carries a complex-linear Cauchy-Riemann operator Dy whose kernel is
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the space of holomorphic sections. Regarding a function f : C — C as a section of ),
we have
01, (1/2, f(1/2)) = (2, 2" [(1/2)),

which means that f extends to a smooth section of Fj if and only if the function g(z) =
2% f(1/2) extends smoothly to z = 0. It follows that ¢, (Ex) = k, as one can choose f(z) = 1
for z in the unit disk and then modify g(z) = z* to a smooth function that algebraically
has k zeroes at 0 (note that an actual modification is necessary only if k£ < 0). Similarly,
the holomorphic sections of Ej can be identified with the entire functions f : C — C such
that 2" f(1/z) extends holomorphically to z = 0; if k¥ < 0 this implies f = 0, and if k > 0 it
means f(z) is a polynomial of degree at most k, hence dim ker Dy, = 24 2k. Now if k > —1,
the solution to part (b) tells us that Dy must be surjective, and its index is therefore

ind(Dy,) = dimker(Dy) = 2 + 2k = x(S?) + 2¢,1(Ey).

This establishes the Riemann-Roch formula for all line bundles over S? with ¢; > —1. If
on the other hand we are given a line bundle E — S? with ¢;(E) < —1, then writing
F := Homc (T, E), Exercise 5.2(f) gives ¢1(F) = —x(S?) —c1(E) = =2+ 1 = —1, and
since —D* is a Cauchy-Riemann type operator on F, we conclude that D* satisfies the
Riemann-Roch formula, and thus

ind(D) = — ind(D*) = — [x(5?) + 2c:1(F)| = —x(5) — 2 [~x(8?) — c1(E)]
= X(5?) +2¢,(E).

Deduce the case g = 0 and n > 1 by splitting an arbitrary higher-rank bundle into a sum
of line bundles.

Solution:

Assume E = B, @...@E, for line bundles Fy,...,E, — 5% and D : T'(E) — Q%!(S% E)
is a Cauchy-Riemann type operator. Since ind(D) depends only on the bundle and
not the choice of operator, we are free to replace D with a different Cauchy-Riemann
type operator for convenience, and we can do so by choosing on each of the line bun-
dles E; — 5% a Cauchy-Riemann type operator D; : I'(E;) — Q%1(S? E;). Writing
I'(E)=T(E)®...®'(E,) and Q*"1(S? E) = Q"1(S2, E))®...®@Q%(S?, E,), it is easy
to check that the operator I'(E) — Q%1(S?, E) defined in block form by

D, ... 0
D=|: - = |:[TE)®..00(E,) > QY (S%E)e...00" (5% E,)
0o ... D,

is also a Cauchy-Riemann type operator on E, with index
ind(D) = ind(D1) + ... + ind(D,,).

Applying the rank 1 case of the Riemann-Roch formula, we conclude

ind(D Zn: (%) + 2¢1(E;)] = nx(S?) + 2¢1(E).

j=1

6. WEEK 6

This week was cancelled because I got Covid-19. I cannot recommend it.
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7. WEEK 7

This week was also cancelled because I still had Covid-19, and I still cannot recommend it.

8. WEEK 8

Lecture 11 (06.12.2022): Local existence of J-holomorphic curves.

(8.1)

Nonlinear local existence theorem: Assume J € J(C") is a smooth almost complex struc-
ture such that (without loss of generality) J(0) = 4, and aq, ..., a,, € C™ are constants for
some m = 0. Then:

(1) For any € > 0 sufficiently small, there exists a J-holomorphic map u : (D¢, i) — (C™, J)

ok

satisfying u(0) = 0 and $7#(0) = a, for each k =1,...,m.

(2) Given a map u as in the statement above and a C}’_-convergent sequence of almost
complex structures J; — J on C", there also exists for sufficiently large j a sequence
uj : (D¢, 1) — (C™, J;) of J;-holomorphic maps satisfying the same conditions at 0 as

u and converging in C}_ to u.

Remarks: .

(1) In light of the Cauchy-Riemann equation, the partial derivatives ?Z}j(O) for k =
0,...,m (excluding derivatives with respect to z) determine 0*u(0) for all multi-
indices with |o| < m. (See Exercise 8.1.)

(2) There is no uniqueness. For holomorphic functions, specifying %(0) fork=0,...,m

still allows an infinite-dimensional space of solutions; specifying them for all £ > 0
would produce uniqueness but kill existence (the Taylor series might never converge).
Preparation 1: ¢ : W*?(D) — W*~1P(D) has a bounded right inverse for every k € N and
1 < p < 0. Proof follows from k = 1 case and linear regularity using a bounded extension
operator WE=17(D) —» WP (Dy.).
Preparation 2: Differential calculus in Banach spaces
— Definition of the derivative for maps X > U . ¥ where X ,Y are Banach spaces
and U c X is open
— Maps f:U — Y of class C*
— Inverse function theorem (the case Df(z¢) : X — Y invertible)
Implicit function theorem (the case D f(zg) : X — Y surjective with a bounded right
inverse); why having a bounded right inverse is important
Continuous multilinear maps are smooth
Useful lemma: Assume U/ < R™ is open and bounded, and for any finite-dimensional vector
space V, the symbol X (U, V') denotes a Banach space whose elements are continuous func-
tions U — V, possibly satisfying additional conditions, such that the following properties
hold:
(1) (C%inclusion) The inclusion X (U, V) — C°(U,V) is a continuous map
(2) (Banach algebra) Pointwise multiplication defines a continuous bilinear map

X (U, Hom(R™ RY)) x X (U,R™) — XU, RN) : (A, u) — Au

(3) (C*-continuity) For any convex open set 2 — R™ and every function f : Q — RY of
class C* for some integer k > 0, there is a continuous map

Dp: X(U,Q) — XURYN) :uw fou,

where we denote X(U,Q) := {u € X(U,R™) | u(f) c Q}. (By the C’-inclusion prop-
erty, this is an open subset of X (U/,R™).)
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Then if f is additionally of class C**" for some r € N, it follows that the map ®; in
(8.1) is of class C", and its first derivative D®(u) : X (U, R™) — X (U, R"Y) at any point
u€e X(U,Q) is given by

D®s(u)n = (Dfouype X(U,RY)  for ne XU,R™),

an expression that makes sense due to the C*-continuity (Df :  — Hom(R™, RY) is of
class C*) and Banach algebra properties.

Quick proof sketch: By induction, it suffices to consider the case r = 1 and prove the
stated formula for D®¢(u). We use the fundamental theorem of calculus to write down a
formula for the remainder ||n| - R(n) = (v +n) — ®;(u) — (Df ou)n as an integral, and
then deduce from the C*-continuity property that lim, .o R(n) = 0.

Example: The lemma can be applied with X := W*? if kp > n.

e Remark: With similar methods and a little extra effort, one can also often show that the
map C*+7(Q,RN) x X(U, Q) — X(U,RY) : (f,u) — fouis of class C".

e Proof of the nonlinear local existence theorem: After rescaling to zoom in around 0 € D,
it suffices to look for solutions defined on the unit disk under the assumption that J is
arbitrarily C”*-close to ¢. Then pick k € N and p € (1,00) with kp > 2 and consider the
“local moduli space”

M = {(J,u) € C*T" D> Endr(C")) x WH™P(D,C") | F(J,u) == dyu + (J ou)dyu = 0}.

The map F : CF+m+1 x Jhktmp _ Jy7k+m=Lp ig of class C' and its derivative at a point
(i,u) € M contains the surjective term ¢ : W*+™P — JWk+m=1 55 by the implicit function
theorem, M is a C'-Banach submanifold near the set of points (i,u) with u : D — C"
holomorphic. One then uses the surjectivity of ¢ again and the existence of i-holomorphic
maps D — C™ with arbitrary derivatives at 0 with respect to z up to order m to show that
the map

M — CFrmtl e cnm+D) L (] ) - <J,u(0), Z—Z(O), . a“(0)>

ozm
is a submersion near such points.

Lecture 12 (07.12.2022): Moduli spaces and bubbling analysis.

e Definition of energy for a J-holomorphic curve u : (3, 7) — (M, J) in a symplectic manifold
(M,w) with J € J(M,w):

Bo(u) = L .

Tameness implies E,(u) = 0, with equality if and only if « is (locally) constant.
e Definitions of moduli spaces:

Mgm(J) :={(Z,4,¢Cu)}/ ~

where (3, j) is a closed connected Riemann surface of genus g, ¢ = ({3, - .., (n) are distinct
points in X, u : (X, j) — (M, J) is a J-holomorphic map, and (3,7, ¢(,u) ~ (X', 5/, ', u') if
and only if there is a biholomorphic map ¢ : (X,7) — (X', ) with ¢(¢) = ' (preserving
the order) and u’' o ¢ = u. Also for A € Hy(M),

Mg m(J,A) = {[(E,j,(,u)] e M(J) | [u] := ux[X] = A},
and for a subset X ¢ J(M),
Mg m(X) :={(J,U) | U e Mg m(J)},
with Mg (X, A) defined similarly.
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e Topologies of the moduli spaces: say (Ji, Uy) converges to (J,U) in Mg, (T (M)) if J, — J
in C* and there exists a fixed surface ¥ with fixed marked points ¢ = ((1,...,(n) in X
such that for large k, Uy = [(Z, jk, (,ug)] and U = [(2, 4, (,u)] with ji — j and up — u
in the C*-topology on X.

e Statement of Gromov’s compactness theorem (vague version): M, ., (J(M)) embeds natu-
rally as an open subset of a metrizable space M, ,, (7 (M)) such that for any C*-convergent
sequence of symplectic forms wy, — w on M and C*-convergent sequence of tame almost
complex structures J(M,wy) 3 Jp — J € J(M,w), any sequence Uy € Mg, (J)) with
E,., (Uy) uniformly bounded has a subsequence convergent to an element of M ,,(J).

e Corollary (since E,(u) = {[w], [u]) depends only on [u] € Ha(M)): the spaces M, (J, A)
are compact.

e Regularity lemma: Choose Riemannian metrics on 3 and M, suppose (¥, j) is a Riemann

surface and Xy < 33 ... © [Jyen Zr = E are nested open subsets with complex structures
Jik € J(Xk) that converge in C5.(X) to j, Ji,J2,...,J € J(M) are almost complex
structures on M with C% -convergence Jy — J, and uy, : (X, jx) — (M, Ji) is a sequence
of Ji-holomorphic curves. If the sequence uy, is uniformly C'-bounded on compact subsets
of ¥, then it has a subsequence C[%_-convergent to a J-holomorphic curve u : (3,j) —
(M, J).
Proof: For any z; € ¥, we can use nonlinear local existence to compose u with a convergent
sequence of jg-holomorphic charts and thus identify a neighborhood of zg in (X, ji) with
(D, 7). Then apply our local nonlinear regularity theorem to turn uniform W*”-bounds for
p > 2 (which follow from C'-bounds) into W{Z’f—bounds; then apply the Sobolev embedding
theorem and Arzela-Ascoli.

e Rescaling/bubbling “lemma”: Under the same assumptions except that wy is uniformly

CY- but not C'-bounded on compact subsets, it follows that a nonconstant J-holomorphic
plane v : (C,i) — (M, J) “bubbles off”.
Proof: Assuming |duy(zx)| =: R — o0, choose €, — 0 such that ¢, R — o0, and use
C'-bounds to show that the reparametrized disks vy, : De, g, — M : 2 = up(21 + 2/Rg)
have a subsequence convergent in C*.(C) to a map v : C — M with |dv(0)] = 1. This
requires:

e The Hofer lemma: Assume (X,d) is a complete metric space with a continuous function
g: X — [0,0), 29 € X and ¢y > 0. Then there exist z € X with d(zg,2) < 2¢y and
€ > 0 with € < ¢ such that eg(x) = €pg(zo) and g < 2¢(x) on the closed ball of radius e
around zx.

o If Jy € J(M,wg) and J € J(M,w) with wy — w and the energies E,, (uy) are bounded, it
follows that E,(v) < oo.

¢ Statement of Gromov’s removable singularity theorem: If J € 7, (M,w) and u : (D\{0},4) —
(M, J) is J-holomorphic with bounded image and E,,(u) < o0, then u has a smooth (and
therefore J-holomorphic) extension to D.

e Improved rescaling/bubbling lemma: Under the same assumptions, if the almost complex
structures Jj, are tame and the energies E,, (uy) are bounded, it follows that there exists
a nonconstant J-holomorphic sphere v : (5% = C u {00},i) — (M, J).

Lecture 13 (07.12.2022): Bubble trees.

e Proof of the continuous extension in the removable singularity theorem: reparametrize via
[0,00) x ST — D\{0} : (s,t) > e~27(+) 50 that u is a J-holomorphic map ([0, ) x S*, i) —
(M, J) with bounded image and E,(u) < oo. Bubbling analysis implies |du| is bounded,
since otherwise a nonconstant plane with zero energy would bubble off. Then for any
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sequence s — 0, Uy : [—8k,0) x ST — M : (s,t) = u(s + si, t) is C'-bounded and must
have a subsequence converging in C%, to a J-holomorphic map u,. : (R x S1,i) — (M, J)
with zero energy, i.e. constant. One then needs to show that for all choices of sequence
sk — o0 and subsequence, one gets the same constant; this follows from:
Monotonicity lemma: Assume (M, w) is a compact symplectic manifold with J € J(M,w),
and introduce the Riemannian metric g(X,Y) := 3 (w(X,JY) + w(Y, JX)). There exist
constants ¢, R > 0 such that for every r € (0, R) and p € M, every proper J-holomorphic
curve u : (3,7) = (Br(p),J) passing through p satisfies {, u*w > cr?,
(This is really a result from minimal surface theory; we are taking it as a black box.)
Energy quantization lemma: On any closed symplectic manifold (M,w) with J € J(M,w),
there exists a constant A > 0 such that every nonconstant J-holomorphic sphere u :
(S2,i) — (M, J) satisfies E,(u) = h.
Proof by contradiction using a compactness argument; bubbling is easy to exclude.
Main result on bubble trees: Assume wy — w are C*-convergent symplectic forms on
a closed manifold M with C*-convergent tame almost complex structures J(M,wy) 3
Jp = J e T (M,w), (3,7) is a closed Riemann surface with a C*-convergent sequence of
complex structures jr — j, and ug : (2, jx) — (M, Jy) is a sequence of Ji-holomorphic
curves with bounded energy E,, (ux). Then there exists a finite subset I' = ¥ such that
after replacing uy, with a subsequence:
(1) ug converges in C2. on X\I' to a J-holomorphic curve u.. : (£\I', j) — (M, J) with
E,(uy) < o0, which therefore has a smooth extension to X.

(2) Each ¢ € T corresponds to a finite “tree” of J-holomorphic spheres v%,...,vé\k :
(S2,4) — (M, J), called “bubbles”, such that for large ,

Ne¢
[ur] = [us] + Y D [vé] € Ha(M).

CeTi=1
Proof sketch: Energy quantization implies bubbles can form by rescaling near at most
finitely many points I' © X, so away from this set, there are C''-bounds and wuy thus has
a convergent subsequence. Each ( € I' has a positive mass that measures the amount
of energy getting concentrated in arbitrarily small neighborhoods of ¢ as k — o0. Given
2z — ¢ with |dug(zr)] — o0, do the rescaling around zj so that vy : D, g, — M has
SD Viwg = me — % Now there is a finite set I'y < C such that v;, is C'-bounded away
from I'y, and each point in I'y likewise has a positive mass, and one can rescale in the same
manner around each. Since each nontrivial bubble has energy at least & and the energies
of uy, are bounded, this process must eventually stop, giving finitely many bubbles.
The moduli space My, of marked Riemann surfaces (i.e. taking (M, J) to be a point),
identification of Mg ,,, with J(X)/Diff(%, () for a model genus g surface ¥ with marked
points (1,...,(n € X and

Diff(%,¢) := {¢ € Diff () | ¢({;) = ¢ forall i =1,...,m}.

Proposition: If g = 1 or m > 3, the action of Diff (X, () on J(X) is proper.

Proof: Need to show that if ¢ : (£,7;.) = (X, jx) are degree 1 holomorphic maps with
Jk — j and j;, — j' in J(X), then ¢; has a convergent subsequence.

Case g > 0: m2(X) = 0 implies (3, j) admits no nonconstant holomorphic spheres, so there
can be no bubbling.

Case g = 0 and m > 3: There may be bubbling, but at most one bubble and it absorbs all
the energy, so ¢ converges outside of one point to a constant, which is impossible since
each y fixes at least three distinct points.
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e Corollary: In these cases, the automorphism group
Aut(%,4,¢) := {p e Diff(%,¢) | ¢ : (£,5) = (2, ) holomorphic}

is always compact. (Notice that this is not true for (S2,7) with fewer than three marked
points.)

Suggested reading.

e Background on differential calculus in Banach spaces: [Lan93, Chapters XIII-XIV], and
see also [Lan99, Chapters II-III] for the basic notions involving Banach manifolds and
Banach space bundles

e Differentiability of maps between Banach spaces: [Wena, §2.12]; the “useful lemma” about
u > fouis Lemma 2.12.5, and its extension for the map (f,u) — f owu is Lemma 2.12.7.
These results are based on a more abstractly-stated lemma in the paper [Eli67], which is
one of the standard references for constructions of Banach manifold structures on spaces
of maps from one manifold to another.

¢ Nonlinear local existence: [Wena, 2.13]

e Bubbling analysis: The basic rescaling argument (including the Hofer lemma) that our
bubbling analysis is based on is covered in [Wena, §5.3], where it is applied toward proving
a specific compactness result needed for Gromov’s nonsqueezing theorem. That presenta-
tion doesn’t go into the topic of bubble trees, but [MS12, §4.6-4.7] gives a more detailed
presentation on that. For Gromov’s removable singularity theorem, see [Wenc, §9.1].

Exercises. There will again be no Ubung next week, but these exercises may be discussed in
the first Ubung after the holidays. Exercise 8.2 is somewhat hard, but if you recognize that a
parametric local existence result for J-holomorphic curves is required, then you’ve understood the
main idea.

Exercise 8.1. For functions of a complex variable z = s + it, recall the formal partial differential

operators
o _1(o .0 0. _1(o .9
0= —2\as ‘at) oz " 2\es T'ai)

Show that if J € J(C™) is an almost complex structure on C"™ with J(0) = ¢ and w,v : (D,i) —
(C™, J) are two J-holomorphic maps with «(0) = v(0) = 0 and

ok okv

ﬁ(()):ﬁ(()) for allk‘zl,...,m,

then also 0%u(0) = d“v(0) for all multi-indices of order |a| < m.

Exercise 8.2. Suppose (M, J) is an almost complex manifold of real dimension 4 and ¥ < M is
the image of an embedded closed J-holomorphic curve with trivial normal bundle. Prove that ¥
then has a neighorhood U = M that can be identified diffeomorphically with > x D so that ¥ itself
is identified with & x {0} and the almost complex structure J on ¥ x I takes the form

j(’LU,Z) 0 )
J(w,z) = <y(w,z) z> on T (ExD)=T,2@C

where j(w,z) : T,X — T,2 and y(w, 2) : T,,X — C satisfy [j(w, 2)]*> = —1 and y(w, 2)j(w, 2) +
1y(w, z) = 0. Would you expect a result like this to hold if dim M > 47
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9. WEEK 9

Lecture 14 (13.12.2022): Deligne-Mumford compactness.

e Uniformization theorem (classical Riemann surface theory): every simply connected Rie-

mann surface is biholomorphically equivalent to either (1) (S? = C u {00}, i), (2) (C,4), or
(3) (H:= {Imz > 0} c C,1)
Corollaries (1): For all j € J(5?%), (S?,5) = (S2,i). Since

o(z) = 0 gy (‘C‘ Z) e SL(2,(C)}

cz+d

Aut(S?,i) = {gﬁ 52— 2

=~ SL(2,C)/{+1} =: PSL(2,C)

contains a unique map that sends any given three points to any other given three points,
this implies My ;, is a one-point space for £ = 0,1, 2, 3.
Corollaries (3): One can show that H = {s + 1t | seR, t> 0} with the Riemannian metric

1
gp = 75—2(ds2 + dt?)

is isometric to the hyperbolic plane. It follows that this metric is complete with constant
Gaussian curvature Kg = —1 and defines the standard conformal structure of (H,3).
Moreover,

Isom(H, gp) = Aut(H, ) =~ PSL(2,R),

i.e. the isometries of (H, gp) are precisely the fractional linear transformations on S? that

preserve H. It follows that any Riemann surface whose universal cover is (H, ) admits a

metric of constant negative curvature; by Gauss-Bonnet, this excludes e.g. T?2.

Corollaries (2): If (¥, j) has universal cover (C, i), then (X, 5) = (C/I', i) for a freely acting

discrete subgroup I'  Aut(C, 7); since Aut(C, ) consists of affine maps and most of them

have a fixed point, I' consists only of translations. There are three options:

(1) T trivial: then (%, ) = (C,i) = (S?\{oo},1).

(2) T cyclic: then (%,j) = (C/wZ,i) for some w € C\{0}, and this is equivalent to
C/iZ = (R x S1,i) = (S2\{0, 0}, 17).

(3) T alattice: then (X, 5) = (C/(aZ + bZ), i) for some real-linearly independent a,b € C,
and this is equivalent to C/(Z + wZ) for some w € H, which is equivalent to a torus
T? = R?/Z* with a translation-invariant complex structure. This proves there is a
surjective map

H—- Mio:we [(C/NZ +wZ),i,F)].

Corollaries (3), continued: if (X,7) has universal cover (H,4%), then (X,j) = (H/T,7)
for a freely acting discrete subgroup I' ¢ Aut(H, i) = Isom(H, gp), thus (¥,;j) admits
a Poincaré metric g;, which is complete, defines the same conformal structure as j, and
has constant curvature —1. (Exercise 9.1 below shows that g; is unique.)

Most important corollary/definition: Suppose (3, j) is a closed connected Riemann surface
and ¢ ¢ X is a finite set. Call (2,7, () stable if x(X\() <0, i.e. 2g +m > 3. In this case,
(X\(, j) has a unique Poincaré metric. Stability excludes only the four cases g = 0 with
m < 3 and g =1 with m = 0.

Definition: a pair-of-pants decomposition of a stable marked Riemann surface (X, 4, ¢)
is a finite collection of disjoint closed geodesics C' < ¥\( (with respect to the Poincaré
metric) such that each component of ¥\(¢ u C) has the homotopy type of a disk with two
holes.
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e Observe: the Euler characteristic of a pair of pants is —1, thus a pair-of-pants decomposi-
tion of (X, j,¢) contains —x(X\() pieces. (Stability is obviously necessary.)

e Fact from hyperbolic geometry: on a pair of pants (P, g) with complete metric g of constant
curvature —1 and geodesic boundary, the lengths of the boundary components determine
g up to diffeomorphism. (This also allows “boundary components of length 0”, understood
as cusps,/punctures at which P is noncompact.)

e Important theorem of Bers (quoted without proof): For each g,m > 0 with 2¢g +m > 3,
there exists a universal constant C' = C(g, m) > 0 such that every marked Riemann surface
(3, 4,¢) with genus g and m marked points and Poincaré metric g; admits a pair-of-pants
decomposition defined by closed geodesics of length < C.

e Corollary: If 2g + m > 3 and [(Zk, jk,Ck)] € Mgm is a sequence admitting pair-of-
pants decompositions whose geodesics all satisfy § < length < C for some § > 0, then a
subsequence converges to some element of M, .

e The alternative: some geodesics in the pair-of-pants decompositions collapse in the limit
to length 0. (illustrated with pictures)

¢ Definition: a nodal marked Riemann surface with m marked points is a tuple (S, 7, (, A),
where (S, 7) is a closed (but possibly disconnected) Riemann surface, ¢ is an ordered set of
m distinct points in S, and A is an unordered set of unordered pairs {{zf, 2 b {20 z;,}}
of distinct points in S\(; each matched pair {z;", 27} € A is called a node, and the in-
dividual points zlir are called nodal points. We say (S,5,(,A) ~ (5,5, ', A") if there
exists a biholomorphic map ¢ : (S,j) — (5, ') that sends ¢ to ¢’ preserving the order
and sends each node of A to a node of A’. We call (S, j,(,A) stable if every connected
component ¥ ¢ S\(¢ u A) has x(X) < 0. If the closed surface S formed by performing
connected sums on S at each of its nodal pairs {z;", 2; } is connected with genus g, then
we say (5, 7,(,A) has arithmetic genus g.

e Definition: for 2¢g +m > 3,

My, := {stable nodal Riemann surfaces of arithmetic genus g with m marked points} / ~.

There is a natural inclusion
Mgam i Mg,m : [(Z7J5C)] g [(273aC7®)]

e Deligne-Mumford compactness theorem: M, ,, admits a natural topology as a compact
metrizable space such that the inclusion M ,,, — ﬂgm is a continuous map onto an open
and dense subset.

e Remark: There is no definition of My, for 29 +m < 3. Thanks to uniformization, M, .,
in these cases is easy enough to understand without compactifying.

Lecture 15 (14.12.2022): Gromov compactness.

e Topology of M, ,,: defining a neighborhood base of [(S, j, (, A)] by pre-gluing to replace
neighborhoods of nodes with long “necks” ([—R, R] x S*,1).

e Remark: If we did not require stability for elements of M, ,,, it would not be Hausdorff.
(Non-stable sphere components with one or two nodal points could be added arbitrarily to
limits of sequences.)

e Nodal J-holomorphic curvesin (M, J): (S, j,¢, A, u) such that (S, j,(, A) is a nodal marked
Riemann surface (not necessarily stable) and u : (S, j) — (M, J) is a J-holomorphic curve
with u(zT) = u(z™) for each node {z%,27} € A. Say (S,5,(,A,u) ~ (8,5, A" ) if
there is an equivalence of nodal marked Riemann surfaces ¢ : (S,7,(, A) — (57,5, ¢", AY)
such that v’ o ¢ = w. Call (S,7,(,A,u) stable if for every connected component ¥ c
S\(¢€ v A), either x(X) < 0 or uly is nonconstant.
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e Definition:

My 1 (J) := {stable nodal J-holomorphic curves of arithmetic genus g with m marked points} / ~.

There is a natural inclusion
Mgm(J) = Mgm(J) : [(2, 5,6 u)] = [(3,4,¢, S, u)]

if we exclude from M, ,,(J) all elements with 2g +m < 3 and u constant. We will always
exclude these henceforth.

Convergence in My, (J): given [(S,7,¢, A, u)] € My m(J), let S denote a closed surface
of genus g with a finite collection of disjoint circles C' ¢ S such that §\C can be iden-
tified diffeomorphically with S\A. (One obtains such a surface by performing connected
sums on S at the nodes.) We can view j as a smooth complex structure on §\C that
degenerates along C, and u|s\a = u] s\ has a continuous extension over S that is con-
stant on each component of C. We say a sequence [(Zg, jk, Ck, k)] € Mg m(J) converges
to [(S,7,¢, A, u)] if for large k, [(Zk, 7k, Cr» ur)] = [(@j,’c, ¢, uy,)] for sequences of complex
(§\C) and maps uj, — u converging in both C%, (§\C’)

. . o -
structures j; — j converging in C) loc

loc
and C°(S).
Energy: for J € J,(M,w) and U = [(S, j,(, A, u)] € Mg (J), define

F,(U) = j e = ([, [ul)

s
where [u] := u,[S] € Ho(M). For each A € H?(M) write

Mg (J, A) = {[(S,5,¢, A u)] € Mg (J) | [u] = A}.

Gromov’s compactness theorem: Assume M is closed with a C*-convergent sequence
wg — w of symplectic forms on M and a C*-convergent sequence of tame almost complex
structures J-(M,wg) 3 Jy — J € J-(M,w). If U, € Mg, (Jx) has uniformly bounded
energy E,, (Uy), then it has a subsequence convergent to an element of M, ,,(.J).
Corollary: M, ,,,(J, A) is compact for each J € J,(M,w) and A € Ho(M).

o Proof sketch for a sequence of non-nodal curves [(Xk, ji, Ck, k)] € Mg m(J):

— Step 1: Bubbling analysis and energy quantization = there exists a number N >
0 and a sequence O < Yp\(; of sets of N extra marked points such that each
(Xk, Jr, Ck L Of) is stable, and for the Poincaré metric g on Xx\(x v Oy), the maps
uy satisfy a bound

|du(2)] - injrad, (2) < C

with a constant C' > 0 independent of k and z € Z\(¢x U ©). (Here we use the
injectivity radius to control how close z is to a marked point or a collapsing geodesic.)
— Step 2: By Deligne-Mumford compactness, a subsequence of [(Xg,jk,Cx U Ok)] €
MmN converges to some [(S, j,(UO, A)] € My i n. Writing S for a closed surface
of genus ¢ with a finite collection of disjoint circles C — S such that §\C’ ~ S\A,
we can now assume without loss of generality that for large k, ¥ = §, G = C,
Or = O, jr — j in ¢ (S\C) and |duy| is uniformly bounded on compact subsets of
§\(C U (U ©O). Regularity then gives a subsequence such that u; converges in Cf5. on

§\(C uCuB®)=S\(Au(u0) to a J-holomorphic map uy, : (S\(Au(u©),j) -
(M, J), which has finite energy due to the uniform energy bound. Gromov’s removable
singularity theorem thus extends uy, smoothly over S.
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— Step 3: |dug(zx)| can still blow up along sequences z, € S\(C U ¢ U ©) accumulating
at at most finitely many points in C' U ( U ©. One then finds bubble trees at these
points, with only finitely many bubbles due to the uniform energy bound and energy
quantization. Bubbles add extra spherical components to the nodal Riemann surface
(S,7,¢ U ©,A) and may make it non-stable, but the bubbling analysis guarantees
that every bubble with fewer than three marked or nodal points is a nonconstant
J-holomorphic sphere, producing a limiting nodal J-holomorphic curve that is stable.

Lecture 16 (14.12.2022): The Riemann-Roch formula.

ind(D)

Assume (X, j) is a closed connected Riemann surface, F — ¥ is a complex vector bundle
of rank n, F := Hom¢(TX, E) and D : I'(E) — I'(F) = Q%(3, E) is a linear Cauchy-
Riemann type operator. We showed in Lecture 9 that D is a Fredholm operator, and we
now want to show that its index is

ind(D) = nx(X) + 2¢1(E).

Note that D is in general a real-linear (not complex-linear) operator, and this is its real
Fredholm index.

Observe: if we can prove the formula for n = 1, then the general case follows just by
considering direct sums of line bundles. We assume from now on that £ — X is a line
bundle.

Striking coincidence: the line bundle Homc(E, F) is isomorphic to TY. ® E ® E and thus
has c¢;(Hom¢(E, F)) = x(X) +2¢; (E), the same integer that appears in the Riemann-Roch
formula. This number is thus the algebraic count of zeroes of a generic complex-antilinear
map bundle map £ — F.

Idea of Taubes: by a zeroth-order (and thus compact) perturbation, we can replace D with
D + 7A for some section A € Homc(E, F') without changing the index. Choose A to have
only finitely many positive zeroes Z, and negative zeroes Z_ c 3, all with order +1. Main
theorem: for 7 » 0, the kernel of D + 7A has a basis consisting of one section 7. € I'(E)
for each positive zero ¢ € Z, such that 7¢ looks like a Gaussian in coordinates near ¢ and
is very small away from ¢. A similar statement holds for the formal adjoint (D +7A4)* and
the negative zeroes ( € Z_. The Riemann-Roch formula follows since

= ind(D+7A) = dimker(D+7A4) —dimker(D+7A4)*) = #Z, —#Z_ = ¢;(Hom¢(E, F)).

Warmup case: take ¥ = T? and E = T? x C = F with D = 0 = 0, + id; : C*(T?,C) —
C*(T?,C) and an antilinear zeroth-order perturbation A : C*(T?, C) — C*(T?,C), which
can be written as An = 37 for some function 3 : T? — C. Since the bundle is trivial, we are
free to assume J is nowhere zero, so there is an estimate |An| > c|n| at every point. Claim:
D, := 0 + 7A is an isomorphism for all 7 » 0, and thus has index x(T?) + 2¢1(E) = 0. Tt
suffices to prove that D, is injective, since the same argument then applies to its formal
adjoint. This is proved using the Weitzenbo6ck formula

D*D,n = 0*dn + 12 A* Ay — 7(06)7.

General Weitzenbock formula for a Cauchy-Riemann type operator D : I'(E) — I'(F') and
antilinear perturbation D, := D+ 7A with A € I'(Homc(E, F')): There exists a real-linear
bundle map B : E — E such that

D!D.n = D*Dn+ 72A*An + 7Bn.
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Proof: We can write An = 37 for a section § € I'(Home(E, F)), where E is the conjugate
bundle of E and E — E : 7 +— 7 denotes the canonical complex-antilinear bundle isomor-
phism, i.e. the identity map (see Exercise 5.2). If D is complex linear, then it defines a holo-
morphic vector bundle structure on E, and similarly, —D* : I'(F) — I'(E) =~ Q'°%(X, E)
and
D:T(E) - T(F) = Q"% E): 5~ Dy

are complex-linear anti-Cauchy-Riemann operators (again see Exercise 5.2), meaning they
satisfy the same Leibniz rule as a Cauchy-Riemann type operator but with df € Q%1(%, C)
replaced by 0f := df —idf o j € Q49(%,C). Such operators make the underlying vector
bundles into antiholomorphic vector bundles, meaning transition functions are complex
conjugates of holomorphic functions. It follows that Homc(E, F') also inherits a natural
antiholomorphic bundle structure and thus carries a natural anti-Cauchy-Riemann type
operator Oy satisfying the Leibniz rule

~D*(®7) = (0g®)7 + ©(D7) for ® € T'(Homc(E, F)), n € T(E).

Using this rule, an easy computation proves that the Weitzenbock formula holds with
Bn := —(0gB)7. If D is not complex linear, one can split it into its complex-linear part
DC and complex-antilinear part C, where D® is another Cauchy-Riemann type operator
and C is a zeroth-order term, then compute further based on the Weitzenbdck formula
for DC.

Further assumptions (for convenience): An = 37 where 3 € I'(Homc(FE, F')) has finite zero
set Z = Z, u Z_, and for each ( € Z; there are holomorphic coordinates identifying a
neighborhood (D(¢), j) of ¢ with (ID,4), and trivializations of E and F in which D looks
like & = 0, + id; and B takes the form

B(z)=2 forCeZ,, B(z)=2z for(eZ_.

In particular, the equation D, = 0 then looks like 0n + 7277 = 0 on D(¢) if ( € Z,, or
on+rEn=0if (e Z_.
Energy concentration lemma: Suppose 7, — o0 and 7y € ker D, satisfies a uniform L2-
bound, and for each ¢ € Z4, use the coordinates and trivializations chosen above on D(()
to define the functions

1

ﬁnk(z/\/ﬁ)-

77;3 :D 7 — G 77;5(2)

Then:
) lzzm) = Iilzoe-
(2) n,g satisfies the equation

ong +2mp =0 ifCeZ,,  ony+ziL=0 if(eZ_.

(3) 77]5 has a subsequence CJ- -convergent on C to a function 75 € C*(C) n L2(C).

loc
(4) For any other sequence & € ker D, satisfying the same assumptions,

s Ekpre — Z@fi, E.012(c)

ez

as k — oo. In particular, taking { = 7, and interpreting |n L2« as the “energy”
of m, over a region U < X, this shows that the energy of n; is concentrated in a
neighborhood of Z as 1, — o0, and outside this neighborhood it becomes arbitrarily
small.
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Proof: (1) and (2) are straightforward computations, and (3) then follows from linear

elliptic regularity theory. Statement (4) follows after using the Weitzenbock formula to

prove that on the region X := X\ Jcz D(C), |nk[r2(s.) — 0 as k — oo. This also uses

the fact that on X, there is a pointwise estimate of the form |An| > ¢|n| for some ¢ > 0.
¢ Define D, := D for ¢ € Z, where D1 : C*(C,C) —» C*(C,C) are the Cauchy-Riemann

type operators

D, f:=0f +zf, D_f:=0f + zf.
With a little more work, the energy concentration lemma implies that there is an isomor-
phism
ker D, =~ @ {f e L*(C) | D¢f = 0}
€4

for sufficiently large 7 > 0.

e Proposition: All solutions f € L?(C) to D_f = 0 are trivial, and all solutions f € L?(C)
to D f = 0 are constant real multiplies of the Gaussian function e~ 3le, o
Proof for D_: the formal adjoint of ¢ = 05 + id; is 0* = —0 = —0s + i0;, and 0%0 =
—0%2 — 02 =: A is then the standard Laplace operator. One can derive a Weitzenbock
formula

D*D_f =0*0f + |2|°f = Af + |2]f,
and use it to prove that for any f satisfying D_f =0,
Alf? = =2P|f]? = 2[Vf]* <0,

meaning |f|* : C — R is a subharmonic function. It therefore satisfies the mean value
property: for any zp € C and r > 0,

o) < —

m B, (z0
and if f € L?(C), this implies |f(20)[* < =% | f||2. for every r > 0 and thus f = 0.

Proof for D,: a similar Weitzenb6ck formula can be used to show that if f € L2(C)
satisfies Dy f = 0 then Im f = 0. We can thus write f(z) = g(z)e*%‘z|2 for a unique
function g : C - R. Since D+(e_%|z‘2) = 0, the Leibniz rule then implies dg = 0, so ¢ is a
real-valued holomorphic function on C, implying it is constant.

1%,
)

Suggested reading. Our presentation of the Deligne-Mumford and Gromov compactness theo-
rems is very similar to [Wenc, Lecture 9], especially §9.3.3 and 9.4.1, though the latter contains
some features that you can ignore because it works in the more general setting of punctured
J-holomorphic curves in noncompact symplectic cobordisms. Many of the details of hyperbolic
geometry that we needed to cite without proof are covered nicely in [Hum97] and [SS92]. Un-
fortunately, the version of Gromov’s compactness theorem that appeared in [Gro85] was rather
preliminary and not adequate for modern use; e.g. it never mentioned the notion of stability, which
was later recognized by Kontsevich as being important of you want your compactification to be
Hausdorff. The only reference I know for a complete proof of Gromov compactness as we stated
it in lecture is [BEH " 03], which proves a much more general result of which Gromov compactness
is a special case. The proof we sketched is also based on the argument written there, and a more
detailed account of it can be found in [Abb14].

The proof of the Riemann-Roch formula we presented was first sketched by Taubes in a brief
appendix to [Tau96], and the details are worked out in [Wenc, Lecture 5], in which you can ignore
§5.8 because it also deals with a more general setting than we are considering.
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Exercises (for the Ubung on 4.01.2023). Note that starting in January, the Ubung will take
place on Wednesdays at 15:15 in 1.114 instead of the usual Tuesday morning time slot.

Exercise 9.1. Prove that there is at most one Riemannian metric on H that is complete, confor-
mally equivalent to the standard Euclidean metric, and has constant curvature —1. Deduce the
uniqueness of the Poincaré metric on any Riemann surface whose universal cover is (H, ).

Exercise 9.2. One consequence of the uniqueness of complex structures on S? is that the map
S2\0, 1,00} = Mo ¢ = [(8%,4,(0,1,0,0))]

is a homeomorphism. Show that this map extends to a homeomorphism S? — M 4, and describe
the three stable nodal Riemann surfaces that occur as the images of the points 0,1, co.

Exercise 9.3. Recall from Exercise 1.5 that Aut(S?,i) =~ PSL(2, C) is naturally isomorphic to the
moduli space Mo (i, [S?]) of degree 1 holomorphic spheres in (S2,i) with three marked points,
whose evaluation map defines a homeomorphism onto the complement of the fat diagonal A c
52 x 52 x S2. Show that the continuous extension of this map to”

ev: ﬂo’g(’i, [52]) - 52 X 52 X 52

is surjective, and describe specific stable nodal holomorphic curves corresponding to each element
of the fat diagonal. Show in particular:

(a) ev!(wy,we, ws) © Mo 3(i,[S?]) contains a unique element whenever two of the w; € S?
are identical and the third is different.
(b) ev t(w,w, w) © Mo 3(i, [S?]) is homeomorphic to S? for each individual w € S2.

Exercise 9.4. Using the standard complex structure i on S2, S? x S? inherits an integrable
complex structure .J that is compatible with any symplectic form of the form a@ 3 € Q?(S? x 5?)
for two positive area forms «, 3 € Q?(M). Consider the family of embedded J-holomorphic curves

ue @ (S%,4) — (8% x S2,.J), uc(z) 1= (z,c¢2)

for ¢ € C\{0}, which define a family of elements in the moduli space Mg (J, A) for A := [S? x
{const}] + [{const} x S%] € Ha(S? x S?). What do these curves converge to in Mg o(J, A) as ¢ — 0
or ¢ — 07

Caution: Make sure that whichever nodal curves you describe represent the right homology class!

10. WEEK 10
Lecture 17 (3.01.2023): Functional-analytic setup for J;.

e The moduli space of parametrized J-holomorphic curves
M = M(j, J, A) := {ue C*(S,M) | Tuo j = JoTu and [u] := us[%] = A}
for given J € J(M), j € J(X) and A € Hy(M), and evaluation map
evi Mo M*™ ue (w(G),. .. u(Gn))
for a given ordered set of distinct points ¢ = ({1,...,(n) in X. (Assume X is closed with

genus g and M has dimension 2n.)

9This exercise originally claimed that the extension of ev to the compactification is a homeomorphism onto
S2 x 82 x S2, but it was noticed during the Ubung that that is false.
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e The space
WhP(S, M) := {u € C°(2, M) | uis of class W,"” in all local charts on ¥ and M}

for k€ N and p € (1, 00) with kp > 2, and subset
B:={ue WF?(2, M) | [u] = A}.

e Proposition (see [Eli67]): WFP(X, M) has a natural smooth Banach manifold structure
such that for each f € C* (X, M) and each choice of connection on M (for defining the
exponential map), there is a chart of the form

WHEP(S, M) 5 expyn > ne WHP(f*TM)

identifying open subsets of WP (%, M) with open neighborhoods of 0 in the Banach space
of sections W*P(f*TM). Moreover, for each u € WP (X, M) there is a natural isomor-
phism T, WkP (2, M) = W*P(u*TM). (Here u*TM — ¥ is a vector bundle of class WP,
for which sections of class W™P can be defined for any m < k since the condition kp > 2
implies there is a continuous product pairing W*? x WP — WP )

Proof of smoothness: transition maps take the form n — F o7 for smooth fiber-preserving
maps F. (See the “useful lemma” in Lecture 11.)

e The Banach space bundle £ — B with fibers

Eu = WFLP(Home (TS, u*TM))

and smooth section
0j:B—>E&:u—Tu+JoTuoj,
such that M = 5}1(0). (By elliptic regularity, the C* and W*P-topologies on this set

match.)
e The linearization

Doj(u) =Dy :T,B—>E,:n—>Vn+JoVnoj+V,JoTuoj

V any symmetric connection on M) at a zero u € 2740). By Riemann-Roch, D, is a
J
Fredholm operator with

ind(Dy) = nx(X) + 2¢1(w*TM) = n(2 —2g) + 2¢1(4),
where ¢1(A) :={c1(TM), A).
e Proposition (via the implicit function theorem):
(1) If D,, is surjective, then a neighborhood of u in M is a smooth submanifold of B with
finite dimension ny(2) + 2¢1(A), and ev : M — M*™ on this neighborhood is a smooth
map. (Note: the implicit function theorem applies because surjective + Fredholm = there

is a bounded right inverse.)
(2) Let
ng’p = ng’p(u*TM) i={ne WFP(u*TM) | n(¢;) =0foreachi=1,...,m}.
If the restricted operator ch’p Dy, . 1s also surjective, then ev : M = M*™ is a
submersion near u.
Smoothness of ev follows mainly from the fact that for any f e C™ (%, M), since kp > 2,

WHEP(FATM) — Tye)yM x ... x Tye, )M s> (0(C1)s - - - 0(Cm))

is a continuous linear (and therefore smooth) map.
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e Taking (M, J) := (%,5) and A := [X] € Hy(X) gives the automorphism groups

Aut(%, j) = 9;(0)
and -
Aut(%,5,¢) = ev™ ' (C1, -5 Gm) < 05 1(0).

¢ Linear Cauchy-Riemann operator on TX:

Dy := D0;(Id) : WFP(TE) = TiaB — &g = WF 1P (Endc(TY))
and the restriction
D¢ := Dy e : WET(T) — W (Ende(T5)).

e Theorem: Aut(X, 7, () is a Lie group with Lie algebra
aut(3, j,¢) = ker Dy ¢ < T¢(TX) := {X e I(TS) | X(¢;) = 0for i =1,...,m} c WSP(TD),

and moreover, it is discrete if (X, j, {) is stable.

Corollary (due to the proper action of Diff (X, () on J(X)): In the stable cases, Aut(, 4, ()
is finite.

Proof: Each case follows from the implicit/inverse function theorem after bounding the
dimension of ker Dy, ¢, which one does by using the similarity principle to prove that

kerDy ¢ = Ty, X X ... X Ty 0 X = (X (w1), ..., X(wn))

is injective for suitable finite sets of distinct points wy, ..., wy € 3, depending on ¢; (TY) =
x(%).

Case g = 0 with m < 3: dimker Dy, ; < 2(3 —m) = ind Dy, ¢ implies Dy, ¢ is surjective.
Case 2g + m > 3 (stable): Dy ¢ is injective.

Case g = 1 and m = 0: dimker Dy < 2, and this must be an equality since Aut(T?, 5)
always contains a 2-dimensional family of translations.

Lecture 18 (4.01.2023): Teichmiiller slices and Fredholm regular curves.

o If x(X\() < 0, then the action of the identity component Diff(X, ¢) < Diff (X, () on J(X)

is free (as well as proper).

Proof: If ¢ # Id € Diff (%, {) is biholomorphic and homotopic to the identity, then it has
#TFix(p) = x(X) by the Lefschetz fixed point theorem, and its fixed points are isolated
and count positively. Then x(X) > m since ¢ fixes the marked points.

Definition: Teichmiiller space of genus g Riemann surfaces with m marked points:

T(%,¢) := J(£)/Diffo(%, ).
The mapping class group of (%, () is the discrete group

and we have
Mgm = J(X)/Diff (%, ¢) = T(%,¢)/M(Z, ().

A d-dimensional orbifold is a space X such that for every x € X, there is a finite group
G, (the isotropy group at x) with a linear action on R% and a G-invariant open subset
U < R? such that some neighborhood of 2 in X is homeomorphic to U/G,. With some
care (though the correct definitions are a bit non-obvious), one can also speak of smooth
orbifolds. A slight enhancement of the usual slice theorem for free and proper group actions
then gives quotients M /G natural smooth orbifold structures whenever G is a Lie group
acting smoothly and properly on M with finite stabilizer subgroups at every point. We
will see below that 7(X,() is a smooth finite-dimensional manifold, so presenting Mg .,
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as the quotient of this manifold by a proper action of the discrete group M (X, () makes
My m a smooth orbifold of the same dimension.

Informally, think of Diffy(X,() as an infinite-dimensional Lie group acting freely and
properly on the infinite-dimensional manifold 7 (X), and the orbits Diffo(X,() - j are
then infinite-dimensional submanifolds of J(3). Recalling the Cauchy-Riemann opera-
tor Dy, ¢ : T¢(TY) — I'(Endc(TY)), we then have

T; (Diffo(%,¢) - j) = im Dy ¢ € ['(Endc(TY)) = T; T (%).

Proof: for a smooth family {¢, € Diffo(X, () }re(—e,ey With po = Id and j; := ¢}j, covari-
antly differentiate the expression

gjnj(@T) =To,+j0Tp;05, =0
at 7 = 0.

Teichmiiller slice theorem: 7(X,(¢) naturally admits the structure of a smooth finite-
dimensional manifold such that for each j € J(X), there is a natural isomorphism

T[J]T(E, C) = coker DE7<.

Moreover:

(1) For any finite-dimensional smoothly embedded'’ family 7 < J(X) of complex struc-
tures containing j € J(X) such that 7;7 < T;7 () = I'(Endc(T'Y)) is complementary
to im Dy ¢, the map

T—=>TEQ:j —I[]

is a local diffeomorphism near j. (We refer to any family with this property as a
Teichmiiller slice through j.)
(2) The Teichmiiller slice 7 < J(X) through j can always be chosen to have the following
additional properties:
(a) 7T is invariant under the action of Aut(X,7,¢) by ¢ -5’ := o*j’.
(b) Every j' € T is identical to j on some neighborhood of .
Proof: (1) Imitate the proof of the finite-dimensional slice theorem, using suitable Sobolev
completions of Diffy(3, ¢) and J(X) so that one can speak of Banach manifolds and use
the inverse/implicit function theorems.
(2) Choosing any complement 7;7 < I'(Endc(TY)) of im Dy, ¢ gives rise to a Teichmiiller
slice of the form

1 1.\"'
T := {<11+2]y>3 (]l+2jy>

If G := Aut(Z, j,() is finite, we can choose a G-invariant L2-pairing on I'(End¢(7TY)) and
define T;7 to be the G-invariant L2-orthogonal complement of im Dy, ¢, then modify it by
an LP-small change so that every y € 17 vanishes on some small G-invariant neighborhood
of ¢.
Corollary: For all j € J (%),

dim Aut(3, j,¢) —dim 7(%,¢) = ind(Dx ¢) = ind(Dy) — 2m = 3x(X) — 2m.

In particular, if (X, j, ) is stable, then dim 7(X,¢) = 69 — 6 + 2m.

y € 15T close to O} .

10By “finite-dimensional smoothly embedded family”, we really mean a smooth family {jr € J(X)}rex
parametrized by a finite-dimensional manifold X, such that the map X — J(X) : 7 — j; is injective and for
each 7 € X, the linearization T- X — [(End(T%,j;)) : v 6sjv(s)‘3:0 defined by choosing a smooth path
~(s) € X with 4(0) = v is also injective. The image of this injective linear map is what we call the “tangent space”
of T at jr and denote by T; T < I'(End(T'%, j)).
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e Remark: If 7 < J(X) is chosen to be Aut(X,j,()-invariant, then in the stable case, it

follows that the map
T/ Aut(3,4,0) = Mgm : [1'] = [(2,5,0)]

is a local homeomorphism near [j]; this is one way of defining “orbifold charts” for M .
Local structure of the moduli space Mg ., (J, A): given [(X, jo,(,u0)] € Mg m(J, A), set
G = Aut(%, jo, (), choose a G-invariant Teichmiiller slice 7 < T(X) through jo, and
define B ¢ W*P(%, M) as the component with [u] = A. There is a Banach space bundle
& — T x B with fibers

Gy = WP (Home ((TX, 5), (w*TM, J)))
and a smooth section
07 :TxB—&:(ju)»Tu+JoTuoj
that is G-equivariant: 0;(p*j,u o ) = ©*0;(j,u) for ¢ € G. Its linearization at (j,u) €
07'(0) is
Do (j,u) : Ty T x TuB — EGuy : (y,n) = Dun + JoTuoy.
Since D,, is Fredholm and T};J is finite-dimensional, this is a Fredholm operator of index
ind Doy (j,u) = ind(D,,) + dim 7(3, ).

Definition: For (j,u) € 07'(0), the element [(3, 7, ¢, u)] € My (J, A) is called Fredholm

regular if the operator Dd;(j,u) : T;T x T,B — &(; ., is surjective. (See Exercise 10.6
below on why this does not depend on the various choices.) The set of Fredholm regular
curves defines an open (though possibly empty) subset

M5.(J, A) € Mg m(J, A).
Lemma (based on the slice theorem): The map

05(0)/G = Mgm(J,A) = [(,w)] = [(2,], ¢ )]

is a local homeomorphism near [(jo, uo)]-
Theorem (by the implicit function theorem and slice theorem): M} (J, A) admits a
natural smooth orbifold structure of finite dimension

dim M8, (J, A) = vir-dim My ,,(J, A) := (n — 3)(2 — 2g) + 2c1(A) + 2m,

which is also called the virtual dimension of M, ,(J, 4)."*
Proof of the dimension formula: using (10.1) and (10.2) and the Riemann-Roch formula
for ind(D,), we have
dim (9;'(0)/G) = ind Dd,(j, u) — dim Aut(E, jo, () = ind(D,,) — ind(Ds; ¢)
=nx(2) + 2¢1(A) —3x(2) +2m = (n — 3)x(X) + 2¢1(A) + 2m.

HPhilosophically: the virtual dimension of a moduli space is an integer determined by topological conditions
that can be interpreted as the dimension that the space “wants” to have, and will have in particular whenever certain
transversality conditions are satisfied. For example, if M is a smooth n-manifold and f : M — RF is a smooth
map, then the set f~1(0) has virtual dimension n — k, and is actually a smooth manifold of that dimension if 0 is a
regular value. (Note that if the latter is not the case, then f~1(0) may fail to be smooth, or it may coincidentally
be a smooth manifold but with dimension larger than its virtual dimension.)
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Suggested reading. As I mentioned in class, anyone who gets serious about using Banach man-
ifolds like W*P?(%, M) in research should read the paper [Eli67] ezactly once. Otherwise, most of
what we covered this week about Teichmiiller slices, Fredholm regularity and the local structure
of My, (J, A) can be found in [Wena, §4.3] and (in a more general context) [Wenc, Lecture 7]; in
particular, these sources go into more detail on the slightly tedious issue of verifying that all the
charts we construct on 7 (X, () and M%, (J, A) are smoothly compatible.

It’s natural to be curious about orbifolds when you see them for the first time, but for now I'm
going to refrain from recommending anything to read about them, because as soon as one wants
to discuss fundamental notions like smooth maps between smooth orbifolds, the basic definitions
become more complicated than one would expect, and not all sources agree completely on what
these definitions should be. It has been generally agreed in recent years that the most elegant
approach is to recast the definition of an orbifold in the language of proper étale groupoids, which
are a class of categories, so that maps between them should be regarded as functors, and if that
kind of language doesn’t make you nervous, feel free to google for more. In this course, most of the
orbifolds we have to think about will actually turn out to be manifolds, thus it will not matter.

Exercises (for the Ubung on 11.01.2023).

Exercise 10.1 (requested several weeks ago by Naageswaran). We saw this week how to define
smooth structures on moduli spaces by presenting them as zero-sets of smooth nonlinear Fredholm
sections of infinite-dimensional Banach space bundles. The definitions of those bundles always
require some choices, e.g. the Sobolev parameters k and p satisfying kp > 2, and ideally, one would
also like to know that the smooth structures inherited by our moduli space do not depend on those
choices. Consider in particular the space M = /\7(j, J, A) of parametrized J-holomorphic curves,
which we saw can be identified with a smooth finite-dimensional submanifold

MEP .= 571(0) € WHP(S, M)

whenever the Fredholm operator D,, : W*P(u*TM) — Wk=1P(Home (TS, u*TM)) is known to
be surjective. We know already from elliptic regularity theory that the index and kernel of D,
do not depend on k and p, thus neither does the surjectivity condition. Assuming this condition
holds, show that for any k,m € N and p, g € (1, ) satisfying

2

2
k>=m, p<q and k——>2m—->0,
p q

one has M*? c M"™4 and the inclusion M*¥P < M™1 is a diffeomorphism.

Exercise 10.2. For the Riemann surface (X, j) = (52,4) with m < 2 marked points ¢, use results
from complex analysis to determine the group Aut(X, 7, ¢) explicitly, and compare its dimension
with the formula we computed in lecture for dim ker Dy, .

Exercise 10.3. The uniformization theorem implies that M, ,, is a one-point space for m < 3,
and with a little knowledge of the mapping class group on the sphere, one can show that the
corresponding Teichmiiller space is also trivial. But here is a way to prove that without any
knowledge of uniformization: show that for any smooth family {j. € J(S?)},ejo,1] With jo =4, the
space

M = {(r,¢) €[0,1] x C*(S?,5%) | o (52,4) — (S?, j-) biholomorphic with ¢(¢) = ¢ for ¢ = 0,1,00}

is a compact connected 1-manifold with a natural smooth structure such that the map M — [0,1] :
(1,¢) — 7 is a diffeomorphism. (Why does that imply the claim above about Teichmiiller space?)
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Exercise 10.4 (harder, but worthwhile). Our proof in lecture of the Teichmiiller slice theorem
focused on the stable case, but the theorem is true in all cases. Fill in the gaps in the proof for
the non-stable cases:

(a) g =0 with m < 2 (thanks to Exercise 10.3 there is not much to do here)

(b) g =1 with m = 0.
For the torus with no marked points, a good starting point is the corollary of uniformization that
(T2, j) must always be biholomorphically equivalent to (C/(Z + AZ),i) for some A € H. Using the
diffeomorphism

T? = C/(Z +iZ) —» C/(Z + \Z) : [a + ib] = [a + \b],  a,beR,

we can then identify (C/(Z + MZ),i) with (T?,j)) for a translation-invariant complex structure
jx € J(T?) determined by A € H, thus defining a natural map

H — 7(T?) := T(T%, &) : A > [ji]

whose projection to Mj g = T(T?)/M(T?) is surjective. Show that the map H — 7 (T?) is in fact
a homeomorphism, hence the family {j\} en can be regarded as a global Teichmiiller slice through
any of its elements, and it is also invariant under their automorphisms.

Hint 1: It will help to have an explicit picture of the mapping class group of T?—classifical results
imply that every isomorphism of H,(T?) = Z? to itself is induced by a unique mapping class on T?,
thus giving an isomorphism M (T?) =~ SL(2,Z).

Hint 2: Every element of o € Diffo(T?) := Diffo(T?, &) can be lifted to a diffeomorphism of C that
(after composing with a translation) fixes the lattice Z + iZ.

Exercise 10.5. For the case x(X\{) < 0, compare the formula we computed in lecture for
dim 7(%,¢) with the number of geodesics involved in an arbitrary pair-of-pants decomposition
of (%, 4,¢). Then google the term “Fenchel-Nielsen coordinates”.

Exercise 10.6. Prove that the notion of Fredholm regularity for an element [(X, j, {, u)] € Mg . (J, A)
does not depend on the various choices involved in the definition, notably the Sobolev parameters
k,p and the Teichmiiller slice 7 < J(X) through j.

Hint: By definition, T;T is complementary in LP(Endc(TY)) to the image of the operator Dy ¢ :
Wcl’p(TZ) — LP(Endc(TY)). Show that the image of the operator D0 ;(j,u)(y,n) = Dyn+JoTuoy

does not change if y is allowed to take arbitrary values in LP(Endc(TX)) rather than just in the
subspace 1T . This has something to do with reparametrizations of the map v : % — M.

11. WEEK 11

Lecture 19 (10.01.2023): Simple curves and multiple covers.
e The automorphism group of an element [(X, j, (, u)] € My (J, A):

Aut(u) == {p € Aut(Z,4,¢) |uop =u}.

e Aut(uw) is finite if and only if [(X, 7, (, u)] is stable; in particular, Aut(u) is finite whenever
u is nonconstant. (follows from the factorization theorem below)
e Holomorphic maps ¢ : (2,5) — (X, 5’) of degree deg(p) =: d = 0 between closed Riemann
surfaces of genera g and ¢’ respectively:
— d=0< ¢ is constant
— d =1<% ¢ is a biholomorphic map
— d = 2 < yis a branched covering, and thus becomes a covering map of degree d after
removing finitely many points from ¥ and ¥': in particular, | Aut(y)| < d.
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e v : (X,j) —» (¥,7) has a branch point of branching order k¥ > 2 at ( € ¥ < dp €
I'(Home(TY, *TY')) has a zero of order k — 1 at (; we define the algebraic count of
branch points

Z(dp) = #(de)"H(0) = Y} ord(dg;¢) >0,
Ce(dp)=1(0)
where equality holds if and only if ¢ is an honest covering map.
e Riemann-Hurwitz formula: —x(3) + dx(¥') = Z(dy) = 0, with equality iff there are no
branch points.
Proof: Compute ¢;(Home(TE, p*T3")).
e For [(27], g, 90)] € ngo(jl7 d[zl])ﬂ

vir-dim Mg o (5, d[¥]) = (1 = 3)x(E) + 2¢1(9*TY') = 2[-X(2) + dx(X")] = 2Z(dep).

Interpretation (can be proved via classical methods): the values of the branch points of ¢
define local coordinates for Mg o(j', d[X'])

e Proposition: Every [(Z, j, &, ¢)] € Mg 0(j’, d[X']) is Fredholm regular, hence M, o(5, d[])
is naturally a smooth orbifold of dimension 2[2g — 2 + d(2 — 2¢)].
(Note: by the Riemann-Hurwitz formula, the space is empty if this integer is negative.)
Proof in case Z(dyp) = 0: Use the isomorphism dy : TY — ¢@*T'Y' to identify

DO/ (j§,¢) : TIT @ WFEP(p*TY') —» WELP(Home (TS, p*TY) : (y,n) = Dyn+j o Tpoy
with the operator
;T @WrP(TY) - WFLP(Ende(TY)) : (y, X) = DX + jy,

which is surjective by the definition of a Teichmdiiller slice.

e Definition: u : (%,5) — (M, J) is a d-fold multiple cover of v : (X', j) — (M, J) if
u = v o ¢ for some holomorphic branched cover ¢ : (2,j) — (X', j') of degree d > 2. We
call u simple if it is not a multiple cover of any other curve.

¢ Factorization theorem: Every closed nonconstant J-holomorphic curve u : (¥, 5) — (M, J)
factors as u = v o ¢ for a closed simple curve v : (¥/,5') — (M, J) that is embedded after
removing finitely many points I' € ¥’ from its domain, and a nonconstant holomorphic
map ¢ : (X, 5) — (X', ;). In particular, u is either simple (if deg(y) = 1) or it is a multiple
cover v o p with covering multiplicity

cov(u) =d := deg(p) = 2,

and Aut(u) = Aut(y) has order at most d.
e Local lemma 1 (intersections): Given an almost complex structure J on C™ and two
nonconstant J-holomorphic maps w,v : (D,i) — (C",J) with u(0) = v(0), there exist
neighborhoods U,V < D of 0 such that either u(U) = v(V) or w(U\{0}) N v(V) = u(Uf) N
s\ (0)) = .
Proof: Apply the similarity principle after choosing local coordinates very cleverly...
Local lemma 2 (branching): Given an almost complex structure J on C™ and a noncon-
stant J-holomorphic map « : (D,7) — (C",J) with u(0) = 0 and du(0) = 0, one can
biholomorphically reparametrize a neighborhood of 0 in D such that u(z) = v(z*) for some
k € N and an injective J-holomorphic map v : (D, i) — (C™, J) with dv(z) # 0 for all z # 0.
Proof: Similarity principle again...
e Proof of the factorization theorem: the two lemmas imply that the sets C := {z € ¥ | du(z) = 0}
and

A:={z€eX | u(z) = u(w) for some w # z and the intersection is isolated }
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are both finite, and ' := u(X\(C' U A)) is then a smooth submanifold of M on which
J| sy defines a complex structure j’, and (Z’ ,7") is biholomorphically equivalent to the
complement of a finite subset I' € ¥’ in a closed Riemann surface (¥',j’). Define v :
(X,5) - (M, J) by extending the inclusion Y < M over T, and define v (3,9 —
(3, 4') by extending u : £\(C' U A) — %',
Transversality: D0y (j,u) is surjective if and only if the intersection of d; : T x B — &
with the zero-section of & — T x B at (j,u) is transverse.
Question: Can this intersection be made transverse by perturbing J?
Bad news: @ is defined to be equivariant under the action of some group Aut(%, jo, ¢), and
this will remain true no matter how J is perturbed, i.e. the class of available perturbations
of 07 is rather restrictive. This is a danger especially near points with nontrivial isotropy.
The Calabi-Yau example: suppose dim M = 6 and ¢;(A4) = 0, so vir-dim M, o(J,dA) =
(n—3)(2—2g)+2c1(dA) = 0 for every g,d > 0. For any element of My ¢(J, A) parametrized
by a simple curve v : (¥, j') — (M, J) and any d > 2, the space M, o(J, dA) then contains
the set

{u=vop|pe My d=D},
which for sufficiently large g > 0 is a nonempty orbifold of dimension 2[2g—2+d(2—2¢")] >

0. So in this situation, M, o(J,dA) can never be an orbifold of dimension equal to its
virtual dimension, and the multiple covers with branch points can never be regular.

Lecture 20 (11.01.2023): Generic transversality for simple curves.

Main theorem: for generic J in J(M,w) or J,(M,w) on a closed symplectic manifold
(M, w), all simple J-holomorphic curves are Fredholm regular.

Terminology: for X a complete metric space, a subset Y — X is comeager if it contains
a countable intersection of open and dense subsets.

(Baire category theorem: comeager implies dense. But density on its own is not good
enough, because two dense subsets can easily have an empty intersection, whereas a count-
able intersection of comeager subsets is again comeager!)

A statement depending on a choice of z € X is said to be true for generic x € X if there
exists a comeager subset Y < X such that it holds for all z € Y.

Sard-Smale theorem: Suppose X and Y are separable Banach manifolds of class C* for
some k > 1and f: X — Y is a map of class C* such that at every point z € X, the
tangent map T, f : T. X — Tj(,)Y is a Fredholm operator with £ > ind(7} f) + 1. Then
generic y € Y are regular values of f, meaning T, f is surjective for every z € f~1(y).
Definition: For a C'-map u : ¥ — M, z € ¥ is called an injective point of u if T, u :
T.% — Ty M is injective and u™'(u(z)) = {z}. We call u somewhere injective if it
admits an injective point.

Yesterday’s theorem implies: for a closed J-holomorphic curve, somewhere injective <
simple < not multiply covered < the set of injective points is open and dense.

Technical version of the main theorem: fix J#* € J(M,w) and an open subset & = M with
compact closure (called the “perturbation domain”), define the complete metrizable space

T ={JeTJ(M,w)|J=J"on M\U},
and for each J € JY let
MYU(T) = MY (T, A) € Mg (], A)

denote the open set of curves [(3,,(,u)] € Mg n(J,A) such that v : ¥ — M has an
injective point z € ¥ with u(z) € Y. Then for generic J € JY, every curve in MY(J)
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is Fredholm regular, and MY(J) is therefore a smooth manifold'? with dimension equal
to its virtual dimension. Similar statements hold with J(M,w) replaced by J,(M,w) or
J(M).
e Proof “modulo technical hassles™
— Step 1: Pretend that JY is a smooth Banach manifold with

T; 7% = {Y € T(Endc(TM, J)) | Y =0on M\U and w(Yv,w) +w(v,Yw) = 0 for all v,w}.

The latter condition is the linearization of w(Jv, Jw) = w(v, w), needed for w-compatibility;
we would remove it if we only need tameness or no symplectic condition. But of course,
JY is not a Banach manifold in any natural way, as the space of smooth sections of
a bundle with support in a fixed compact subset is at best a Fréchet space, not a
Banach space.'® We will ignore this issue for now and rectify it next week.

— Step 2: Define the “universal” moduli space

MY = {(u,J) | Je T" and ue MY(J)}.

— Step 3 (the main one): Prove that MY is a smooth (and separable) Banach manifold.
This uses the implicit function theorem in roughly the same functional-analytic setup
that we used for studying the space of Fredholm regular J-holomorphic curves for a
fixed J. The main task is to show that for every [(3,4,(,u)] € MY(J), the linear
operator

L:=Do(j,u,J) : T;T @ WHP(W*TM) @ Ty JY — WP (Home (T, u*TM))
(y,m,Y) > Dyn+YoTuoj+JoTuoy

is surjective. In fact, this holds even after restricting L to the set of triples (y,7n,Y)
where y = 0 and 7 vanishes at the marked points. Here the case k > 2 follows
from the case k = 1 via elliptic regularity. For k& = 1, one argues by contradiction
using the Hahn-Banach theorem: if the operator is not surjective, then for - + 2 =1

there is a nontrivial section a € LI(Homge (TS, u*TM)) that is L2-orthogonal to every
L(0,7n,Y), which means the two conditions

(Dyn,ayrz =0 for all n e VVS””(U"‘TM)7
YoTuojay=0 for all Y e T;JY.

The first implies that « is a weak solution of class L{ . to Dfa = 0 on ¥\(, thus
it is smooth on this region and (by the similarity principle) has only isolated zeroes.
Choosing an injective point zg € X\ of u with u(zp) € U and «a(z) # 0, one can then
find Y € T;JY with support near u(z9) such that the second condition is violated.
Note: This last part is the only detail that depends on our restriction to w-compatible
almost complex structures, as Y € T; 7Y needs to satisfy an extra condition to ensure
compatibility. If we don’t care about compatibility, this condition is dropped and
step 3 becomes slightly easier.

— Step 4: The projection 7 : MY — JY : (u,J) — J is a smooth map, and its
derivative at each point (u, J) is Fredholm, and surjective if and only if  is a Fredholm
regular curve. This follows from an algebraic exercise: suppose D : X — Z and

12We are saying “manifold” instead of “orbifold” here because all curves in MY(J) are simple and thus have
trivial automorphism groups. To put it another way, the implicit function theorem in this situation identifies
MU (J) locally with the quotient of 5;1(0) by an action that is both proper and free.

13Frechet spaces are nice objects that arise very naturally in applications, but their usefulness suffers from the
fact that there is no Banach fixed point theorem, and thus no inverse or implicit function theorem.
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A:Y — Z are linear maps between (possibly infinite-dimensional) vector spaces and
themap L : X@®Y — Z : (z,y) » Dz + Ay is surjective. Then the projection
ker L - Y : (z,y) — y has kernel and cokernel naturally isomorphic to those of D.

— Step 5: The Sard-Smale theorem implies that generic J € J¥ are regular values of
the projection m: MY — JY and by step 4, all u € MY(.J) for these J are Fredholm
regular.

¢ Enhancement: Consider the evaluation map ev : M, ,,(J,A) — M*™ and forgetful
map ¢ : Mgy (J,A) = Mg, @ [(2,4,¢uw)] — [(£,4,¢)], both of which can also be
defined on the universal moduli space MY. In the local picture of this space as a zero-set
0710) = T x B x J4, the map (ev, ®) : MY — M*™ x M, ,, then looks like

T xBxJ4 20 H0) = M*™ x T : (jyu, J) = (u(Gr), -, u(Cm), ),
with derivative
kerDa(jvuv J) - Tu(Cl)M XX Tu(Cm)M X CTJT (?/ﬂ%y) e (n(c1)7 . . 7n(<m)7y)

The latter is surjective since we showed that Dd(j,u,.J) is surjective on triples with y = 0
and 7 vanishing at the marked points, implying that (ev, ®) : MY — M*™ x M, ,, is a
submersion. Given any submanifold Z < M*™ x M, ,,, we can now replace MY in the
main argument above with the finite-codimensional submanifold (ev, ®)~!(Z) € M“ and
use it to prove (again modulo technical hassles to be dealt with next time):

e Corollary: For any submanifold Z ¢ M*™ x My, there exists a comeager subset J4 <
JHY such that for all J € JY, all ue MY(J) are Fredholm regular and the map (ev, ®) :
MU(J) = M>*™ x Mg, is transverse to Z, so in particular, the constrained moduli space

MU (T Z) = {ue MU(J) | (ev(u),®(u)) € Z}

is a smooth submanifold of MY(.J) with codimension equal to the codimension of Z <
M>X™ x Mg,m-

Caution: In this statement, the space J4 depends on the choice of submanifold Z, and we
cannot find a single comeager set of .J’s that achieves transversality of (ev, ®) : MY (J) —
M*M x Mg, to all submanifolds Z.

Suggested reading. The factorization theorem on simple and multiply covered curves is proved
in [Wena, §2.15]; a nearly identical proof is also in [MS12]. The main technical work underlying this
result consists of the “local lemmas” 1 and 2, and for these there are at least two approaches one can
take: McDuff-Salamon base their exposition on a deep local formula due to Micallef and White
[MWO95] for the structure of a nonconstant J-holomorphic curve (or more generally a minimal
surface) in the neighborhood of a point where its derivative vanishes. Appendix E (written with
Laurent Lazzarini) of [MS12] contains an exposition of this formula. Alternatively, there is an
“approximate” version of the Micallef~-White formula that suffices for our applications and has a
technically easier proof; this is the approach taken in [Wena], and the local results appear in §2.14,
but with the minor problem that the proof given there is not correct. (I will get around to fixing
this someday.) A fully correct version does appear however in Appendix B of the book [Wen20b],
which is also available for free on the arXiv.

The general version of the theorem that all holomorphic branched covers of Riemann surfaces
are Fredholm regular is proved in [Wenl0, Example 3.16], where it is derived from a more general
setup that was developed for proving transversality results for punctured J-holomorphic curves in
dimension four. The main technical steps in the argument are really Lemma 3.14 and 3.15 in that
paper, but I don’t really recommend reading this now unless you are intensely curious about it, as
it will take a while to understand the setup.
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The generic transversality argument for simple J-holomorphic curves is quite standard, and you
will find very similar treatments of it in [MS12], [Wena, §4.4.1] and (in a more general context)
[Wenc, Lecture 8]. Appendix A.5 of [MS12] also includes a concise proof of the Sard-Smale theorem
(reducing it to the finite-dimensional Sard’s theorem), which was originally proved in [Sma65].

Exercises (for the Ubung on 18.01.2023).

Exercise 11.1. For a nodal J-holomorphic curve u = [(S, j,(,u, A)] of arithmetic genus g > 0
with m > 0 marked points, the automorphism group Aut(u) is defined to be the group of all
self-equivalences, in other words, biholomorphic maps ¢ : (5,j) — (S,j) that fix each marked
point, map nodes to nodes (not necessarily preserving any order but preserving their grouping into
pairs) and satisfy wop = u. (Note that S may in general be disconnected and ¢ is not required to
preserve any connected components that don’t have marked points!) Show that Aut(u) is finite if
and only if u is stable.

Exercise 11.2. The moduli space M, o(j’, d[2]) of degree d > 0 holomorphic maps ¢ : (X,5) —
(X',7") (up to parametrization) between two Riemann surfaces of genera g and ¢’ respectively
sounds like a wonderful object when you hear that its elements are always Fredholm regular, so
that it is always a smooth orbifold of the correct dimension. However, M, o(j’, d[X']) seems less
wonderful when you look at its compactification Mg o(j’, d[~']). Show that for g > ¢’ and d = 1,
Mg o(j',[2]) is an empty moduli space with a positive virtual dimension, and its compactification

Mg.0(4',[2]) is nonempty. This contradicts the tempting intuition that M, ,,(J, A) should always
be an open and dense subset of M ,,(J, A).

Exercise 11.3. Assume (M, J) is a 2n-dimensional almost complex manifold, A € Hy(M), and
v: (%, j) — (M, J) represents a Fredholm regular element of the moduli space M, (J, A). Prove:

(a) For any sequence J, € J(M) converging in the C*-topology to J, there exists for suffi-
ciently large k a sequence of Jg-holomorphic curves vy, : (X, ji) — (M, Jy) such that jp — j
and v — v in C*.

Hint: Use the implicit function theorem in infinite dimensions.

(b) If g = 0, n > 4 and vir-dim Mg o(J, A) = 0, then for all J' € J(M) sufficiently C*-close

to J, there exist elements of Mg o(J’,dA) for d > 1 that are not Fredholm regular.

Exercise 11.4. Assume (M,w) is a closed symplectic manifold.

(a) Prove that if dimM > 6, then for generic J € J(M,w), generic elements [(X, j, ¢, u)]
of the moduli space of all simple J-holomorphic curves have the property that the map
u : ¥ — M is injective. Show in particular that for generic J, all simple curves lying in
moduli spaces of virtual dimension 0 are injective.
Hint: For each g,m > 0 and A € Hy(M), consider elements v € Mg p,12(J, A) satisfying
the constraint that the last two marked points evaluate to the same point in M. Estimate
the dimension of this set, and compare it with vir-dim M ,,(J, A).

(b) Prove similarly that if dim M > 6, then for generic J € J(M,w), generic pairs of elements
of the moduli space of simple J-holomorphic curves have disjoint images.

(c) Do you think the statement in part (b) is likely to be true for dim M = 4?7 Consider for
example M = CP?.

(d) Show that if dim M > 4, then for generic J € J(M,w), generic elements [(X,7,(, u)]
of the moduli space of all simple J-holomorphic curves have the property that the map
u: X — M has no triple points, meaning self-intersections u(z1) = u(z2) = u(z3) such that
the points 21, 22, 23 € ¥ are all distinct.

(e) Show that the statement in part (d) is false for dim M = 2.



58 CHRIS WENDL

Exercise 11.5. Fix a closed Riemann surface (X, j) of genus g > 2, an almost complex manifold
(M, J) of dimension 2n, and a homology class A € Hy(M) that is primitive, meaning it is not dB
for any integer d > 2 and B € Hy(M). Let M(j,J, A) denote the moduli space of parametrized
J-holomorphic maps u : (2,5) — (M,J) with [u] = A; here the word “parametrized” means
that different maps are different elements of M (4, J, A) even if they are related to each other by
reparametrization.

(a) Howis ./i/lv(j, J, A) related to the moduli space M, o(J, A) of unparametrized J-holomorphic
curves with the same genus and homology class (and no marked points)? Express your
answer in terms of the forgetful map ® : M, o(J, 4) = Mgo.

(b) Prove that for generic .J, M(j, J, A) is a smooth manifold of dimension n(2 — 2g) + 2¢; (A).
If the latter is negative, does it follow that M, o(J, A) is empty?

(c) Assuming n > 3, find an optimal constant C(n) = 0 such that if n(2—2g) +2¢;(A) < C(n),
then for generic J, every map in Mv(j, J, A) is injective. You may use as a black box the
following fact (which can be proved via an intelligent construction of Teichmiiller slices):
for every g, m > 0 with 2g +m > 3, the projection Mg 11 — My ., defined by forgetting
the final marked point is a submersion.

12. WEEK 12

Lecture 21 (17.01.2023): Technicalities on transversality.

e Two remedies for the fact that JY (with the C*-topology) is not a Banach manifold:

(1) Use almost complex structures of class C* for some k < oo large (e.g. [MS12] does
this, but then 07 is no longer smooth, thus neither are the moduli spaces, and one
must carefully keep track of how many derivatives exist)

(2) Use the “Floer C.-space”

o Definition: For £ € S := {sequences {¢,,, > 0}%_, with ¢,, — 0} and a vector bundle
FE — M over a compact manifold, define the separable Banach space

C:(B) = {ne I'(E) ‘ Inllc. = Z Em|nflem < 00}~

m=0

Note: All norms in this discussion depend on various choices, and while the C"-topologies
are independent of those choices, the Cc-topology (and the space C(F) itself) is not. We
just need to accept that.
e Properties: Define a partial order on S by saying € < ¢’ if and only if there is a constant
C > 0 such that ¢, < C¢l, for all m e N.
(1) There are continuous inclusions C.(E) — T'(E) (the latter with the C*-topology) for
every e € S
(2) There is a continuous inclusion C./(E) — C.(F) whenever € < ¢
(3) U.cs C-(E) = I'(E)
(4) Every countable subset of S has a lower bound in S.
Corollary: Any countable subset of I'(E) is contained in C.(E) for some € € S.
e Rigorous proof of the main transversality theorem from last time:
— Given any J*f € JY define a smooth Banach manifold (with one chart) consisting of
C.-perturbations of J"f:

—1
1 1
T = {(]1 + 5 Y> Jref (]1 + 5 I Y>

/

Y € Tjeee JY with |[Y]|co < 5}
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for suitably small § > 0, where
Tra T4 ={Y € Tpa T | |Y]c. < 0}

Now there is a continuous inclusion J¥ — J¥ and a smooth section @ : T x Bx J* —
E:(,u,J)— 05(4,u).

— Call [(%,],¢,u)] € MY(J) e-regular if D0(j, u, J) is surjective on T; T @1, BOT; TH.
Since every smooth section is of class C; for some € € S, what we proved last time
implies: Given u € MY (J™), there exists ey € S such that u is e-regular for every
e <L €p-

— Corollary (using the properties of C. listed above and the fact that MY (J™") is second
countable): One can choose ¢ € S such that every u e MY (J™f) is e-regular.

— Define the universal moduli space of e-regular curves:

MY ={(u,J) | Je T, ue MY(J), and u is e-regular} .

The implicit function theorem implies this is a smooth Banach manifold, so the pro-
jection MY — JY can be fed into the Sard-Smale theorem.

— Taubes trick: Prove that transversality can be achieved on a sequence of compact
subsets exhausting MY (.J). Choose compact subsets

JH(E)chEcHE)c...c X

whose union projects onto M ,,, (possible because Teichmiiller slices are finite-dimensional
and thus locally compact), then define MY, (J) ¢ MY (.J) for each N € N to consist of
curves [(%, 7, ¢, u)] satisfying closed conditions that prevent degenerations and define
quantitative versions of the conditions defining MY(.J):

(1) jeIn(®)

@) Jduleo < N

(3) There exists a point zg € ¥ at which
1 1 . dist(u(z0), u(2)) 1
zy lulo)lz 5 and o W e SN
Then MY(J) = Jyen M%(J), and for any C*-convergent sequence Jr — J, se-
quences uy, € MY (Jy) have subsequences converging to elements of MY, (J). Define

dist(u(zo), M\U)

I ={JeJg4 |all ue MY (J) are Fredholm regular} < JY

and claim: JY is open and dense (in the C*-topology). Openness follows from
the compactness statement above, and for density, it suffices to choose J*f € Jk,’
arbitrarily and show that for any sequence J;, € JY converging to J*! and consisting
of regular values of the projection MY — JY every up € MY(Jy) for k » 1 is
Fredholm regular. This holds because a subsequence of uy, converges to something in
MY (Jre), which is e-regular, implying that wuy, is also e-regular and therefore (as a
regular point of the projection MY — J4) Fredholm regular. Now

gk < g4
NeN
is the comeager set we want.
e How to achieve 0;h0 for all (not just somewhere injective) curves: inhomogeneous per-
turbations! Given J € J(M), define the vector bundle P — T x ¥ x M with fibers
P »p) = Home((T2X, 5), (T, M, J)), so any K € I'(E) determines a section v : T x B — &

WEED
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by v(j, u)(z) := K(j, z,u(z)). We then consider the inhomogeneous nonlinear Cauchy-
Riemann equation

0;(j,u) = v(j,u), ie. 05.(j,u) == 0;(j,u) — v(j,u) =0.

e The linearization of 0y, at (j,u) € 5;,1/(0) with respect to n € T,B is another linear
Cauchy-Riemann type operator D¥ on u*T'M.

e Proposition: For generic K € I'(P), 0 J,» is transverse to the zero-section everywhere.
Proof: Same idea as before, but easier because the perturbation K(j,z,u(z)) depends
explicitly on z and not just u(z).

Lecture 22 (18.01.2023): Gluing.

e Goal: Describe a neighborhood of Uy := [(S, jo,(, A, ug)] in My m(J, A). In particular,
must this neighborhood contain a sequence of smooth curves in My ,(J, A) degenerating
to Up? (Exercise 11.2 shows that this is not always true.)

e Choose a Teichmiiller slice T < J(S) through jo (i-e. a product of Teichmiiller slices for
each connected component of S) with ¢ U A regarded as the set of marked points, and let

WrP (ufTM) := {ne WHP(uETM) | n(2*) = n(z~) for each node {z*,27} € A}.

Definition: The nodal curve Uy is Fredholm regular if the restriction of the linearization
D3 (jo,uo) to the domain T}, ’T@VVK”’(%k T M) is surjective onto W*=12(Home(T'S, u T M)).

o Meaning: Suppose Uy has N nodes, denoted by A = {{z], 2 },..., {2k, 2y}}, and let
B denote the Banach manifold W*?(S, M). Fredholm regularity of Uy then means that
all component curves in Uy are Fredholm regular (hence 0;'(0) = 7 x B is a smooth
finite-dimensional manifold near (jo,uo)) and, additionally, the map

eva : 051(0) = M7 5 () o (u(zF),ulz), o u(i), u(zy)
is transverse at (jo, ug) to the submanifold
Dlag = {(plapla v 7pN7pN) | Pi,..-,PN € M} c MX2N~

The set Ma := ev:i'(Diag) c d;'(0) parametrizes the set of all other nodal curves in
Mg (J, A) near Uy that also have N nodes, and it is then a manifold of dimension

dim Ma = ind Dd;(jo, uo) — 2nN

e Dimensional comparison: assume for simplicity that all domains in this discussion are
stable, hence their automorphism groups are finite. One then computes:

dim Ma = vir-dim Mg ,,(J,A) =2N  and  dim7 = dim M,,, — 2N.

Upshot: If we want to see all smooth curves near Uy € My ,,(J, A) or all smooth Riemann
surfaces close to [(S,jo,¢, A)] € My, we need to add 2 extra “gluing parameters” for
each node.

¢ Define the space of gluing parameters

I :=([0,0) x SY*N 5 (Ry,61,...,Rn,0n) =: 7

_ N\ XN .
and its compactification T := ([0,00) x Sl> where [0, 0) x ST := ([0,00] x S) / ({oo} x St)
is topologically a 2-disk, its center identified with the quotient of {0} x S!. Denote the
point with Ry =...= Ry =0 by I' " eT.
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e Pre-gluing of Riemann surfaces: Assuming all j € 7 are identical near A, associate to each
(4,7) € T xI" a smooth Riemann surface (X, j,) of genus g, defined by cutting out of (.5, 5)
small disk-like neighborhoods of the nodal points z;—r, then connecting the boundaries of
neighborhoods of z;" and z; by necks [—R;, R;] x S* and “twisting” each neck by 6; € S*.
(In other words: after choosing holomorphic cylindrical coordinates near z;—r, 0; represents
the S!-freedom in how to glue [—R;, R;] x S! biholomorphically to these neighborhoods.)
The resulting map

TxI' > Mg,m : (]77) g [(Z'Y?j"/’c)]

has a natural continuous extension to 7 x I' — M, ,, whose image is onto a neighborhood
of [(S, jo,(,A)] € My . (For this extension, the node {z;", 2} € A is replaced by a neck
of length 2R; whenever R; < 00, but the node is left intact when R; = 00.)

e Pre-gluing of J-holomorphic curves: Associate to each (j,u,v) € /\’ZA x I' a smooth and
approzimately J-holomorphic map w, : (£,,4y) — (M,J), defined such that v, = u
outside the disk-like neighborhoods of nodal points, and on each neck [—R;, R;] x S*, u,
interpolates via a smooth cutoff function between u/|, a(z+) and ulpn d(=-)- There is also
a natural extension to v € I' that leaves the node {z;", 2} intact whenever R; = o0.

e Main technical lemma (“gluing estimates”): One can choose a family of norms (depending
on the gluing parameters) such that:

(1) 105 (dy,uy)| — 0 asy — r” B
(2) If Uy is Fredholm regular, then the linearization'* Vo;(j.,u,) is surjective for all ~
close enough to ' and has a right inverse that is bounded uniformly as v — r”.
Idea of the proof: For an intelligent choice of norms, one views the operators Vo (G uy)
for v > T~ as converging (in some generalized sense) to the restriction of Dd, (jo, uo) that
was required to be surjective in the definition of Fredholm regularity.

e Main gluing theorem: If Up is Fredholm regular,'® then the pre-glued family of approxi-
mately J-holomorphic curves . : (3, ,) — (M,.J) can be modified for v € T near T~ to
a family of ezactly J-holomorphic curves

ul : (E’Y’aj;’) - (M7J)a

L
where v € T, j" € T and «/, are all small perturbations of v, j, u, respectively, with the size
of the perturbation becoming arbitrarily small as v — . Moreover, the image of the
resulting map

MA X f — ﬂgm}(t], A)

contains a neighborhood of Uy.

Idea of the proof: Restricting Vd;(j,,u,) to a subspace complementary to its kernel
gives (for ~y close to fw) an isomorphism @ satisfying an injectivity estimate of the form
[Qu]| = ¢|v| for a constant ¢ > 0 that is (thanks to the gluing estimate) independent of
(j,u,7). Since 0;(j,,u,) is small, a quantitative version of the inverse function theorem
can then be used to show that (j,,u,) admits a unique perturbation in the direction of
this subspace that hits the zero-set of 0.

e Recall: For [(%,7,()] € Mgy m, each ¢ € Aut(X, j, ¢) represents a Fredholm regular element
of the moduli space M, (4, [E]), which has virtual dimension 2m, and this element is
also a transverse intersection of ev : Mg ,, (4, [£]) — £*™ with the one-point submanifold

MHere we are writing V@7(ji,, u,) instead of Dds(j,,u~) because in general (j,u,) ¢ 3;1(0), thus the lin-
earization depends on a choice of connection.
1510 the lecture I neglected to include this hypothesis, but it really is quite important.
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{(¢1,.--,¢m)}- It follows (via the implicit function theorem) that for any choice of Teich-
miiller slice 7 ¢ J(X) parametrizing 7 (X, () near j, every j' € J(X) near j determines
a unique j” € T near j and ¢’ € Diff(3, () near ¢ for which ¢’ : (X£,j") — (%, is
biholomorphic. (Note that if 7 is chosen to be Aut(X, j, ()-invariant, the uniqueness in
this statement implies that ¢’ = ¢ whenever j' € T.)

One can similarly exploit the Fredholm regularity of automorphisms and plug them into a
variation on the gluing construction above, giving:

Automorphism gluing theorem:'® Assume the Teichmiiller slice 7 < J(S) is chosen to be
Aut(S, jo, ¢, A)-invariant. Then every ¢ € Aut(S, jo, (, A) uniquely determines a family of
biholomorphic maps

Py * (E’Y')jfy’) - (E’yaj'y)a (J,7)eT xT

fixing the marked points ¢, such that the map ¢, , and the parameters 4" € I" and j' € T
each depend smoothly on (j,v). Moreover, there is a natural continuous extension of this
family allowing v € T, which defines a continuous family of equivalences between marked
nodal Riemann surfaces, and any sequence ¢y of such equivalences converging to ¢ as
k — oo can be realized via this construction for £ » 1 and a unique sequence of parameters

ks ) = (o, T ) e T x T.

Corollary 1: The natural action of Aut(S, jO,C A) on ./\/lA by o - (Jyu) == (p*j,uop)
extends to an action on a neighborhood of Ma x {T"} in Ma x T such that if Uy is
Fredholm regular, the gluing map /\/lA x I' > M, (J, A) descends to the quotient as a
homeomorphism

(MA x F) / AUt(S, jo, ¢, A) = My (J, A)

from a neighborhood of [(jo,uo,F )] to a neighborhood of Uy. In particular, the open
set of Fredholm regular stable nodal .J-holomorphic curves in M, ,,(J, A) is naturally a
topological orbifold'” with isotropy group Aut(Up) at Up.
Corollary 2: For 2g + m > 3, the Deligne-Mumford space Mg,m is a compact topological
orbifold with isotropy group Aut(S,j,¢, A) at [(S,4,¢, A)] € Mg .
(Remark: You can view this either as a corollary of Corollary 1 above, or as a direct
consequence of the automorphism gluing theorem, as the latter presents a neighborhood
f [(S, jo,¢,A)] in My, as the quotient of T x I' by Aut(S, jo,¢,A). While it does not
follow immediately from our gluing construction, one can show in fact that M, , has a
natural smooth structure compatible with the smooth orbifold structure we already had
on the open and dense subset M, ,, © M ,,,. It also has a natural complex structure and
is thus a complex orbifold, whose tangent spaces all have natural identifications with the
cokernels of certain complex-linear Cauchy-Riemann operators.)
Nice corollary of Corollary 2 (via Deligne-Mumford compactness): For each g, m > 0 with
2g + m = 3, there exists a universal bound on the orders of the automorphism groups of
genus g Riemann surfaces with m marked points.

161'm no longer sure, but I suspect that I slightly misstated this theorem and Corollary 1 when I presented them

in lecture. I’'m trying very hard to produce correct statements in this writeup, even if I leave the proofs somewhat
to your imagination.

17T am not making any claims about the smoothness of this orbifold, because there is no obvious way to control

the smoothness of transition maps as gluing parameters go to infinity. This issue has occasionally been a source of
controversy among symplectic topologists.
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Suggested reading. For the basic properties of the Floer C.-space (e.g. why it is separable), see
[Wenc, Appendix B]. The method by which I used it in lecture to fix the proof of generic transver-
sality is described in the blog post [Wen]; unfortunately I did not have the correct understanding
of this method until relatively recently, and thus have not gotten around to updating any of my
books-in-progress accordingly.

If you want to see how generic transversality is proven using finitely-differentiable almost com-
plex structures, see [MS12, §3.2]. The so-called “Taubes trick” also appears in their argument, but
for a different purpose: it is used in order to turn a statement about generic C*-smooth almost
complex structures into one in which everything is C*.

The inhomogeneous nonlinear Cauchy-Riemann equation doesn’t appear in any of my lecture
notes, but is discussed in [MS12, Chapter §].

I wish I could give you a good reference for the general gluing theorems we sketched in lecture,
but I really can’t; in this form, they are essentially folk theorems. Various similar but more specific
and technical gluing theorems can be found (with full gory details) in various places: e.g. the
construction of quantum cohomology requires a theorem about the gluing of two J-holomorphic
spheres with a domain-dependent almost complex structure, so this is proved in [MS12, Chapter 10].
If you are at all familiar with Floer homology, then it is also worth looking at the gluing theorem
for two rigid Floer cylinders explained in [AD14], since this result is somewhat simpler to state
(if not to prove). In every case, complete proofs require quite careful definitions of parametrized
families of norms and a fairly long sequence of estimates; getting all the details right is a pain in
the neck, though the main idea is not so hard to understand.

Exercises (for the Ubung on 25.01.2023). Update (27.01.2023): I have added written solu-
tions to these exercises to make up for the cancellation of the problem session on 25.01.

Exercise 12.1. The following trick is used instead of inhomogeneous perturbations for the con-
struction in [MS12] of the genus 0 Gromov-Witten invariants of semipositive symplectic manifolds.
Given a closed Riemann surface (¥, j), a domain-dependent almost complex structure on
a manifold M is a smooth function J on ¥ x M whose value at each point (z,p) € ¥ x M is
a complex structure J(z,p) : T,M — T,M; equivalently, J is a family of almost complex struc-
tures J(z,-) € J(M) smoothly parametrized by z € 3. If (M,w) is a symplectic 2n-manifold,
we can define J>(M,w) to be the space of smooth domain-dependent almost complex structures
such that J(z,-) is w-tame for every z € 3; it is easily shown that this space is contractible. For
J e J¥(M,w), a smooth map u : ¥ — M is then called J-holomorphic if its derivative at every
point z € ¥ is a complex linear map from (733, j) to (T, .y M, J(z,u(z))), so in local holomorphic
coordinates (s,t) on some region in 3, the nonlinear Cauchy-Riemann equation now becomes

Osu(s,t) + J(s,t,u(z)) Oru(s,t) = 0.
For J e J*(M,w) and A € Hy(M), let

MG, J, A) € C*(, M)
denote the space of J-holomorphic maps u : (X, j) — (M, J) that satisfy [u] := u[X] = A. Notice
that for most choices of J € J*(M,w), there is no meaningful notion of multiply-covered curves
in /\7(]’, J, A): the composition of a J-holomorphic curve with a holomorphic branched cover of
Riemann surfaces will not still be J-holomorphic for a typical domain-dependent J. For the same
reason, there is no natural action of Aut(X, j) on M (4, J, A) and no meaningful equivalence relation
defined via biholomorphic reparametrization when J is domain-dependent.
Prove:
(a) For any J € J>(M,w), the set of J-holomorphic maps u : (3,j) — (M,J) satisfying
[u] = 0 € Hy(M) is precisely the set of constant maps ¥ — M.
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Solution:

For the same reasons as in the case of a domain-independent w-tame almost complex struc-
ture, the 2-form u*w on ¥ is everywhere nonnegative, and strictly positive wherever the
derivative of u does not vanish. If [u] = 0, the computation { u*w = {[w], [u]) = 0 thus
implies that u is constant.

For generic J € J>(M,w) and every A # 0 € Hy(M), M(j, J, A) is a smooth manifold of
dimension nx(X) + 2¢1(A).

Solution:

One can set this up in the same way that we analyzed the local structure of M, ,,,(J, A),
but there is no need to worry about Teichmiiller slices since j is fixed. The nonlin-
ear Cauchy-Riemann operator is thus defined as a smooth section d; : B — & with
B = WkP(Z, M) and &, = WFLP(Homc(TX,u*TM)), where in the case of domain-
dependent J, one can take the complex structure on the bundle u*TM — ¥ to be given
by J(z,u(z)) at each point z € ¥. The linearization at u € 9;'(0) is then a Cauchy-
Riemann type operator D,, = Doy (u) : Ty,B — &, on u*T'M, and thus has Fredholm index
nx(2) + 2¢1(u*TM) = nx(X) + 2¢1(A). The only difference that the domain-dependence
of J makes to this discussion is that if we choose a symmetric connection V on M in order
to write down the explicit formula

D.1(2) = Vn(z) + J(z.u(2)) 0 Vin(2) 0 j + VI (2,u(2)) o Tuo

then the terms J and V,J both depend explicit on z € ¥ and not just on u(z) € M.

Here is a sketch of the generic transversality proof “modulo technical hassles”, i.e. pre-
tending that certain Fréchet manifolds are actually Banach manifolds, a discrepancy that
can as usual be repaired using C.-spaces. Let us pretend in particular that J>(M,w) is a
Banach manifold, and use it to define a universal moduli space

M(T) = {(u,J) | J e 75(M,w) and u e M(j, J, A)} .

The main step is to show that M(J) is a smooth Banach manifold, and the rest of the
argument then proceeds as usual via the Sard-Smale theorem and the Taubes trick. To
prove smoothness of M(J), one needs to extend d; in the obvious way to a section 0
defined on a bundle over B x J>(M,w), whose linearization at each (u,.J) € 071(0) will
then be an operator L : W*P(u*TM) @ T; T (M,w) — WrE=LP(Home (TS, u*TM)) of
the form

L(n,Y)=Dun+YoTuoj.

The crucial difference between this and the situation we already considered in lecture is
that Y is now allowed to depend explicitly on both z € ¥ and u(z) € M, i.e. Y can be any
smooth function on ¥ x M whose value at (z,p) is a linear map Y (z,p) : T,M — T, M that
anticommutes with J(z, p) and satisfies the additional condition w(Y v, Jw)+w(Jv,Yw) =
0 for all tangent vectors v,w; the latter is the result of linearizing the w-compatibility
condition w(Jv, Jw) = w(v,w). Consider the case k = 1, from which the rest will as usual
follow via elliptic regularity. We know that L has closed image since D, is Fredholm,
so if L is not surjective, there exists a nontrivial section « € LY(Homc (7%, u*TM)) for
% + % = 1 such that

(Dyn,aypz =0 for all n e WP (u*T M),
Y oTuojayz=0 forall Y € T; 7> (M, w).
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The first condition implies via elliptic regularity that a is a smooth solution to D« = 0,
so by the similarity principle, it has only isolated zeroes. The next step is where we needed
to assume in lecture that u : ¥ — M has an injective point, but the domain-dependence
of Y makes that assumption unnecessary here. Instead, it suffices to be able to choose a
point zp € ¥ at which «a(zp) # 0 and T,,u # 0, the existence of which is guaranteed if
A # 0 since, by part (a), u is not constant. Indeed, we can then choose Y € T;J*(M,w)
such that Y (zo,u(z0)) 0 T»,u 0 j has a positive inner product with «(zp) and then multiply
by a cutoff function depending only on z € ¥ to make the integrand of (Y o Tu o j,a)r2
vanish outside an arbitrarily small neighborhood of zy. This ensures (Y o Tw o j,ayrz > 0
and thus brings about a contradiction, proving that L is surjective.

(¢) The statement about M(j,J, A) in part (b) also holds for A = 0 € Hy(M) and all time-
independent J € J,(M,w) if ¥ has genus 0, but it does not hold for any J € J*(M,w) if
¥ has positive genus.'®

Solution:
If Je J*(M,w) and u : ¥ — M is a constant map with value p € M, then the complex
vector bundle u*T'M — X has fiber (T,M, J(z,p)) at each point z € X, so it is a trivial
bundle, and the linearized Cauchy-Riemann operator D,, takes the form

Dun(z) = dn(z) + J(z,p) o dn(z) o j.
Here we have written ordinary differentials instead of covariant derivatives since 7 is just
a function ¥ — T, M with values in a fixed vector space. Since the bundle is trivial, the
operator D,, has index nx(X), which is nonpositive if ¥ has genus g > 0, even though there
clearly always exists a 2n-dimensional family of constant J-holomorphic maps ¥ — M,
implying that D, cannot be surjective. On the other hand, if ¢ = 0 and J is domain-
independent, then choosing a complex basis of (T}, M, J(p)) identifies D,, with the standard
Cauchy-Riemann operator 0 on the trivial bundle S? xC"™ — S2. The kernel of this operator
consists of the holomorphic functions S? — C™, which are all constant since 52 is compact,
thus dim ker D,, = 2n = ind D,, and it follows that D, is surjective.

Comment: The trouble with higher-genus curves in the homology class 0 € Ho(M) is a reason to
prefer inhomogeneous perturbations; cf. the next exercise.

Exercise 12.2. Fix a closed Riemann surface (3, j) of genus g > 0 with a point zg € ¥, and assume
(M,w) is a closed symplectic 2n-manifold with a fixed tame (and possibly domain-dependent)
almost complex structure J € J>(M,w). Let P — ¥ x M denote the vector bundle whose fiber

t (z,p) € ¥ x M is the space of complex-antilinear maps from (7,3, j) to (T, M, J(z,p)). Any
section K € I'(P) then determines an inhomogeneous nonlinear Cauchy-Riemann equation for
maps u : % — M in the form

05u = v(u) on X,
where at z € 3, dyu(z) := Tou + J(z,u(z)) o Tou o j € P, 4z and v(u)(z) := K(z,u(z)). For
Ae Hy (M), let
M, J, K, A) c C* (2, M)

denote the space of solutions u : ¥ — M to this equation that satisfy [u] = A. Prove:

(a) For generic K € T'(P) and every A € Ho(M), Mv(j, J, K, A) is a smooth finite-dimensional
manifold. What is its dimension?

18] have modified this statement slightly from the original version, which claimed that transversality also holds
in the genus zero case for all domain-dependent J. On closer inspection, I don’t think that’s true.
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Solution:
T’ll skip to the crucial detail: the operator that needs to be surjective for each u €

M(j,J, K, A) in order for the relevant universal moduli space to be smooth takes the
form

L: WY (u*TM)®T(P) — L (Home(TX, u*TM))
L(n,Q)(2) = (Dyn) (2) — Q(z, u(2)),

where DY is a linear Cauchy-Riemann type operator on u*T'M. If L is not surjective, then
there is a nontrivial section « of class L7 for % + % = 1 satisfying

Dim,ay: =0 forall e WP (u*TM),
Q- u),apr2 =0 for all Q € T(P).

As usual, the first condition implies via elliptic regularity and the similarity principle that
« is smooth and has only isolated zeroes. One can then easily violate the second condition
by a suitable choice of Q(z,p) with support for z close to some point z; where «(z1) # 0;
this does not require any assumptions at all about the map u : ¥ — M. By the usual Sard-
Smale/C.-space/Taubes trick argument, it follows that ﬂ(j, J, K, A) is a smooth manifold
for generic K € I'(P), and its dimension is the index of DY, which is nx(X) + 2¢1(A4).

If g =0and J € J,(M,w) is domain-independent,'? then there exists a neighborhood
U c T'(P) of 0 such that for every p € M and every K € U, /\7(]’, J, K,0) contains a unique
solution u : ¥ — M with u(zg) = p. In what circumstances will this solution be constant?

Solution:
We will deduce the result from the implicit function theorem after observing that for each
pe M, if g=0, K =0 and J is domain-independent, then the moduli space

~

M, J.5,0: p) = {u e M(3, J. K.0) | u(z0) = p}

is “cut out transversely,” meaning the following. Since K = 0, M (4, J, K, 0) contains only
constant maps, and as we saw in Exercise 12.1, the linearized Cauchy-Riemann operator
D, at each of these maps can be identified with the standard operator ¢ on a trivial bundle,
which is surjective and has kernel consisting of all constant functions. Now pick m € N
large and consider the section

01, BxC™(P)—&: (u,K) > dyu—K(-,u),

where B:= WHP(3, M) and &, k) := LP(Homc(TE,u*TM)). Since there is a continuous
composition pairing (F,u) — Foue W'P for F € C! and u e WP, the section d;, is of
class C™~! due to the term K(-,u), so we need to assume at least m > 2 in order to apply
the inverse and implicit function theorems. At (u, K) € 5’3;(0), its linearization takes the
form

D0y (u, K) : WHP(u*TM) @ C™(P) — LP(Home (TS, w*TM)) : (1,Q) = Din — Q(-, u),

where D? is a linear Cauchy-Riemann type operator on u*TM. Whenever K = 0 and
u is a constant map, D = D, has the aforementioned identification with the standard

9As with Exercise 12.1(c), I have modified the statement here to add the assumption that J is domain-

independent in the genus zero case.
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operator 0 and is thus surjective, implying that D0y, (u,0) is also surjective, hence aji(O)
is a C™ l-smooth Banach manifold in some open neighborhood of the subset

~

M, 7,0,0) = { (u,0) € 25 1(0) }
which is compact since it consists only of constant maps. We claim moreover that the map
07,,(0) > C™(P) x M : (u, K) — (K, u(z))

is a local Cm_l—diﬁeomorphigm on some neighborhood of M (4,J,0,0). Indeed, the deriv-
ative of this map at (u,0) € 6;i(0) withu=pe M is

(12.1) kerD3J7u(u,O) - C"(P)Y@T,M : (n,Q) — (Q,n(z0)).

If (Q,m(z0)) = 0 here, then 7 is an element of ker D, with 7(z¢) = 0, implying n = 0
since ker D,, contains only constant functions, so we’ve proved the derivative is injective.
For surjectivity, suppose (@, X) € C™(P) @ T, M is given. Since D, is surjective, we can
then find n € WHP(u*T M) with D,n = Q(-,u), and then add to this a constant function
to achieve 7(zy) = X. We then have Dd;,(u,0)(n,Q) = Dyn — Q(-,u) = 0, and have
thus proven that the map (12.1) is surjective. Using the inverse function theorem and
appealing to the compactness of M (4, J,0,0) and the uniqueness of maps in this moduli
space through any given point p € M, we now find a neighborhood U™ < C™(P) of 0 such
that the map

{(u, K) | K eu™ and ue M(j, J, K,o)} LU XM (u, K) e (K, u(z))

is a C™ l-smooth diffeomorphism. Take U < T'(P) to be the set of all smooth elements
in U™,

Given p € M the map u € M(j, J, K,0) with u(z9) = p will be constant if and only if
K(z,p) =0 for all z € 3. This implies in particular that for generic choices of K, none of
these maps are constant.

(¢c) If g=1and H c M is a smooth hypersurface, then for generic K € T'(P), /\7(]’, J,K,0)
contains no solution u : ¥ — M with u(z¢) € H. Find also an explicit K € T'(P) that is
not generic in this sense.

Solution:

We saw in part (a) that for generic K, M(j, J, K,0) in the genus 1 case is a smooth man-
ifold of dimension ny (%) + 2¢1(A) = 0, i.e. a discrete set. One can extend this as follows
to a result involving the transversality of the “evaluation” map

ev: /\7(j, JK,A) > M :u— u(z).
The idea is first to show that the obvious extension of ev to the universal moduli space®

M= {(u,K) | K e T(P) and u e M(j, J, K, A)}

0

is a submersion. The key point here is that the operator L that we needed to prove is
surjective in part (a) remains surjective if n € W1P(u*T M) is restricted to the space of
sections satisfying 7(zg) = 0. This extra condition makes no difference to the argument in
part (a); one only needs to observe that « is still smooth on ¥\{zy} and has isolated zeroes,
so one can pick a point z; € ¥\{zp} at which a(z1) # 0 and choose Q(z,p) to have support

20Here we are again pretending that I'(P) is a Banach manifold, and as usual, the discrepancy can be remedied
using C.-spaces.
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near z = z; and not intersecting z = zy5. With this understood, any smooth hypersurface
H < M now determines a smooth codimension 1 Banach submanifold

ev 1(H) c M,

and by applying the Sard-Smale theorem to the projection ev '(H) — I'(P) : (u, K) —
K, one finds a comeager subset I'"*8(P) < I'(P) depending on H such that for all K €
rreg(p), M(j, J,K,0) is a smooth O-manifold containing ev—!(H) < M(j, J,K,0) as a
codimension 1 submanifold. By definition, a codimension 1 submanifold of a 0-manifold is
the empty set.

We observe however that if K = 0, then /\7(]’, J, K, 0) contains all constant maps ¥ — M
and thus contains a map through every hypersurface of M, implying 0 ¢ T"8(P).
If g > 2, then for generic K € T'(P), M(j,J,K,0) = ¢. Find also an explicit K € T'(P)
that is not generic in this sense.

Solution: "

The point here is that dim M(j, J, K,0) = nx(X) is negative if g > 2. Once again K =0
is clearly not generic since M(j, J, 0,0) contains all constant maps ¥ — M and is thus not
empty.

Exercise 12.3. Fix (%,j) and (M,w) with a domain-dependent almost complex structure J €
JZ(M,w) and inhomogeneous perturbation K € I'(P) as in the previous two exercises.

(a)

(12.2)

Find a (domain-independent) almost complex structure J on ¥ x M such that the natural
projection (X x M, j) — (X, 4) is pseudoholomorphic and the map 4 : ¥ —> X x M : z —
(z,u(z)) is J-holomorphic if and only if u : $ — M satisfies the inhomogeneous nonlinear
Cauchy-Riemann equation d;yu = v(u) of Exercise 12.2.

Hint: If you regard > x M — X as a trivial fiber bundle with almost complex fibers,
you can construct a connection on this bundle for which d;u = v(u) is equivalent to the
condition that the covariant derivative of the section U is everywhere complex-linear.
Remark: This exercise has the convenient consequence that almost everything one needs to
know about the moduli space /\7(]', J, K, A) follows from things we have previously proved
about the usual moduli space of J-holomorphic curves with domain-independent J.

Solution:

Following the hint, let 7 : E — X denote the trivial fiber bundle ' = ¥ x M, with fibers
E. = {z} x M, and write VE c TE for the vertical subbundle over E, whose fiber V{; ,,) E
at (z,p) € Eis T(, ) E. = T,M. We can use J € J*(M,w) to endow each fiber E, with the
almost complex structure J, := J(z,-) € J-(M,w), which can also be viewed as a complex
structure on the vector bundle VE — E. A connection on E — % defines a horizontal
subbundle HE < TFE complementary to V E, thus giving a splitting TE = HE®VE
such that for each (z,p) € F, s : TE — TX restricts to an isomorphism H, ) E — T,
In light of the canonical isomorphism V. ,yE = T, M, the connection thus determines an
isomorphism

T(z,p)E = H(z,p)E('B‘/(z,p)E = TZE(-BTPM,

where we should stress that unless we have chosen the trivial connection, this isomorphism
will not be the obvious one arising from the fact that F is a product X x M. Let K :
TE — VE denote the fiberwise linear projection along HE. The covariant derivative of a
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section s : ¥ — F in the direction X € 7T, at a point z € ¥ is then given by
VXS = K(TS(X)) € ‘/;(Z)E

To be more explicit about this, we can write the projection K.,y : T(;,) (X x M) —
ViepE = TpM in block form with respect to the “obvious” splitting T{, ,)(X x M) =
T.X®T,M as

K(Zyp) = (Z/(Z7p) 1) :Tzz @TpM — TpM

for some linear map v(z,p) : T,X — T,M that depends smoothly on (z,p) € ¥ x M. It
will turn out to be convenient in the following if v(z, p) defines a complex-antilinear map
(T.%,4(2)) = (I,M, J(2,p)), so let us assume this henceforth. A section & : ¥ — E =
¥ x M takes the form u(z) = (z,u(z)) for some smooth map u : ¥ — M, and its covariant
derivative with respect to X € T, X is then

. X
Vxu= K(z,u(z)) (TZ’U,(X)> =v(z,u(2))X + Tyu(X) € TU(Z)M'

Let us call & a J-V-holomorphic section if its covariant derivative defines a complex-linear
map (1.%,5(2)) — (Tu=M,J(z,u(z))) at every point z € X; in light of (12.3), this
condition means

T.uoj(z) +v(z,u(2)) 0oj(z) = J(z,u(2)) o Tyu+ J(z,u(z)) o v(z,u(z)).

Since v is complex antilinear, the two terms containing v can now be combined into one,
and the equation rewritten as

a]’U,(Z) =Tou+ J(Z,U(Z)) oTu O](Z) = _QV(z,u(z))'

Up to a factor of —2, this is the usual inhomogeneous nonlinear Cauchy-Riemann equation
(with domain-dependent J) for the map u : ¥ — M, and we see that once J has been
chosen, there is a canonical bijective correspondence between choices of inhomogeneous
perturbation and choices of connection for which the term v in the vertical projection is
complex-antilinear. Finally, we construct a domain-independent almost complex structure
J on the total space E = ¥ x M such that @ is a J-V-holomorphic section if and only if it is a
J-holomorphic map ¥ — E. It will be most convenient to write j(z,p) TepE =T pnE
in block form with respect to the splitting (12.2), and the obvious formula to try is then

2 jz) 0\,
J(z,p) = ( 0 J(Z’p)> T HepE@VepnE = Hep E@Vip)

i.e. J is the unique almost complex structure that matches J on the vertical subbundle and
makes each horizontal subspace a complex subspace whose projection to the tangent space
of the base is complex linear. In the same splitting, the tangent map T, : 7.3 — Ty B
takes the form

~ 1
T-u = (va(z)) T3 = Hio) E® Vi) E,

thus the equation T,u o j(z) = j(ﬁ(z)) o T, becomes

(va(iSZQ j(z>) B (j(oz) J(a(i(z))) <v§<z>) - (J(z,ué)()z l va<z>>’

which holds if and only if Vi(z) is complex linear.
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(b) Describe a natural compactification for the moduli space M (4, J, K, A). Think up two ways

to deduce this result: (1) By a direct bubbling argument, and (2) Using the construction
in part (a) to derive it from Gromov’s compactness theorem.

Solution: Let’s first think in terms of the trivial fiber bundle 7 : £ = ¥ x M — ¥ and
almost complex structure J € J(F) from part (a). Given A € Hy(M), let A € Hy(E) de-
note the homology class represented by a section of the form (z) = (z,u(2)) f u: X - M
represents A. Not every J-holomorphic map @ : (3,5') — (E,J) homologous to A need
be of this form, but we observe that since  : (E, J) — (3, ) is pseudoholomorphic, every
J-holomorphic map @ : (2,5') — (E,.J) has the property that o4 : (£,;') — (,4) is a
holomorphic map between Riemann surfaces. If [4] = A, then since 7, A = [X], the map
mow : Y — ¥ must have degree 1 and is therefore a biholomorphic map. It follows that
@ has a unique biholomorphic reparametrization making 7 o @ the identity map, so up to
reparametrization, we can indeed assume without loss of generality that ;7 = j and 4 is a
section of the bundle 7 : F — 3, giving rise to a bijective correspondence

M(]v J7 Ka A) E’ Mg,O(ja A\)
u— (3,4, F,u)].

This makes it seem natural to call ﬂgp(j\, /Al) the compatification of /ﬁ(j, J, K, A), but
we should think a bit about what this means in practice. Nodal curves [(S,j', &, A, D)] €
ﬂ%o(f, A) may in general have several components S = Syui...1S,, and writing v; := 9|g,
for each ¢ = 1,...,r, the map ©; : (S;,5) — (E, j) will also have the property that
wot; : (Si,7) — (X%, 7) is a holomorphic map between closed Riemann surfaces, with some
degree d; > 0. Since 7, A = [X], there are not many possibilities for these degrees: they
must all add up to 1, which means that exactly one of them (say for i = 1) is 1 and the rest
vanish. This means that ; can be reparametrized biholomorphically to define a section
01 : (%, 7) — (E, j) :z — (z,v1(2)) for some vy € /\jl/(j7 J, K, A1), where Ay € Hy(M) need
not match A, whereas for i = 2,...,r, 0; is a map of the form v;(z) = (z;,v;(2)) with z; € &
constant. Maps of this form are J-holomorphic if and only if v; : (Siy7') = (M, J(z,)) is
an honest pseudoholomorphic curve, i.e. it satisfies the nonlinear Cauchy-Riemann equation
with no inhomogeneous term and a domain-independent almost complex structure. The
homology classes A; := [v;] € Ha(M) of these curves must satisfy

A:im,
i=1

and since S7 has the same genus as X, the only way to attach these components together
without increasing the arithmetic genus is if the following holds:
e None of the nodes {z*, 27} € A have both nodal points in Si;
o S;=S%fori=2,...,m
e The spheres S; for i = 2,...,r are arranged into a finite collection of “bubble trees”,
each consisting of finitely many components attached to each other by nodes, and with
exactly one node attaching one of them to S7, each individual tree being attached to
S1 at a separate point.
In particular, there is a finite set of distinct points z1,..., 2, € X such that each z; corre-
sponds to a specific bubble tree in which the bubbles are all J(z;, -)-holomorphic spheres.
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Once you’ve seen the picture of finitely-many bubble trees attached to an element
vl € M(j, J, K, A1), it is not hard to imagine how you might deduce this picture di-
rectly without passing through Gromov’s compactness theorem. By elliptic regularity, a
sequence ug € M (4, J, K, A) will have a C™-convergent subsequence if it satisfies a uni-
form C'-bound, and energy quantization implies that such a bound will hold away from
finitely many points I' < ¥, so that wuy at least has a convergent subsequence on \I'.
The correspondence with f—holomorphic curves allows us to apply Gromov’s removable
singularity theorem to the limit of this sequence and extend it over I'; the resulting map
vy @ 2% — M then satisfies the inhomogeneous nonlinear Cauchy-Riemann equation but
might represent a different homology class than A. One can then use the usual rescaling
trick to analyze the formation of bubbles along sequences converging to I', and the key ob-
servation here is that reparametrizing these maps to zoom in on small disks around points
causes both the inhomogeneous term and the domain-dependence of J to disappear from
the Cauchy-Riemann equation in the limit. As a consequence, the bubbles that form are
honest pseudoholomorphic curves with no inhomogeneous term or domain dependence.

For the development of the Gromov-Witten invariants, the following point is important
to understand: the bubbles that arise in the compactification of ./W(j, J,K,A) may be
multiply covered, and might therefore live in moduli spaces that fail to be smooth or
have the wrong dimension, even if both J and K are generic. This is the reason why
inhomogeneous perturbations, useful as they are, do not actually suffice to solve all of the
transversality problems that arise in Gromov-Witten theory. We will find at least that this
problem can be circumvented if the symplectic manifold (M,w) satisfies certain technical
assumptions that always hold up to dimension six.

Final remark: the following more general scenario also arises in the definition of the
Gromov-Witten invariants. Instead of a sequence uy, in the fixed moduli space /\F;lx(j7 J, K, A),
suppose we have uy € M (jk, J, K, A) where ji is a sequence of complex structures such
that for some fixed set of marked points ¢ in X, the sequence [(%, jk, ()] € Mg, degener-
ates to a nodal marked Riemann surface in Deligne-Mumford space My ,,,. Here we assume
also that K} is a corresponding sequence of inhomogeneous perturbations which depend
smoothly on the position of [(2, ji, ¢)] in Deligne-Mumford space. Concretely, assume that
Jr converges to a smooth limit j., outside of a finite collection of disjoint circles C' < X\¢
whose lengths with respect to the Poincaré metric are collapsing to 0. The singular limit
(X, jo, ¢) then corresponds to a stable nodal Riemann surface representing an element of
My . If the maps uy, satisfy a uniform C'-bound, they will then have a subsequence
that converges on each component of ¥\C' to a smooth map satisfying an inhomogeneous
nonlinear Cauchy-Riemann equation, so the limit can be understood as a nodal solution to
dyu = v(u) whose domain is a stable nodal Riemann surface in M ,,,. However, uniform
C'-bounds may as usual fail at finitely many points, producing additional bubbles that
are pseudoholomorphic spheres with domain-independent almost complex structures. As
a consequence of these bubbles, the nodal Riemann surface that serves as the domain of
our limiting object will not in general be stable, because it can have spherical components
with no marked points and fewer than three nodal points, on which the limiting map
may again be a multiply covered holomorphic sphere. If not for these multiply covered
spheres, we could use inhomogeneous perturbations to solve all transversality problems,
and the Gromov-Witten invariants would be much more straightforward to define than
they actually are.

Exercise 12.4. Assume (M,w) is a closed symplectic manifold.
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(a) What conditions on a stable nodal J-holomorphic curve U = [(S, j,(, A, u)] € Mgy (J, A)
suffice to ensure that U is Fredholm regular if J € J(M,w) is generic?
Hint: One could for instance require u|g, : S; — M to be a somewhere injective map for
each connected component of S; — S. This is almost but not quite enough.

Solution:

One can analyze the universal moduli space of (possibly disconnected) holomorphic curves
near u : (S, j) — (M, J) as the zero-set of a section 0 : T x Bx J(M,w) — & : (j',u', J') —
0 (5',u"), where B = W1P(S, M) and T < J(S) is a suitable Teichmiiller slice, formed as
a product of Teichmidiller slices for the connected components of S, with everything in (U A
regarded as a marked point. The key step is to prove that the linearization of this section at
each (j,u,.J) € 0-1(0) is surjective, but we need a bit more: we would like to show not just
that 07'(0) = T x B is smooth for generic J but also that the map eva : 07'(0) — M*2N
defined by evaluating u at its nodal points A = {{z;", 21 },...,{z%,2zy}} is transverse to
the submanifold D := {(p1,p1,...,pn,pn)} © M*2N. To make this possible, we restrict
the domain of Dd(j,u, J) to sections n € WA (u*TM) c WP (u*T M) that vanish at A; if
the resulting operator is surjective, it will follow that eva is a submersion on the universal
moduli space, and thus transverse to everything. As usual, the Teichmiiller slice will not
play any role in this argument, so let’s ignore it and consider the operator

L: WAP(*TM)®T;J(M,w) — LP(Home (TS, u*TM)) : (1,Y) — Dyn+Y oTuoj.

If it is not surjective, then there is a nontrivial section « € LI(Home(T'S,u*TM)) for
% + % = 1 such that

(Dyn,adrz =0 for all n € Wé’p(u*TM)7
Y oTuojay=0 forall Y € T;J (M, w).

From the first condition, we deduce via elliptic regularity and the similarity principle that
« is smooth on S\A and, on each connected component of S\A, either vanishes identically
or has at most isolated zeroes. By assumption there is a connected component S; < §
on which « does not vanish identically, and if we can choose a point zy € S; at which
a(zp) # 0 such that z is also an injective point of the map u : S — M, then the rest of the
argument will work exactly the same as for the genericity result that we proved in lecture.
We just need to notice that since S may be disconnected, the existence of an injective point
of u:S — M on S; c S requires more than just the assumption that ul|g, : S1 — M is
not a multiply covered curve: first, we need to require this for all components of S since it
cannot be predicted on which components a will be nontrivial, and second, we also need to
know that no two of these components are reparametrizations of each other, so that their
intersections with each other will be isolated.

First conclusion: Let ﬂ;m((], A) € My, (J, A) denote the open set of nodal curves
whose connected components are all simple curves and have pairwise nonidentical images.
Then for generic J € J(M,w), every U € M;m(J, A) is Fredholm regular.

Actually, one can do somewhat better. The statement above excludes from ﬂ:’m(J, A)
any elements that have so-called ghost components S; c S, meaning components on which
u|g, is constant. A ghost component that has genus zero is often also called a ghost
bubble, and these can arise quite naturally. For example, if U = (S, j,{,A) is a nodal
curve in the set ﬂ;m(J, A) defined above and m = 1, then moving one of the marked
points ¢; € S until it coincides with a nodal point z;” € A will produce a new element of
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M (J, A) that must have a ghost bubble: indeed, the way to make A and ¢ disjoint in
this situation is to add to S an extra copy of S? on which u is defined to be a constant
map with value u(z]") = u(27), place the marked point ¢; on S? and replace the original
node {z;",2; } with two nodes, one connecting z; to the new ghost bubble and another
connecting that ghost bubble to z;". Notice that in this construction, the number of marked
plus nodal points on the ghost bubble is exactly three, so there is no ambiguity about the
complex structure on S? and no freedom of reparametrization.

IfU = [(S,4,¢, A u)] € My.m(J,A) has a ghost component S; < S with image at a
point p € M, then the restriction of the operator Dd;(j,u)(y,n) = Dyn+ JoTuoy to S;
is easy to understand: the term involving y disappears since T'u vanishes, and any choice
of complex basis for T,,M trivializes the bundle v*T'M]|s, so that D,, gets identified with
the standard d-operator on the trivial bundle S; x C* — S;. Writing 7; = J(S;) for the
restriction of our chosen Teichmiiller slice to S;, the index of this restricted operator is
now dim 7; + nx(S;), and its kernel consists of all (y,7n) where y € 7; and n: S; —» T, M is
a constant function; the kernel thus has dimension dim 7; + 2n, which matches the index
(meaning that Dd;(j,u) is surjective) if and only if S; has genus zero. This is a good
reason to exclude ghost components with positive genus, but there still seems to be hope
of establishing transversality in the presence of ghost bubbles. Here is what can be proved:

Better conclusion: For generic J € J(M,w), all elements of the open set W’;}m(J, A)c

Mg (J, A) are Fredholm regular, where ﬂ;m(g}, A) consists of all stable nodal curves
U =(S,7,¢,A,u) with the following properties:

e All nonconstant connected components of U are simple curves with pairwise distinct
images;

e Every connected nodal curve that can be formed from U by taking a union of ghost
components together with all nodes that connect them to each other has arithmetic
genus zero.

The second condition is a generalization of the condition that ghost components of posi-
tive genus must be excluded, and you can infer its necessity from the following thought-
experiment: suppose U € M, ,,(J,0) is a stable nodal curve in which all components are
ghost bubbles, but the total arithmetic genus is positive. (It is not hard to draw a pic-
ture of such a curve; just arrange the nodes on a collection of spheres so that cycles are
formed.) If this curve were Fredholm regular, then it would be possible to glue it to a
smooth curve in M, ,,,(J, 0), which would necessarily be constant since its homology class
is 0, but would have positive genus and be Fredholm regular due to the regularity of U,
this is a contradiction since, for the reasons cited above, constant curves of positive genus
are never Fredholm regular.?!

The proof of the improved result requires only one or two ingredients beyond what we
have already discussed. One of these is the fact that on the universal moduli space 0~1(0)
T x B x J(M,w) of disconnected curves with 2N nodal points, the map eva : 071(0) —
M*2N is not just transverse to the particular submanifold {(py,p1,...,pn,pN)} € M2V,
but to every submanifold. This is relevant if we have ghost bubbles because, for instance,
if U contains exactly one ghost bubble which has k£ > 3 nodal points, then there are also
k other nodal points z1,..., 2z, on nonconstant components at which the map v : S — M

2L Any in any case, the smooth curve in Mg, (J,0) in this thought-experiment would not belong to H;‘,m((], 0),
implying that ﬂ;m(J, A) could not generally be an open subset of Mg ., (J, A) if it were allowed to contain such
objects.
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and all nearby maps will necessarily satisfy the incidence relation
(1), u(z)) € {(ps-..,p) | pe M} € M,

For generic J, we have the freedom to require that the evaluation map on nodal points
should also be transverse to submanifolds like this one. With this understood, the result
can be proved in the following way if there is only one ghost bubble and it has k nodal
points. Write S = S° L1 S’ where S° is the connected component on which u is constant.
The space 05'(0) = T x B of J-holomorphic maps S — M near (j,u) can be written
as a product of two pieces M® x M’, where M’ consists of nonconstant J-holomorphic
curves near (j,u) restricted to S’, and MO is the space of constant curves defined on
S0, which may also have varying complex structures. By assumption there are k nodes
{{=9,21},..., {22, 2},}} such that for each i = 1,...,k, z{ € S° and 2 € 5, and we have a
pair of evaluation maps

evd : MO - Mk eviy : M — M*F

defined by evaluating curves at these nodal points. Our goal is to show that if J is generic,
then the combined evaluation map

eva = evd xevly : MY x M — MR 5 Mk

is transverse to the diagonal submanifold in M** x M**. What we know already about
the two maps evQ and ev/y is the following: first, ev’y is transverse to the “thin” diagonal
{(p,...,p)} € M**. Second, since M" is a space of constant maps, the image of ev? is this
same thin diagonal in M **, and it is a submersion onto that submanifold. From here it is
a straightforward linear algebra exercise to prove that eva is transverse to the diagonal in
M*F x M*F_ This was a special case, but the general case follows from a similar argument,
just with more notation and bookkeeping.

Suppose dim M = 4 and the nodal curve U has exactly two connected components, both of
which are embedded Fredholm regular J-holomorphic curves living in moduli spaces with
virtual dimension 0. What additional condition then ensures that the nodal curve U is
Fredholm regular?

Solution:

Let’s denote the two components of U by uy : (Sy,j4+) — (M,J) and u_ : (S_,j_) —
(M, J) and write z4 € S; for the two nodal points, where u, (zy) = u_(z_). By as-
sumption, both curves represent isolated elements of their respective 0-dimensional mod-
uli spaces—call them Mg, ¢(J,A+). The moduli spaces Mg, 1(J, A+) are therefore 2-
dimensional, and the maps -

St = Mgy, 1(J,A4) 1 2 [(S+,5+,2)]

define diffeomorphisms onto connected components of these 2-dimensional moduli spaces.
Identifying the relevant components of Mg, 1(J, A4) with S in this way, the map

eVA Mg+,1(J7 A+) X 'Mg—vl(J’ A—) - M xM: (U.;,_,’U_) = (ev(v+),ev(v_))
gets identified with the map
Sp xS > MxM:(z,2)— (up(21),u_(22)),

and the nodal curve U is therefore Fredholm regular if and only if the latter map intersects
the diagonal in M x M transversely at the point (z4,2_). This is simply the condition
that the intersection of u, with u_ at the node is transverse.

Caution: You should guard against letting this simple example inform too much of your
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intuition about what Fredholmn regularity of a nodal curve means in higher dimensions.
An intersection u4 (z4) = u—(z_) of two J-holomorphic curves in a manifold of dimension
dim M > 6 can never be transverse—transversality of the evaluation map to the diagonal
thus means something a bit harder to visualize in higher dimensions.

13. WEEK 13

The lecture and Ubung on Wednesday of this week were cancelled, so there was only the Tuesday
lecture. A make-up lecture will take place next week in place of the usual Ubung.

Lecture 23 (24.01.2023): The fairyland definition of GW, ,, 4.

e Theorem: All smooth moduli spaces that arise in this course have canonical orientations.

Proof sketch: Ingredient 1: Cauchy-Riemann type operators on bundles over closed Rie-
mann surfaces can always be deformed through a family of Fredholm operators to make
them complex linear.
Ingredient 2: On the space of Fredholm operators between two Banach spaces, there
exists a continuous real line bundle Det (the determinant line bundle) such that
Detp = A™®*(kerT) whenever T is surjective. It follows that on the universal moduli
space M = {(u,J)} of J-holomorphic curves, there is a continuous and canonically ori-
ented line bundle Det — M whose fiber over (u, J) matches A™**T, M, ,,(J, A) whenever
u is a Fredholm regular curve.

e Throughout this lecture, (M,w) is a closed symplectic 2n-manifold and J € J,(M,w)
will be assumed generic whenever convenient. For an initial “fairyland” definition of the
Gromov-Witten invariants, we pretend that the following are true:

(1) Transversality is always possible.

(2) Automorphism groups are always trivial.
Various spaces that are either smooth orbifolds or not smooth at all in the real world will
therefore be manifolds in fairyland: in particular, M, ,,(.J, A) will now be a closed oriented
topological manifold*” with dimension D := (n — 3)(2 — 2g) + 2¢1(A) + 2m, and therefore
has a natural fundamental class in singular homology Hp(M, ., (J, A)). We will similarly
be pretending whenever convenient that ﬂg’m is a topological manifold, which is true at
least in the case g = 0, though we know that more generally it is an orbifold. We’ll discuss
next time how to lift these unrealistic assumptions.

e Definition: For integers g,m > 0 with 2g + m > 3 and a homology class A € Hy(M),

recall the evaluation map ev = (evy,...,evy,) : Mg (J,A) — M*™ and forgetful map

®: My m(J,A) > Mgy,,. Under some dimensional conditions to be specified below, we
define the multilinear map

ngﬁmyA : (H*(M;Q))Xm X H*(Mg,m§@) - Q

221 am saying “topological” manifold in order to avoid making any overly ambitious assumptions about the
smoothness of transition maps that arise from gluing when gluing parameters go to infinity. In fairyland, Mgy n(J, A)
has a natural smooth structure, but My ,(J, A) might have only continuous transition maps.
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in any of the following equivalent ways (see below for explanations of the notation):

GWgmala,...,a;m,p) = <ev’1k apu...uevt an v @*(PDfl(ﬂ)), [mg,m(J, A)]>

= f evi‘ ap Ao A eV:q Um A (I)*(PDil(B))

My, m(J,A)

= (ev, ®)x[Mgm(J, A)] o (PD(a1) x ... x PD(a,) X )
= #(ev,®) ' (a1 x ... x &y, x )
=#{ue Mgm(J,A) | evi(u) € a; for i =1,...,m and ®(u) € B} .

Here PD denotes the Poincaré duality isomorphism from cohomology to homology, either on
M or on M, ,,.** The integral in the second line implicitly assumes a choice of differential
forms to represent the cohomology classes «; and PDfl(ﬁ); this version of the formula is
favored by physicists, since Witten’s original presentation of these invariants derived them
from a computation of a Feynman path-integral in some quantum field theory. In the
third line, “e” denotes the homological intersection number in M*™ x M, ,, and “x” is
the homological cross product. This intersection number is computed in the last two lines
by choosing closed smooth oriented submanifolds @; < M and § < ﬂg,m to represent
the homology classes PD(«;) and [ respectively, and making generic perturbations so
that (ev,®)h(@; X ... x @, x B). In each case “#” should be understood as a count
of intersections with signs. (It will also need to include rational weights when we leave
fairyland and worry about orbifold singularities.) This computation of intersection numbers
makes sense whenever vir-dim M, ,,(.J, A) matches the codimension of &; x ... x &y, x 3
in M*™ x Mg, which means

D leil = 18] = n(2 = 29) + 2¢1(A).
i=1
Whenever this condition is not satisfied, we define GWy , a(av1, ..., o, ) := 0.

Remark: A theorem of Thom from [Tho54] guarantees that in a smooth manifold, every
integral homology class has an integer multiple that can be represented by a closed smooth
oriented submanifold, hence the submanifolds &; (with rational factors) suffice for repre-
senting everything in H,(M; Q). This is one of the reasons to use rational coefficients and
define GW ;4 having values in Q instead of Z, though we will see later that there are
more compelling reasons, and the definition can in some situations be reformulated to take
integer values.

Invariance theorem: GW, ,,, 4 depends only on (g, m, A) and the symplectic deformation
class of w; in particular, it does not depend on the choice of tame almost complex structure.
Fairyland proof: Given a symplectic deformation {w, € (22(M)}s€[0,1] and J; € J(M,w;)
for i = 0,1, one can extend J; to a smooth family {Js € J-(M,ws)}seqo0,1] and then define
the parametric moduli space

ﬂ%m({Js},A) = {(u,s) | s€[0,1] and u € ﬂg,m(JS,A)}.
One can analyze the local structure of this space as the zero-set of a smooth section
Oty T xBx[0,1] = & : (j,u,s) = 0s,(j,u), and call an element of M, ,,({Js}, A)
parametrically regular if it corresponds to some (j,u,s) € 9{}15}(0) at which the lin-
earization Ddy; 3(j,u,s) is surjective. (This is obviously true whenever u is Fredholm

23Closed oriented orbifolds also have Poincaré duality, though in general only with rational coefficients. The

main property this isomorphism should be assumed to have is that evaluating a cohomology class o on a homology
class 8 is equivalent to computing the intersection number of PD(«a) with 3.
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regular, but the converse is false.) A variation on the usual Sard-Smale argument proves:
for generic families {J; € J; (M, ws)}se[0,1], every (u, s) € Mg m({Js}, A) with u somewhere
injective is parametrically regular. In fairlyland, we pretend everything in M ., ({Js}, A)
is parametrically regular, which makes it a compact oriented topological manifold with
boundary

OMgm({ T}, A) = Mg m(J1, A) b (= Mg (Jo, A)) ,

i.e. it defines an oriented cobordism between M, ,,(Jo, A) and M, (J1, A) on which
(ev, ®) has an obvious continuous extension, implying

(ev,@)*[ﬂg’m(Jo,A)] = (ev,@)*[mg,m(Jl,A)] € Ho(M*™ x Hg,m).
Equivalently, if (ev, ®)d (&, x ... x &, x 3), then
(ev, @)1 (@1 x ... X &) © My m({Js}, A)

is now a compact oriented 1-manifold whose boundary therefore contains zero points
when counted with signs, and this count is the difference between the two versions of
GWymalar,...,am, 8) computed with Jy and J;. (If you've never seen this type of
argument before, spend the weekend reading [Mil97].)

Observation (moving from fairyland back toward the real world): the intersection count
#(ev,®) (@1 x ... X &y, x B) can be computed without assuming that M, ,,(J, A) is
globally a topological manifold with a well-defined fundamental class. Key fact (proved
last week): on the set of nodal curves with N > 1 nodes, (ev, ®) factors through a map
defined on a space with virtual dimension vir-dim Mg ,,,(J, A) —2N, so this stratum should
never hit &; x ... x &, x 3 (even under deformations {.J,}) if everything is transverse.
Definition: a d-dimensional pseudocycle (V| f) in a smooth orbifold M consists of
a smooth and oriented (but not necessarily compact) d-manifold V' and a smooth map
f:V — M such that the set

Q= () FOV\K)cM
KcV compact

“has dimension at most d — 2,” meaning that it is contained in a countable union of images
of smooth maps defined on manifolds of dimension at most d—2. We call two pseudocycles
(Vo, fo) and (V4, f1) bordant if there exists a smooth oriented (d + 1)-manifold V' and
smooth map f : V — M such that 0V =V, u (=Vg), flv, = fi for ¢ = 0,1, and Qy has
dimension at most d — 1.
Theorem:
(1) For any two pseudocycles (V, f) and (W, g) in M with dim V +dim W = dim M, after

a generic perturbation of f, there are only finitely many intersections of f with g, all

transverse, and their signed count

fogim#{my) eV x W | fz) = gn)} € Z

depends on (V, f) and (W, g) only up to bordism.
(2) For the purpose of computing intersection numbers, any singular homology class A €
H;(M;Z) can be represented by a d-dimensional pseudocycle in M.
Pseudocycle representation of A € Hq(M;Z): write A = [}, €;0;] for a finite collection of
singular simplices o; : A — M and signs ¢; = +1. Since 0, €0, = Y, € 00; =0, the
(d —1)-boundary faces of these singular simplices must cancel in pairs. Define V by gluing
together all the domains of the o; along the cancelling (d — 1)-dimensional boundary faces,
then deleting all boundary faces of dimension less than d — 1, and define f: V' — M as a
smoothing of the obvious continuous map determined by the o;.
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e Remark: Zinger [Zin08] has shown that in a smooth manifold M, the correspondence
described above gives an isomorphism from singular homology Hy(M;Z) to the abelian
group of d-dimensional pseudocycles up to bordism, with addition defined via disjoint
unions. I've never checked whether this is also true when M is an orbifold, but in practice
one does not really need to know this: the message is that for the purposes of defining
homological intersection theory, pseudocycles are natural objects to work with, in some
sense even more natural than singular homology.

Suggested reading. The determinant line bundle over the space of Fredholm operators is de-
scribed in [MS12, Appendix A.2]. The same book is also the standard reference for pseudocycles
(see §6.5), which were introduced specifically for the purpose of defining Gromov-Witten invariants,
though as Zinger’s paper [Zin08] demonstrates, they are in fact quite natural objects which ought
to be better known in algebraic topology. The papers [RT95,RT97] of Ruan and Tian which rigor-
ously defined Gromov-Witten invariants concurrently with [MS94] used the slightly different but
closely related notion of pseudo-manifolds, which are expressed in terms of simplicial complexes.

Exercises. Next week there will be a make-up lecture instead of an Ubung, so I have not thought
up any exercises.

14. WEEK 14

Lecture 24 (31.01.2023): The GW-invariants in semipositive symplectic manifolds.
e Idea (due to Ruan-Tian [RT95, RT97]) for making (ev, ®) : My n(J, A) = M*™ x M,
a pseudocycle: replace 0;(j,u) = 0 by d;(j,u) = v(j,u) for v(j,u)(z) := K(j,2z,u(z)) and
a generic inhomogeneous term K depending on j € T, z € ¥ and u(z) € M. But we need
a way to set up the moduli space globally without choosing Teichmiiller slices.
e Definition: the universal curve over M, ,, is the map

T Mg,erl - ﬂg,WL : [(Sa jv (Cla sy Cerl)a A)] — st ([(57]7 (Cl? ey Cm)7 A)]) )

where the stabilization operation st turns general marked nodal Riemann surfaces into
stable ones by removing spherical components with fewer than three marked or nodal points
and putting any orphaned marked points in the obvious places on adjacent components.

e Observation: Given z = [(S,j,(,A)] € My, let ¥, denote the singular Riemann surface
obtained from (.9, j) by identifying the two nodal points in each node. Then there is a
natural surjective map

Iyt Dy — wfl(x) C ﬂg,m_ﬂ

that adds z € ¥, to ¢ as the (m + 1)-st marked point whenever z ¢ (( U A), and otherwise
adds an extra spherical component containing the (m + 1)-st marked point (plus one other
if z€e ().
Easy exercise: i, descends to a bijection X,/ Aut(z) — 7 !(x), so the fiber over z € M,
of the universal curve is an explicit (singular) Riemann surface representing « (modulo its
automorphisms).

e Case g = 0 and m > 3: Here Aut(z) is always trivial, so Mg, is a manifold and 7~ 1(z) =
¥, is a faithful representative of each z € My ,,. Given J € J,(M,w), we define the space
of inhomogeneous perturbations

K < {smooth functions on Mo 41 x M}

to consist of functions such that for p € M, x € Mgy,, and 2z € ¥, = 7 1(z) © Mo m+1,
K (z,p) vanishes whenever z lies in some fixed neighborhood of the nodes on ¥, (this way
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we don’t need to worry about what “smooth” means at the nodes), and otherwise takes its
value in Hom¢ (7T, X,,T,M). For A € Hy(M), we then define a moduli space

Mo (J, K, A) := {(z,u) | € Mom, u: S, — M satisfies d,u = v(u)
for v(u)(z) := K(z,u(z)), and [u] := u,[S,] = A}.

Remark 1: The inhomogeneous term v(u)(z) depends implicitly on the complex structure
of the domain, because z is not just a point in a fixed Riemann surface, but rather a point
in (some fiber of) the universal curve.

Remark 2: Since Aut(z) is always trivial, there is no freedom of biholomorphic reparametriza-
tion, i.e. using the universal curve gives us a canonical parametrization of each J-holomorphic
curve. (You should take a moment to check: if K = 0, this space is equivalent to our usual
Mom(J, A).)

e Theorem (via the usual Sard-Smale argument): For generic K € I, Mo, (J, K, A) is a
smooth manifold of dimension equal to vir-dim Mg ,,(J, A), and (ev, @) : Mo (J, K, A) —
M>*™ x M., can also be made transverse to any given submanifold.

e Remaining to check: Does the image of (ev,®) on Mo, (J, K, A)\Moq..(J, K, A) have
codimension at least 27

o Mo m(J, K, A) was discussed in Exercise 12.3(b): it consists of pairs (x,u) where z € M, ,,,
and u : ¥ — M is a so-called stable map on a (not necessarily stable) singular Riemann
surface with st(X) = z, satisfying d,u = v(u) for v(u)(z) = K(st(z),u(z)), where the map
st : ¥ — X, is constant on non-stable spherical components of ¥. The latter can arise in
limits of sequences where bubbling occurs.

e Good news: If there is no bubbling, so X is stable, and K is generic, then the inhomogeneous
tern looks generic on every component, so all components of u live in smooth moduli spaces
of the correct dimension, and the strata of nodal curves therefore always have codimension
at least 2.

¢ Bad news: If bubbling occurs and ¥ has non-stable spherical components S? c X, then
K (st(z),u(z)) = 0 on these, so u|gz is just an ordinary J-holomorphic sphere, which may
be multiply covered. Assume J is also generic—then:

— If u|g2 is simple, it lives in a smooth moduli space of the correct dimension and we
have no problem.

— If u|g2 is a d-fold cover of a simple curve v, then v is also a sphere (spheres can
only cover other spheres since everything else has trivial m5) and belongs to a smooth
moduli space Mg ,(J, B) for some B € Hy(M), where k is the number of marked
points on u|g2 (we can project them down to the simple curve), and we have

dim Mo 1. (J, B) = 2(n — 3) + 2¢1(B) + 2k,

whereas u|g2 lives in the (possibly non-smooth) moduli space My x(J, dB) with virtual
dimension 2(n — 3) + 2dcy (B) + 2k. If the former is no larger than the latter, then we
can make (ev, ®) a pseudocycle by replacing multiply covered components of nodal
curves with their underlying simple curves, so this will work if and only if ¢;(B) > 0.
We need to know that this is true for all classes B € Hy(M) that can be represented by
simple J-holomorphic spheres: these all satisfy w(B) := {[w], B) > 0 since the spheres
must have positive energy, and also vir-dim Mo (J, B) = 2(n — 3) +2¢1(B) > 0 since
J is generic.

e Definition: A 2n-dimensional symplectic manifold (M,w) is semipositive if for all A €

Hy(M) in the image of the Hurewicz map mo(M) — Hao (M),

w(A) >0and ¢1(4) 23—n = c1(4) = 0.
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One should not try to interpret any deep geometric meaning behind this condition; it is
just a hypothesis that makes the proof of our theorem work, and has the advantage that it
holds in many situations of interest, e.g. it is always true if dim M < 6, and also in higher
dimensions for certain important classes of projective varieties such as Fano manifolds.
We'’ve proved:

e Theorem: If (M,w) is a closed semipositive symplectic manifold, then for generic J in
J-(M,w) or J(M,w) and generic K € K, (ev,®) : Mg n(J, K, A) = M*™ x Mo, is a
pseudocycle for each m > 3 and A € Ho(M), whose bordism class depends only on the
symplectic deformation class of w, but not on the choice of J and K. It gives rise to the
rational Gromov-Witten invariants®*

CWoma : H*(M;Z) ... x H*(M,Z) x Hy(Mo,m: Z) — Z,
GWom.a(oa, ..., am, B) == (ev,®) o (PD(a1) x ...PD(ay,) x B).

Note: In this definition, we can use integer coefficients and get integer values because
My is a manifold (not an orbifold) and all integral singular homology classes can be
represented by pseudocycles. More general definitions that apply when g > 0, m < 3 or
(M, w) is not semipositive will typically give rational-valued invariants.

e Case g > 0 and 2g + m > 3: the trouble here is that fibers 7 1(z) of the universal curve
for x € M, are no longer faithful representatives of z, but instead look like 3,/ Aut(z)
where Aut(z) may act on X, nontrivially. If we then try to define the moduli space as we
did above, the inhomogeneous term in d;(u) = v(u) will be an Aut(z)-invariant function
on X, thus not generic, and we cannot achieve transversality this way.

e Remedy (due to Looijenga [Loo94]): For each N > 2, we can functorially associate to each
stable marked Riemann surface z = (3, 7,() a finite set

P, = {Prym level-N structures on z”}

and to each biholomorphic equivalence 2 5 y of stable marked Riemann surfaces a bijection

@y : Py — P, such that if N > 6 and N is even, then:

(1) The action of Aut(z) on P, is free for every x;

(2) Writing (z,p) ~ (y, ¢«p) for p € P, and equivalences ¢ : © — y, the resulting finite
cover

{(xvp) | pe Px} P

-

~

Mf;m = Mym : [(z,p)] = [z]

. . ——P -— —P .
has a natural extension to a finite cover P : M, — My ,,, where M . is a compact
manifold.”” .
e Covering the universal curve: for a Prym cover P : M, — M, as described above,

. e~ P —P . — i
there is now a natural lift 7 : M 1 = M, ,, of the universal curve 7 : Mg i1 = Mgm

g,m+

-—F ~ . . . .
such that for each z € M ., 7 1(x) =: ¥, is a singular Riemann surface representing

P(z) € Mgym. One thus finds multiple explicit (and faithful) representatives of each
T € ﬂgﬂn among the fibers of the lifted universal curve.

241 this setting the word “rational” refers to the fact that we are restricting to genus zero curves; it has nothing
to do with the choice of coefficients.

25Be aware that in the world of orbifolds, the standard definition of the term “covering map” does not match the
usual topological definition of this term. You will notice for instance of you inspect P : M;m — Mg, m closely that
it is not a local homeomorphism; locally near a point © € Mg m and y € P~1(x), it looks rather like the composition
of a homeomorphism with the quotient projection for an action by Aut{z). As a consequence, the number of points
in P~1(z) depends on the order of Aut(x), and matches the number of elements in P, (which we define to be the
degree of the cover) if and only if Aut(z) is trivial.
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e Definition of GW, ,,, 4: Choose J in J,(M,w) or J(M,w), modify the previous definition

. . -—P .
of K so that K € K is now a function on M ,, .4 x M, and for generic K € K, define the
moduli space ./\/l;m(J7 K, A) to consist of pairs (z,u) where z € M;m and u: Y, - M
satisfies the inhomogeneous nonlinear Cauchy-Riemann equation determined by J and K.
If J and K are generic, this will be a smooth manifold of the correct dimension and (ev, ®)
will be a pseudocycle, but its intersection with cycles in M*™ x M, ,,, overcounts due to
the existence of multiple representatives of each domain in the lifted universal curve. We
therefore define
1
GWym,alaa,...,am, B) = m(e% ®) o (PD(1) x ... x PD(am) x B8) € Q,

where the «; and 3 can be cohomology /homology classes with rational coefficients; in other
words, there is no advantage to taking integer coefficients since the values of the invariant
may be rational anyway.?® The so-called rational pseudocycle m(ev,fﬁ) defined on
Mﬁ m(J, K, A) defines a rational bordism class independent of the choices of J and K, as

—_p N
well as the choice of Prym cover P: M ., — Mg .

Lecture 25 (1.02.2023): Some computations in genus zero. Throughout this lecture (and
in fact for the remainder of the course), we assume without always saying so that (M, w) is closed
and semipositive whenever a rigorous definition of the Gromov-Witten invariants is required. Many
definitions (e.g. “symplectically uniruled”) make sense without assuming semipositivity, but what-
ever we prove about them will then be dependent on some more general definition of the invariants
that we haven’t given unless semipositivity is assumed.

e Digression on counting in orbifolds: suppose f: M — N is a smooth map between closed
oriented orbifolds and ¥ < N is a closed oriented smooth suborbifold with dim M +
dim ¥ = dim N. Generalizing the standard homological intersection theory for manifolds,
one obtains a rational-valued intersection number f e ¥ € Q, which depends only on the
homology classes [f]:= f«[M] and [¥] in H,(N;Q), such that:

(1) If M = M/G, N = N/H and ¥ = %/H for smooth manifolds M, N and ¥ that are
acted upon by finite groups G and H, where ¥ c N is an H-invariant submanifold,
and f: M — N is induced by an equivariant smooth map f: M — N, then

1 ~ ~
f o) = 7f b Za
|G|
where e on the right hand side means the usual (integer-valued) homological intersec-
tion product for manifolds.
(2) If fAX, then
feX = Z _ep)

pefi(zy | A0E D)

where €(p) = £1 is a sign determined in the usual manner by orientations, and Aut(p)
denotes the isotropy group of the orbifold M at p.
You should be able to convince yourself that if e is required to match the usual intersection
number of submanifolds in the absence of isotropy (so e.g. when G and H act on M and N
freely), then both of these properties must hold, so in particular, one cannot define f ¢ ¥
to be integer-valued in general.

26 And in any case, the homology class represented by a closed oriented suborbifold of Mg,m will sometimes have
rational instead of integer coefficients—see Exercise 14.2.
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e By the same token, the Euler number ¢(FE) € Z of an oriented vector bundle E — B over

a closed oriented manifold B of the same dimension can be defined as the self-intersection
number of the zero-section, so it counts (with signs) the zeroes of a generic section. If
the base B is an orbifold, then one also considers orbibundles £ — B, which locally
look like the quotient of a vector bundle by a finite group acting by linear bundle maps,
hence sections look locally like functions that are equivariant with respect to finite group
actions. For an orbibundle, e(E) is also defined as the self-intersection number of the
zero-section, which is therefore generally a rational number, and for any section 1 € T'(E)
that is transverse to the zero-section,’?” one can compute it as

e(E) = Z ﬂe@

B TAut()]

for signs €(p) = £1 determined in the usual way. There is no way in general to define an
integer-valued count of zeroes that does not depend on the choice of section.

Theorem (computing GW, ., 4 in the nicest possible scenario):

Suppose we have J € J.(M,w), submanifolds &; € M representing PD(«;) € Hy (M) for
each i = 1,...,m, and a suborbifold 3 € M, ,, representing 3 € Hy(M, ), such that

M(a, B) := (ev, @)™ (@1 X ... X @y x B) © My m(J, A)

has only finitely many elements, all of them smooth (i.e. non-nodal) Fredholm regular
curves, and the resulting intersections of (ev, ®) with @1 X ... x &, x § are all transverse.
Then
e(u
GWg,m,A(ala”'vamaﬂ) = Z |A1§t()u)|’
ueM(e,8)
where the sign e(u) = +1 is positive whenever the associated linearized Cauchy-Riemann

operator D,, is complex-linear.
Proof: Choose a Prym cover P : ﬂ;m — My, with degree k € N. For each u € M(a, 3),

)

let © := ®(u) € My . Then P~1(z) c ML contains k/| Aut(z)| elements, and for each

y € P7(z), one can parametrize u on the associated fiber ¥, < ﬂ;mﬂ of the lifted
universal curve and obtain elements (y,u o) € M;m(J, 0, A) for each ¢ € Aut(z), though

only | Aut(x)|/| Aut(u)| of these elements are distinct. In total, u thus gives rise to exactly

k | Aut(z)] k
| Aut(x)| [ Aut(u)| — |Aut(u)]

elements of /\/lf, m(J,0,4), so counting them with the correct sign and dividing by k& =
deg(P) gives the contribution +1/| Aut(u)|. The transversality assumptions guarantee via
the implicit function theorem that this result will not change if we instead count elements of
Mﬁ m(J', K, A) for any generic J' near J and generic small inhomogeneous perturbation K.
Example (from Gromov’s non-squeezing theorem): Suppose (M,w) = (S? x W, dvol @pu)
for a positive area form dvol € Q?(S5?), where (W, p) is any (2n — 2)-dimensional closed
symplectic manifold with mo(W) = 0. Let A = [S? x {const}] € Hy(M), and choose

ay € H?"(M) such that PD(ay) = [pt] € Ho(M) is the homology class represented by a

27This observation comes with the caveat that on an orbibundle, local equivariance can sometimes prevent the

existence of any sections that are transverse to the zero-section. Thus in order to formulate a general definition
of e(E) € Q, one must in general either appeal to algebraic topology or formulate a cleverer notion of generic
perturbations, e.g. “multivalued” sections.
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single point; this cohomology class will come up in several examples, so let’s abbreviate it
by
pt := PD™!([pt]) € H*"(M).

Set as = az := [{const} x W] e H*""2(M) and 3 := [Moy 3] € Ho(My 3); the latter is just
the canonical generator of Ho(mo,:a) = 7 since ﬂqg is a one-point space, and we shall
therefore omit 8 from the notation for the rest of this discussion and regard GWy 3 4 as a
function of just ay, as, as. Claim:

GWy3,4(1, a0, a3) = 1.

Proof: Choose any Jy € J-(W,u) and set J = i ® Jw € J,(M,w). The curves in
Mo 3(J, A) are then all uniquely parametrizable in the form u(z) = (f(z),p) for constants
p € W and maps f € PSL(2,C) = Aut(S?,4), with marked points 0,1,00. Choosing
representative submanifolds a; = {(0,wo)} for some wg € W, &z = {1} x W and ag =
{0} x W, the condition ev(u) € &; X o X ag then implies f = Id and p = wy, so there
is exactly one solution, and Exercise 14.3 below shows that there are no nodal curves in
Mo 3(J, A) satisfying this condition. For the unique curve u, the bundle u*T'M splits into
the direct sum of 7'S? with a trivial bundle over S?, and D,, respects the splitting, so that
it becomes the direct sum of the canonical Cauchy-Riemann operator on T'S? with the
trivial operator 0 on the trivial bundle, both of which are surjective and complex linear.
The necessary transversality of ev to a; X s X @&s can be verified with a picture.
Definition: (M,w) is called symplectically uniruled if for some A # 0 € Hy(M), some
m > 3 and some g, ..., o, € H*(M) and 8 € Hy(Mom),

GWO,nL,A(pta Q2,...,0m, ﬂ) # 0

Theorem: If (M,w) is symplectically uniruled, then for every p € M and every J €
J-(M,w), there exists a nonconstant J-holomorphic sphere passing through p.

(This is the fact about S? x T?"~2 that is used in Gromov’s proof of nonsqueezing.)
Proof: Choosing &; = {p} as the submanifold representing PD(pt), the nonvanishing of
GW,m a(pt, g, ..., 0, B) guarantees the existence of a sequence ux € Mo (Ji, Kk, A)
with evy(ug) = p for any sequence of generic pairs (Ji, K) with Ji, — J and K — 0. It
will then have a subsequence convergent to a nodal J-holomorhic curve u.. € Mg, (J, A)
with evy(uy) = p, and this nodal curve necessarily has a nonconstant component that
passes through p.

Remark: The uniruled manifolds are considered to be an especially nice class within all
symplectic manifolds. It is known for instance that in dimension four, there are vanishingly
few of them: some classic results of McDuff [McD90, McD92] imply that every one is either
((CIP’Q, cwrs) for a scaling constant ¢ > 0, a symplectic S?-bundle with J-holomorphic fibers,
or a symplectic blowup of one of these. (For a fuller discussion, see [Wen18, Chapter 7].)
Definition: (M,w) is symplectically rationally connected if for some A € Hy(M),
some m > 3, some g, ..., a, € H*(M) and some 8 € Hy(Mo.m),

GWO,m,A(pt7pta ag, ... ,Oém,ﬂ) # 0.

Theorem: If (M,w) is symplectically rationally connected (with respect to a homology
class A € Hy(M)), then for every pair of distinct points p1,p2 € M and every J € J, (M),
there exists a nodal J-holomorphic sphere u € Mg o(J, A) that passes through both p;
and p2-

Proof: Choose a3 = {p1} and &z = {p2}, then do the same thing as in the uniruled case.
We do not claim the existence of a smooth J-holomorphic curve through both p; and ps
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because the nodal curve u,, € Mo,,(J, A) in the limit may have the first two marked
points on separate connected components. However:

Observation of Shah during the lecture: If we are willing to assume J is generic, then the
nodal curve in the previous theorem can be replaced by a smooth curve without loss of
generality.

Proof: One can replace any multiply covered components of u,, by their underlying simple
curves and thus construct a nodal curve v, that satisfies the hypotheses of Exercise 12.4(a).
For generic J we can also assume the map (evy,eve) on the stratum of nodal curves
containing v, is transverse to {(p1,p2)} € M x M. It follows that all nodal curves near v,
can be glued, and the resulting moduli space of smooth curves must contain some whose
first two marked points are mapped to (p1, p2).

Question (to which I do not immediately know the answer): Can you find a counterexample
showing that genericity of J really is necessary here?

Theorem: (CP",wrg) is symplectically rationally connected for every n > 2.

Proof sketch: for the standard complex structure i € J(CP", wps), there is a unique
holomorphic line through any two distinct points p1, po € CP™. Choose these so that they
do not lie in the hypersurface at infinity CP" ' < CP", and observe that the generator
[L] € H2(CP™) has intersection number 1 with this hypersurface. Taking &1 = {p1},
ay = {p2} and a3 = CP" ™!, the moduli space Mo 3(i,[L]) now contains exactly one smooth
curve u in ev_!(&; x s x az), and no nodal curves (see Exercise 14.3). One can check
that D,, is surjective and complex-linear and deduce from the existence of curves through
arbitrary pairs of points that ev (a; x ag x as), thus GW 3 111 (pt, pt, PD'[CP" ') # 0.
Corollary: For any J € J,(CP",wrs) and any two distinct points py, po € CP", there exists
a smooth “J-holomorphic line” (i.e. a J-holomorphic curve homologous to the generator
[L] € Hy(CP™)) passing through p; and ps.

Proof: Rational connectivity guarantees a nodal curve in Mo o(.J, [L]) through both points,
which has energy w([L]), but every connected component of such a curve is either constant
or has energy equal to a positive integer multiple of w([L]), implying that at most one
component can be nonconstant, and it must therefore pass through both points. (In fact,
stability implies in this situation that no other components can exist.)

Nicer corollary (n = 2): For any J € J,(CP?, wrs), there exists ezactly one J-holomorphic
line through any two distinct points in CP?.

Proof: Since [L] has self-intersection number 1, positivity of intersections implies that
any two distinct J-holomorphic lines have exactly one intersection point, and it is always
transverse.

Remark: This result originally appeared in [Gro85] with a more direct proof that did not
require constructing the GW-invariants, and it has been used many times since then for
clever applications, e.g. toward obstructing the existence of symplectic embeddings, or
proving the existence of periodic orbits of Hamiltonian systems.

Lecture 26 (1.02.2023): Higher genus and obstruction bundle computations.

e Definition: the m-point Gromov-Witten invariants in genus g for 2g + m > 3 are the

multilinear maps GWg .4 : H*(M)*™ — Q defined by
GWy malar,...,am) = GWym alar,...,am, [Mgm]),

which means that they count curves satisfying m marked point constraints but no con-
straints on their domain complex structures. We extend this definition to allow 2g +m < 3



GROMOV-WITTEN THEORY, WINTERSEMESTER 2022-2023, HU BERLIN 85

and A # 0 by requiring the condition®®
_ GWgmtra(oa, ..., am, )
{a, 4)

(14.1) GWymaloa,. .., am) eQ

for all « € H?(M) with {a, A) # 0.
Justification: if PD(«) is represented by a codimension 2 submanifold @ ¢ M that in-
tersects a given curve u : ¥ — M transversely and positively, then there are exactly
{a, Ay = [a] » A € N places to put an extra marked point (,,+1 on ¥ so that ev,,1(u) € a.
Remark: Even for ¢ = 0 and (M,w) semipositive, the denominator in (14.1) forces
GWjy,m,4 to take rational values in general when m < 3.

e Note: if m = 0, we understand a multilinear map H*(M)*° — Q to mean simply an
element of Q, and GW, 4 € Q is then understood to be a count of curves in (a suitable
perturbation of) Mg o(J, A) if vir-dim M o(J, A) = 0, and otherwise GWy9 4 := 0.

e Example 1: In (S? x W,dvol®u) with m(W) = 0 and A = [S? x {const}] € Ho(M), the
computation in the previous lecture shows GWq 1 4(pt) = 1.

e Example 2: In (CP",wpg) with the line class A = [L] € Ha(CP™), our previous proof of
rational connectedness can now be expressed without the aid of the submanifold CP" ™! c
CP": the result is GWq o, 11(pt, pt) = 1.

e Example 3: In (T?, dvol), we claim GW1 0.2rr2] = %

Proof: Fixi e J(T?,dvol) as the complex structure on the target. The space M (i, 2[T?])

has virtual dimension 0 and, by the Riemann-Hurwitz formula, consists of equivalence

classes of holomorphic covering maps ¢ : (T2, j) — (T?,4) having degree 2, with no branch
points. We saw in Lecture 19 that all of these are Fredholm regular, and they have
linearized Cauchy-Riemann operators that are complex-linear. Moreover, any smooth cov-
ering map ¢ : T?> — T2 can be made into a holomorphic map (T?,j) — (T?,i) by setting

J := p*i, so there is a natural bijection between the set of degree 2 smooth covering maps

T? — T2 up to isomorphism and the moduli space M; o(i,2[T?]). By the Galois corre-

spondence, the former is equivalent to the set of index 2 subgroups of 7 (T?) = Z2, and

there are exactly three of these, giving rise to the three covering maps’

p(s,t) = (2s,t) or (s,2t) or (s—t,s+1).

By Exercise 14.3, My (i, 2[T?]) contains no nodal curves, so GW o,2r2] is computed by
counting only these three double covers, each of which has | Aut(yp)| = 2, thus GW o o2 =
triei=

e Definition (generalizing the condition MAN): Two submanifolds M, N < @Q are said to
intersect cleanly if M n N is also a submanifold and T,,(M n N) = T,M nT,N for every
peMnN.
Remark: In general if M n N is a submanifold, then dim 7,(M n N) < dim (T, M n T,N)
because there is an obvious inclusion T,(M n N) ¢ T,M n T, N, thus the intersection is
clean if and only if these two dimensions are equal, i.e. dim(T, M nT,N) is no larger than
it must be under the circumstances. Note that this holds automatically if M AN, but it
can also hold without T, M and T, N spanning T,,(, in which case the dimension of M n IV
will be strictly larger than in the transverse case.

e Similarly, we say that d; : 7 x B — £ intersects the 0-section cleanly if (_3;1(0) cTxB
is a smooth finite-dimensional submanifold with T}, ,)0;'(0) = ker Dd,(j,u) for every

28There is no definition of GWy,m, 4 for 2g +m < 3 and A = 0 because elements of My (J, A) are in this case
not stable, hence Gromov’s compactness theorem does not apply to them.

29In lecture I carelessly misidentified the third covering map as ¢(s,t) = (2s,2t), which of course has degree 4,
not 2.
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() € 25 (0) ]

Remark: This condition follows from the implicit function theorem if Dd;(j, u) is surjective,
but it may still hold without that, in which case dim ker Dd;(j,u) > ind Dd;(j,u), so that
the moduli space 0, ' (0) is a manifold of strictly larger dimension than its virtual dimension.
Example: (M,w) is called a symplectic Calabi-Yau 3-fold if dim M = 6 and ¢ (T M) =
0, which implies that all moduli spaces without marked points satisfy

vir-dim Mg o(J, A) = (n — 3)(2 — 29) + 2¢1(A) = 0.

As was mentioned in Lecture 19, these moduli spaces cannot always be smooth orbifolds of
dimension 0: if v € My, o(J, A) is a simple curve with domain (X', j), then for d > 2 and
g = h, Mgo(J,dA) contains the set {u =vop | e Mgo(j',d[X])} consisting of d-fold
branched covers of v with genus g, which is an orbifold of dimension 2[2g — 2 + dx(X')] =:
K, 4. In particular, dimker Dd;(j, ) in this situation must always be at least K, 4, which
is not zero unless the d-fold covers ¢ : (X, ) — (X', 5') in question have no branch points.
Definition: The simple curve v in the above situation is called super-rigid if for all of its
branched covers u =voyp: (X,5) — (M, J) of all possible degrees d € N and genera g > h,
dimker D3 (j,u) = K, q. This is a clean intersection condition: it implies via the implicit
function theorem that for each simple curve v, the space of d-fold covers of v with genus g
is an open and closed subset of M, o(J,dA), and 0, intersects the 0-section cleanly.
Theorem [Wend]: For generic J € J(M,w) in a symplectic Calabi-Yau 3-fold, all simple
J-holomorphic curves are super-rigid.

Remark: I mention this just to illustrate that clean intersections really are something that
occur in nature, and they are sometimes even the generic case in situations where actual
transversality is impossible. But we will not use this result in the course, nor discuss its
proof.

Application (toy model): Suppose w : E — B is a vector bundle over a manifold and
s : B — E is a smooth section that intersects the 0-section cleanly but not transversely,
such that the linearization Ds(x) : T,B — E, for all x € M := s71(0) is Fredholm with
index 0. (If E and B are finite dimensional, the latter just means dim B = rank E.) The
zero-set M is then a manifold of some dimension k£ € N, which we will assume is compact
and carries an orientation. Since dim coker Ds(x) = dimker Ds(x) — ind Ds(x) = k is
constant along x € M, there is now a smooth vector bundle

Ob - M, Ob, := coker Ds(z),

called the obstruction bundle, which we shall also assume carries a natural orientation.
Proposition: Given a neighborhood U« ¢ B of M = s71(0), there exists a neighborhood
V c T'(E) of s such that for any s. € V that is transverse to the zero-section, its algebraic
count of zeroes in U is the Euler number of the obstruction bundle:

# (s71(0) nU) = e(Ob) € Z.

Proof: Over U, choose a splitting E|y; = I @ C such that I, = im Ds(z) for every x € M,
and write the section s € T'(E) over U as (f,g) for f € I'(I) and g € T'(C). The clean
intersection condition implies that f € I'(I) is transverse to the zero-section, and the same
will then hold for any s, = (fe, gc) sufficiently close to s, so that M, := f.1(0) is another
k-dimensional manifold diffeomorphic to M and the subbundle C|a4, is isomorphic to
C|m = Ob. Zeroes of s in U then correspond to zeroes of g. along M., which defines a
section of C|a, .

Remark: If we add symmetries to the toy model above, then B generally becomes an
orbifold and £ — B an orbibundle, whose Euler number is then rational.
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e Example: In (52, dvol), we claim that GW1 5 [s21(pt, pt, [pt]) = 2.

Proof sketch: Fix the standard complex structure i € J(S?,dvol) on the target. The
strange aspect of this example is that M 2(i,[S?]) is empty, as there are no degree 1
holomorphic maps from a torus to S?; nonetheless, M 5(i, [S?]) # &, as it contains nodal
curves with a constant genus 1 component attached to spherical components, one of which
can have degree 1. Pick &; = {0} and az = {1} = S?, and let 8 © M » denote a one-point
suborbifold consisting of a nodal Riemann surface with a genus 1 component attached
to a genus 0 component such that both marked points are on the spherical component
and the nodal point is positioned on the torus component so that there are no nontrivial
automorphisms. (For the reason why the latter is important, see Exercise 14.2.) Most
elements u of (ev, ®)~!(a; x as x 3) € M (i, [S?]) can now be described as follows: each
is a nodal curve with a constant torus component and a spherical component that is a
biholomorphic map ¢ : (52%,i) — (S2,i), whose parametrization is uniquely determined if
we call ¢; := 0 and ¢ := 1 its marked points and z* := oo the nodal point connecting
it to the torus. The constraint ®(u) € 5 means that the torus component carries a fixed
complex structure j € J(T?) with its nodal point in a fixed position 2~ € T? such that
Aut(T?,7,27) is trivial. Meanwhile, ev(u) € a; x @» means that ¢ : S? — S? fixes 0
and 1, so ¢ is then determined by the value of ¢(00), which determines u also on the
torus component, but is not in itself constrained. The only caveat to add here is that
in this description, ¢(o0) cannot take the values 0 or 1, since that is where the marked
points are sent; but one can nonetheless construct exactly two additional elements of
(ev,®)~L(ay x @z x B) € M a(i,[S?]) for which the constant torus component takes these
values, by adding an additional ghost bubble and placing one of the marked points on it.
The result is that (ev,®)~ (a1 x @z x 3) © M 2(i,[S?]) has a natural homeomorphism
to S2. On the other hand, its virtual dimension is

vir-dim(ev, ®) " (a; x ag x B) := vir-dim M (i, [S?])
—codim(a; x ag x f 8% x S x M) =4—4=0,

so the actual dimension of this space is too large by 2, suggesting the existence of a rank 2
obstruction bundle.
Claim (left as an exercise): The obstruction bundle in this setting is isomorphic to 752,
whose Euler class computes the GW-invariant as claimed.

o Justifiable question: since M 2(i,[S?]) = & in the above example, what does the result
GW, 2 1521(pt, pt, [pt]) # 0 actually mean?
Answer: If we choose a generic inhomogeneous perturbation, the equation d;p = v(¢p)
will indeed have solutions that are smooth degree 1 maps ¢ : T? — S2; they are not
required to be branched covers (and thus not diffeomorphisms), since they are not actually
holomorphic.

Suggested reading. The main original source for our definition of GWy ., 4 is [RT97]. The
Ruan-Tian paper does not use Prym covers, but refers instead to an older construction by Mumford
[Mum&3] of finite covers of M, ,, which are not manifolds, but are normal projective varieties
with quotient singularities. The Prym covers introduced in [Loo94] later became the preferred tool
for the same purpose. The definition in [Loo94] of Prym level-N structures for smooth Riemann
surfaces is not so hard to understand, though proving that they have no automorphisms for even

.. s . . —-—P
N > 6 takes some nontrivial work, and the definition of the compactification M ,, uses algebro-
geometric methods.
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McDuff and Salamon give a slightly different construction of the rational Gromov-Witten in-
variants in [MS12, Chapter 7], using domain-dependent almost complex structures instead of in-
homogeneous perturbations, though it is (on the surface) not quite as versatile because it can
accommodate only a very specific class of constraints on the forgetful map. (Actually, one can use
some knowledge of H,(Mj ) to recover the general invariant in genus zero from what they de-
fine, but it is nontrivial to prove that.) Some more restrictive versions of GW ,,, 4 with g > 0 are
also defined in [MS12, Chapter 8] by reformulating the inhomogeneous nonlinear Cauchy-Riemann
equation as an equation for J-holomorphic sections of a fiber bundle (cf. Exercise 12.3).

Most of the computations we discussed this week are probably also covered in some fashion in
Chapters 7 and 8 of [MS12], but I have not checked to be sure.

Exercises (for the Ubung on 8.02.2023).

Exercise 14.1. A symplectic manifold (M,w) is called (spherically) monotone if there exists a
constant 7 > 0 such that

c1(A) = Tw(A)
for every A € Hy(M) in the image of the Hurewicz map mo(M) — Hz(M). Show:

(a) Monotone implies semipositive.

(b) (CP™,wrg) is monotone, and so is (S? x W, dvol@u) for any symplectic manifold (W, )
with mo(W) = 0.

(¢) If (M,w) is monotone, then for generic J in J.(M,w) or J(M,w), the map

ev: Mg, (J,A) - M*™

is a pseudocycle for each integer m > 0 and A # 0 € Ha(M), where Mg, (J, A) denotes the
open set of simple curves in Mg ,,(J, A). The m-point rational Gromov-Witten invariants
can thus be computed for any m > 0 and A # 0 as

GWo,m a(a,...,am) =eve(PD(ar) x ... x PD(auy,))
with ev restricted to M® (J, A); in particular, if the classes PD(«;) are represented by

0,m
submanifolds &; ¢ M, then for generic J, GWq , a(@1, ..., ap) is a signed count of simple
J-holomorphic curves u satisfying ev(u) € &1 X ... X Quy, and its value is an integer.

(d) Why do you think that in part (c), I did not suggest similarly computing the more gen-
eral invariant GWq , a(a1, ..., am, ) with arbitrary 8 # [Mo,] € Hy(Mo,n) just by
counting simple curves for generic J7

Remark: A similar trick works for computing the m-point invariants GWg m, a(a, ..., 0,) with
A # 0 in any symplectic 4-manifold whenever either g = 0 or m > 1, and these invariants are
therefore also integers. This trick is explained in [Wenl8, §7.2.3].

Exercise 14.2. Let’s be a bit more concrete about orbifolds and suborbifolds. Recall that if M
is an n-dimensional orbifold, it is covered by an atlas of charts, with each chart consisting of the
data (Uy, My, Gy, ps) where U, = M is an open set, G, is a finite group acting smoothly® on a
smooth n-manifold M,, and ¢, is a homeomorphism U, — M,/G,. The chart thus identifies each
p € U, with some finite set of G,-related points in M, and the stabilizer of one of these points is
a finite subgroup of G, called the isotropy subgroup of p; we shall denote it by Aut(p). Without
going into details, the notion of compatibility of charts is defined so that up to isomorphism, the
group Aut(p) does not depend on the choice of chart. The orbifold is called effective if G, acts

?’OMany sources require M, to be a G-invariant open subset of R™ on which G, acts linearly, but this seemingly
more rigid condition is actually equivalent, because any smooth finite group action can locally be made linear by
a suitable choice of coordinates. Just choose a Gq-invariant Riemannian metric and use the exponential map to
identify a neighborhood of a point with a region in its tangent space.
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effectively on M, for every chart (U, My, Gq, o) in the atlas. Effectivity is not a topological
property of M, but is rather a property of its atlas. Indeed, every orbifold can be made effective
by a modification of its atlas that does not change the underlying topological space: this only
requires modifying each of the charts (Uy, My, Ga,va) to replace G, with its quotient by the
subgroup that acts trivially on M,. On the other hand, we will see below that any suborbifold
3 © M inherits from M a natural atlas, which might not be effective even if M is, and in this
situation, modifying the atlas of ¥ would not be the right thing to do.

(a) Show that if M is connected, then there exists a number N € N such that | Aut(p)| = N
for all p in an open and dense subset of M. Conclude that M is effective if and only if
Aut(p) is trivial for almost every p € M.

A subset ¥ ¢ M is a smooth k-dimensional suborbifold if for every chart (Uy, My, Go, ©a),
Yo identifies U, N X with the quotient by G, of a smooth k-dimensional G,-invariant submanifold
Yo © M,. The induced orbifold atlas on ¥ then consists of the charts (U, N 3, Xo, Go, pals), sO
in particular, each point p € ¥ has the same isotropy group as a point in 3 that it does as a point
in M.

The idea of homological intersection theory in oriented orbifolds is predicated on the notion that
every closed oriented suborbifold ¥ < M naturally represents a homology class [X]. The point I
want to make with this exercise is that [¥] isn’t always what you might intuitively expect it to be,
and sometimes it belongs to Hy(M;Q) rather than H,(M;Z). In the following, assume that for
any smooth map f : M — N of closed oriented orbifolds and a closed oriented suborbifold ¥ c N
with dim M 4+ dim¥ = dim N and fhX, the intersection number f e X € Q is defined the way
we sketched in lecture as a signed count of the points p € f~1(X) divided by | Aut(p)|. It is a bit
tricky to say in general what a smooth map of orbifolds is, but in the special case where M is a
manifold and N an orbifold, we call f : M — N smooth if for every chart (Uy, My, Gy, o) on N,
there exists a smooth map f : f~'(Us) — M, such that @, o f|;-1(y,) is the composition of fq
with the quotient projection M, — M,/G,.

(b) Suppose M and N are a closed oriented manifold and effective orbifold respectively, with
the same dimension, and ¥ = {p} € N is a one-point suborbifold. Show that f e 3 € Q is
not independent of the choice of point p € N, but its product with | Aut(p)] is.

How are we to interpret part (b)? The inevitable conclusion is that if closed oriented suborbifolds
represent homology classes and feX. depends only on those classes, then not all of the O-dimensional
suborbifolds {p} represent the same one; the natural convention is in fact to define

1
[p] := m[m] € Ho(N;Q),

where [pt] € Hy(N) is the usual “homology class of a point” (represented by a single singular
O-simplex). The subtlety here is that although N was assumed to be effective, the suborbifold
{p} © N will only be effective if its isotropy group is trivial, so by part (a), almost every point in N
represents the obvious class [pt] € Ho(IN), but not every point does. One can show more generally
that every closed, oriented and effective orbifold M of dimension n has a natural fundamental class
[M] € H,(M;Z), but if M is not effective, then its fundamental class must instead be defined to
live in H,(M;Q).

Exercise 14.3. Most of the computations we carried out in lecture this week (with the major
exception of the last one) require showing that there are no nodal curves satisfying the relevant
constraints. Prove in particular that the following compactified moduli spaces with constraints do
not contain any nodal curves:
(a) ev (p) € Mo1(J,A)in (M,w) := (S?x W, dvol ®u) with m2(W) = 0, where J = i@®Jy €
J-(M,w) for some Jy € J(W, ), and p € M is an arbitrary point.
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(b) ev i(p1,p2) © Mo2(i,[L]) in (CP",wrs) with the standard almost complex structure
i € J(CP",wps), where p1,ps € CP" are arbitrary distinct points and [L] € Hy(CP") is
the homology class of a line.

Bonus question: What happens in this example if you allow p; = po?
(c) Mio(4,2[T?]) in (T?,dvol) with the standard complex structure i € 7 (T?, dvol).

Exercise 14.4. Outline a direct proof—without relying on the knowledge that Gromov-Witten
invariants exist—of the main fact about (M,w) = (S% x W,dvol@®u) with mo(W) = 0 that is
used in Gromov’s proof of the nonsqueezing theorem: namely that for every J € J.(M,w) and
every p € M, there exists a smooth J-holomorphic sphere u : (S2,4) — (M, J) homologous to
A :=[S? x {const}] that passes through p.

Hint: The two essential facts we used for the proof in lecture were that (1) it’s true when J is of
the form Jy := i ® Jw, and (2) the invariants are independent of generic data (J, K). The proof
of the latter uses a parametric moduli space.

Exercise 14.5. For (T2, dvol), compute the 1-point invariant GW 1 1 o[r21(pt) directly, and verify
in light of our computation GW1 g o[r2) = % from lecture that the result is consistent with (14.1).

Exercise 14.6. Show that in any (M, w) and for any m > 3 classes o; € H*(M) with 3\ | |a;| =
dim M and S := [pt] € Ho(Mo.m),

GWomo(o1, ... am, [pt]) =<1 U ... U am, [M].

Hint: For generic submanifold representatives &; € M of PD(«;), the right hand side is a signed
count of points in &y N ... N Q.

Exercise 14.7. Here are some calculations that can be carried out using obstruction bundles.
(a) Show that for any (M,w), taking a1 := 1 = PD '[M] e H°(M) and 3 := [pt] € Ho(M1,),

GWl,l,O(la [pt]) = x(M).

Hint: For any J € J,(M,w), you can choose suitable &1 ¢ M and 3 My so that
evl(a; x B) € My.1(J,0) is a compact smooth family of non-nodal curves u : (T2, j) —
(M, J) and has a natural identification with M, though its virtual dimension is 0. Show
that the vector spaces coker D,, form the fibers of an obstruction bundle isomorphic to T M.
(b) Use the result of part (a) to complete the computation GWy 5 [521(pt, pt, [pt]) = 2 for
(S2,dvol) that we sketched in lecture.
Hint: The relevant moduli space in this case is an S?-parametrized family of nodal curves,
each having a nontrivial spherical component that is Fredholm regular and a constant torus
component with one nodal point. What will happen to this family of nodal curves after a
generic inhomogeneous perturbation?

15. WEEK 15

Lecture 27 (7.02.2023): The Kontsevich-Manin axioms.
o Setting for the axioms: we assume (M,w) is a closed symplectic 2n-manifold and consider
only the rational GW-invariants, so abbreviate

GWopa i= GWo moa : H¥(M)*™ x Hy(Mo.m) — Q

for m > 3 and A € Hy(M). Lifting all constraints on the forgetful map gives the rational
m-point invariants

GWoalar, ..., o) i= GWy, a(ai,. .., am, [Mom]).
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The axioms are meant to be valid for all symplectic manifolds, though we have only defined
the invariants in the semipositive case (which was also the state of the art when [KM94]
was written). Part of the idea is that one might imagine various different ways of extending
the definition beyond the semipositive case, but whatever one defines should be required
to satisfy the axioms and will, as a consequence, be uniquely determined in certain cases
of interest.

¢ (E) Effective axiom: If w(A) < 0, then GW,,, 4 = 0. This expresses the fact that holomor-
phic curves always have nonnegative energy.

¢ (S) Symmetry axiom: Under the interchange of two classes o, o; in a1, ..., 0 € H*(M),

GWm’A(Oll,.-.,Oéj7...,ai,...,04m70'*ﬁ) = (_1)|CELH04]| GW’m,A(alw"aai7"'7aj7"'ua’n’wﬁ)a

where o : ﬂoym — Mo, is the map defined by exchanging the ith and jth marked points.
The sign change comes from the fact that oriented manifolds of the form a; x ... x au,
change orientation whenever two odd-dimensional factors are exchanged.

e (G) Grading axiom: If GW,, a(a1,...,qm, ) # 0, then

2n + 2c1(A) = ) Jai| — |B.

For the m-point invariants (when |5] = dim Mg ,,, = 2(m — 3)), this becomes

2(n—3) +2c1(A) +2m = Z |ev;]-

Its meaning in each case is that the virtual dimension of the moduli space must match the
codimension of the constraints.

¢ (H) Homology axiom (appears in a slightly different form as the motivic axiom in [KM94]):
One can associate to each m, A a homology class

Om, A € H2n+2c1(A)+2m—6(Mxm X mO,m; Q)

such that each GW,,, a(a, ..., am, B) is an evaluation of an appropriate cohomology class
on o, 4, i.e.

CWoa(ar,...,om, B) ={pria; u...uprk am uprk,,  PDH(B),0m )

In the semipositive setting, o,y 4 is the singular homology class represented by the Gromov-
Witten pseudocycle (ev, ®) : Mo, (J, K, A) = M*™ x Mg, under the correspondence in
[Zin08]. One imagines it more generally as the pushforward under (ev, ®) of the (virtual)
fundamental class of Mo (], A), whenever one has a way of defining the latter.

¢ (FC) Fundamental class axiom: so named because the unit 1 € H°(M) is Poincaré dual to
the fundamental class of M, so this involves invariants in which one of the marked points
is not constrained under evaluation:

GWogra(ar, ..., am, 1, 8) = GWy, alas, ..., o, mef),

where 7 : Mg mi+1 — Mo,m is the map that forgets the last marked point and stabilizes
(we have previously called this the “universal curve”).

Proof: Given a submanifold 5 € Mo n41 representing 3, use the map 7|5 : 8 — Mo,m to
represent w. (3 € H, (ﬂ(),m) and compute the right hand side as an intersection number.

Corollary: The (m + 1)-point invariant GW,,41,4(0q, ..., am, 1) always vanishes!
This follows for stupid dimensional reasons since dim My, < dim Mg 5,41, 50 T [Momi1] =
0. Another explanation is as follows: if GW,, 41, 4a(a1, ..., @, 1) were nonzero, the grad-

ing axiom would imply vir-dim M,,, o(J, A) +2 = 37" | ||, which makes the dimension of
M. o(J, K, A) too small to satisfy the constraints imposed by aq, ..., am.
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e (Z) Zero axiom (appears in [KM94] under the name mapping to a point):
For A:=0¢€ Hy(M),
GWoolaq, ... am,[pt]) =<ar v ... U an, [M]),
and GW,, o(e1, ..., @, 8) = 0 whenever |3| > 0.
Proof: The first statement is Exercise 14.6 and results from the fact that holomorphic

spheres homologous to zero are constant (but also Fredholm regular!), after interpreting
the right hand side as a signed count of intersections of submanifolds Poincaré dual to

Q1,...,Qy, in general position. When |3]| > 0, the grading axiom implies Y. |a;| > 2n,
so for dimensional reasons, these submanifolds in general position will have no common
intersections.

e (D) Divisor axiom: “divisor” is roughly the algebrogeometrisch word for “complex hyper-
surface”, so this concerns constraints imposed by codimension 2 submanifolds: for |a| = 2,

Gwm+1,A(ala te O[m7Oz,PD(7T* PDil(/B))) = <Oé, A> GWT’%A(ah R o‘mvﬂ)a

where 7 : ﬂo}mﬂ — ﬂo’m is again the map that forgets the last marked point.

Proof: If 3 € Mo, represents 3, then 7=1(3) © Mg m11 is a submanifold representing
PD(7* PD *(3)). (Check this by intersecting it with other homology classes of comple-
mentary dimension.) The term {«, A) is the intersection number of A with PD(«), which
gives a signed count of the number of places that an extra marked point can be put on any
curve counted by GW,,, a(aq, ..., am, ) so that the o constraint is also satisfied.

e (Sp) Splitting axiom: This gives a relation (due to compactness and gluing) between
counts of curves whose domains are close to degenerating in Delign-Mumford space and
counts of pairs of curves that arise after a nodal degeneration. Choose a basis ey, ...,en
of H*(M;Q), write gqp := {eq U €p, [M]) (defined to be zero whenever |e,| + |ey| # 2n), let
g“b denote the entries of the inverse matrix, and fix mg, m; = 2 such that mg + m; = m.
There is a natural map

@ Momo+1 X Moms+1 = Mom

defined by attaching two marked nodal Riemann surfaces 7 and 35 via a node formed from
the last marked point in ¥; and the first marked point in 35, then numbering the remaining
marked points in the obvious order. The axiom then says that for any By € Hy(Mo mg+1)
and 31 € Hy(Mo,m,+1),

N
GWm,A(a17~";am7¢*(60 X ﬂl)) = Z Z GWmo+l,Ao(a1a"'aamanbaﬂO) 'gab

Aj+As=A a,b=0
: GWm1+1,A1 (eaa Amgo41s -+ Omy,y ﬁl)

e Exercise: Show by evaluating under a basis of cohomology classes that the homology class
> 9 PD(ep) x PD(e,) € Hy(M x M) is represented by the diagonal submanifold. Use
this to interpret the right hand side of the formula in the splitting axiom as a count of
nodal curves.

o Extension: define GW,, a(a1,...,q,,) for m < 3 and A # 0 so that the divisor axiom
holds. One cannot insert any 3 € Hy(Mo,n) in these cases because the Deligne-Mumford
spaces ﬂo,o; MOJ and MO,Q are not defined. One also cannot allow A = 0 because
the holomorphic curves are then not stable, so Gromov’s compactness theorem would not
apply.

¢ (FC) extended: GW,,, a(a1,...,am,1) = 0 also holds (for the same dimensional reasons)
whenever m < 2 and A # 0.
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Note: GW3 (v, az,1) can be nontrivial due to the zero axiom. This exception occurs
because My 2(J,0) has the wrong dimension and, being a space of non-stable curves, there
is no way to perturb it to a space with the right dimension.

Theorem: All of the rational Gromov-Witten invariants are determined by the m-point
invariants GW,,, a(au, ..., ap), i.e. the case B = [Mon].

Proof: According to [Kee92], the ring H* (M, ) is generated by degree 2 classes Poincaré
dual to homology classes of the form ¢ ([Momg+1]s [Mo,m,+1]) for mg + m1 = m, plus
others obtained from these via permutation of marked points. It follows that it suffices to
be able to compute GW,,, a(c1, ..., am, ) whenever § is an intersection of finitely many
codimension 2 submanifolds of this type. The case |5| = max —2 now follows from the case
|8] = max via the splitting axiom, and after that, the splitting axiom determines the case
|3] = max —4 from these two cases, and so forth.

First reconstruction theorem [KM94] (stated without proof): If H*(M) is generated as a

ring by H2(M), then all GW,, 4 are determined by the two-point invariants of the form?*!
GW27A(OK1,C%2), A #0 with Cc1 (A) <n+4+ 1.

Example: In (CP",wps) with the generator [L] € Ho(CP"), ¢1([L]) = n + 1, and this
theorem then says that the computation GWj 11(pt, pt) = 1 from last week determines
all other genus zero invariants on CP".

(Note: Actually computing them is still not a trivial task; cf. the end of [MS12, Chapter 7].)

Lecture 28 (8.02.2023): The Gromov-Witten potential.

(15.1)

(15.2)

e Goal: Repackage the information contained in the collection of all genus zero m-point

invariants GW,,, a(a1, ..., ) s0 as to minimize redundancy (arising e.g. from the divisor
axiom).

Fix the following choices on (M,w). We take Ho(M) to mean the quotient of Hy(M;Z) by
its torsion subgroup (note that w(A) vanishes automatically when A is torsion), and define
H*(M) always with rational coefficients. Choose a basis A1, ..., Ay of Ho(M) over Z and
a basis eq,...,ex of H*(M) over Q such that ey = 1 € H(M) and ey,...,e, € H*(M)
form the dual basis to Ay, ..., Ax. We again write

gab 1= <eq U €p, [M]), a,be{0,...,N},

and let g? denote the entries of the inverse matrix. Associate to each t = (to,...,tx) €
QN*! the cohomology class

PE Ztaea e H*(M).

This symbol will have an additional formal meaning in the following, in which we regard
H*(M) as a supermanifold, whose ring of functions (written as functions of the variables
to, - ..,tn) thus has a natural splitting into spaces of even and odd functions. In particular,
the variable ¢, is defined to be even or odd in accordance with the degree of e,, and the
ring of functions on H*(V) is defined to satisfy the commutation relations

taty = (—1)leel ool
As a purely formal matter of notation, we will also write

eqty = (—1)'5“"|el"tbea.

31In [KM94], the condition on A is ¢1(A) < 2n + 1 instead of n + 1, but I believe this to be a typo.
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(15.3)
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e Definition: The group ring of Hy(M) over Q is the commutative ring Q[ Hz(M )] generated

by Q and all symbols of the form e for A € Ho(M), on which the product is defined by

eAeB = eAJrB'

The genus zero Gromov-Witten potential ® of (M,w) is a formal power series con-
sisting of a countable sum of monomials in the variables tg, ..., ¢ty multiplied by elements
of Q[H2(M)]. It is defined by

©
d = Z ZOWZGWm,A(at,...,at)eA

AeHy (M) m
1 N
A
= Z — Z €(a) GWy, a(eays---»€a,)e ey - - - ta,,,
m:
A,m A1y.eeypy, =0

where the sign €(a) = 1 of the tuple a = (ay,...,a,,) is determined by the rule

ta;€ay - - -ta, €a, = €(a)eq, ... €q ta, .. .ta,,

in accordance with (15.2). The symmetry axiom and (15.1) guarantee that each term in
this series is unchanged under permutations of a1, ..., a,,. We can therefore rewrite it in
terms of multi-indices v = (7o, ...,vn) € NI+ as

ey
P = 2 (7‘) GW‘,Y|7A(67)€A{Y7
Ay v

where |y| ==y + ... + x5, Y = !. ..y~ €(7) := €(a) = £1 for

a=(ay,...,am):= (O,...,O,...,N,...,N),
— W—/

N
Yo IN
and €7 denotes the tuple (eq,,...,€q,,) for this same definition of a4,...,a,,. The sum-

mation is understood to omit terms with m < 3 and A = 0 since GW,, 4 is not defined in
these cases.

Remark: For each individual multi-index v, t¥ may appear in infinitely many terms of
(15.3), but Gromov compactness implies that only finitely many of these can have w(A)
bounded above by any given constant. It follows that ® is a power series in the variables
to, ..., tn with coefficients in the Novikov completion A, of Q[Hz(M)], which is defined
to consist of finite or countably infinite sums », cie with ¢; € Q and A; € Hy(M)
such that, whenever the sum is infinite, lim; o, w(A;) = +00. This observation does not
appear to follow directly from the Kontsevich-Manin axioms, but it certainly holds for any
reasonable definition of the GW-invariants.

Notational device: Associate to each of the basis elements A; € Ho(M) a formal variable
qi := e € Q[Hy(M)], so that for d = (di, ..., dy) € Z*, we can write

k
qd = qfl . ..q,‘i’“ = e kAR = Ad for Ay = Z d; A;.

i=1

Now (15.3) becomes a formal Laurent series (remember that the d; can be negative) in the
variables ¢, ...,qr and tg,...,ty with rational coefficients, written as

O(q,t) =), E(J,) GW y1.a,(e7)gt.

dy,y
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e Example: M := CP' >~ $2, with any area form as w. Taking e = 1 € HO(CP'), e; = pt :
PD~!([pt]) € H*(CP') and ¢ := elP'1 we have

1 1 Z1
B(g.to, t1) = Stit +qe't = Stt +q ) —ti
m=0 :

Explanation: By (E), only homology classes A = d[CP'] with d > 0 contribute. The d = 0
contribution #2t; comes from GW3 o (e, e, e1) = {egueguer, [CP']) = 1 by (Z). One uses
(G) to show that all d = 1 contributions come from GW (¢cp1] = 1 (which counts only the
identity map S — CP') and its consequences via (D), which give GW,, cry(er, ... e1) =
1 for every m > 0, producing the exponential series in t;.

o Example: (M,w) := (CP? wrg). Taking q := el! for the line [L] € Ho(CP?), g := 1 €
HO(CP?), e; := PD™Y([L]) € H*(CP?) and ey := ¢; U e; = pt € H*(CP?), we have

1 *~ Nyg?
[} ,t ,t ,t :7t2t +t t2 + _-'ad dt1t3d71’
(q 0501 2) 2(02 01) dZ::l (3d—1)!6 3
where Ny € Z is the count of rational curves of degree d through 3d — 1 generic points,
explicitly®”

Ny := GWSd*l,d[L] (pt, s 7pt)

Again (E) implies only classes A = d[L] with d > 0 contribute, and the d = 0 contribution
produces % (t2ts + tot3) due to (Z), because eg U eg U €2 = eg U €1 U €1 both evaluate to 1
on [CP?]. The exponential series comes from GW3q_1,ar2)(pt, . . ., pt) and its consequences
via (D), which give

GWsg_14pdrryler, ... e1,ea,...,e2) = d Ng
(A
s

for every integer r > 0. All other possible contributions are excluded via (G).

e Idea: Certain axioms of Kontsevich-Manin translate into partial differential equations sat-
isfied by @ as a function of tg,...,ty and ¢, ..., qx, which can give nontrivial information
toward computations of ®. Note that when working with variables that are only graded
commutative, the definition of the partial derivative with respect to an odd variable is
slightly non-obvious: the basic property we require is that**

0., (taF) = F

whenever F(q,t) does not contain the variable t,. This might not be the same as d;, (Ft,)
since t,F' and F't, might not be equal; in particular, for a # b, one deduces the relation

0,0, = (—1)leallevlg, o,

This plus 0; t, =1, 0;,(1) = 0 and the obvious definition of d;, when ¢, is an even variable
suffice to determine the operator 0y, on all power series, and one can show that it satisfies
a graded Leibniz rule. The definition of ¢y, is straightforward because the variables ¢, are
even.

e Theorem: The Gromov-Witten potential ®(q,t) satisfies the following relations:

320qur overarching goal is of course to compute the numbers N;. Writing down @ in terms of Ny is the first half
of the argument toward that end.
33Note that if to F # 0 and ¢4 is an odd variable, then F(q,t) cannot contain t, since tg =0.
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(1) The string equation:

1
atgq)(Q7 t) = 5 Z gabtbtw

a,b

(2) The divisor equation: for each a = 1, ...,k (corresponding to the basis elements of
H?(M) and Hy(M)),

0, ®(q,t) = 0, 2(0,1) + qa0q, (g, 1)
(3) The WDVYV equation: for each i,j,k,£ € {0,..., N},

3 (04,66,01,®) g (81, 00,01, ®) = (—1)/ (sl HlexD 37 (wmb@) 9" (01,01,0,,2)
a,b

, ab

e Comments:

(1) (FC) implies that very few terms in ® can contain g, so the string equation is just
telling us (via (Z)) what they are.

(2) Since |eq| = 2 in the divisor equation, 0;, ® is meant to detect terms that contain this
particular degree 2 class, in which case the divisor axiom relates them to other terms
that do not contain t,.

(3) The two sides of the WDVV equation are the same except for a cyclic permutation of
the indices i, 7, k (and a sign change associated with that cyclic permutation). These
sums of quadratic products should remind you of the count of nodal curves in the
splitting axiom, and we will justify the equation next time by relating both sides to
two counts of smooth curves that are close to a nodal degeneration, in which certain
permutations of the contraints obviously do not change the count.

Suggested reading. Our presentation of the Kontsevich-Manin axioms and the Gromov-Witten
potential follows [MS12, §7.5 and §11.2] fairly closely. The original paper [KKM94] also makes for
interesting reading, though you need to be aware that Kontsevich and Manin regard what we call
GWy .4 as a linear map Iy, 4 : H*(M)®™ — H*(M,.,); our definition is obtained from theirs
by setting GWy m a(ai1,...,am,08) = Ugmalar @ ... ® an), 5). Kontsevich and Manin also
include some axioms for higher-genus invariants (including the result of Exercise 14.7(a)), though
they do not do much with them.

In case you are curious what the actual definition of a supermanifold is, [Var04] is very good. The
notion of supersymmetry first appeared in physics during the 1970’s because it offered some hope
for making string theory connect with reality,** but starting from Witten’s interpretation [Wit82]
of Morse theory as a supersymmetric quantum field theory, it has taken on a mathematical life of
its own. These days, many algebraic objects that come with natural Z,-gradings can usefully be
described in terms of supermanifolds.

Exercises (for the Ubung on 15.02.2023).

Exercise 15.1. Assume (M, w) is a closed symplecic Calabi-Yau 3-fold, meaning dim M = 2n := 6
and ¢;(TM) = 0. In this case, every moduli space of J-holomorphic curves without marked points
has virtual dimension zero, and we can therefore associate to every A # 0 € Ho(M) a number

NA = GW0707A € Q,
34The original version of string theory turned out to produce a self-consistent theory only if spacetime is assumed

to be 26-dimensional, which was generally regarded as a problem. Putting supersymmetry into the picture reduced
26 to 10, and this was considered an improvement since 10 is closer to 4.
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interpreted as a count of finitely many solutions to an inhomogeneous nonlinear Cauchy-Riemann
equation for maps u : $? — M with [u] = A.*

(a) Prove that if GWg , a(o1, ..., o) # 0, then the cohomology classes ay, .. ., ayy, must all

have degree 2.
Hint: Show via the grading axiom that if this is not true, then at least one of the «; has
degree greater than 2, meaning that one of the marked point constraints in the definition
of GWg  a(a1, ..., ) involves a submanifold of codimension greater than 2. Argue that
generically, no solution will intersect that submanifold.

(b) The argument I have in mind for part (a) requires some knowledge of how the GW-
invariants are defined, so it does not appear to follow from the axioms alone. Show however
that if H'(M) = 0, then the same conclusion can be deduced purely from the axioms.
Remark: If you can also do this without assuming H'(M) = 0, then more power to you!

(c) Using a basis Ay, ..., Ay € Ho(M) with corresponding formal variables ¢, := e« and dual
basis ey,...,er € H?(M) with corresponding formal variables t, ..., ¢y, show that the
Gromov-Witten potential of (M,w) satisfies

B(q,t) = DO,6) + Y Nage<h,
d#0eZk

where we abbreviate Ny := Ny, a,+...+d, 4, and {d,t) :=dit; + ... + dytg.
(d) Would you expect the splitting axiom to provide any useful information about the num-
bers N4 in this situation?

Exercise 15.2. We have mentioned a few times that the m-point invariant GWy ,, 4 can be
defined for 2g+m < 3 and A # 0 in a unique way so that the divisor axiom is satisfied: concretely,
this means choosing any k € N such that 2g + m + k > 3, along with classes 1, ..., [, € H*(M)
that satisfy (8;, A) # 0, and defining
GW m kA(Oll ey Oy [‘31 Bk)
GW ALyeeey Q) 1= gmEh, e eQ
om0, -, om) Buo Ay (B Ay

for each oy, ..., a,, € H*(M). Show that the result is independent of the choice of k and Sy, . . ., Bk.
Hint: All you need is the knowledge that the divisor axiom holds for 2g +m > 3.

Exercise 15.3. Let’s take a closer look at the differential equations satisfied by the Gromov-Witten
potential.
(a) Show that if any of the indices i, j, k,¢ in the WDVV equation are 0, then the equation
follows from the string equation.
(b) Verify explicitly that the Gromov-Witten potential of CP' satisfies the string, divisor and
WDVYV equations.
(c) Check the string and divisor equations explicitly for the Gromov-Witten potential of CP?.

16. WEEK 16
Lecture 29 (14.02.2023): WDV'V equations and the Kontsevich recursion formula.

e Proof of the string equation (via fundamental class and zero axioms)

35Recall that in order to define the inhomogeneous perturbation needed for transversality, one needs to add
three marked points and impose incidence conditions on them via degree 2 cohomology classes a1, a2, as, so that

.. . . e GWy 3,4 (a1,02,a3) . .
the divisor axiom gives the actual definition of N4 as Tar,A>ian A g, AS " This reveals why N4 might not be an

integer, although GWy 3 a(a1, a2, a3) is one.
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e Proof of the divisor equation:
Acting on ¢ with ¢,0,, multiplies any term containing q% by d,. For any multi-index v
not involving the variable ¢,, acting on ® with 0;, and subtracting off the terms with no

q replaces ﬁ GW |y 4k,4, (€7, €a, . .., €q)t7tN for k>0 and d # 0 with
#GW a,(e” e ea)tth 1 e ¥<e Aqgy GW a,(e7e eq)tth 1
’y!(k—l)! [v|+E,Aq ’ av';c" a a 'y!(k‘—l)! as [v|+k—1,Aq4 ’ av]'c"lv a a

Summing over all v and k, the effect is the same since {e,, Ag) = d,.
e Proof of the WDVV equation:
Ignoring the signs for simplicity, we have

1
at,i atj atb¢ = Z ~ GWH|+3,A¢(€’Ya €, €5, eb)th’y'
d,y v
Inserting this on the left hand side of the WDVV equation produces a summation over two
multi-indices 7,~" and two homology classes dg, d; of terms that contain

ba N do+d o
Z GWiy 143,44, (€75 €is €5, €5)9™ GW a5, (€ar €x, €0, €7 )g 0T
a,b

If we fix v and +" but sum over all terms for which dy + d; takes a fixed value d, the
splitting axiom identifies the product with a GW-invariant counting curves homologous
to Aq and constrained by 677€i,€j,€k,€g,€’yl, plus a condition on the domains. By the
symmetry axiom, this is unchanged under a cyclic permutation of i, j, k.

e The example of (CP?, wpg): writing ®; = d;, ®, Py = 01,01, © and so forth, our previous
computation of ® shows that g5 = Pga2 = 0 and Pp1; = 1, so plugging i = j = 1 and
k = { =2 into the WDVV equation gives

D111 Do + Doy = (‘I>112)2~

Writing out these four derivatives as summations over d € N and then writing the qua-
dratic products as double summations over k, ¢ € N produces sums of various coefficients
times que(’“”)tltg(kH)%, except for the term ®455, which is a summation over d € N of
coefficients multiplied by qdedtlt‘;‘d*‘l. Matching coefficients on both sides then leads to the

Kontsevich recursion formula

No= ), (W? (Z’Z B g) — k%(iz B j)) NNy,
kLeN, k+0=d - o

which determines all Ny starting from N; = 1.

e Theorem: Given any d € N and distinct points p1,...,p3q—1 € CP?, for generic J €
J-(CP?, wpg), there are exactly Ny curves uin Mg 34 1(J, d[L]) satistying ev(u) = (p1,. .., P3d-1),
all of them simple and immersed. (In other words, the rational GW-invariants of (CP?, ws)
really are “enumerative”.)*¢
Proof sketch: By Exercise 14.1, GW34_1 2] (pt, . .., pt) is a signed count of simple curves
in ev™'(p1,...,p3a-1) © Moza_1(J,d[L]), so it suffices to prove that all of these count
with the same sign.

36A1gebraic geometers sometimes complain that the GW-invariants are in general only “virtually” enumerative,
in that they answer a slightly different enumerative question—one about the count of solutions to an equation that
is inhomogeneously perturbed for the sake of transversality—than the one that is natural to ask in complex algebraic
geometry. The content of this theorem is that for the particular example of CP2, the situation is much better than
that.
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Lemma 1 (proved via transversality of “jet evaluation maps”): Generically, the set of non-
immersed simple curves is contained in a codimension 2 subset of the moduli space. In par-
ticular, for a generic family {J,}e[o,1], we may assume that all curves in the 1-dimensional
parametric moduli space

M= {(s, u) | s€[0,1], ueev ' (p1,...,p3a-1) Mo za—1(Js, d[L]) simple}

are immersed.

Lemma 2 (Hofer-Lizan-Sikorav [HLS97]): For all J € J(M) on a 4-manifold M, immersed
J-holomorphic spheres u : S? — M with ¢;([u]) > 0 are always Fredholm regular.
Reason: The splitting u*TM =~ TS? @ N, decomposes the linearized Cauchy-Riemann

operator D, in block form as
_(Dg ...
D = ( 0 Dgy) !

where DYV is a Cauchy-Riemann type operator on the normal bundle N, — S2. Since Dg»
is already known to be surjective, D, is surjective if and only if DY is, and the latter holds
due to the similarity principle if ¢1(N,) = c1([u]) — x(S?) = —1. This works because N,
is a line bundle, so it depends crucially on the assumption that M is 4-dimensional.
For the parametric moduli space M, Lemmas 1 and 2 together imply that the projection
M — [0,1] : (s,u) — s is a local diffeomorphism, so the moduli spaces for Jy and J;
do not just have the same signed count of elements, but are actually diffeomorphic. This
shows that the actual number of curves is the same for all generic J; to show that this
number really is Ny, one can also apply the Hofer-Lizan-Sikorav result to deduce from the
determinant line bundle that all curves in these moduli spaces count positively.

e The following additional fun fact about CP? was also mentioned but (by a vote of the
majority) not proved:
Theorem: Suppose (M,w) is a closed symplectic 4-manifold containing a symplectically
embedded sphere S? =~ S © (M, w) such that [S]e[S] = 1 but no symplectically embedded
spheres S? ~ E ¢ (M,w) with [E] e [E] = —1. Then (M,w) is symplectomorphic to
(CP?, cwpg) for some ¢ > 0, via a symplectomorphism identifies S with a complex line.
Comment: This result is due to Gromov and McDuff [Gro85, McD90], and is discussed
with full details in [Wenl8]. The proof uses the same moduli space that underlies the
computation of N1 = GWjy 171(pt, pt), plus positivity of intersections; it is closely related
to the fact that any two distinct points in CP? are connected by a unique J-holomorphic
line for every J.

Lecture 30 (15.02.2023): Quantum cohomology.

e Idea: Interpret the Gromov-Witten potential as a function on H*(M) and derive geomet-
ric/algebraic structure on H*(M) from the WDVV equation

e Toy model: Assume (V,g = {, )) is a pseudo-Riemannian manifold with an affine flat
structure, i.e. an atlas of charts in which the components g;; := {0;, d;) are constant and
all transition maps are affine.*” The Levi-Civita connection V is then flat, and all parallel
local vector fields commute with each other. All other symmetric connections V' on V are
of the form

ViV =VyY + XoY

37Being a vector space, H* (M) naturally has an affine flat structure, at least if one uses coefficients in R instead
of Q. For this informal discussion, we will pretend that all vector spaces can be regarded as manifolds, regardless of
the ground field.
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for a symmetric fiberwise-bilinear pairing TV @ TV > TV, which can always be defined
via the relation

(XoY,Z)=A(X,Y,2)
for some covariant rank 3 tensor field A that is symmetric in X and Y.

e Observation: V' is compatible with g <= (X oY, Z)+ (Y, X 0o Z)=0for all XY, 7 <
A(X,Y, Z) is antisymmetric in Y and Z. But this could only happen if A = 0, since the
Levi-Civita connection is unique. With this in mind, we will instead assume A is symmetric
inY and Z, i.e. A is fully symmetric.

e Observation: If A is symmetric, then the perturbed connections V3\(Y =VxY +AXoY
are also flat for all A € R if and only if the following two conditions are satisfied:

(1) The product o on each fiber of TV is associative;
(2) Vx(YoZ)—Vy(XoZ)=0forall X,Y,Z that are parallel with respect to V.
Proof: Easy computation.

e Proposition: The second condition above is satisfied if and only if every point in V has a

neighborhood on which the tensor A can be written as®®

A(X,Y,Z) = Lx Ly Ly®

for all parallel local vector fields X, Y, Z and some “potential” function ®. Given this, the
product o is then associative if and only if ® satisfies the WDVV equation in local flat
coordinates.

Proof: In local flat coordinates, using the Einstein summation convention, we can write
(XoY) = Aiijij where Aij,c = g% Ayjr and A;jp := A(0;,0;,0). The condition
Vx(YoZ)—-Vy(X oZ) =0 is then equivalent to ¢;Ajie — 0xAjix = 0, and combining
this with the fact that A;j; is symmetric under permutations of 4, j,k leads via three
successive applications of the Poincaré lemma to the existence of a function ® satisfying
0;0;0,® = A;;i. Associativity of o is now a quadratic relation on the components A;;x
that becomes the WDVV equation (in a simpler version without the annoying signs) when
we substitute A;j, = 0;0;0,P.

e Definition: V together with its affine flat structure and a globally defined potential function
® as described above is called a Frobenius manifold. This is only the “classical” version—
one can also generalize the whole discussion allowing V' to be a supermanifold, in which ®
will depend locally on a mixture of even and odd variables, with the function ring defined
so that odd variables anticommute with each other. This necessitates adding quite a lot of
signs to the discussion above, but otherwise changes very little. If you don’t want to think
about signs, just assume your symplectic manifold has no cohomology in odd degrees.

e Simplifying assumption (SA) on (M,w): the Gromov-Witten potential ®(q,t) is a conver-
gent power series with respect to tg, ..., ¢y, having coefficients in the Novikov ring

A, = { 2 caq® | ci€Qand {d | cg # 0 and w(A4) < C} is a finite set for every C' € R} ,
deZ¥
and can thus be interpreted literally as a function ® : H*(M) — A,,. This is true in many
interesting examples such as (CP?, wps), though the most important definition below will
not actually depend on it.
e Definition: Equip H*(M;A,) = H*(M;Q) ®g A, with the Poincaré duality pairing

(o, B) :={a v B, [M]) € Aq,,
3%Here L x denotes the Lie derivative with respect to a vector field, so applying it to a function f just gives the

differential Lx f = df(X). In the lecture I wrote Vx instead of Lx, but on closer inspection this was not a good
choice of notation, as the derivative we’re using here does not depend on the connection.
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which allows us to think of H*(M;A,) informally as a pseudo-Riemannian manifold with
an affine flat structure. Given (SA), the big quantum cohomology of (M,w) is a family
of A,-bilinear products #; on H*(M;A,) determined for each t € H*(M) := H*(M;Q)
via the relation®’

(ea * ebaec) = 8t60tb6ta<1>(t) €A,

for our chosen basis elements eq,...,ey € H*(M). For each t € H*(M), this product
is graded commutative due to the commutation relations satisfied by the operators o,
and 0;,, and the previous discussion of Frobenius manifolds was meant to convince you
that it is associative as a result of the fact that ® satisfies the WDVV equation, i.e. it is a
consequence of the splitting axiom for the Gromov-Witten invariants. Informally, we can
think of #; as a product on the tangent space to H*(M;A,,) at t.

¢ Definition: The small quantum cup product on H*(M;A,) is # := #3. This is well
defined without (SA) since evaluating a power series at ¢ = 0 does not require the series
to converge. This is also a graded commutative and associative product, and the ring
H*(M;A,) with this product is often called the quantum cohomology of (M,w) and
denoted by QH*(M,w;A,), or simply QH*(M,w). It is uniquely characterized by the
formula

(16.1) (% B,7) =D GWy 4,(c, 8,7)g"  forall a, 8,y € H*(M),
d

or equivalently,

N
Q ﬂ = Z (g GWS,Ad(O‘7ﬂ7€C)qd> e(C)>

c=0

where the expression in parentheses belongs to A, and we let e, ... ™) denote the

basis of H*(M) satisfying (e{®, e;) = 6§ for all a, b.

e Notice: The d = 0 term in (16.1) is (¢ v B,7) = {a v B U v,[M]), which is the count
of constant holomorphic spheres passing through generic submanifolds Poincaré dual to
a, 3,7 and thus reduces to a count of intersections between those submanifolds. The
d # 0 terms are called quantum corrections, and are obtained morally by counting
nonconstant J-holomorphic spheres through those same three submanifolds.

e Proposition (easy):

(1) a* B is o U B plus terms that depend on ¢ for d # 0, so in particular, the quantum
cup product reduces to the classical cup product in the “limit as ¢ — 0”.

(2) QH*(M,w;A,) hasaunit: lsa=a=*1=q.

(3) In some situations (e.g. in CP?), the formula above for o # 3 contains only finitely
many terms, in which case the coefficient ring A, can be replaced by something
simpler such as the group ring Q[H3(M)]. In this case, = respects a grading defined
on QH*(M,w;Q[H(M)]) such that each of the variables ¢; = e?i € Q[Ho(M)]
corresponding to the chosen basis elements A; € Hy(M) is defined to have degree
|gi| := 2¢1(4;), hence |q?| = 2¢1(Ay) for every d € Z*. This is a consequence of the
grading axiom for the GW-invariants.

o Computation of QH*(CP? wrs): Using the usual basis eg = 1 € HO(CP?), e; = PD™Y([L]) €
H?(CP?) and ey = pt € H*(CP?), the classical cohomology ring of CP? is generated by

39My reversal of the order of the differential operators on the right hand side of this relation is a half-hearted
attempt to get all the signs right, but honestly, everything I say about signs in this lecture should be taken with a
grain of salt.
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p := ey, which satisfies p? := e; U e; = ey but p? =0, so
H*(CP* Q) = Q[p)/p*).
The Novikov ring introduces one additional generator ¢ = el”] € Q[Hy(CP?)]. The quan-

tum product depends only on the cubic terms in the Gromov-Witten potential, which
are

1 1
(g, t) = §(t§t2 + tot?) + §qt1t§ + non-cubic terms.

Here the first two terms come from GW-invariants with d = 0, so they will reproduce
the classical cup product. The third term contains the computation GW3 [1)(e1, ez, e2) =
GW,17(pt, pt) =: N1 = 1. Since the only term quadratic in ¢; is classical, we have

p22=p*p=61*€1=€1k}61=€2.

However, the term ¢,t3 produces a quantum correction in e; # ey, giving

3

1
P —61*62—6t16 qt1t2 ()—qe0=q.

to 2
All other products are determined from these via associativity, thus

QH*(CP?, wrs) = Q[p, q]/<p® — 9)-

Notice that the coefficient ring here can be reduced to Q[Hz(CP?)], and since ¢;([L]) = 3,
QH*((CPQ,wFS;(@[HQ((CPz)]) then has a natural grading in which |p| = 2 and |¢| = 6, so
it contains a 1-dimensional subspace in every even degree.

Suggested reading. Chapter 11 of [MS12] contains a good general discussion of the Gromov-
Witten potential and the PDEs that it satisfies. It also contains far more than you probably want
to read (at least on a first pass) about the possible choices of coefficients for QH*(M,w), and a
very interesting but necessarily incomplete discussion of some computations that are much deeper
and less trivial than the one we carried out for CP?.

If you want to learn more about Frobenius manifolds and the “big” quantum cohomology, I
recommend the book by Manin [Man99]. (For a quick summary of the main points, [KM94, §4] is
also not bad.) You may find it more digestible if you first learn from [Var04] what ringed spaces
and supermanifolds are.

If you find pseudo-mathematical speculation by visionary physicists fascinating, then I also
recommend taking a look at [Vaf92, §4], which was written shortly after Witten’s topological sigma-
model paper [Wit88b] and has sometimes been cited as the first place where the construction of
quantum cohomology was ever suggested.’’ From Vafa’s perspective, the classical cohomology ring
of a K&hler manifold M embeds naturally into the operator algebra of a fermionic string theory
whose underlying Hilbert space is the space of semi-infinite differential forms on the loop space
of M. Quantum cohomology was then predicted based on the properties of this operator algebra
in quantized string theory! The theory later took on its present mathematical form due mainly to
the work of Ruan-Tian [RT95], Kontsevich-Manin [KM94] and McDuff-Salamon [MS94], though
Vafa’s paper already contains a heuristic description of something that you will easily recognize as
the small quantum cup product.

Since the course is now over, I’ll take this opportunity to tie up one other loose end: Gerard
asked at some point whether the GW-invariants can actually be used for the obvious symplectic

OwWitten’s paper [Wit91], which appeared around the same time, also contains (around page 274) a brief sketch
of the main idea, in addition to several other ideas (e.g. gravitational descendants) that soon became central to the
subject of Gromov-Witten theory. I do not happen to know why Witten’s and Vafa’s papers did not cite each other.
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application, namely to distinguish symplectic manifolds that are diffeomorphic but not symplecti-
cally deformation equivalent. In fact, there are several results of this type in the early papers on
this subject by Ruan [Rua94, Rua96], and these were presented as one of the original selling points
of the rigorous construction on semipositive symplectic manifolds.

Exercises (just for fun).

Exercise 16.1. Suppose (M,w) is a Calabi-Yau 3-fold, and after choosing a basis A;,..., Ag of
HQ(M), write Ny := NAd = GWO’()’A‘! eQford= (d1, .. ,dk) €Zy and Ay :=d1 A1 + ... +dip Ay
as in Exercise 15.1. Since ¢1(A4) = 0 for all d, the small quantum cup product # on H*(M;A,)
preserves the obvious grading in which all elements of A, are assigned degree 0. Show that « * 3
then differs from a U 8 only when a, 8 € H*(M) both have degree 2, and for this case, prove the
formula
asfB=auB+ ) Nala, AaXB, Aayq" PD ™' (Ag) € H*(M; A,,).
d+£0
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