WiSe 2024–25

Problem Set 6

To be discussed: 27.11.2024

Problem 1

- (a) Find explicit oriented atlases for S^1 and S^2 .
- (b) Use the oriented atlases in part (a) to show that the antipodal map $S^n \to S^n : p \mapsto -p$ is orientation preserving for n = 1, but orientation reversing for n = 2.
- (c) Without talking about atlases, prove that S^n is orientable for every $n \in \mathbb{N}$ by defining a continuous family of orientations of the tangent spaces $\{T_pS^n \mid p \in S^n\}$. Hint: Any $p \in S^n$ together with a basis of T_pS^n forms a basis of \mathbb{R}^{n+1} .
- (d) Show that the antipodal map $S^n \to S^n$ is orientation preserving for every odd n and orientation reversing for every even n.

Problem 2

Recall that a diffeomorphism $\mathbb{R}^n \supset \mathcal{U} \xrightarrow{\psi} \mathcal{V} \subset \mathbb{R}^n$ is called orientation preserving if det $D\psi(p) > 0$ for all $p \in \mathcal{U}$, and orientation reversing if det $D\psi(p) < 0$ for all $p \in \mathcal{U}$. The fact that ψ is a diffeomorphism implies that for any fixed p, one of these conditions must hold, but it need not hold everywhere, i.e. not every diffeomorphism is either orientation preserving or orientation reversing.

- (a) Show that if M is an oriented manifold, then every chart (\mathcal{U}, x) whose domain $\mathcal{U} \subset M$ is connected is either orientation preserving or orientation reversing.
- (b) In Problem Set 1 #3, we defined the Klein bottle as $K^2 := \mathbb{R}^2 / \sim$, where $(s,t) \sim (s,t+1)$ and $(s,t) \sim (s+1,-t)$ for all $(s,t) \in \mathbb{R}^2$. Find a pair of charts (\mathcal{U}_1, x_1) and (\mathcal{U}_2, x_2) on K^2 such that the subsets \mathcal{U}_1 and \mathcal{U}_2 are both connected but $\mathcal{U}_1 \cap \mathcal{U}_2$ has two connected components, and the transition map $x_1 \circ x_2^{-1}$ is neither orientation preserving nor orientation reversing.
- (c) Explain why part (b) implies K^2 is not orientable.
- (d) Find a continuous path $\gamma : [0,1] \to K^2$ with $\gamma(0) = \gamma(1) =: p$ and a continuous family of ordered bases $(X_1(t), X_2(t))$ of $T_{\gamma(t)}K^2$ such that $(X_1(0), X_2(0))$ and $(X_1(1), X_2(1))$ determine distinct orientations of the vector space T_pK^2 .

Problem 3

Define a 1-form on $\mathbb{R}^2 \setminus \{0\}$ in the standard (x, y)-coordinates by $\lambda = \frac{1}{x^2 + y^2} (x \, dy - y \, dx)$, and let $i: S^1 \hookrightarrow \mathbb{R}^2$ denote the natural inclusion of the unit circle in \mathbb{R}^2 .

- (a) Using a finite covering by oriented charts and a partition of unity, compute $\int_{S^1} i^* \lambda = 2\pi$.
- (b) Can you give the result of part (a) a nice interpretation in terms of polar coordinates?
- (c) Show that for any smooth function $f: S^1 \to \mathbb{R}, \int_{S^1} df = 0.$
- (d) Redo the computations of parts (a) and (c) without using a partition of unity: instead use a single chart whose domain covers all of S^1 except for a set of measure zero.

Problem 4

In local coordinates with respect to an oriented chart (\mathcal{U}, x) on an oriented *n*-manifold M, a Riemannian metric $g \in \Gamma(T_2^0 M)$ is described in terms of its components $g_{ij} := g(\partial_i, \partial_j)$, so that vectors $X, Y \in T_p M$ at points $p \in \mathcal{U}$ satisfy $g(X, Y) = g_{ij} X^i Y^j$. The goal of this problem is to prove that the Riemannian volume form determined by g takes the form

$$d\text{vol} = \sqrt{\det \mathbf{g}} \, dx^1 \wedge \ldots \wedge dx^n \qquad \text{on } \mathcal{U},\tag{1}$$

where $\mathbf{g}: \mathcal{U} \to \mathbb{R}^{n \times n}$ denotes the matrix-valued function whose *i*th row and *j*th column is g_{ij} . Note that this matrix necessarily has positive determinant since g is everywhere positive definite. Fix a point $p \in \mathcal{U}$ and a positively-oriented orthonormal basis (X_1, \ldots, X_n) of $T_p M$, whose dual basis we will denote by $\lambda^1, \ldots, \lambda^n \in T_p^* M$. In this case, it was shown in lecture that $d \operatorname{vol}_p = \lambda^1 \wedge \ldots \wedge \lambda^n$. Define matrices $\mathbf{X}, \mathbf{\lambda} \in \mathbb{R}^{n \times n}$ whose *i*th row and *j*th column are $dx^i(X_j)$ and $\lambda^i(\partial_j)$ respectively. By Proposition 9.10 in the lecture notes, $(\lambda^1 \wedge \ldots \wedge \lambda^n)(\partial_1, \ldots, \partial_n) = \det \mathbf{\lambda}$.

- (a) Prove $\lambda = \mathbf{X}^{-1}$.
- (b) Prove $\mathbf{X}^T \mathbf{g} \mathbf{X} = \mathbb{1}$.
- (c) Deduce (1).

Problem 5

Using Cartesian coordinates (x, y, z) on \mathbb{R}^3 , let $\omega := x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy \in \Omega^2(\mathbb{R}^3)$, and let $i: S^2 \hookrightarrow \mathbb{R}^3$ denote the inclusion of the unit sphere.

- (a) Show that for an appropriate choice of orientation on S^2 , $dvol_{S^2} := i^*\omega \in \Omega^2(S^2)$ is the Riemannian volume form corresponding to the Riemannian metric on S^2 that is induced by the Euclidean inner product of \mathbb{R}^3 . Hint: Pick a good vector field $X \in \mathfrak{X}(\mathbb{R}^3)$ with which to write ω as $\iota_X(dx \wedge dy \wedge dz)$.
- (b) Show that in the spherical coordinates (θ, ϕ) of Problem Set 1 #1, $d \operatorname{vol}_{S^2} = \cos \phi \, d\theta \wedge d\phi$.
- (c) On the open upper hemisphere $\mathcal{U}_+ := \{z > 0\} \subset S^2 \subset \mathbb{R}^3$, one can define a chart $(x, y) : \mathcal{U}_+ \to \mathbb{R}^2$ by restricting to \mathcal{U}_+ the usual Cartesian coordinates x and y, which are then related to the z-coordinate on this set by $z = \sqrt{1 x^2 y^2}$. Show that $d\mathrm{vol}_{S^2} = \frac{1}{z} dx \wedge dy$ on \mathcal{U}_+ .
- (d) Compute the surface area of $S^2 \subset \mathbb{R}^3$ in two ways: once using the formula for $d\operatorname{vol}_{S^2}$ in part (b), and once using part (c) instead. In both cases, you should be able to express the answer in terms of a single Lebesgue integral¹ over a region in \mathbb{R}^2 , and there will be no need for any partition of unity.

¹You may assume that the upper and lower hemispheres have the same area.