WiSe 2024–25

Problem Set 7

To be discussed: 4.12.2024

Problem 1

On an oriented Riemannian 3-manifold (M, g) with Riemannian volume form dvol, the curl of a vector field $X \in \mathfrak{X}(M)$ is the unique vector field curl $(X) \in \mathfrak{X}(M)$ satisfying $\iota_{\text{curl}(X)}d\text{vol} = d(X_{\flat}) \in \Omega^2(M)$, where $X_{\flat} := g(X, \cdot) \in \Omega^1(M)$.

(a) Show that in the special case of $M = \mathbb{R}^3$ with g chosen to be the standard Euclidean inner product,

$$
\operatorname{curl}\begin{pmatrix} X^1\\ X^2\\ X^3 \end{pmatrix} = \begin{pmatrix} \partial_2 X^3 - \partial_3 X^2\\ \partial_3 X^1 - \partial_1 X^3\\ \partial_1 X^2 - \partial_2 X^1 \end{pmatrix} \in \mathfrak{X}(\mathbb{R}^3).
$$

(b) The gradient $\nabla f \in \mathfrak{X}(M)$ of a function $f : M \to \mathbb{R}$ on a Riemannian manifold (M, q) is uniquely determined by the relation $g(\nabla f, \cdot) = df \in \Omega^1(M)$. Derive from $d \circ d = 0$ the following consequences for all smooth functions $f : M \to \mathbb{R}$ and vector fields $X \in \mathfrak{X}(M)$:

$$
curl(\nabla f) \equiv 0, \qquad \text{and} \qquad div(curl X) \equiv 0.
$$

- (c) Deduce from the Poincaré lemma the following results of classical vector analysis:
	- (i) Every vector field X with curl $(X) \equiv 0$ is locally the gradient of a function.
	- (ii) Every vector field X with $div(X) \equiv 0$ is locally the curl of another vector field.

Problem 2

Prove the following version of *integration by parts*: if M is a compact oriented *n*-manifold with boundary, $\alpha \in \Omega^k(M)$ and $\beta \in \Omega^{\ell}(M)$ with $k + \ell = n - 1$, then

$$
\int_M d\alpha \wedge \beta = \int_{\partial M} \alpha \wedge \beta - (-1)^k \int_M \alpha \wedge d\beta.
$$

Problem 3

Prove: For each $k \geq 0$, a k-form $\omega \in \Omega^k(M)$ is closed if and only for every compact oriented $(k + 1)$ -dimensional submanifold $L \subset M$ with boundary, $\int_{\partial L} \omega = 0$.

Problem 4

Prove: On S^1 , a 1-form $\lambda \in \Omega^1(S^1)$ is exact if and only if $\int_{S^1} \lambda = 0$. What does this tell you about $H^1_{\text{dR}}(S^1)$?

Hint: Try to construct a primitive $f : S^1 \to \mathbb{R}$ by integrating λ along paths.

Problem 5

Suppose $\mathcal O$ is an open subset of either $\mathbb H^n$ or $\mathbb R^n$. We call $\mathcal O$ a *star-shaped* domain if for every $p \in \mathcal{O}$, it also contains the points $tp \in \mathbb{R}^n$ for all $t \in [0, 1]$. It follows that $h(t, p) := tp$ defines a smooth homotopy $h: [0,1] \times \mathcal{O} \to \mathcal{O}$ between the identity and the constant map whose value is the origin, making $\mathcal O$ smoothly contractible. Use this homotopy to produce an explicit formula for a linear operator $P : \Omega^k(\mathcal{O}) \to \Omega^{k-1}(\mathcal{O})$ for each $k \geq 1$ satisfying

$$
\omega = P(d\omega) + d(P\omega)
$$

for all $\omega \in \Omega^k(\mathcal{O})$. In particular, whenever ω is a closed k-form, $P\omega$ is a primitive of ω . Hint: Start with the chain homotopy that we constructed in lecture for proving the homotopy invariance of de Rham cohomology. As a sanity check, the answer to this problem can be found at the end of Lecture 13 in the notes, but try to find it yourself first.

Problem 6

Show that the wedge product descends to an associative and graded-commutative product $\cup: H^k_{\mathrm{dR}}(M) \times H^{\ell}_{\mathrm{dR}}(M) \to H^{k+\ell}_{\mathrm{dR}}(M)$, defined by

$$
[\alpha]\cup[\beta]:=[\alpha\wedge\beta].
$$

This is called the *cup product* on de Rham cohomology.

Remark: There is similarly a cup product on singular cohomology, to which this one is isomorphic via de Rham's theorem. But this one is easier to define, and is thus often used in practice as a surrogate for the singular cup product.

Problem 7

For this exercise, identify the *n*-torus \mathbb{T}^n with the quotient $\mathbb{R}^n/\mathbb{Z}^n$ (recall from Problem Set $2 \#1$ that there is a natural diffeomorphism). For any sufficiently small open set $\widetilde{U} \subset \mathbb{R}^n$, the usual Cartesian coordinates $x^1, \ldots, x^n : \widetilde{U} \to \mathbb{R}$ can be used to define a smooth chart (\mathcal{U}, x) on \mathbb{T}^n where

$$
\mathcal{U} := \left\{ [p] \in \mathbb{T}^n \; \middle| \; p \in \widetilde{\mathcal{U}} \right\}, \qquad x([p]) := (x^1(p), \dots, x^n(p)) \text{ for } p \in \widetilde{\mathcal{U}}.
$$

- (a) Show that the coordinate differentials $dx^1, \ldots, dx^n \in \Omega^1(\mathcal{U})$ arising from the chart (\mathcal{U}, x) described above are independent of the choice of the set $\tilde{\mathcal{U}} \subset \mathbb{R}^n$, i.e., the definitions of the coordinate differentials obtained from two different choices $\mathcal{U}_1, \mathcal{U}_2 \subset$ \mathbb{R}^n coincide on the region $\mathcal{U}_1 \cap \mathcal{U}_2 \subset \mathbb{T}^n$ where they overlap.
- (b) As a consequence of part (a), the 1-forms $dx^1, \ldots, dx^n \in \Omega^1(\mathbb{T}^n)$ are well-defined on the entire torus, and they are obviously locally exact and therefore closed, but they might not actually be exact since none of the coordinates x^1, \ldots, x^n admit smooth definitions globally on \mathbb{T}^n . Show in fact that for any constant vector $(a_1, \ldots, a_n) \in$ $\mathbb{R}^n \setminus \{0\}$, the 1-form

$$
\lambda := a_i \, dx^i \in \Omega^1(\mathbb{T}^n)
$$

is closed but not exact.

Hint: You only need to find one smooth map $\gamma : S^1 \to \mathbb{T}^n$ such that $\int_{S^1} \gamma^* \lambda \neq 0$.

(c) One can similarly produce closed k-forms $\omega \in \Omega^k(\mathbb{T}^n)$ for any $k \leq n$ by choosing constants $a_{i_1...i_k} \in \mathbb{R}$ and writing

$$
\omega = \sum_{i_1 < \ldots < i_k} a_{i_1 \ldots i_k} \, dx^{i_1} \wedge \ldots \wedge dx^{i_k} \in \Omega^k(\mathbb{T}^n). \tag{1}
$$

Show that for every nontrivial k -form of this type, one can find a cohomology class $[\alpha] \in H^{n-k}_{\mathrm{dR}}(\mathbb{T}^n)$ such that the cup product $[\omega] \cup [\alpha] \in H^n_{\mathrm{dR}}(\mathbb{T}^n)$ defined in Problem 4 is nontrivial, and deduce from this that ω is not exact.

Hint: Can you choose $\alpha \in \Omega^{n-k}(\mathbb{T}^n)$ so that $\omega \wedge \alpha$ is a volume form?

Remark: One can show that all cohomology classes in $H_{\text{dR}}^k(\mathbb{T}^n)$ are representable by k-forms with constant coefficients as in [\(1\)](#page-1-0), thus dim $H_{\text{dR}}^k(\mathbb{T}^n) = \binom{n}{k}$ $\binom{n}{k}$.