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Preface

The original version of these notes was created in 2018–19 for a two-semester sequence of
topology courses at Humboldt University, Berlin. It has undergone substantial revisions during a
few repetitions of the two-semester course since then, plus the addition of a third semester in 2025.
The topics are divided among the three semesters roughly as follows:

‚ First semester: basic point-set topology, fundamental group and covering spaces, mani-
folds of dimension one and two, introduction to homology

‚ Second semester: homology and cohomology
‚ Third semester: homotopy theory, higher homotopy groups, fiber bundles and character-
istic classes

A few topics appear in multiple semesters, e.g. while the end of the first semester contains material
on singular homology, the second semester does not assume previous knowledge of homology, and
thus starts that subject from the beginning, though at a slightly higher level of sophistication.
This reflects the fact that at our university, Topology I is technically a Bachelor-level course and
Topology II is technically Master-level, though in practice, the audience for both courses is typically
a mixture.

There is a nearly exact one-to-one correspondence between the chapters in these notes and the
actual 90-minute lectures given in the course, though for some chapters that are a bit fatter, some
portions had to be skipped or mentioned only briefly in class.

Since the notes were designed for use at a German university, I have made an effort to include
the German translations (geschrieben in dieser Schriftart) of important terms wherever they are
introduced. The reader may notice that this effort subsides later in the course, as the deeper
one gets into algebraic topology, the harder it becomes to find authoritative German sources for
clarifying the terminology (and I am not linguistically qualified to invent terms in German myself).

About the current version

The version you are looking at right now is being updated regularly in order to serve as lecture
notes for the HU’s Topology II course in the Winter 2024–25 semester, and it is intended to continue
into the Summer 2025 semester as lecture notes for Topology III. I did not teach the Topology I
course that immediately preceded those two semesters, but my lecture notes nonetheless closely
resemble the course that was actually taught.

One innovation of the current version—implemented in the notes for the second semester but
not yet for the first semester—is that all exercises now appear in their own subsection at the end
of each lecture, and some of them are marked with an asterisk (like this (*)). The asterisk means
that the exercise is essential, e.g. because it contains a proof of some important result that will be
used again in the course, perhaps multiple times. Exercises without an asterisk are intended to be
helpful and/or informative, but not essential for the logical continuity of the notes.

Most recent update: November 22, 2024
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vi PREFACE

Disclaimer and acknowledgements

These lecture notes were written quickly, and while many typos have in the mean time been
eliminated due to careful reading by a few motivated students, some probably remain. If you
notice any, please send me an e-mail and I will correct. Thanks for corrections already received are
due to Lennard Henze, Jens Lücke, Mateusz Majchrzak, Marie Christin Schmidtlein, Rens Breur,
Maxim Nevkrytyh, Laurenz Upmeier zu Belzen, Florian Kaufmann, Ben Eltschig and Daniel Acker.
(Apologies if I forgot anyone!)



First semester (Topologie I)

1. Introduction and motivation

To start with, let us discuss what kinds of problems are studied in topology. This lecture is
only intended as a sketch of ideas, so nothing in it is intended to be precise—we’ll introduce precise
definitions in the next lecture.

(1) Classification of spaces. Let’s assume for the moment that we understand what the word
“space” means. We’ll be more precise about it next week, but in this course, a “space” X is a set
with some extra structure on it such that we have well-defined notions of things like open subsets
(offene Teilmengen) U Ă X and continuous maps/mappings (stetige Abbildungen) f : X Ñ Y

(where Y is another space). It is then natural to consider two spaces X and Y equivalent if there
is a homeomorphism (Homöomorphismus) between them: this means a continuous bijection
f : X Ñ Y whose inverse f´1 : Y Ñ X is also continuous. We say in this case that X and Y are
homeomorphic (homöomorph).

So for instance, one can try to classify all surfaces (Flächen) up to homeomorphism:

The space in this picture is known as a “closed orientable surface of genus (Geschlecht) five”.
The genus is a nonnegative integer that, roughly speaking, counts the number of “handles” you
would need to attach to a sphere in order to construct the surface. The notation Σg is often used
for a surface of genus g ě 0.

There are also closed surfaces that cannot be embedded in R3, though they are harder to
visualize. Here are two examples.

Example 1.1. Here is a picture of the Klein bottle (Kleinsche Flasche), a surface that can
be “immersed” (with self-intersections) in R3, but not embedded:

We’ll give a more precise definition of the Klein bottle as a topological space later.

1



2 FIRST SEMESTER (TOPOLOGIE I)

Example 1.2. The real projective plane (reelle projektive Ebene) RP2 is a space that can
be described in various equivalent ways:

(1) RP2 :“ S2{„, i.e. the set of equivalence classes of elements in the unit sphere S2 :“ tx P
R3 | |x| “ 1u, with the equivalence relation defined by x „ ´x for each x P S2. In other
words, every element of RP2 is a set of two elements tx,´xu, with both belonging to the
unit sphere. (See Remark 1.3 below on notation for defining equivalence relations.)

(2) RP
2 :“ D2{„, where D2 :“ tx P R2 | |x| ď 1u and the equivalence relation is defined by

z „ ´z for every point z on the boundary of the disk. One obtains this from the first
description of RP2 by restricting attention to only one hemisphere of S2; no information
is lost since the other hemisphere is identified with it, but along the equator between
them, there is still an identification of antipodal points.

(3) RP
2 is the space of all lines through 0 in R3. This is equivalent to the first description

since every line through the origin in R3 hits S2 at exactly two points, which are antipodal
to each other.

(4) RP
2 is the space constructed by gluing a disk D2 to a Möbius strip (Möbiusband)

M :“  pθ, t cospπθq, t sinpπθqq P R{Zˆ R2
ˇ̌
θ P R, t P r´1, 1s( .

To see this, draw a picture of the unit sphere S2 and think of RP
2 as S2{„. After

identifying antipodal points of the sphere in this way, a neighborhood of the equator
looks like a Möbius strip, and everything else is a disk (it looks like two disks in the
picture, but the two are identified with each other).

More generally, for each integer n ě 0 one can define the n-sphere

Sn “  
x P Rn`1

ˇ̌ |x| “ 1
(

and the real projective n-space

RP
n “ Sn

Ltx „ ´xu “  
lines through 0 in Rn`1

(
.

Remark 1.3. In topology, we often specify an equivalence relation „ on a set X with words
such as “the equivalence relation defined by x „ fpxq for all x P A” where A Ă X is a subset and
f : AÑ X a map. This should always be interpreted to mean that „ is the smallest equivalence
relation for which the stated property is true, i.e. since every equivalence relation must also be
reflexive and symmetric, it is implied that x „ x for all x P X and fpxq „ x for all x P A, even if we
do not say so explicitly. Transitivity may then imply further equivalences that are not explicitly
specified: for an extreme example, “the equivalence relation on Z such that n „ n`1 for all n P Z”
makes every integer equivalent to every other integer, i.e. there is only one equivalence class.

Here is a result we will be able to prove later in the course:

Theorem 1.4. A closed orientable surface Σg of genus g is homeomorphic to a closed orientable
surface Σh of genus h if and only if g “ h.

The hard part is showing that if g ‰ h, then there cannot exist any continuous bijective
map f : Σg Ñ Σh with a continuous inverse. This requires techniques from the subject known
as algebraic topology. The main idea will be that we can associate to each topological space X
an algebraic object (e.g. a group) HpXq such that any continuous map f : X Ñ Y induces a
homomorphism f˚ : HpXq Ñ HpY q, and such that compositions of continuous maps satisfy

pf ˝ gq˚ “ f˚ ˝ g˚
and the identity map Id : X Ñ X gives rise to the identity map HpXq Ñ HpXq. These prop-
erties imply that whenever f : X Ñ Y is a homeomorphism, f˚ : HpXq Ñ HpY q must be an



1. INTRODUCTION AND MOTIVATION 3

isomorphism. Thus it suffices to compute the algebraic objects HpΣgq and HpΣhq and show that
they are not isomorphic. (Recognizing non-isomorphic groups is often easier than recognizing
non-homeomorphic spaces.)

The full classification of closed orientable surfaces up to homeomorphism is completed by the
following result:

Theorem 1.5. Every closed connected and orientable surface is homeomorphic to Σg for some
g ě 0.

The previous theorem implies of course that for any given surface, the value of g in this result
is unique. For the moment, you can understand the word “orientable” to mean “embeddable in R3”.
There is a similar result for the non-orientable surfaces: notice that by the fourth definition we gave
above for RP2, one can understand RP2 as the result of taking S2, cutting out a hole (e.g. removing
the southern hemisphere, thus leaving the northern hemisphere, which is also a disk D2) and then
gluing in a Möbius strip. That is the first example of the following more general construction:

Theorem 1.6. Every closed connected and non-orientable surface is homeomorphic to a surface
obtained from S2 by cutting out finitely many holes and gluing in Möbius strips.

Surfaces are the simplest interesting examples of more general topological spaces called man-
ifolds (Mannigfaltigkeiten): a surface is a 2-dimensional manifold, while a smooth curve such as
the circle S1 is a 1-dimensional manifold. In general, one can consider n-dimensional manifolds
(abbreviated as “n-manifolds”) for any integer n ě 0; obvious examples include Rn, Sn and RPn.
The classification problem becomes much harder when n ě 3, e.g. the following difficult problem
was open for almost exactly 100 years:

Poincaré conjecture (solved by G. Perelman, c. 2004). Suppose X is a closed and con-
nected 3-manifold that is “simply connected” (i.e. every continuous map f : S1 Ñ X can be extended
continuously to D2 Ñ X). Then X is homeomorphic to S3.

One of the more surprising developments in topology in the 20th century was that the analogue
of this problem in dimensions greater than three turns out to be easier. We’ll introduce the notion
of “homotopy equvalence” (Homotopieäquivalenz) in a few weeks; it turns out that for closed 3-
manifolds, the condition of being simply connected is equivalent to being homotopy equivalent
to S3. Thus the following two results are higher-dimensional versions of the Poincaré conjecture,
but they were proved much earlier:

Theorem 1.7 (S. Smale, c. 1960). For every n ě 5, every closed connected n-manifold homo-
topy equivalent to Sn is also homeomorphic to Sn.

Theorem 1.8 (M. Freedman, c. 1980). Every closed connected 4-manifold homotopy equivalent
to S4 is also homeomorphic to S4.

(2) Differential topology. Though we will not have much time to talk about it in this semes-
ter, the neighboring field of “differential” topology modifies the classification problem by studying
the following stronger notion of equivalence between spaces: X and Y are diffeomorphic (dif-
feomorph) if there exists a homeomorphism f : X Ñ Y such that both f and f´1 are infinitely
differentiable, i.e. C8, and f is in this case called a diffeomorphism (Diffeomorphismus). From
your analysis courses, you at least know what this means if X and Y are open subsets of Euclidean
spaces—defining “differentiability” on spaces more general than that requires some notions from
the subject of differential geometry. In a nutshell, it requires X and Y to be spaces on which any
map X Ñ Y can at least locally (i.e. in a sufficiently small neighborhood of any point) be identified
with a map between open subsets of Euclidean spaces, for which we know how to define derivatives.
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Identifying a small neighborhood in X with an open subset of Rn is another way of saying that
we can choose a set of n independent “coordinates” to describe the points in that neighborhood,
and this is the fundamental property that defines X as an n-dimensional manifold. So talking
about smooth maps and diffeomorphisms doesn’t make sense for arbitrary topological spaces, but
it does make sense for at least some class of manifolds, and these are the main objects of study in
differential topology.

It turns out that up to dimension three, classification up to diffeomorphism is equivalent to
classification up to homeomorphism:

Theorem 1.9. For n ď 3, two n-manifolds X and Y are diffeomorphic if and only if they are
homeomorphic.

For n “ 1 and n “ 2, this theorem can be explained by the fact that both versions of
the classification problem for n-manifolds are not that hard to solve explicitly (this was already
understood in the 19th century), and the answer for both versions turns out to be the same. The
story of n “ 3 is much more complicated, as a complete classification of 3-manifolds is not known,
but this theorem was proved in the first half of the 20th century by using the more combinatorial
notion of “piecewise linear” manifolds as an intermediary notion between “smooth” and “topological”
manifolds.

From dimension four upwards, all hell breaks loose. For example, there are “exotic” R4’s:

Theorem 1.10. There exist 4-manifolds that are homeomorphic but not diffeomorphic to R4.

And from dimension seven upwards, there also tend to exist “exotic spheres”:

Theorem 1.11 (Kervaire and Milnor, 1963). There exist exactly 28 distinct manifolds that are
homeomorphic to S7 but not diffeomorphic to each other.

As you might guess, there is an algebraic phenomenon behind the appearance of the number 28
in this theorem: it is the order of a group. In every dimension n, one can define a group structure
on the set of all smooth manifolds up to diffeomorphism that are homeomorphic to Sn. Milnor and
Kervaire proved that when n “ 7, this group has order 28. In the mean time, this group is quite
well understood in most cases: it is sometimes trivial (e.g. for n “ 1, 2, 3, 5, 6) and often nontrivial,
but always finite. The only case for which almost nothing is known is n “ 4; dimension four turns
out to be the hardest case in differential topology, because it is on the borderline between “low
dimensional” and “high dimensional” methods, where often neither set of methods applies. If you
can solve the following open problem, you deserve an instant Ph.D. (and also a permanent job as
a research mathematician, and possibly a Fields medal):

Conjecture 1.12 (“smooth Poincaré conjecture”). Every manifold homeomorphic to S4 is
also diffeomorphic to S4.

It is difficult to say whether this conjecture is generally believed to be true or false.
(3) Fixed point problems. Here is a simpler class of problems on which we’ll actually be able

to prove something in this semester. Suppose f : X Ñ X is a continuous map. We say x P X
is a fixed point (Fixpunkt) of f if fpxq “ x. The question is: under what assumptions on X

is f guaranteed to have a fixed point? Note that this is fundamentally different from the fixed
point results you’ve probably seen in analysis, e.g. the Banach fixed point theorem (also known as
the contraction mapping principle) is a result about a special class of maps satisfying analytical
conditions, it does not just apply to every continuous map on a certain space.

The simplest fixed point theorem in topology is a statement about maps on the n-dimensional
disk Dn :“ tx P Rn | |x| ď 1u.
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Theorem 1.13 (Brouwer’s fixed point theorem). For every integer n ě 1, every continuous
map f : Dn Ñ Dn has a fixed point.

The case n “ 1 is an easy consequence of the intermediate value theorem, but for n ě 2, we
need some techniques from algebraic topology. Here is a sketch of the argument; we will fill in the
gaps over the course of the semester.

We argue by contradiction, so suppose there exists a continuous map f : Dn Ñ Dn such that
fpxq ‰ x for every x P Dn. Then there is a unique line in Rn connecting fpxq to x for each x P Dn.
Let gpxq P Sn´1 denote the point on the boundary of Dn obtained by following the unique line
from fpxq through x until that line reaches the boundary of the disk. Note that if x is already on
the boundary, then by this definition gpxq “ x. It is not hard to convince yourself that what we’ve
just defined is a continuous map

g : Dn Ñ Sn´1,

and if i : Sn´1 ãÑ Dn denotes the natural inclusion map for the subset Sn´1 Ă Dn, then g satisfies

(1.1) g ˝ i “ IdSn´1 .

We claim that, actually, no such map can exist. The proof of this requires an algebraic invariant,
whose complete construction will require some time and effort, but for now I’ll just tell you the
result: one can associate to each spaceX an abelian groupHn´1pXq called the singular homology
(singuläre Homologie) of X in dimension n´ 1, which satisfies the usual desirable properties that
continuous maps f : X Ñ Y induce group homomorphisms f˚ : Hn´1pXq Ñ Hn´1pY q satisfying
pf ˝ gq˚ “ f˚ ˝ g˚ and Id˚ “ 1. Crucially, one can also compute this invariant for both Dn and
Sn´1, and the answers are

Hn´1pDnq “ t0u, Hn´1pSn´1q – Z.

Now the relation (1.1) implies that g˚ ˝ i˚ is the identity map on Hn´1pSn´1q – Z, so in particular
it is an isomorphism. But g˚ ˝ i˚ also factors through the trivial group Hn´1pDnq – t0u, and
therefore can only be the trivial homomorphism. This is a contradiction, thus proving Brouwer’s
theorem.

We will discuss the construction of singular homology and carry out the required computations
for the above argument in the last few weeks of this semester; homology and the closely related
subject of cohomology (Kohomologie) will then be the main topic of Topology 2 next semester.
But before all that, we will also spend considerable time on other invariants in algebraic topology,
notably the fundamental group, which underlies the notion of “simply connected” spaces appearing
in the Poincaré conjecture.

2. Metric spaces

We now begin in earnest with point-set topology, which will be the main topic for the next
three or four weeks. This subject is important but a little dry, so we will cover only the portions
of it that seem absolutely necessary as groundwork for studying the more geometrically motivated
questions discussed in the previous lecture.

The subject begins with metric spaces, because these are the most familiar examples of topo-
logical spaces. For most students, this material will be a review of things you’ve seen before in
analysis courses. Almost everything in this lecture will be generalized to a wider and slightly more
abstract context when we introduce topologies and topological spaces next week.

Definition 2.1. A metric space (metrischer Raum) is a set X endowed with a function
d : X ˆX Ñ R that satisfies the following conditions for all x, y, z P X :

(i) dpx, yq ě 0;
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(ii) dpx, xq “ 0;
(iii) dpx, yq “ dpy, xq, i.e. “symmetry”;
(iv) dpx, zq ď dpx, yq ` dpy, zq, i.e. the “triangle inequality” (Dreiecksungleichung);
(v) dpx, yq ą 0 whenever x ‰ y.

The function d is then called a metric (Metrik). If d satisfies the first four conditions but not
necessarily the fifth, then it is called a pseudometric (Pseudometrik).

Much of the theory of metric spaces makes sense for pseudometrics just as well as metrics, but
we will see that some desirable and intuitively “obvious” facts become false when the positivity
condition is dropped.

In any metric space pX, dq, one can define the open ball (offene Kugel) of radius r ą 0 about
a given point x P X as

Brpxq :“  
y P X ˇ̌

dpx, yq ă r
(
.

An arbitrary subset U Ă X is then called open (offen) if for every x P U , the ball Bǫpxq is contained
in U for all ǫ ą 0 sufficiently small. (Of course it only needs to be true for one particular ǫ ą 0,
since then it is true for all smaller ǫ as well.) Given a subset A Ă X , another subset U Ă X is
called a neighborhood (Umgebung) of A in X if U contains some open subset of X that also
contains A. Some books require the neighborhood itself to be open, but we will not require this;
it makes very little difference in practice, but this bit of extra freedom in our definition will allow
us to make certain other definitions and proofs a few words shorter now and then.

A subset A Ă X is closed (abgeschlossen) if its complement XzA is open. Achtung: this is
not the same thing as saying that A is not open. It is a common trap for beginners to think that
every subset must be either open or closed, but in reality, most are neither—and some (e.g. X
itself) are both.1

Whenever you encounter a set of axioms, you should ask yourself why we are studying these
axioms in particular—why not a slightly different set of axioms? In the case of metrics, it’s fairly
obvious why we would want any notion of “distance” to satisfy conditions (i)–(iii) and (v), but
perhaps the triangle inequality seems slightly less obvious. So, let us point out two obviously
desirable properties that follow mainly from the triangle inequality:

‚ The “open ball” Brpxq Ă X is also an open subset in the sense of the definition given
above. Indeed, for any y P Brpxq, we have Bǫpyq Ă Brpxq for every ǫ ă r ´ dpx, yq since
every z P Bǫpyq then satisfies

dpx, zq ď dpx, yq ` dpy, zq ă dpx, yq ` ǫ ă dpx, yq ` r ´ dpx, yq “ r.

‚ The function d : XˆX Ñ r0,8q is continuous (see below for a review of the definition of
continuity), since one can use the triangle inequality to show that for every x, y, x1, y1 P X ,

|dpx, yq ´ dpx1, y1q| ď dpx, x1q ` dpy, y1q.
Also, while I’m sure you already accept without question that the distance between two distinct
points should always be positive rather than zero, let us point out one “obvious” fact that would
cease to be true if condition (v) were removed:

‚ For every x P X , the subset txu Ă X is closed. Indeed, Xztxu is an open subset of X
because for every y P Xztxu, the ball Bǫpyq is contained in Xztxu for all ǫ ă dpx, yq.
(This of course presupposes that dpx, yq ą 0.)

You’re probably not used to thinking about pseudometric spaces much, so here is an example.

1Yes, the empty set H Ă X is always open. Reread the definition carefully until you are convinced that this is
true.
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Example 2.2. Let X “ pR ˆ t0, 1uqL„ for an equivalence relation defined by px, 0q „ px, 1q
for every x ‰ 0. We can think of this intuitively as a “real line with two zeroes” because it mostly
looks just the same as R (each number x ‰ 0 corresponding to the equivalence class of px, 0q and
px, 1q), but x “ 0 is an exception, where there really are two distinct points rp0, 0qs and rp0, 1qs
in X . We can then define d : X ˆX Ñ R by

dprpx, iqs, rpy, jqsq :“ |x´ y| for i, j P t0, 1u, x, y P R.

This satisfies conditions (i)–(iv) for all the same reasons that the usual metric on R does, but
condition (v) fails because

dprp0, 0qs, rp0, 1qsq “ 0

even though rp0, 0qs ‰ rp0, 1qs.
Exercise 2.3. Show that for the pseudometric space X in Example 2.2, trp0, 0qsu Ă X is not

a closed subset.

Definition 2.4. In a metric space pX, dq, a sequence (Folge) xn P X indexed by n P N

converges to (konvergiert gegen) a point x P X if for every ǫ ą 0, we have xn P Bǫpxq for all n
sufficiently large. Equivalently, this means that for every neighborhood U Ă X of x, xn P U for all
n sufficiently large. We use the notation

xn Ñ x or limxn “ x

to indicate that xn converges to x.

Note that in the second formulation of this definition, involving arbitrary neighborhoods in-
stead of the open ball Bǫpxq, one can understand the definition without knowing what the metric
is—one only has to know what a “neighborhood” is, which means knowing which subsets are open
and which are not. This will be the formulation that we need when we generalize sequences and
convergence to arbitrary topological spaces.

Here is a similarly standard definition from analysis, for which we give three equivalent formu-
lations.

Definition 2.5. For two metric spaces pX, dXq and pY, dY q, a map (Abbildung) f : X Ñ Y

is called continuous (stetig) if it satisfies any of the following equivalent conditions:
(a) For every x0 P X and ǫ ą 0, there exists a number δ ą 0 such that dY pfpxq, fpx0qq ă ǫ

whenever dXpx, x0q ă δ, i.e. fpBδpx0qq Ă Bǫpfpx0qq.
(b) For every open subset U Ă Y , the preimage

f´1pUq :“ tx P X | fpxq P Uu
is an open subset of X .

(c) For every convergent sequence xn P X , xn Ñ x implies fpxnq Ñ fpxq.
The equivalence of (a) and (b) is pretty easy to see: if (a) holds and U Ă Y is open, then for

every x0 P f´1pUq, the openness of U guarantees an ǫ ą 0 such that fpx0q P Bǫpfpx0qq Ă U . But
then condition (a) gives a δ ą 0 such that fpBδpx0qq Ă Bǫpfpx0qq Ă U , implying Bδpx0q Ă f´1pUq,
hence U is open and (b) therefore holds. Conversely, if (b) holds, then (a) holds because Bǫpfpx0qq
is open and thus so is f´1pBǫpfpx0qqq, which contains x0 and therefore also (by openness) contains
Bδpx0q for some δ ą 0.

Notice that conditions (b) and (c) do not require specific knowledge of the metric, but again
only require knowing what an open subset is. Condition (b) is the one we will later use to de-
fine continuity in general topological spaces. It may be instructive to review why (b) and (c)
are equivalent—especially because this is something that will turn out to be false in general for
topological spaces, at least without some extra assumption.
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Proof that (b) ô (c). To show that (b) ñ (c), suppose xn Ñ x and U Ă Y is a neigh-
borhood of fpxq. Then U contains an open set V containing fpxq, hence f´1pUq contains f´1pVq
which contains x, and by condition (b), f´1pVq is also open, implying f´1pUq is a neighborhood
of x. Convergence then implies that xn P f´1pUq and thus fpxnq P U for all n sufficiently large,
which proves fpxnq Ñ fpxq since the neighborhood U was arbitrary.

For the other direction, we shall prove the contrapositive, i.e. we show that if (b) is false then
so is (c). So assume there is an open subset U Ă Y such that f´1pUq Ă X is not open. Being
not open means that for some x P f´1pUq, no open ball about x is contained in f´1pUq. As a
consequence, for every n P N, we can find a point

xn P B1{npxq such that xn R f´1pUq,
meaning fpxnq R U . The sequence xn then converges to x, since every neighborhood of x contains
B1{npxq for n sufficiently large, implying that xn belongs to the given neighborhood for all large n.
But fpxnq cannot converge to fpxq since it never belongs to U , which is a neighborhood of fpxq. �

I want to point out two things about the above proof. First, the proof that (b) ñ (c) never
mentioned the metric, it only talked about neighborhoods and open sets—as a consequence, that
implication will remain true when we reconsider all these notions in general topological spaces. But
the proof that (c)ñ (b) did refer to the metric, because it used the precise definition of openness in
terms of open balls. We will see that this implication does not actually hold in arbitrary topological
spaces, though a mild modification of it does.

Definition 2.6. A map f : X Ñ Y is a homeomorphism (Homöomorphismus) if it is
continuous and bijective and its inverse f´1 : Y Ñ X is also continuous.

Example 2.7. Consider Rn with the standard Euclidean metric

dEpx,yq :“ |x´ y| “
gffe nÿ

j“1

pxj ´ yjq2

for vectors x “ px1, . . . , xnq and y “ py1, . . . , ynq in Rn. We claim that for any x P Rn and r ą 0,
pBrpxq, dEq is homeomorphic to pRn, dEq. (It follows of course that all open balls in Rn are also
homeomorphic to each other, though it is perhaps easier to prove the latter directly.) To construct
a homeomorphism, choose any continuous, increasing, bijective function f : r0, rq Ñ r0,8q and
define F : Brpxq Ñ Rn by

F pxq “ x and F px` yq “ x` fp|y|q y|y| for all y P Brp0qzt0u Ă Rn.

It is easy to check that both F and F´1 are then continuous.

One conclusion to draw from the above example is that the notion of “boundedness,” which is
very important in analysis, is not going to make much sense in topology. Indeed, we would like to
consider two spaces as “equivalent” whenever they are homeomorphic, so topologically it would be
meaningless to call a space bounded if another space homeomorphic to it is not. What plays this
role instead is the somewhat stricter notion of compactness. To write down the correct definition,
we need to have the notion of an open covering (offene Überdeckung): assume I is any set (the
so-called “index set”) and tUαuαPI is a collection of open subsets Uα Ă X labeled by elements α P I.
We call tUαuαPI an open covering/cover of a subset A Ă X if

A Ă ď
αPI

Uα.
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Definition 2.8. A subset K in a metric space pX, dq is compact (kompakt) if either of the
following equivalent conditions is satisfied:

(a) Every open cover tUαuαPI of K has a finite subcover (eine endliche Teilüberdeckung),
i.e. there is a finite subset tα1, . . . , αNu Ă I such that

K Ă
Nď
i“1

Uαi
.

(b) Every sequence xn P K has a convergent subsequence with limit in K.
We call pX, dq itself a compact space if X is a compact subset of itself.

Compactness is probably the least intuitive definition in this course so far, and at this stage we
can only justify it by saying that it has stood the test of time: many beautiful and useful theorems
have turned out to be true for compact spaces and only compact spaces. The first of these is the
following, which explains why, unlike boundedness, compactness really is a topologically invariant
notion, i.e. if X is compact, then so is every space that is homeomorphic to it.

Theorem 2.9. If f : X Ñ Y is continuous and K Ă X is compact, then so is fpKq Ă Y .

Proof. If tUαuαPI is an open cover of fpKq, then the sets f´1pUαq are all open in X and thus
form an open cover of K, which is compact, so there is a finite subset tα1, . . . , αNu Ă I such that

K Ă
Nď
i“1

f´1pUαi
q,

implying fpKq Ă ŤN
i“1 Uαi

, hence we have found a finite subcover of our given open cover of fpKq.
�

One more remark about compactness: the equivalence of conditions (a) and (b) in Definition 2.8
is not so obvious, but is a fairly deep theorem called the Bolzano-Weierstrass theorem which you’ve
probably seen proved in your analysis classes. We will prove an analogue of that theorem for
topological spaces in Lecture 5, but it does not say that these two definitions are always equivalent—
as with continuity, characterizing compactness via sequences becomes a slightly subtler issue in
topological spaces, though the equivalence does hold for most of the spaces we actually care about.

Let’s see some more examples now.

Example 2.10. For any metric space pX, dq and an arbitrary subset A Ă X , pA, dq is also a
metric space. So for instance, we can use the Euclidean metric dE on Rn`1 to define a metric on
the subset

Sn “  
x P Rn`1

ˇ̌ |x| “ 1
(
,

the n-dimensional sphere.

Example 2.11. Any set X can be assigned the discrete metric (diskrete Metrik), defined
by

dDpx, yq “
#
0 if x “ y,

1 otherwise.

This metric keeps every point at a measured distance away from every other point. So for instance,
we can assign the discrete metric to Rn and compare it with the Euclidean metric dE . We claim
that the identity map on Rn defines a continuous map from pRn, dDq to pRn, dEq, but it is not a
homeomorphism, i.e. its inverse is not continuous. This follows immediately from the next exercise.
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Exercise 2.12. Show that on any set X with the discrete metric dD, every subset is open. In
particular this includes the set txu Ă X for every x P X . Conclude that a sequence xn converges
to x if and only if xn “ x for all n sufficiently large, i.e. the sequence is “eventually constant”. Then
use this to prove the following statements:

(a) All maps from pX, dDq to any other metric space are continuous.
(b) All continuous maps from pRn, dEq to pX, dDq are constant.
Example 2.13. Given two metric spaces pX, dXq and pY, dY q, one can define a product

metric on X ˆ Y by

dXˆY ppx, yq, px1, y1qq :“
a
dXpx, x1q2 ` dY py, y1q2.

This is the obvious generalization of the Euclidean metric, e.g. if X and Y are both R with its
standard Euclidean metric, then dXˆY becomes dE on R2. But this is not the only reasonable
choice of metric on X ˆ Y : for instance, one can also define a metric by

d1XˆY ppx, yq, px1, y1qq :“ max
 
dX px, x1q, dY py, y1q( .

This metric is indeed different: for instance, if we again take X and Y to be the Euclidean R, then
an open ball with respect to d1XˆY in R2 does not look circular, it looks rather like a square. On
the other hand, this does not have a huge impact on the notion of open sets: it is not hard to show
that the identity map from pX ˆ Y, dXˆY q to pX ˆ Y, d1XˆY q is always a homeomorphism.

Definition 2.14. Twometrics d and d1 on the same setX are called (topologically) equivalent
if the identity map from pX, dq to pX, d1q is a homeomorphism.

In light of the various ways we now have for defining what “continuous” means, equivalence of
metrics can also be understood as follows:

‚ d and d1 are equivalent if they both define the same notion of open subsets in X ;
‚ d and d1 are equivalent if they both define the same notion of convergence of sequences
in X .

The characterization in terms of sequences is the subject of the next exercise.

Exercise 2.15. Suppose d1 and d2 are two metrics on the same set X . Show that the identity
map defines a homeomorphism pX, d1q Ñ pX, d2q if and only if the following condition is satisfied:
for every sequence xn P X and x P X ,

xn Ñ x in pX, d1q ðñ xn Ñ x in pX, d2q.
Example 2.16. In functional analysis, one often studies metric spaces whose elements are

functions, and the exact choice of metric on such a space needs to be handled rather carefully.
Consider for instance the set

X “ C0r´1, 1s :“ tcontinuous functions f : r´1, 1s Ñ Ru .
If we think of this as an infinite-dimensional vector space whose elements f P X are described by
the (infinitely many) “coordinates” fptq P R for t P r´1, 1s, then the natural generalization of the
Euclidean metric to such a space is

d2pf, gq :“
dż 1

´1

|fptq ´ gptq|2 dt.

This is the metric corresponding to the so-called “L2-norm” on the space of functions r´1, 1s Ñ R.
On the other hand, our alternative product metric discussed in Example 2.13 above generalizes to
this space in the form

d8pf, gq :“ max
tPr´1,1s

|fptq ´ gptq|,
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which is well defined since continuous functions on compact intervals always attain maxima. It
is not hard to see that the identity map from pX, d8q to pX, d2q is continuous, but is not a
homeomorphism. Indeed, if fn Ñ f in pX, d8q, then

d2pfn, fq2 “
ż 1

´1

|fnptq ´ fptq|2 dt ď
ż 1

´1

max
t
|fnptq ´ fptq|2 dt ď 2d8pfn, fq2 Ñ 0,

proving that fn Ñ f also in pX, d2q. On the other hand, there exist sequences fn P X such that
fn Ñ 0 with respect to d2 but d8pfn, 0q “ 1 for all n: just take a sequence of “bump” functions fn :

r´1, 1s Ñ r0, 1s that all satisfy fnp0q “ 1 but vanish outside of progressively smaller neighborhoods
of 0. These will satisfy d2pfn, 0q2 “ ş1

´1
|fnptq|2 dtÑ 0, but d8pfn, 0q “ maxt |fnptq| “ 1 for all n,

preventing convergence to 0 with respect to d8.
Exercise 2.17. Suppose pX, dXq is a metric space and „ is an equivalence relation on X , with

the resulting set of equivalence classes denoted by X{ „. For equivalence classes rxs, rys P X{ „,
define

(2.1) dprxs, rysq :“ inf
 
dXpx, yq

ˇ̌
x P rxs, y P rys( .

(a) Show that d is a metric on X{ „ if the following assumption is added: for every triple
rxs, rys, rzs P X{ „, there exist representatives x P rxs, y P rys and z P rzs such that

dXpx, yq “ dprxs, rysq and dXpy, zq “ dprys, rzsq.
Comment: The hard part is proving the triangle inequality.

(b) Consider the real projective n-space

RP
n :“ Sn{ „,

where Sn :“ tx P Rn`1 | |x| “ 1u and the equivalence relation identifies antipodal
points, i.e. x „ ´x. If dX is the metric on Sn induced by the standard Euclidean metric
on Rn`1, show that the extra assumption in part (a) is satisfied, so that (2.1) defines a
metric on RPn.

(c) For the metric defined on RP
n in part (b), show that the natural quotient projection

π : Sn Ñ RP
n sending each x P Sn to its equivalence class rxs P RP

n is continuous,
and a subset U Ă RPn is open if and only if π´1pUq Ă Sn is open (with respect to the
metric dX).

(d) Here is a very different example of a quotient space. Define

X “ p´1, 1q2ztp0, 0qu Ă R2

with the metric dX induced by the Euclidean metric on R2. Now fix the function f : X Ñ
R : px, yq ÞÑ xy and define the relation p0 „ p1 for p0, p1 P X to mean that there exists a
continuous curve γ : r0, 1s Ñ X with γp0q “ p0 and γp1q “ p1 such that f ˝ γ is constant.
Show that for this equivalence relation, the extra assumption of part (a) is not satisfied,
and the distance function defined in (2.1) does not satisfy the triangle inequality.

(e) Despite our failure to define X{ „ as a metric space in part (d), it is natural to consider
the following notion: define a subset U Ă X{ „ to be open if and only if π´1pUq is an
open subset of pX, dXq, where π : X Ñ X{ „ denotes the natural quotient projection.
We can then define a sequence rxns P X{ „ to be convergent to an element rxs P X{ „ if
for every open subset U Ă X{ „ containing rxs, rxns P U for all n sufficiently large. Find
a sequence rxns P X{ „ and two elements rxs, rys P X{ „ such that

rxns Ñ rxs and rxns Ñ rys, but rxs ‰ rys.
This could not happen if we’d defined convergence on X{ „ in terms of a metric. (Why
not?)
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Exercise 2.18.

(a) Show that for any metric space pX, dq,
d1px, yq :“ mint1, dpx, yqu

defines another metric on X which is equivalent to d. In particular, this means that every
metric is equivalent to one that is bounded.

(b) Suppose pX, dXq and pY, dY q are metric spaces satisfying

dXpx, x1q ď 1 for all x, x1 P X, dY py, y1q ď 1 for all y, y1 P Y .
Now let Z “ X Y Y , and for z, z1 P Z define

dZpz, z1q “
$’&’%
dXpz, z1q if z, z1 P X,
dY pz, z1q if z, z1 P Y ,
2 if pz, z1q is in X ˆ Y or Y ˆX.

Show that dZ is a metric on Z with the following property: a subset U Ă Z is open in
pZ, dZq if and only if it is the union of two (possibly empty) open subsets of pX, dXq and
pY, dY q. In particular, X and Y are each both open and closed subsets of Z. (Recall that
subsets of metric spaces are closed if and only if their complements are open.)

(c) Suppose pZ, dq is a metric space containing two disjoint subsets X,Y Ă Z that are each
both open and closed. Show that there exists no continuous map γ : r0, 1s Ñ Z with
γp0q P X and γp1q P Y .

(d) Show that if pX, dq is a metric space with the discrete metric, then for every point x P X ,
the subset txu Ă X is both open and closed.

3. Topological spaces

We saw in the last lecture that most of the notions we want to consider in topology (continuous
maps, homeomorphisms, convergence of sequences. . . ) can be defined on metric spaces without
specific reference to the metric, but using only our knowledge of which subsets are open. Moreover,
one can define distinct but “equivalent” metrics on the same space for which the open sets match
and therefore all these notions are the same. This suggests that we should view the notion of open
sets as something more fundamental than a metric. The starting point of topology is to endow a
set with the extra structure of a distinguished collection of subsets that we will call “open”. The
first question to answer is: what properties should we require this collection of subsets to have?

To motivate the axioms, let’s revisit metric spaces for a moment and recall two important
definitions. Both will also make sense in the context of topological spaces once we have fixed a
definition for the latter.

Definition 3.1. Suppose X is a metric (or topological) space.
(a) The interior (offener Kern or Inneres) of a subset A Ă X is the set

Å “  
x P A ˇ̌

some neighborhood of x in X is contained in A
(
.

Points in this set are called interior points (innere Punkte) of A.
(b) The closure (abgeschlossene Hülle or Abschluss) of a subset A Ă X is the setsA “  

x P X ˇ̌
every neighborhood of x in X intersects A

(
.

Points in this set are called cluster points (Berührpunkte) of A.

The following exercise is easy, but it’s worth thinking through why it is true.
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Exercise 3.2. Show that for any subset A Ă X , the interior Å is the largest open subset of
X that is contained in A, and the closure sA is the smallest closed subset of X that contains A, i.e.

Å “ ď
UĂX open, UĂA

U and sA “ č
UĂX closed, AĂU

U .

I worded this exercise in a slightly sneaky way by calling the union of all the open sets inside A
the “largest open subset of X that is contained in A”: how do we actually know that this union of
subsets is also open? This is the point: we know it because in a metric space, arbitrary unions of
open subsets are also open. This follows almost immediately from the definitions in the previous
lecture. It also implies (by taking complements) that arbitrary intersections of closed subsets are
also closed, hence writing sA as an intersection as in the exercise reveals that sA is also a closed
subset. These are properties you’d expect any reasonable notion of “open” or “closed” sets to have,
so we will want to keep them.

What about intersections of open sets? Well, in metric spaces, arbitrary intersections of open
sets need not be open, e.g. the intervals p´1{n, 1{nq Ă R are open for all n P N, butč

nPN

ˆ
´ 1

n
,
1

n

˙
“ t0u

is not an open subset of R. Something slightly weaker is true, however: the intersection of any
two open sets is open, and by an easy inductive argument, it follows that any finite intersection of
open sets is open. Indeed, if U ,V Ă X are both open and x P U X V , we know that U and V each
contain balls about x for sufficiently small radii, so it suffices to take any radius small enough to fit
inside both of them. (Why doesn’t this necessarily work for an infinite intersection of open sets?
Look at the example of the intervals p´1{n, 1{nq above if you’re not sure.) Taking complements,
we also deduce from this discussion that arbitrary unions of closed subsets are not always closed,
but finite unions are.

One last remark before we proceed: in any metric space X , the empty set H and X itself are
both open (and therefore also closed) subsets. With these observations as motivation, here is the
definition on which everything else in this course will be based.

Definition 3.3. A topology (Topologie) on a set X is a collection2 T of subsets of X
satisfying the following axioms:

(i) H P T and X P T ;
(ii) For every subcollection I Ă T ,

ď
UPI

U P T ;

(iii) For every pair U1,U2 P T , U1 X U2 P T .
The pair pX, T q is then called a topological space (topologischer Raum), and we call the sets
U P T the open subsets (offene Teilmengen) in pX, T q.

We can now repeat several definitions from the previous lecture in our newly generalized
context.

Definitions 3.4. Assume pX, TXq and pY, TY q are topological spaces.
(1) A subset A Ă X is closed (abgeschlossen) if XzA P TX .

2I am calling T a “collection” instead of a “set” in an attempt to minimize the inevitable confusion caused by
T being a set whose elements are also sets. Strictly speaking, there is nothing wrong with saying “T is a subset of
2X satisfying the following axioms. . . ,” where 2X is the set-theoretician’s fancy notation for the set consisting of all
subsets of X. But if you found that sentence confusing, my recommendation is to call T a “collection” instead of a
“set”.
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(2) A map f : X Ñ Y is continuous (stetig) if for all U P TY , f´1pUq P TX . Note that if
we prefer to describe the topology in terms of closed rather than open subsets, then it is
equivalent to say that for all U Ă Y closed, f´1pUq Ă X is also closed.

(3) A neighborhood (Umgebung) of a subset A Ă X is any subset U Ă X such that
A Ă V Ă U for some V P TX .

(4) A sequence (Folge) xn P X converges to (konvergiert gegen) x P X (written “xn Ñ x”)
if for every neighborhood U Ă X of x, xn P U holds for all n P N sufficiently large.

Remark 3.5. One can equivalently define a topology T on a set X by specifying the closed
sets T 1 :“ tXzU | U P T u. Then condition (ii) in Definition 3.3 is equivalent toč

API
A P T 1 for all subcollections I Ă T 1,

and condition (iii) is equivalent to

A1 YA2 P T 1 for all A1, A2 P T 1.

For many topologies that one encounters in practice, it is not so easy to say what all the open
sets look like, but much easier to describe a smaller subcollection that “generates” them.

Definition 3.6. Suppose pX, T q is a topological space and B Ă T is a subcollection of the
open sets.

‚ We call B a base or basis (Basis)3 for T if every set U P T is a union of sets in B, i.e.

U “ ď
VPI

V for some subcollection I Ă B.

‚ We call B a subbase or subbasis (Subbasis) for T if every set U P T is a union of finite
intersections of sets in B, i.e.

U “ ď
αPI

Uα

for some collection of subsets Uα Ă X indexed by a (possibly empty) set I, such that for
each α P I,

Uα “ U1
α X . . .X UNα

α

for some Nα P N and U1
α, . . . ,U

Nα
α P B.

Every base is obviously also a subbase, though we’ll see in a moment that the converse is not
true. You should take a moment to convince yourself that given any collection B of subsets of X
that cover all of X (meaning X “ Ť

UPB U), B is a subbase of a unique topology on X , namely the
smallest topology that contains B. It consists of all unions of finite intersections of sets from B,
and we say in this case that the topology T is generated by the collection B.

Example 3.7. The standard topology on R has the collection of all open intervals tpa, bq Ă
R | ´ 8 ď a ă b ď 8u as a base. The smaller subcollection of half-infinite open intervals
tp´8, aq | a P Ru Y tpa,8q | a P Ru is also a subbase, though not a base. (Why not?)

3Things got slightly confusing in Tuesday’s lecture because when I stated the definition of a base, I neglected
at first to require B Ă T , i.e. not only is every open set a union of sets from B, but the sets in B are themselves also
open, and as a result, every union of sets from B is also an open set. If one did not require the latter, then some
stupid examples would be possible, e.g. the collection of one-point subsets would be a base for every topology. With
the correct definition, however, B determines T uniquely, so taking B to consist of all one-point subsets automatically
makes T the discrete topology.
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Example 3.8. If pX, dq is any metric (or pseudometric) space, the natural topology on X

induced by the metric is defined via the base

B “  
Brpxq Ă X

ˇ̌
x P X, r ą 0

(
.

Note that if d and d1 are equivalent metrics as in Definition 2.14, then they induce the same
topology on X : indeed, if the identity map pX, dq Ñ pX, d1q is a homeomorphism then it maps
open sets to open sets. A topology that arises in this way from a metric is called metrizable
(metrisierbar).

Example 3.9. On any set X , the discrete topology is the collection T consisting of all
subsets of X . Take a moment to convince yourself that this is a topology, and moreover, it is
metrizable—it can be defined via the discrete metric, see Definition 2.11. (Can you think of another
metric onX that defines the same topology?) As a base for T , we can take B “  txu Ă X

ˇ̌
x P X(

.
Note that since all subsets are open, all subsets are also closed! Moreover:

‚ Every map f : X Ñ R is continuous.
‚ A map f : R Ñ X is continuous if and only if it is constant. Here is a quick proof: for
every x P X , txu Ă X is both open and closed, so continuity requires f´1pxq Ă R also to
be both open and closed, but the only subsets of R with this property are R itself and
the empty set.

‚ A sequence xn P X converges to x P X if and only if xn “ x for all n P N sufficiently
large.

Example 3.10. Also on any set X , one can define the trivial (also sometimes called the
“indiscrete”) topology T “ tH, Xu. This topology has the distinguishing feature that every point
x P X has only one neighborhood, namely the whole set. We then have:

‚ A map f : X Ñ R is continuous if and only if it is constant. Proof: Suppose f is
continuous, x0 P X and fpx0q “ t P R. Then for every ǫ ą 0, f´1pt´ ǫ, t` ǫq is an open
subset of X containing x0, so it is not H and is therefore X . This proves

fpXq Ă č
ǫą0

pt´ ǫ, t` ǫq “ ttu.

‚ All maps f : RÑ X are continuous.
‚ xn Ñ x holds always, i.e. all sequences in X converge to all points! This proves that
pX, T q is not metrizable, as the limit of a convergent sequence in a metric space is always
unique. (Prove it!)

Example 3.11. The cofinite topology on a set X is defined such that a proper subset A Ă X

is closed if and only if it is finite. Take a moment to convince yourself that this really defines a
topology—see Remark 3.5. (Note that X itself is automatically closed but does not need to be
finite, since it is not a proper subset of itself.) The neighborhoods of a point x P X are then all of
the form Xztx1, . . . , xN u for arbitrary finite subsets x1, . . . , xN P X that do not include x.

Suppose T1 and T2 are two topologies on the same set X such that

T1 Ă T2,

meaning every open set in pX, T1q is also an open set in pX, T2q. In this case we say that T2 is
stronger/finer/larger than (stärker/feiner als) T1, and T1 is weaker/coarser/smaller than
(schwächer/gröber als) T2. For example, since the open sets Rztx1, . . . , xNu for the cofinite topol-
ogy on R are also open with respect to its standard topology, we can say that the standard topology
of R is stronger than the cofinite topology. On any set, the discrete topology is the strongest, and
the trivial topology is the weakest. In general, having a stronger topology means that fewer se-
quences converge, fewer maps into X from other spaces are continuous, but more functions defined
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on X are continuous. In various situations, it is common and natural to specify a topology on a set
as being the “strongest” or “weakest” possible topology subject to the condition that some given
collection of maps are all continuous. We will see some examples of this below.

There are several natural ways in which a given topology on one or more spaces can induce a
topology on some related space.

Definition 3.12. pX, T q determines on any subset A Ă X the so-called subspace topology
(Unterraumtopologie)

TA :“  
U XA

ˇ̌
U P T

(
.

This is the weakest topology on A such that the natural inclusion A ãÑ X is a continuous map.
(Prove it!)

Example 3.13. The standard topology on Rn`1 is the one defined via the Euclidean metric.
We then assign the subspace topology to the set of unit vectors Sn Ă Rn`1, meaning a subset
V Ă Sn will be considered open in Sn if and only if V “ Sn X U for some open subset U Ă Rn`1.
As you might expect, this is the same as the topology induced by the metric on Sn defined by
restricting the Euclidean metric, but for a given open set V Ă Sn, it is not always so easy to see
an open set U Ă Rn`1 such that V “ U X Sn. Such a set can be constructed as follows: for each
x P V , choose ǫx ą 0 such that every y P Sn satisfying |y´ x| ă ǫx is also in V . Then the set

U :“ ď
xPV

 
y P Rn`1

ˇ̌ |y´ x| ă ǫx
(

is a union of open balls and is thus open in Rn`1, and satisfies U X Sn “ V .

Exercise 3.14. Convince yourself that for any metric space pX, dq and subset A Ă X , the nat-
ural metrizable topology on pA, dq is precisely the subspace topology with respect to the topology
on X induced by d.

Definition 3.15. Given a collection of topological spaces tpXα, TαquαPI indexed by a set I
such that Xα X Xβ “ H for all α ‰ β, the disjoint union (disjunkte Vereinigung) is the set
X :“ Ť

αPI Xα with the topology

T :“
#ď
αPI

Uα

ˇ̌̌̌
Uα P Tα for all α P I

+
.

We typically denote the topological space pX, T q defined in this way byž
αPI

Xα,

or for finite collections I “ t1, . . . , Nu, X1 > . . . > XN . The topology on this space is called the
disjoint union topology.

Exercise 3.16. Show that the disjoint union topology T on X “ š
αXα is the strongest

topology on this set such that for every α P I, the inclusion Xα ãÑ X is continuous.

Remark 3.17. A key feature of the disjoint union topology is that for every individual α P I,
the subset Xα Ă X is both open and closed. It follows that there is no continuous path γ : r0, 1s Ñ
X with γp0q P Xα and γp1q P Xβ for α ‰ β, cf. Exercise 2.18(c).

Remark 3.18. It is also often useful to be able to discuss disjoint unions
š
αXα in which the

sets Xα and Xβ need not be disjoint for α ‰ β, e.g. a common situation is where all Xα are taken
to be the same fixed set Y . In this case we still want to treat Xα and Xβ as disjoint “copies” of the
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same subset when α ‰ β, so that no element in the union can belong to more than one of them.
One way to do this is by redefining the set X “š

αXα as

X :“  pα, xq ˇ̌ α P I, x P Xα

(
,

so that the disjoint union topology now literally becomes the collection of all subsets in X of the
form ď

αPI
tαu ˆ Uα

with Uα Ă Xα open for every α, and in analogy with Exercise 3.16, this is the strongest topology
on X for which the injective maps Xα Ñ X : x ÞÑ pα, xq are continuous for all α P I. We
will usually not bother with this cumbersome notation when examples arise: just remember that
whenever X1 and X2 are two sets, disjoint or otherwise, the set X1 > X2 is defined so that its
subsets X1 Ă X1 >X2 and X2 Ă X1 >X2 are disjoint.

Exercise 3.19. Let I “ R and define Xα for each α P R to be the same space consisting
of only one element; for concreteness, say Xα :“ t0u Ă R. According to the definition described
above, this sets up an obvious bijectionž

αPR
t0u :“ tpα, 0q P Rˆ t0uu Ñ R,

pα, 0q ÞÑ α.

Show that this bijection is a homeomorphism if we assign the discrete topology to R on the right
hand side.

4. Products, sequential continuity and nets

From now on, we’ll adopt the following convention of terminology: if I say that X is a “space”,
then I mean X is a topological space unless I specifically say otherwise or the context clearly
indicates that I mean something different (e.g. that X is a vector space). Similarly, if X and Y
are spaces in the above sense and I refer to f : X Ñ Y as a “map”, then I typically mean that f
is a continuous map unless the context indicates otherwise. We will sometimes have occasion to
speak of maps f : I Ñ X where X is a space but I is only a set, on which no topology has been
specified: in this case no continuity is assumed since that notion is not well defined, but I will often
try to be extra clear about it by calling f a “(not necessarily continuous) function” or something
to that effect. I do not promise to be completely consistent about this, but hopefully my intended
meaning will never be in doubt.

The previous lecture introduced two ways of inducing new topologies from old ones, namely on
subspaces and on disjoint unions. It remains to discuss the natural topologies defined on products
and quotients. We’ll deal with the former in this lecture, and then use it to construct a surprising
example illustrating the distinction between continuity and sequential continuity.

Definition 4.1. Given two spaces pX1, T1q and pX2, T2q, the product topology T onX1ˆX2

is generated by the base

B :“  
U1 ˆ U2 Ă X1 ˆX2

ˇ̌
U1 P T1, U2 P T2

(
.

Notice that if X1ˆX2 is endowed with the product topology, then both of the projection maps
π1 : X1 ˆX2 Ñ X1 : px1, x2q ÞÑ x1

π2 : X1 ˆX2 Ñ X2 : px1, x2q ÞÑ x2

are continuous. Indeed, for any open set U1 Ă X1, π´1
1 pU1q “ U1 ˆX2 is the product of two open

sets and is therefore open in X1 ˆX2; similarly, π´1
2 pU2q “ X1 ˆ U2 is open if U2 Ă X2 is open.
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Notice moreover that the intersection of these two sets is U1 ˆU2, so one can form all open sets in
the product topology as unions of sets that are finite intersections of the form π´1

1 pU1q X π´1
2 pU2q.

In other words, the subcollection 
π´1
1 pUq ˇ̌ U P T1

(Y  
π´1
2 pUq ˇ̌ U P T2

(
forms a subbase for the product topology T . This makes T the weakest (i.e. smallest) topology
for which the projection maps π1 and π2 are both continuous.

That last observation leads us to the natural generalization of this discussion to infinite prod-
ucts, but the outcome turns out to be slightly different from what you probably would have
expected.

Suppose tpXα, TαquαPI is a collection of spaces, indexed by an arbitrary (possibly infinite)
set I. Their product can be defined as the setź

αPI
Xα :“

#
functions f : I Ñ ď

αPI
Xα : α ÞÑ xα such that xα P Xα for all α P I

+
.

Note that since I in this discussion is only a set with no topology, there is no assumption of
continuity for the functions α ÞÑ xα. Whether the set I is infinite or finite, we can denote elements
of the product space by

txαuαPI P
ź
αPI

Xα,

so we think of each of the individual elements xα P Xα as “coordinates” on the product.

Definition 4.2. The product topology (Produkttopologie) on
ś
αPI Xα is the weakest

topology such that all of the projection maps

πα :
ź
βPI

Xβ Ñ Xα : txβuβPI ÞÑ xα

for α P I are continuous.

In particular, the product topology must contain π´1
α pUαq for every α P I and Uα P Tα, and it

is the smallest topology that contains them, which means the sets π´1
α pUαq form a subbase. It is

important to spell out precisely what this means. We have

π´1
α pUαq “

#
txβuβPI P

ź
βPI

Xβ

ˇ̌̌̌
xα P Uα

+
,

so in each of these sets, only a single coordinate is constrained. It follows that in a finite inters-
esection of sets of this form, only finitely many of the coordinates will be constrained, while the
rest remain completely free. This implies:

Proposition 4.3. A base for the product topology on
ś
αPI Xα is formed by the collection of

all subsets of the form
ś
αPI Uα where Uα Ă Xα is open for every α P I and Uα ‰ Xα is satisfied

for at most finitely many α P I. �

The last part of the above statement makes no difference when the product is finite, but for
infinite products, it means that arbitrary subsets of the form

ś
αPI Uα Ă

ś
αPI Xα are not open

just because Uα Ă Xα is open for every α. Dropping the “at most finitely many” condition would
produce a much stronger topology with very different properties (see Exercise 4.6 below).

Exercise 4.4. Show that a sequence txnαuαPI P
ś
αPI Xα for n P N converges as n Ñ 8 to

txαuαPI P ś
αPI Xα in the product topology if and only if for all α P I, the individual sequences

xnα converge in Xα to xα.
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Exercise 4.5. Show that for any other space Y , a map f : Y Ñś
αPI Xα is continuous if and

only if πα ˝ f : Y Ñ Xα is continuous for every α P I.
There is a special notation for the product set in the case where all the Xα are taken to be

the same fixed space X : the product
ś
αPI X has an obvious identification with the set of all (not

necessarily continuous) functions I Ñ X , and we write

XI :“ź
αPI

X “ t(not necessarily continuous) functions f : I Ñ Xu .

For example we could now write Rn “ Rt1,...,nu if we preferred. The notation is motivated in
part by the combinatorial observation that if X and I are both finite sets with a and b elements
respectively, then XI has ab elements. The case X “ t0, 1u is popular in abstract set theory since
t0, 1uI “ tf : I Ñ t0, 1uu has a straightforward interpretation as the set of all subsets of I, which is
often abbreviated as 2I :“ t0, 1uI . But this example is not very interesting for topology since t0, 1u
is not a very interesting topological space (no matter which topology you put on it—there are only
four choices). When X is a more interesting space, the most important thing to understand about
XI comes from Exercise 4.4: a sequence of functions fn P XI converges to f P XI if and only if it
converges pointwise, i.e.

fnpαq Ñ fpαq for every α P I.
The product topology on XI is therefore also sometimes called the topology of pointwise con-
vergence (punktweise Konvergenz).

Exercise 4.6. Assume I is an infinite set and tpXα, TαquαPI is a collection of topological
spaces. In addition to the usual product topology on

ś
αXα, one can define the so-called box

topology, which has a base of the form#ź
αPI

Uα

ˇ̌̌̌
Uα P Tα for all α P I

+
.

(a) Compared with the usual product topology, is the box topology stronger, weaker, or
neither?

(b) What does it mean for a sequence in
ś
αXα to converge in the box topology? In par-

ticular, consider the case where all the Xα are a fixed space X and
ś
αX is identified

with the space of all functions XI “ tf : I Ñ Xu; what does it mean for a sequence of
functions fn : I Ñ X to converge in the box topology to a function f : I Ñ X?

With examples like these at our disposal, we can now address the following important question
in full generality:

Question 4.7. To what extent are the following conditions for maps f : X Ñ Y between
topological spaces equivalent?

‚ f´1pUq Ă X is open for every open set U Ă Y ;
‚ For every convergent sequence xn Ñ x in X, fpxnq Ñ fpxq in Y .

The first condition is ordinary continuity, while the second is called sequential continuity
(Folgenstetigkeit). We proved in Lecture 2 that these two conditions are equivalent for maps
between metric spaces, and if you look again at the proof that (b)ñ(c) in the discussion following
Definition 2.5, you’ll see that it still makes sense in arbitrary topological spaces, proving:

Theorem 4.8. For arbitrary topological spaces X and Y , all continuous maps X Ñ Y are
sequentially continuous. �
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The converse is trickier. Look again at the proof in Lecture 2 that (c)ñ(b) for Definition 2.5.
That proof specifically referred to open balls about a point, so it is not so clear how to make sense
of it in topological spaces where there is no metric. We can see however that the argument still
works if we can remove all mention of open balls and replace it with the following lemma:

“Lemma” 4.9. In any topological space X, a subset A Ă X is not open if and only if there
exists a point x P A and a sequence xn P XzA such that xn Ñ x.

I’ve put the word “lemma” in quotation marks here for a very good reason: as written, the
statement is false, and so is the converse of Theorem 4.8! Sequential continuity does not always
imply continuity. Here is a counterexample.

Example 4.10 (cf. [Jän05, §6.3]). Let X “ C0pr0, 1s, r´1, 1sq Ă r´1, 1sr0,1s, i.e. X is the set of
all continuous functions f : r0, 1s Ñ r´1, 1s, and we assign to it the subspace topology as a subset
of the space r´1, 1sr0,1s of all functions f : r0, 1s Ñ r´1, 1s. In other words, X carries the topology
of pointwise convergence. Next, define Y to be the same set, but with the topology induced by
the L2-metric

d2pf, gq “
dż 1

0

|fptq ´ gptq|2 dt.
Now consider the identity map from X to Y :

Φ : X Ñ Y : f ÞÑ f.

If fn Ñ f is a convergent sequence in X , then the functions converge pointwise, so |fn ´ f |2
converges pointwise to 0, and we claim that this implies

ş1
0
|fnptq ´ fptq|2 dt Ñ 0. This re-

quires a fundamental result from measure theory, Lebesgue’s dominated convergence theorem (see
e.g. [LL01, §1.8] or [Rud87, Theorem 1.34]): it states that if gn is a sequence of measurable func-
tions that converge almost everywhere to g and all satisfy |gn| ď G for some Lebesgue integrable
function G, then

ş
gn converges to

ş
g. In the present case, the hypotheses are satisfied since the

functions fn take values in the bounded domain r´1, 1s, which bounds |fn´f | uniformly below the
constant (and thus integrable) function 2. We conclude that d2pfn, fq Ñ 0, hence Φ is sequentially
continuous.

To show however that Φ is continuous, we would need to find for every ǫ ą 0 a neighborhood
U Ă X of 0 such that ΦpUq Ă Bǫp0q Ă Y . The trouble here is that neighborhoods in X (with
the product topology) are somewhat peculiar objects: if U is one, then it contains some open
set containing 0, which means it contains at least one of the sets

ś
αPr0,1s Uα in our base for the

product topology, where the Uα are all open neighborhoods of 0 in r´1, 1s but there is at most a
finite subset I Ă r0, 1s consisting of α P r0, 1s for which Uα ‰ r´1, 1s. Now choose a continuous
function f : r0, 1s Ñ r0, 1s that vanishes on the finite subset I but equals 1 on a “large” subset of
r0, 1szI. Depending how many points are in I, you may have to make this function oscillate very
rapidly back and forth between 0 and 1, but since I is only finite, you can still do this such that the
measure of the domain on which f “ 1 is as close to 1 as you like, which makes d2pf, 0q also only
slightly less than 1. In particular, f belongs to the neighborhood U in X but not to Bǫp0q Ă Y if
ǫ is sufficiently small.

We deduce from the above example that “Lemma” 4.9 is not always true, since it would imply
that continuity and sequential continuity are equivalent. We are led to ask: what extra hypotheses
could be added so that the lemma holds?

Definition 4.11. Given a point x in a space X , a neighborhood base (Umgebungsbasis)
for x is a collection B of neighborhoods of x such that every neighborhood of x contains some
U P B.
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Recall that a set I is countable (abzählbar) if it admits an injection into the natural num-
bers N. This definition allows I to be either finite or infinite; if it is “countably infinite” then we
can equivalently say that I admits a bijection with N. This is also equivalent to saying that there
exists a sequence txn P IunPN that includes every point of I. For example, it is easy to show that
the set Q of rational numbers is countable, but Cantor’s famous “diagonal” argument shows that
R is not.

Definition 4.12 (the countability axioms). A space X is called first countable (“X erfüllt
das erste Abzählbarkeitsaxiom”) if every point in x has a countable neighborhood base. We call X
second countable (“X erfüllt das zweite Abzählbarkeitsaxiom”) if its topology has a countable
base.

It is easy to see that every second countable space is also first countable: if X has a countable
base B, then for each x P X , the collection of sets in B that contain x is a countable neighborhood
base for x. The next example shows that the converse is false.

Example 4.13. If X has the discrete topology, then it is first countable because for each
x P X , one can form a neighborhood base out of the single open set txu Ă X . But X is second
countable if and only if X itself is a countable set (prove it!), so e.g. R with the discrete topology
is first but not second countable.

Example 4.14. All metric spaces are first countable. Indeed, for every x P X , the collection of
open balls B1{npxq Ă X for n P N forms a countable neighborhood base. (Note that Example 4.13
is a special case of this, so not all metric spaces are second countable.)

We can now prove a corrected version of “Lemma” 4.9. Let us first make a useful general
observation that follows directly from the axioms of a topology.

Lemma 4.15. In any space X, a subset A Ă X is open if and only if every point x P A has a
neighborhood V Ă X that is contained in A.

Proof. If the latter condition holds, then A is the union of open sets contained in such
neighborhoods and is therefore open. Conversely, if A is open, then A itself can be taken as the
desired neighborhood of every x P A. �

Lemma 4.16. In any first countable topological space X, a subset A Ă X is not open if and
only if there exists a point x P A and a sequence xn P XzA such that xn Ñ x.

Proof. If A Ă X is open, then for every x P A and sequence xn P X converging to x, we
cannot have xn P XzA for all n since A is a neighborhood of x. This is true so far for all topological
spaces, with or without the first countability axiom, but the latter will be needed in order to prove
the converse. So, suppose now that A Ă X is not open, which by Lemma 4.15, means there
exists a point x P A such that no neighborhood V Ă X of x is contained in A. Fix a countable
neighborhood base U1,U2,U3, . . . for x.

It will make our lives slightly easier if the neighborhood base is a nested sequence, meaning

X Ą U1 Ą U2 Ą U3 Ą . . . Q x,
and we claim that this can be assumed without loss of generality. Indeed, set U 1

1 :“ U1, and if
U2 is not contained in U 1

1, consider instead the set U2 X U 1
1, which is also a neighborhood of x

and therefore (by the definition of a neighborhood base) contains Un for some n P N. Since Un is
contained in U 1

1, we then set U 1
2 :“ Un. Now continue this process by setting U 1

3 :“ Um such that
Um Ă U 1

2 X U3 and so forth. This algorithm produces a nested sequence U 1
1 Ą U 1

2 Ą U 1
3 Ą . . . such

that U 1
n Ă Un for every n, hence the new neighborhoods also form a neighborhood base for x. Let

us replace our original sequence with the nested sequence and continue to call it tUnunPN.
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With this new assumption in place, observe that since none of the neighborhoods Un can be
contained in A, there exists a sequence of points

xn P Un such that xn R A.
This sequence converges to x since every neighborhood V Ă X of x contains one of the UN , implying
that for all n ě N ,

xn P Un Ă UN Ă V .

�

Combining this lemma with our proof in Lecture 2 that sequential continuity implies continuity
in metric spaces yields:

Corollary 4.17. For any spaces X and Y such that X is first countable, every sequentially
continuous map X Ñ Y is also continuous. �

It is possible to generalize this result beyond first countable spaces, but it requires expanding
our notion of what a “sequence” can be. If you think of a sequence in X as a map from the (ordered)
set of natural numbers N to X , then one possible way to generalize is to consider more general
partially ordered sets as domains. Recall that a binary relation ă defined on some subset of all
pairs of elements in a set I is called a partial order (Halbordnung or Teilordnung) if it satisfies
(i) x ă x for all x, (ii) x ă y and y ă x implies x “ y, and (iii) x ă y and y ă z implies x ă z. We
write “x ą y” as a synonym for “y ă x”, and the set I together with its partial order ă is called a
partially ordered set (partiell geordnete Menge). One obvious example is pN,ďq, though unlike
this example (which is totally ordered), it is not generally required in a partially ordered set pI,ăq
that every pair of elements x, y P I satisfy either x ă y or y ă x. We will see more exotic examples
below.

Definition 4.18. A directed set (gerichtete Menge) pI,ăq consists of a set I with a partial
order ă such that for every pair α, β P I, there exists an element γ P I with γ ą α and γ ą β.

The natural numbers pN,ďq clearly form a directed set, but in topology, one also encounters
many interesting examples of directed sets that need not be totally ordered or countable.

Example 4.19. If X is a space and x P X , one can define a directed set pI,ăq where I is the set
of all neighborhoods of x in X , and U ă V for U ,V P I means V Ă U . This is a directed set because
given any pair of neighborhoods U ,V Ă X of x, the intersection U XV is also a neighborhood of x
and thus defines an element of I with U X V Ă U and U X V Ă V . Note that neither of U and V

need be contained in the other, so they might not satisfy either U ă V or V ă U .

Definition 4.20. Given a space X , a net (Netz) txαuαPI in X is a function I Ñ X : α ÞÑ xα,
where pI,ăq is a directed set.

Definition 4.21. We say that a net txαuαPI in X converges to x P X if for every neighbor-
hood U Ă X of x, there exists an element α0 P I such that xα P U for every α ą α0.

Convergence of nets is also sometimes referred to in the literature asMoore-Smith convergence,
see e.g. [Kel75]. Note that a net txαuαPI whose underlying directed set is pI,ăq “ pN,ďq is simply
a sequence, and the above definition then reduces to the usual notion of convergence for a sequence.
We can now prove the most general corrected version of “Lemma” 4.9.

Lemma 4.22. In any space X, a subset A Ă X is not open if and only if there exists a point
x P A and a net txαuαPI in X that converges to x but satisfies xα R A for every α P I.
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Proof. If A Ă X is open then it is a neighborhood of every x P A, so the nonexistence of
such a net is an immediate consequence of Definition 4.21. Conversely, if A is not open, then
Lemma 4.15 provides a point x P A such that for every neighborhood V Ă X of x, there exists a
point

xV P V such that xV R A.
Taking pI,ăq to be the directed set of all neighborhoods of x, ordered by inclusion as in Ex-
ample 4.19, the collection of points txVuVPI is now a net which converges to x since for every
neighborhood U Ă X of x,

V ą U ñ xV P V Ă U .

�

Putting all this together leads to the following statement equating continuity with a generalized
notion of sequential continuity. The proof is just a repeat of arguments we’ve already worked
through, but we’ll spell it out for the sake of completeness.

Theorem 4.23. For any spaces X and Y , a map f : X Ñ Y is continuous if and only if for
every net txαuαPI in X converging to a point x P X, the net tfpxαquαPI in Y converges to fpxq.

Proof. Suppose f is continuous and txαuαPI is a net in X converging to x P X . Then for
any neighborhood U Ă Y of fpxq, f´1pUq Ă X is a neighborhood of x, hence there exists α0 P I
such that α ą α0 implies xα P f´1pUq, or equivalently, fpxαq P U . This proves that tfpxαquαPI
converges in the sense of Definition 4.21 to fpxq.

To prove the converse, let us suppose that f : X Ñ Y is not continuous, so there exists an
open set U Ă Y for which f´1pUq Ă X is not open. Then by Lemma 4.22, there exists a point
x P f´1pUq and a net txαuαPI in X that converges to x but satisfies xα R f´1pUq for every α P I.
Now tfpxαquαPI is a net in Y that does not converge to fpxq, since U is an open neighborhood of
fpxq but fpxαq is never in U . �

Nets take a bit of getting used to in comparison with sequences. The following addendum to
Example 4.10 may help in this regard, but it may also make you feel deeply unsettled.

Example 4.24. For the identity map Φ : X Ñ Y in Example 4.10, one could extract from the
above proof an example of a net txαuαPI in X that converges to 0 without tΦpxαquαPI converging
to 0 in Y , but here is perhaps a slightly simpler example. Define I as the set of all finite subsets of
r0, 1s, with the partial order A ă B for A,B Ă r0, 1s defined to mean A Ă B. Note that pI,ăq is
a directed set since for any two finite subsets A,B Ă r0, 1s, AY B is also a finite subset and thus
an element of I. Now choose for each A P I a continuous function

fA : r0, 1s Ñ r0, 1s
such that fA|A “ 0 but

ş1
0
|fAptq|2 dt ą 1{4. The net tΦpfAquAPI in Y clearly does not converge

to 0 since none of these functions belong to the ball B1{2p0q in Y . But tfAuAPI does converge to
0 in X : indeed, since X has the product topology, any neighborhood U Ă X of 0 contains some
open neighborhood of 0 that is of the form

ś
αPr0,1s Uα for open neighborhoods Uα Ă r´1, 1s of 0

such that Uα “ r´1, 1s for all α outside of some finite subset A0 Ă r0, 1s. It follows that for all
A P I with A ą A0 P I,

fApαq “ 0 P Uα for all α P A0,

implying fA P U .
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5. Compactness

We saw in our discussion of metric spaces (Lecture 2) that boundedness is not a meaningful
notion in topology, i.e. even if we have data such as a metric with which to define what a “bounded”
set is, it may still be homeomorphic to sets that are not bounded. Instead, we consider compact
sets, a notion that is topologically invariant. The main definition carries over from Lecture 2 with
no change.

Definition 5.1. Given a space X and subset A Ă X , an open cover/covering (offene
Überdeckung) of A is a collection of open subsets tUα Ă XuαPI such that A Ă Ť

αPI Uα.

We will also occasionally use the notation

A Ă ď
UPO

U

to indicate an open covering of A, where O is a collection of open subsets of X , i.e. O Ă T , where
T is the topology of X .

Definition 5.2. A subset A Ă X is compact (kompakt) if every open cover of A has a finite
subcover (eine endliche Teilüberdeckung), i.e. given an arbitrary open cover tUαuαPI of A, one can
always find a finite subset tα1, . . . , αNu Ă I such that A Ă Uα1

Y . . .Y UαN
. We say that X itself

is a compact space if X is a compact subset of itself.

Exercise 5.3. Show that a subset A Ă X is compact if and only if A with the subspace
topology is a compact space.

Example 5.4. For any space X with the discrete topology, a subset A Ă X is compact if and
only if A is finite. Indeed, the collection of subsets ttxu Ă XuxPA forms an open covering of A in
the discrete topology, and it has a finite subcovering if and only if A is finite, hence compactness
implies finiteness. The converse follows from the next example.

Example 5.5. In any space X , every finite subset A Ă X is compact. Indeed, for A “
ta1, . . . , aNu with an open covering tUαuαPI , pick any αi P I with ai P Uαi

for i “ 1, . . . , N , then
the sets Uα1

, . . . ,UαN
form an open subcover.

Example 5.6. A subset A Ă Rn in Euclidean space with its standard topology is compact
if and only if it is closed and bounded. This is known as the Heine-Borel theorem, and in one
direction it is easy to prove; see Exercise 5.7 below. For the other direction, you have probably
seen a proof in your analysis classes of the Bolzano-Weierstrass theorem, stating that if A is closed
and bounded then every sequence in A has a convergent subsequence with limit in A; we say in this
case that A is sequentially compact. We will prove in the following that compactness and sequential
compactness are equivalent for second countable spaces, and every subset of Rn is second countable
(see Exercise 5.9 below). A frequently occurring concrete example is the sphere

Sn Ă Rn`1,

which is a closed and bounded subset of Rn`1 and is therefore compact.

Exercise 5.7. Show that in any metric space, compact subsets must be both closed and
bounded.
Hint: For closedness, you may want to assume the theorem proved below that compact first
countable spaces are also sequentially compact—recall that all metric spaces are first countable.

Remark 5.8. Note that the converse of Exercise 5.7 is generally false: being closed and
bounded is not enough for compactness in arbitrary metric spaces. Here is an important class of
examples from functional analysis: a vector spaceH with an inner product x , y is called aHilbert
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space (Hilbertraum) if it is complete (meaning all Cauchy sequences converge) with respect to
the metric dpx, yq “axx´ y, x´ yy. The closed unit ball sB1p0q “ tx P H | xx, xy ď 1u is clearly
both closed and bounded in H, and it is compact if H is finite dimensional since, in this case, H is
both linearly isomorphic and homeomorphic to Rn (or Cn in the complex case) with its standard
inner product. But if H is infinite dimensional, then sB1p0q contains an infinite orthonormal set
e1, e2, e3, . . ., i.e. satisfying

xei, eiy “ 1 for all i, xei, ejy “ 0 if i ‰ j.

It then follows by a standard argument of Euclidean geometry that dpei, ejq “
?
2 whenever i ‰ j,

so for any r ă ?
2{2, no ball of radius r in H can contain more than one of these vectors. It

follows that tBrpxq | x P Hu is an open cover of sB1p0q that has no finite subcover. This way of
characterizing the distinction between finite- and infinite-dimensional Hilbert spaces in terms of
the compactness of the unit ball has useful applications, e.g. in the theory of elliptic PDEs. The
latter has many quite deep applications in geometry and topology, for instance the index theory of
Atiyah-Singer (see [Boo77,BB85]), gauge-theoretic invariants of smooth manifolds [DK90], and
the theory of pseudoholomorphic curves in symplectic topology [MS12,Wen18].

Exercise 5.9. A space X is called separable (separabel) if it contains a countable subset
A Ă X that is also dense (dicht), meaning the closure4 of A is X .

(a) Show that if X is a metric space and A Ă X is a dense subset, then the collection of open
balls tB1{npxq Ă X | n P N, x P Au forms a base for the topology of X .

(b) Deduce that every separable and metrizable space is second countable.
(c) Show that Rn with its standard topology is separable.
(d) Show that if X is any second countable space, then every subset A Ă X with the subspace

topology is also second countable.

Example 5.10. A union of finitely many compact subsets in a space X is also compact. (This
is an easy exercise.)

The next result implies that closed subsets in compact spaces are also compact.

Proposition 5.11. For any compact subset K Ă X, if A Ă X is closed and also is contained
in K, then A is compact.

Proof. Suppose tUαuαPI is an open cover of A. Since A is closed, XzA is open, so that
supplementing the collection tUαuαPI with XzA defines an open cover of X , and therefore also an
open cover of K. Since K is compact, there is then a finite subset tα1, . . . , αNu Ă I such that

K Ă Uα1
Y . . .Y UαN

Y pXzAq.
But A Ă K is disjoint from XzA, so this means A Ă Uα1

Y . . . Y UαN
, and we have found the

desired finite subcover for A. �

The following theorem is just a repeat of Theorem 2.9, but in the more general context of
topological rather than metric spaces. The proof carries over word for word.

Theorem 5.12. If f : X Ñ Y is continuous and K Ă X is compact, then so is fpKq Ă Y . �

Now would be a good moment to introduce the quotient topology, since it provides a large
class of new examples of compact spaces.

4We gave the definition of the term closure in Lecture 3 (see Definition 3.1), originally in the context of metric
spaces, but the same definition carries over to general topological spaces without change.
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Definition 5.13. Suppose X is a space and „ is an equivalence relation on X , with the set of
equivalence classes denoted by X{„. The quotient topology on X{„ is the strongest topology
for which the natural projection map π : X Ñ X{„ sending each point x P X to its equivalence
class rxs P X{„ is continuous. Equivalently, a subset U Ă X{„ is open in the quotient topology if
and only if π´1pUq is an open subset of X .

I suggest you pause for a moment to make sure you understand why the two descriptions of
the quotient topology in that definition are equivalent. Applying Theorem 5.12 to the continuous
projection π : X Ñ X{„, we now have:

Corollary 5.14. For any compact space X with an equivalence relation „, X{„ with the
quotient topology is also compact. �

Example 5.15. Since Sn is compact, so is RPn “ Sn
Ltx „ ´xu if we assign it the quotient

topology. (Note that by Exercise 2.17(c), the quotient topology on RP
n is metrizable, and can be

defined in terms of a natural metric induced on the quotient from the Euclidean metric restricted
to Sn.)

Exercise 5.16. The space S1, known as the circle, is normally defined as the unit circle in
R2 and endowed with the subspace topology (induced by the Euclidean metric on R2). Show that
the following spaces with their natural quotient topologies are both homeomorphic to S1:

(a) R{Z, meaning the set of equivalence classes of real numbers where x „ y means x´y P Z.
(b) r0, 1s{„, where 0 „ 1.

For the next example, we introduce a convenient piece of standard notation. The quotient of a
space X by a subset A Ă X is defined as

X{A :“ X{„
with the quotient topology, where the equivalence relation is defined such that x „ y for every
x, y P A and otherwise x „ x for all x P X . In other words, X{A is the result of modifying X by
“collapsing A to a point”.

(c) Convince yourself that for every n P N, Sn is homeomorphic to Dn{Sn´1, where

Dn :“ tx P Rn | |x| ď 1u.
Remark: Part (b) becomes a special case of part (c) if we replace r0, 1s by D1 “ r´1, 1s.

The remainder of this lecture will be concerned with the extent to which compactness is
equivalent to the notion of sequential compactness (Folgenkompaktheit), defined as follows:

Definition 5.17. A subset A Ă X is sequentially compact if every sequence in A has a
subsequence that converges to a point in A.

As you might guess from our discussion of sequential continuity in the previous lecture, com-
pactness and sequential compactness are not generally equivalent without some extra condition.
But as with continuity, one obtains a result free of extra conditions by replacing sequences with
nets.

Definition 5.18. Suppose pI,ăq is a directed set and txαuαPI is a net in a space X . A point
x P X is called a cluster point (Häufungspunkt) of txαuαPI if for every neighborhood U Ă X of
x and every α0 P I, there exists α ą α0 such that xα P U .

Notice that the above definition is almost identical to that of convergence of txαuαPI to x
(see Definition 4.21), only the roles of “for every” and “there exist” have been reversed at the end.
Informally, x being a cluster point does not require xα to be arbitrarily close to x for all sufficiently
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large α, but only that one should be able to find some α arbitrarily large for which xα is arbitrarily
close. You should take a moment to think about what this definition means in the special case
pI,ăq “ pN,ďq, where the net becomes a sequence, so the notion should be already familiar.

Definition 5.19. Given two directed sets pI,ăq and pJ,ăq, and nets txαuαPI and tyβuβPJ in
a space X , we call tyβuβPJ a subnet (Teilnetz) of txαuαPI if yβ “ xφpβq for all β P J and some
function φ : J Ñ I with the property that for every α0 P I, there exists β0 P J for which β ą β0
implies φpβq ą α0.

If pI,ăq and pJ,ăq in the above definition are both pN,ďq so that txαuαPI and tyβuβPI become
sequences xn and yk respectively, then yk will be a subnet of xn if it is of the form yk “ xnk

for
some sequence nk P N satisfying limkÑ8 nk “ 8. This agrees with at least one of the standard
definitions of the term subsequence (Teilfolge); a slightly stricter definition would require the
sequence nk to be monotone, but this difference is harmless. One should however be careful
not to fall into the trap of thinking that a subnet of a sequence is always a subsequence—even if
pI,ăq “ pN,ďq, Definition 5.19 allows much more general choices for the directed set pJ,ăq and the
function φ : J Ñ N underlying a subnet of a sequence. In particular, the following lemma cannot be
used to find convergent subsequences without imposing further conditions (cf. Lemma 5.22 below).

Lemma 5.20. A net txαuαPI in X has a cluster point at x P X if and only if it has a subnet
convergent to x.

Proof. Let us prove that a convergent subnet can always be derived from a cluster point x.
Let Nx denote the set of all neighborhoods of x in X , and define J “ I ˆNx with a partial order
ă defined by

pα,Uq ą pβ,Vq ô α ą β and U Ă V .

This makes pJ,ăq a directed set since pI,ăq is already a directed set and the intersection of two
neighborhoods is a neighborhood contained in both. Now since x is a cluster point of the net
txαuαPI , there exists a function φ : J Ñ I such that for all pβ,Uq P J , φpβ,Uq “: α satisfies α ą β

and xα P U . It is then straightforward to check that txφpβ,Uqupβ,UqPJ is a subnet convergent to x.
The converse is easier, so I will leave it as an exercise. �

Here is the most general result relating compactness to nets.

Theorem 5.21. A space X is compact if and only if every net in X has a convergent subnet.

Proof. We prove first that if X is compact, then every net txαuαPI has a cluster point (and
therefore by Lemma 5.20 a convergent subnet). Arguing by contradiction, suppose no x P X is
a cluster point of txαuαPI . Then one can associate to every x P X a neighborhood Ux and an
element αx P I such that for every α ą αx, xα R Ux. Without loss of generality let us suppose
the neighborhoods Ux are all open. Then the collection of sets tUxuxPX forms an open cover of X ,
and therefore has a finite subcover since X is compact. This means there is a finite set of points
x1, . . . , xN P X such that X “ Ux1

Y . . .Y UxN
. Now since pI,ăq is a directed set, we can find an

element β P I satisfying
β ą αxi

for all i “ 1, . . . , N,

hence xβ R Uxi
for every i “ 1, . . . , N . But the latter sets cover X , so this is impossible, and we

have found a contradiction.
For the converse, we shall prove that if X is not compact then there exists a net with no

cluster point. Being noncompact means one can find a collection O of open subsets such that
X “ Ť

UPO U but no finite subcollection of them has union equal to X . Define I to be the set of
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all finite subcollections of the sets in O, so by assumption, one can associate to every A P I a point
xA P X satisfying

(5.1) xA R ď
UPA

U .

Define a partial order ă on I by
A ă B ô A Ă B,

and notice that pI,ăq is now a directed set since the union of any two finite subcollections is
another finite subcollection that contains both. This makes txAuAPI a net in X , and we claim
that it has no cluster point. Indeed, if x P X is a cluster point of txAuAPI , then since the sets in
O cover X , there is a set V P O that is a neighborhood of x, and it follows that there must exist
some A ą tVu in I for which

xA P V Ă ď
UPA

U .

This contradicts (5.1) and thus proves the claim that there is no cluster point. �

The next step is to impose countability axioms so that Theorem 5.21 gives us corollaries about
sequential compactness.

Lemma 5.22. If xn P X is a sequence with a cluster point at x P X and x has a countable
neighborhood base, then xn has a subsequence converging to x.

Proof. As in the proof of Lemma 4.16, we can assume without loss of generality that our
countable neighborhood base has the form of a nested sequence of neighborhoods

X Ą U1 Ą U2 Ą . . . Q x.
Since x is a cluster point, we can choose k1 P N so that xk1 P U1, and then inductively for each
n P N, choose kn P N such that xkn P Un and kn ą kn´1. Then xkn is a subsequence of xn and it
converges to x, since for all neighborhoods V Ă X of x, we have V Ą UN for some N P N, implying

n ě N ñ xkn P Un Ă UN Ă V .

�

Corollary 5.23. If X is compact and first countable, then it is also sequentially compact. �

Example 5.24. Though it is not so easy to see this, the space r0, 1sR of (not necessarily
continuous) functions R Ñ r0, 1s with the topology of pointwise convergence is compact, but
not sequentially compact. Compactness follows directly from a deep result known as Tychonoff’s
theorem, which we will discuss in the next lecture. For the construction of a sequence in r0, 1sR
with no convergent subsequence, see Exercise 6.5.

To prove compactness from sequential compactness, it turns out that we will need to invoke
the second countability axiom. In practice, almost all of the spaces that topologists spend their
time thinking about are second countable, resulting from the fact that most of them are separable
and metrizable (see Exercise 5.9). One useful property shared by all second countable (but not
necessarily compact) spaces is the following.

Lemma 5.25. If X is second countable, then every open cover of X has a countable subcover.

Proof. Assume tUαuαPI is an open cover of X and B is a countable base. Then each Uα is a
union of sets in B, and the collection of all sets in B that are contained in some Uα is a countable
subcollection B1 Ă B that also covers X . Let us denote B1 “ tV1,V2,V3, . . .u. We can now choose
for each Vn P B1 an element αn P I such that Vn Ă Uαn

, and tUαn
unPN is then a countable subcover

of tUαuαPI . �
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If you now take the second half of the proof of Theorem 5.21 and redo it with the focus on
sequences instead of nets, and with Lemma 5.25 in mind, the result is the following.

Theorem 5.26. If X is second countable and sequentially compact, then it is compact.

Proof. We need to show that every open cover of X has a finite subcover. Since X is second
countable, we can first use Lemma 5.25 to reduce the given open cover to a countable subcover
U1,U2,U3, . . . Ă X . Now arguing by contradiction, suppose that X is sequentially compact but the
sets U1, . . . ,Un do not cover X for any n P N, hence there exists a sequence xn P X such that

(5.2) xn R U1 Y . . .Y Un

for every n P N. Some subsequence xkn then converges to a point x P X , which necessarily lies
in UN for some N P N. It follows that xkn also lies in UN for all n sufficiently large, but this
contradicts (5.2) as soon as kn ě N . �

Exercise 5.27. Consider the space

X “  
f P r0, 1sR ˇ̌

fpxq ‰ 0 for at most countably many points x P R
(
,

with the subspace topology that it inherits from r0, 1sR.
(a) Show that X is sequentially compact.

Hint: For any sequence fn P X , the set
Ť
nPNtx P R | fnpxq ‰ 0u is also countable.

(b) For each x P R, define Ux “ tf P X | ´ 1 ă fpxq ă 1u. Show that the collection
tUx Ă X | x P Ru forms an open cover of X that has no finite subcover, hence X is not
compact.

Corollary 5.23 and Theorem 5.26 combine to give the following result that is easy to remember:

Corollary 5.28. A second countable space is compact if and only if it is sequentially compact.
�

A loose end: We know from Exercise 5.9 that every separable metric space is second countable,
thus Corollary 5.28 implies the equivalence of compactness and sequential compactness for sepa-
rable metric spaces, which includes most of the metric spaces that one uses in practice. However,
more than this was claimed in Lecture 2: the equivalence should hold in all metric spaces, and this
does not quite follow from what we’ve proved here. The missing ingredient needed is the notion
of total boundedness : one can show that every sequentially compact set A in a metric space X is
totally bounded (total beschränkt), meaning that for every ǫ ą 0, A is contained in the union
of finitely many balls of radius ǫ. Taking ǫ “ 1{n for n P N then provides a countable collection of
open balls covering A, which can serve as a substitute for the countable subcover we used in the
proof of Theorem 5.26. We will not go further into the details here, since this is a topology and
not an analysis course, and we will not need the result going forward.

6. Tychonoff’s theorem and the separation axioms

Topic 1: Products of compact spaces. Here is a result that may sound less surprising at
first than it actually is.

Theorem 6.1 (Tychonoff’s theorem). For any collection of compact spaces tXαuαPI , the prod-
uct

ś
αPI Xα is compact.

Nonmathematical remark. Thinking like an Anglophone may lead you to false assumptions
about the pronunciation of the name Tychonoff, e.g. I was mispronouncing it for years until I finally
looked up the name on Wikipedia in the context of teaching this course. The original Russian
spelling is Tihonov, which would normally get transliterated into English as Tikhonov. The
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reason he instead became known outside of Russia as Tychonoff is that his papers were published
in German, hence different phonetic conventions.

When I is a finite set, Theorem 6.1 says something not at all surprising, and the proof is
straightforward, so let’s start with that.

Proof of Theorem 6.1 for finite products. By induction, it will suffice to prove that
if X and Y are both compact spaces then so is X ˆ Y . We will do so by showing that every
net in X ˆ Y has a convergent subnet. Recall that a net tpxα, yαquαPI in X ˆ Y converges to
px, yq P X ˆ Y if and only if the nets txαuαPI in X and tyαuαPI in Y converge to x and y

respectively. (The corresponding fact about sequences was proved in Exercise 4.4—the proof for
nets is the same.) Now, since X is compact, txαuαPI has a subnet txφpβquβPJ convergent to some
point x P X , where J is some other directed set with a suitable function φ : J Ñ I. Compactness
of Y implies in turn that tyφpβquβPJ has a subnet tyφpψpγqquγPK convergent to some point y P Y .
We therefore obtain a subnet

tpxφ˝ψpγq, yφ˝ψpγqquγPK
of the original net tpxα, yαquαPI that converges in X ˆ Y to px, yq. �

The much less obvious aspect of Theorem 6.1 is that it is also true for infinite products, even
those for which the index set I is uncountably infinite. So it follows for instance that the space

r0, 1sR “ tnot necessarily continuous functions f : RÑ r0, 1su “ ź
αPR

r0, 1s

with the topology of pointwise convergence is compact, as an immediate consequence of the fact that
r0, 1s is compact. Of course, this does not mean that every sequence of functions fn : R Ñ r0, 1s
has a pointwise convergent subsequence! That would be truly surprising, but it is false (see
Exercise 6.5); it turns out that r0, 1sR is not a first countable space, so it is allowed to be compact
without being sequentially compact.

For a slightly different example, r´1, 1sN is compact. We can identify this space with the set
of all sequences in r´1, 1s, again with the topology of pointwise convergence, i.e. a sequence of
sequences txnkukPN P r´1, 1sN converges as n Ñ 8 to a sequence txkukPN if limnÑ8 xnk “ xk for
every k P N. Now observe that r´1, 1sN also contains the unit ball in the infinite-dimensional
Hilbert space

ℓ2r´1, 1s :“
#
txk P RukPN

ˇ̌̌̌
ˇ 8ÿ
k“1

|xk|2 ă 8
+

with metric defined by

dptxku, tykuq2 “
8ÿ
k“1

|xk ´ yk|2.

The unit ball in ℓ2r´1, 1s is clearly noncompact since it contains the sequence of sequenes

p1, 0, 0, . . .q, p0, 1, 0, . . .q, p0, 0, 1, 0, . . .q, . . . ,
which converges pointwise to 0 but stays at a constant distance away from 0 with respect to
the metric, so it can have no convergent subsequence in the topology of ℓ2r´1, 1s. It may seem
surprising in this case that the larger set r´1, 1sN is compact, but the reason is that r´1, 1sN has a
much weaker topology than ℓ2r´1, 1s: since it is easier to converge pointwise than it is to converge
in the ℓ2-norm, r´1, 1sN has more sequences with convergent subsequences (or subnets, as the case
may be).
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Remark 6.2. One conclusion you should draw from the above discussion is that Tychonoff’s
theorem depends crucially on the way we defined the product topology on

ś
αPI Xα, i.e. it is

a result about the topology of pointwise convergence. The result becomes false, for instance, if
we replace the usual product topology by the “box” topology from Exercise 4.6. For a concrete
example, consider the set r´1, 1sN with the box topology, meaning sets of the form 

f P r´1, 1sN ˇ̌
fpkq P Uk for all k P N

(
for arbitrary collections of open subsets tUk Ă r´1, 1sukPN are open. Then the sequence of constant
functions fnpkq :“ 1{n converges pointwise to 0, but we claim that it has no cluster point in the
box topology. Indeed, the box topology contains the product topology, so if any subnet of fn
converges in the box topology, then it must also converge in the product topology and hence
pointwise, meaning the only limit it could possibly converge to is 0, and 0 is therefore the only
possible cluster point. But in the box topology,

U :“  
f P r´1, 1sN ˇ̌

fpkq P p´1{k, 1{kq for all k P N
(

is an open neighborhood of 0 satisfying fn R U for all n P N, so 0 is not a cluster point of this
sequence.

Let’s go ahead and prove another special case of Tychonoff’s theorem. The next proof is still
relatively straightforward, and it applies for instance to r´1, 1sN. Part of the idea is to make our
lives easier by dealing with sequences instead of nets, which is made possible by the following
simple observation:

Lemma 6.3. If X1, X2, X3, . . . is a countably infinite sequence of spaces that are all second
countable, then

ś8
i“1Xi is also second countable.

Proof. Fix for each i “ 1, 2, 3, . . . a countable base Bi for the topology of Xi. Then for each
n P N, the collection of sets

On :“
#
U1 ˆ . . .ˆ Un ˆXn`1 ˆXn`2 ˆ . . . Ă

8ź
i“1

Xi

ˇ̌̌̌
ˇ Ui P Bi for each i “ 1, . . . , n

+
is countable since B1 ˆ . . . ˆ Bn is countable. Then the countable union of countable sets O1 Y
O2 YO3 Y . . . is a base for

ś8
i“1Xi, and it is countable. �

Proof of Theorem 6.1, second countable case. Assume the set I is countable and the
spaces Xα are all second countable for α P I. In light of Lemma 6.3 and Theorem 5.26, it will
now suffice to prove that for any sequence X1, X2, X3, . . . of second countable spaces,

ś8
i“1Xi is

sequentially compact. The idea is to combine the argument above for the case of finite products with
Cantor’s diagonal method. In order to avoid too many indices, let us denote elements f Pś8

i“1Xi

as functions f : N Ñ Ť8
i“1Xi that satisfy fpiq P Xi for each i P N. Now given a sequence

fn Pś8
i“1Xi, the compactness of X1 guarantees that there is a subsequence f1

n of fn for which the
sequence f1

np1q in X1 converges. Continuing inductively, we can construct a sequence of sequences
fkn P

ś8
i“1Xi for k, n P N such that for every k ě 2, tfknu8n“1 is a subsequence of tfk´1

n u8n“1 and
the sequence fknpkq in Xk converges as nÑ 8. It follows that for every fixed k P N, the sequence
tfnn pkqu8n“1 in Xk converges, thus tfnn u8n“1 is a convergent subsequence of the original sequence fn
in

ś8
i“1Xi. �

The ideas in the special cases we’ve treated so far can be applied toward a general proof of
Tychonoff’s theorem, but the general case requires one major ingredient that wasn’t needed so far:
the axiom of choice. This makes e.g. the compactness of r´1, 1sr0,1s somewhat harder to grasp
intuitively, as invoking the axiom of choice means that the existence of a cluster point for every
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sequence in r´1, 1sr0,1s is guaranteed, but there is nothing even slightly resembling an algorithm
for finding one. It is known in fact that this is not just a feature of any particular method of
proving the theorem—by a result due to Kelley [Kel50], if one assumes that the usual axioms of
set theory (not including choice) hold and that Tychonoff’s theorem also holds, then the axiom of
choice follows, thus the two are actually equivalent.

Speaking only for myself, I had a Ph.D. in mathematics already for several years before I ever
started to find the axiom of choice remotely worrying, so if you’ve never worried about it before,
I don’t encourage you to start worrying now. As far as this course is concerned, we actually could
have skipped the general case of Tychonoff’s theorem with no significant loss of continuity—I am
including it here mainly for the sake of cultural education, and because the proof itself is interesting.

The proof given below is based on the characterization of compactness in terms of convergent
subnets (Theorem 5.21) and is due to Paul Chernoff [Che92]. Similarly to certain standard results
in functional analysis that also depend on the axiom of choice (e.g. the Hahn-Banach theorem),
it uses the axiom in a somewhat indirect way, namely via Zorn’s lemma, which is known to be
equivalent to the axiom of choice. I do not want to go far enough into abstract set theory here to
explain why it is equivalent: the proof is elementary but somewhat tedious, and you can find it
explained e.g. in [Jän05] or [Kel75]. I would recommend reading through that proof exactly once
in your life. For our purposes, we will just take the following statement of Zorn’s lemma as a black
box.

Lemma 6.4 (Zorn’s lemma). Suppose pP ,ăq is a nonempty partially ordered set in which every
totally ordered subset A Ă P has an upper bound, i.e. for every subset in which all pairs x, y P A

satisfy x ă y or y ă x, there exists an element p P P such that p ą a for all a P A. Then every
totally ordered subset A Ă P also has an upper bound p P P that is a maximal element, i.e. such
that no q P P with q ‰ p satisfies q ą p. �

Proof of Theorem 6.1, general case. We shall continue to denote elements of
ś
αPI Xα

by functions f : I Ñ Ť
αPI Xα satisfying fpαq P Xα for each α P I. Assuming all the Xα are

compact, it suffices by Theorem 5.21 to prove that every net tfβuβPK in
ś
αPI Xα has a cluster

point. The idea of Chernoff’s proof is as follows: we introduce below the notion of a “partial”
cluster point, which may be a function defined only on a subset of I. We will show that the set of
all partial cluster points has a partial order for which Zorn’s lemma applies and delivers a maximal
element. The last step is to show that a maximal element in the set of partial cluster points must
in fact be a cluster point of tfβuβPK .

To define partial cluster points, notice that for any subset J Ă I, restricting any function f Pś
αPI Xα to the smaller domain J defines an element f |J PśαPJ Xα. We will refer to a pair pJ, gq

as a partial cluster point of the net tfβuβPK if J is a subset of I and g PśαPJ Xα is a cluster
point of the net tfβ|JuβPK in

ś
αPJ Xα obtained by restricting the functions fβ : I Ñ Ť

αPI Xα

to J Ă I. Let P denote the set of all partial cluster points of tfβuβPK . It is easy to see that
P is nonempty: indeed, for each individual α P I, the compactness of Xα implies that the net
tfβpαquβPK in Xα has a cluster point xα P Xα, hence ptαu, xαq P P .

There is also an obvious partial order on P : we shall write pJ, gq ď pJ 1, g1q whenever J Ă J 1
and g “ g1|J . In order to satisfy the main hypothesis of Zorn’s lemma, we claim that every totally
ordered subset A Ă P has an upper bound. Being totally ordered means that for any two elements
of A, one is obtained from the other by restricting the function to a subset. We can therefore
define a set J8 Ă I with a function g8 PśαPJ8 Xα by

J8 “ ď
tJ | pJ,gqPAu

J,
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with g8pαq defined as gpαq for any pJ, gq P A such that α P J . The total ordering condition
guarantees that pJ8, g8q is independent of choices, but it is not immediately clear whether it is an
element of P , i.e. whether g8 is a cluster point of tfβ|J8uβPK . To see this, suppose U Ăś

αPJ8 Xα

is a neighborhood of g8, and recall that by the definition of the product topology, this means

g8 P ź
αPJ8

Uα Ă U

for some collection of open sets Uα Ă Xα such that Uα “ Xα for all α outside some finite subset
J0 Ă J8. Since J0 is finite, and A is totally ordered, there exists some pJ, gq P A such that J0 Ă J .
Then the fact that pJ, gq is a partial cluster point means that for every β0 P K, there exists a
β ą β0 for which

fβ |J P
ź
αPJ

Uα.

It follows that fβ |J8 P
ś
αPJ8 Uα as well, hence pJ8, g8q is indeed a partial cluster point.

We can now apply Zorn’s lemma and conclude that P has a maximal element pJM , gM q P P .
We claim JM “ I, which means gM is a cluster point of the original net tfβuβPK in

ś
αPI Xα.

Note that since gM P śαPJM
Xα is a cluster point of tfβ|JM

uβPK , Lemma 5.20 provides a subnet
tfφpγquγPL of tfβuβPK in

ś
αPI Xα whose restriction to JM converges to gM . But if JM ‰ I,

then choosing an element α0 P IzJM , we can exploit the fact that Xα0
is compact and use the

same trick as in the proof of Tychonoff for finite products to find a further subnet that also
converges at α0 to some element x0 P Xα0

. We have therefore found a subnet of tfβuβPK whose
restriction to JM Y tα0u converges to the function g1M P śαPJMYtα0uXα defined by g1M |JM

“ gM

and g1M pα0q “ x0. This means pJM Y tα0u, g1M q P P and pJM Y tα0u, g1M q ą pJM , gM q, which is a
contradiction since pJM , gM q is maximal. �

Exercise 6.5. Consider the space r0, 1sR of all functions f : R Ñ r0, 1s, with the topology
of pointwise convergence. Tychonoff’s theorem implies that r0, 1sR is compact, but one can show
that it is not first countable, so it need not be sequentially compact.

(a) For x P R and n P N, let xpnq P t0, . . . , 9u denote the nth digit to the right of the deci-
mal point in the decimal expansion of x. Now define a sequence fn P r0, 1sR by setting
fnpxq “ xpnq

10
. Show that for any subsequence fkn of fn, there exists x P R such that

fknpxq does not converge, hence fn has no pointwise convergent subsequence.
Food for thought: Could you do this if you also had to assume that x is rational? Pre-
sumably not, because r0, 1sQ is a product of countably many second countable spaces,
and we’ve proved that such products are second countable (unlike r0, 1sR). This implies
that since r0, 1sQ is compact, it must also be sequentially compact.

(b) The compactness of r0, 1sR does imply that every sequence has a convergent subnet,
or equivalently, a cluster point. Use this to deduce that for any given sequence fn P
r0, 1sR, there exists a function f P r0, 1sR such that for every finite subset X Ă R, some
subsequence of fn converges to f at all points in X .
Achtung: Pay careful attention to the order of quantifiers here. We’re claiming that
the element f exists independently of the finite set X Ă R on which we want some
subsequence to converge to f . (If you could let f depend on the choice of subset X ,
this would be easy—but that is not allowed.) On the other hand, the actual choice of
subsequence is allowed to depend on the subset X .

Challenge: Find a direct proof of the statement in part (b), without passing through Tychonoff’s
theorem. I do not know of any way to do this that isn’t approximately as difficult as actually
proving Tychonoff’s theorem and dependent on the axiom of choice.
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So much for Tychonoff’s theorem. In truth, aside from the easy case of finite products, the
general version of this theorem will probably not be mentioned again in this course. You may
hear of it again if you take functional analysis since it lies in the background of the Banach-
Alaoglu theorem on compactness in the weak˚-topology, and I will have occasion to mention it in
Topologie II next semester in the context of the Eilenberg-Steenrod axioms for Čech homology.
But right now we need to discuss a few more mundane things.

Topic 2: Separation axioms. Recall from Proposition 5.11 that closed subsets of compact
spaces are always compact. Your intuition probably tells you that all compact sets are closed, but
this in general is false. Here is a counterexample.

Example 6.6. Recall from Example 2.2 the so-called “line with two zeroes”. We defined it
as a quotient X :“ pR ˆ t0, 1uq{„ by the equivalence relation such that px, 0q „ px, 1q for all
x ‰ 0, with a topology defined via the pseudometric dprpx, iqs, rpy, jqsq “ |x´ y|, i.e. the open balls
Brpxq :“ ty P X | dpy, xq ă ru for x P X and r ą 0 form a base of the topology. Each x P Rzt0u
corresponds to a unique point rpx, 0qs “ rpx, 1qs P X , but for x “ 0 there are two distinct points,
which we shall abbreviate by

00 :“ rp0, 0qs P X and 01 :“ rp0, 1qs P X.
As we saw in Exercise 2.3, the one-point subset t01u Ă X is not closed, but it certainly is compact
since finite subsets are always compact (see Example 5.5). The failure of t01u to be closed results
from the fact that since dp00, 01q “ 0, every neighborhood of 00 also contains 01, implying that
Xzt01u cannot be open.

The example of the line with two zeroes is pathological in various ways, e.g. it has the property
that every sequence convergent to 01 also converges to the distinct point 00. We would now like
to formulate some precise conditions to exclude such behavior. The most important of these will
be the Hausdorff axiom, but there is a whole gradation of stronger or weaker variations on the
same theme, known collectively as the separation axioms (Trennungsaxiome). Intuitively, they
measure the degree to which topological notions such as convergence of sequences and continuity
of maps can recognize the difference between two disjoint points or subsets.

Definition 6.7. A space X is said to satisfy axiom T0 if for every pair of distinct points in X ,
there exists an open subset of X that contains one of these points but not the other.

Since almost all spaces we want to consider will satisfy the T0 axiom, we should point out some
examples of spaces that do not. One obvious example is any space of more than one element with
the trivial topology: if the only open subset other than H is X , then you clearly cannot find an
open set that contains x and not y ‰ x or vice versa. A slightly more interesting example is the
line with two zeroes as in Example 6.6 above, with the pseudometric topology: it fails to be a T0
space because every open set that contains 00 or 01 must contain both of them.

Definition 6.8. A space X is said to satisfy axiom T1 if for every pair of distinct points
x, y P X , there exist neighborhoods Ux Ă X of x and Uy Ă X of y such that x R Uy and y R Ux.

Obviously every T1 space is also T0. The following alternative characterization of the T1 axiom
is immediate from the definitions:

Proposition 6.9. A space X satisfies axiom T1 if and only if for every point x P X, the subset
txu Ă X is closed. �

Definition 6.10. A space X is said to satisfy axiom T2 (the Hausdorff axiom) if for every
pair of distinct points x, y P X , there exist neighborhoods Ux Ă X of x and Uy Ă X of y such that
Ux X Uy “ H.
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Every Hausdorff space is clearly also T1 and T0. Here is an easy criterion with which to
recognize a non-Hausdorff space:

Exercise 6.11. Show that if X is Hausdorff, then for any sequence xn P X satisfying xn Ñ x

and xn Ñ y, we have x “ y.

Finding an example that is T1 but not Hausdorff requires only a slight modification of our
previous “line with two zeroes”.

Example 6.12. Consider X “ pR ˆ t0, 1uq{„ again with px, 0q „ px, 1q for every x ‰ 0, but
instead of the pseudometric topology as in Example 6.6, assign it the quotient topology, meaning
U Ă X is open if and only if its preimage under the projection map π : R ˆ t0, 1u Ñ X :

px, iq ÞÑ rpx, iqs is open. Recall that the quotient topology is the strongest topology for which π
is a continuous map, and in this case, it turns out to be slightly stronger than the pseudometric
topology. For example, the open set

V :“ pp´1, 1q ˆ t0uq Y pp´1, 0q ˆ t1uq Y pp0, 1q ˆ t1uq Ă Rˆ t0, 1u
is π´1pUq for U :“ πpVq Ă X , thus U is open in the quotient topology. But U contains 00 and not
01, so it is not an open set in the pseudometric topology. The existence of this set implies that
X with the quotient topology satisfies T0. By exchanging the roles of 0 and 1, one can similarly
construct an open neighborhood of 01 that does not contain 00, so the space also satisfies T1.
But it does not satisfy T2: even in the quotient topology, every neighborhood of 00 has nonempty
intersection with every neighborhood of 01.

Exercise 6.11 has a converse of sorts, which I will state here only for first countable spaces.
The countability axiom can be removed at the cost of talking about nets instead of sequences; I
will leave the details of this as an exercise for the reader.

Proposition 6.13. A first countable space X is Hausdorff if and only if the limit of every
convergent sequence in X is unique.

Proof. In light of Exercise 6.11, we just need to show that if X is a first countable space that
is not Hausdorff, we can find a sequence xn P X that converges to two distinct points x, y P X .
Since X is not Hausdorff, we can pick two distinct points x and y such that every neighborhood
of x intersects every neighborhood of y. Fix countable neighborhood bases X Ą U1 Ą U2 Ą . . . Q x
and X Ą V1 Ą V2 . . . Q y. Then by assumption, for each n P N there exists a point xn P Un X Vn.
It is now straightforward to verify that xn Ñ x and xn Ñ y. �

The Hausdorff axiom can still be strengthened a bit by talking about neighborhoods of closed
sets rather than points. This can be useful, for instance, when considering the quotient space X{A
defined by collapsing some closed subset A Ă X to a point; cf. Exercise 6.20 below.

Definition 6.14. A space X is called regular (regulär) if for every point x P X and every
closed subset A Ă X not containing x, there exist neighborhoods Ux Ă X of x and UA Ă X of A
such that Ux X UA “ H. We say X satisfies axiom T3 if it is regular and also satisfies T1.

Definition 6.15. A space X is called normal if for every pair of disjoint closed subsets
A,B Ă X , there exist neighborhoods UA Ă X of A and UB Ă X of B such that UA X UB “ H.
We say X satisfies axiom T4 if it is normal and also satisfies T1.

Remark 6.16. The point of including T1 in the definitions of T3 and T4 is that it makes each
one-point subset txu Ă X closed, thus producing obvious implications

(6.1) T4 ñ T3 ñ T2 ñ T1 ñ T0.
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Without assuming T1, it is possible for spaces to be regular or normal without being Hausdorff,
though we will not consider any examples of this. In fact, almost all spaces we actually want to
think about in this course will be Hausdorff, and most will also be normal, thus satisfying all of
these axioms.

Remark 6.17. Some of the above definitions, especially for axioms T3 and T4, can be found
in a few not-quite-equivalent variations in various sources in the literature. One common variation
is to interchange the meanings of “regular” with “T3” and “normal” with “T4”, which destroys the
first two implications in (6.1). These discrepancies are matters of convention which are to some
extent arbitrary: you are free to choose your favorite convention, but must then be careful about
stating your definitions precisely and remaining consistent.

We can now give a better answer to the question of when a compact set must also be closed.

Theorem 6.18. If X is Hausdorff, then every compact subset of X is closed.

Proof. Given a compact set K Ă X , we need to show that XzK is open, or equivalently, that
every x P XzK is contained in an open set disjoint from K. By assumption X is Hausdorff, so for
each y P K, we can find open neighborhoods Uy Ă X of x and Vy Ă X of y such that UyXVy “ H.
Then the sets tVyuyPK form an open cover of K, and since the latter is compact by assumption,
we obtain a finite subset y1, . . . , yN P K such that

K Ă Vy1 Y . . .Y VyN .

The set U :“ Uy1X . . .XUyN is then an open neighborhood of x and is disjoint from Vy1Y . . .YVyN ,
implying in particular that it is disjoint from K. �

Exercise 6.19. Prove:

(a) A finite topological space satisfies the axiom T1 if and only if it carries the discrete
topology.

(b) X is a T2 space (i.e. Hausdorff) if and only if the diagonal ∆ :“ tpx, xq P X ˆXu is a
closed subset of X ˆX .

(c) Every compact Hausdorff space is regular, i.e. compact` T2 ñ T3.
Hint: The argument needed for this was already used in the proof of Theorem 6.18.

(d) Every metrizable space satisfies the axiom T4 (in particular it is normal).
Hint: Given disjoint closed sets A,A1 Ă X , each x P A admits a radius ǫx ą 0 such that
the ball Bǫxpxq is disjoint from A1, and similarly for points in A1 (why?). The unions of
all these balls won’t quite produce the disjoint neighborhoods you want, but try cutting
their radii in half.

Exercise 6.20. Suppose X is a Hausdorff space and „ is an equivalence relation on X . Let
X{„ denote the quotient space equipped with the quotient topology and denote by π : X Ñ X{„
the canonical projection. Given a subset A Ă X , we will sometimes also use the notation X{A
explained in Exercise 5.16.

(a) A map s : X{„ Ñ X is called a section of π if π ˝ s is the identity map on X{„. Show
that if a continuous section exists, then X{„ is Hausdorff.

(b) Show that if X is also regular and A Ă X is a closed subset, then X{A is Hausdorff.
(c) Consider X “ R with the non-closed subset A “ p0, 1s. Which of the separation axioms

T0, . . . , T4 does X{A satisfy?

Just for fun: think about some other examples of Hausdorff spaces X with non-Hausdorff quotients
X{„. What stops you from constructing continuous sections X{„ Ñ X?
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Remark 6.21. In earlier decades, it was common to define compactness slightly differently:
what many papers and textbooks from the first half of the 20th centuary call a “compact space” is
what we would call a “compact Hausdorff space”. You should be aware of this discrepancy if you
consult the older literature.

7. Connectedness and local compactness

We would like to formalize the idea that in some spaces, you can find a continuous path
connecting any point to any other point, and in other spaces you cannot.

Definition 7.1. A space X is called path-connected (wegzusammenhängend) if for every
pair of points x, y P X , there exists a continuous map γ : r0, 1s Ñ X such that γp0q “ x and
γp1q “ y.

A subset of X is similarly called path-connected if it is a path-connected space in the subspace
topology, which is equivalent to saying that any two points in the subset can be connected by a
continuous path in that subset. We will refer to any maximal path-connected subset of a space X
as a path-component (Wegzusammenhangskomponente) of X .

Exercise 7.2. Show that any two path-components of a space X must be either identical or
disjoint, i.e. the path-components partition X into disjoint subsets. One can also express this by
saying that there is a well-defined equivalence relation „ on X such that x „ y if and only if x
and y belong to the same path-component. (Why is that an equivalence relation?)

The notion of path-connectedness is framed in terms of maps into X , but there is also a “dual”
perspective based on functions defined on X . To motivate this, notice that if f : X Ñ t0, 1u is any
continuous function and x, y P X belong to the same path-component, then continuity demands
fpxq “ fpyq. (We will formalize this observation in the proof of Theorem 7.13 below.)

Definition 7.3. A space X is connected (zusammenhängend) if every continuous map X Ñ
t0, 1u is constant.

In many textbooks one finds a cosmetically different definition of connectedness in terms of
subsets that are both open and closed, but the two definitions are equivalent due to the following
result.

Proposition 7.4. A space X is connected if and only if H and X are the only subsets of X
that are both open and closed.

Proof. We prove first that the condition in this statement implies connectedness. The key
observation is that the sets t0u and t1u in t0, 1u are each both open and closed, so if f : X Ñ t0, 1u
is continuous, the same must hold for both f´1p0q and f´1p1q in X . Then one of these is the
empty set and the other is X , so f is constant.

Conversely, suppose X contains a nonempty subset X0 Ă X that is both open and closed
but X0 ‰ X . Then X1 :“ XzX0 is also a nonempty open and closed subset, implying that X is
the union of two disjoint open subsets X0 and X1. We can now define a nonconstant continuous
function f : X Ñ t0, 1u by f |X0

“ 0 and f |X1
“ 1. Checking that it is continuous is easy since

t0, 1u only contains four open sets: the main point is that f´1p0q “ X0 and f´1p1q “ X1 are both
open. �

Remark 7.5. The important fact about t0, 1u used in the above proof was that it is a space
of more than one element with the discrete topology: officially t0, 1u carries the subspace topology
as a subset of R, but this happens to match the discrete topology since 0 and 1 are each centers
of open balls in R that do not touch any other points of t0, 1u. If we preferred, we could have
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replaced Definition 7.3 with the condition that every continuous map f : X Ñ Y to any space Y
with the discrete topology is constant.

We can of course also talk about connected subsets A Ă X , meaning subsets that become
connected spaces with the subspace topology. Spaces or subsets that are not connected are some-
times called disconnected. By analogy with path-components, any maximal connected subset of
X will be called a connected component (Zusammenhangskomponente) of X .

Proposition 7.6. Any two connected components A,B Ă X are either identical or disjoint.

Proof. If A and B are both maximal connected subsets of X and AXB ‰ H, then we claim
that A Y B is also connected. Indeed, any continuous function f : A Y B Ñ t0, 1u must restrict
to constant functions on both A and B, so if y P A X B, then fpxq “ fpyq for every x P A Y B,
implying that every continous function A Y B Ñ t0, 1u is constant. Now if A and B are not
identical, then the set A Y B is strictly larger than either A or B, giving a contradiction to the
maximality assumption. �

Example 7.7. For any collection tXαuαPI of connected spaces, the disjoint union X :“š
αPI Xα has the individual spaces Xα Ă X for α P I as its connected components. Indeed,

endowing X with the disjoint union topology makes each of the subsets Xα Ă X open, and since
XzXα “ Ť

β‰αXβ is then also open, it follows that Xα is also closed. Any strictly larger set
A Ă X with Xα Ă A could not then be connected, as it would contain Xα as a nonempty proper
open and closed subset; this makes Xα a maximal connected subset of X .

Exercise 7.8. Show that if the spaces Xα in Example 7.7 are also path-connected, then they
also form the path-components of the disjoint union X “š

αPI Xα.

For an arbitrary space X , let us choose an index set I with which to label each connected
component of X , so the connected components from a collection of spaces tXαuαPI , each of which
is a subset Xα Ă X endowed with the subspace topology. Proposition 7.6 shows that Xα X
Xβ “ H whenever α ‰ β, and obviously

Ť
αPI Xα “ X , so as sets, there is a canonical bijective

correspondence between X and the disjoint union
š
αPI Xα. It is natural to wonder: is this

correspondence a homeomorphism? It is easy to see that it is continuous in at least one direction:
the individual subsets Xα Ă X come with inclusion maps iα : Xα ãÑ X , and endowing Xα with
the subspace topology makes iα continuous. The canonical bijection from

š
αPI Xα to X can then

be written as

(7.1)
ž
αPI

iα :
ž
αPI

Xα Ñ X,

meaning it is the unique map whose restriction to each of the subsetsXα Ăš
βPI Xβ is precisely iα.

The definition of the disjoint union topology makes this map automatically continuous. The
following example shows however that, in general, its inverse need not be continuous.

Example 7.9. The set Q of rational numbers is a perfectly nice algebraic object, but when
endowed with the subspace topology as a subset of R, it becomes a very badly behaved topological
space. We claim that if A Ă Q is any subset with more than one element, then A is disconnected.
Indeed, given x, y P A with x ă y, we can find an irrational number r P RzQ with x ă r ă y, and
the sets A´ :“ A X p´8, rq and A` :“ A X pr,8q are then nonempty open subsets of A which
are complements of each other, hence both are open and closed. This proves that the connected
components of Q are simply the one-point subspaces txu Ă Q for all x P Q, so the map (7.1) in
this case takes the form ž

xPQ
txu Ñ Q.
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The domain and target of this map are the same set, and the map itself is the identity, but the
two sets are endowed with very different topologies: in particular, the domain carries the discrete
topology, while Q on the right hand side carries the subspace topology that it inherits from the
standard topology of R. The identity map is thus continuous—indeed, every map defined on
a space with the discrete topology is continuous—but it is not a homeomorphism, because the
discrete topology contains many open sets that are not open in the standard topology of Q.

Example 7.9 shows that while every space X has a natural bijective correspondence with the
disjont union

š
αPI Xα of its connected components, the natural topology on

š
αPI Xα may in

general be different from the original topology of X . We’ve seen for instance that each individual
Xα is automatically both an open and closed subset of

š
βPI Xβ, thus there is no hope of (7.1)

being a homeomorphism unless Xα is also an open and closed subset of X . The example of Q
shows that the latter is not always true: the 1-point connected components txu Ă Q are closed
subsets, but they are not open. The fact that they are closed turns out to be a completely general
phenomenon:

Proposition 7.10. Every connected component A Ă X of a space X is a closed subset.

Proof. Assume A Ă X is a maximal connected subset. Recall from Definition 3.1 that the
closure sA Ă X of A is the set of all points x P X for which every neighborhood of x intersects A. If
we equip sA with the subspace topology and view it as a topological space in itself, with A Ă sA as a
subset, then the closure of A in sA is still sA: indeed, every neighborhood in sA of a point x P sA takes
the form U X sA for some neighborhood U of x in X , implying that U intersects A, and therefore
so does U X sA.

Now suppose f : sAÑ t0, 1u is a continuous function. Its restriction to A is then also contin-
uous, and therefore constant, since A is connected; let us write fpAq “ tiu Ă t0, 1u. Then since
tiu is a closed subset of t0, 1u and f is continuous, f´1piq is a closed subset of sA that contains A,
and it therefore also contains the closure sA. This implies that f is in fact constant on sA, and thus
proves that sA is connected. Since A is a maximal connected subset, we conclude A “ sA, meaning
A is closed. �

We note one obvious case in which connected components will necessarily be both closed and
open: here openness follows from the fact that the complement of a connected component is a
union of disjoint connected components, and finite unions of closed sets are closed.

Corollary 7.11. If X is a space with only finitely many connected components, then each of
them is both closed and open. �

Exercise 7.12. If tXα Ă XuαPI are the connected components of a space X , show that the
canonical continuous bijection (7.1) from

š
αPI Xα to X is a homeomorphism if and only if every

Xα is an open subset of X . (In particular, Corollary 7.11 implies that this is always true if I is
finite, and we will see in Prop. 7.18 below that it is also true if X is locally connected.)

It is time to clarify the relationship between connectedness and path-connectedness.

Theorem 7.13. Every path-connected space X is connected.

Proof. If X is not connected, then there exist points x, y P X and a continuous function
f : X Ñ t0, 1u such that fpxq “ 0 and fpyq “ 1. But if X is path-connected, then there also exists
a continuous map γ : r0, 1s Ñ X with γp0q “ x and γp1q “ y. The composition g :“ f ˝ γ is then
a continuous function g : r0, 1s Ñ t0, 1u satisfying gp0q “ 0 and gp1q “ 1, and this violates the
intermediate value theorem. �

Surprisingly, the converse of this theorem is false.



40 FIRST SEMESTER (TOPOLOGIE I)

Example 7.14. Define X Ă R2 to be the subset of R2 consisting of the vertical line tx “ 0u
and the graph of the equation ty “ sinp1{xqu for x ‰ 0. The latter is a sine curve that oscillates
more and more rapidly as xÑ 0. We claim that

X0 :“ tx “ 0u
is a path-component of X . It clearly is path-connected, so we need to show that there does not
exist any continuous path γ : r0, 1s Ñ X that begins on the sine curve ty “ sinp1{xqu and ends on
the line tx “ 0u. Since tx “ 0u is a closed subset, the preimage of this set under γ is closed (and
therefore compact) in r0, 1s, implying that it has a minimum τ P p0, 1s. We can therefore restrict
our path to γ : r0, τ s Ñ X and assume that it lies on the sine curve for all 0 ď t ă τ but ends
on the vertical line at t “ τ . Now observe that due to the rapid oscillation as x Ñ 0, we can find
for any y P r´1, 1s a sequence tn P r0, τq with tn Ñ τ such that γptnq Ñ p0, yq. The point y here
is arbitrary, yet continuity of γ requires γptnq Ñ γpτq, so this is a contradiction and proves the
claim. In particular, this proves that X is not path-connected. The other path-components of X
are now easy to identify: they are

X´ :“ X X tx ă 0u and X` :“ X X tx ą 0u,
the portions of the sine curve lying to the left and right ofX0, so there are three path-components in
total. The path-components are path-connected and therefore (by Theorem 7.13) also connected.
But neither X´ nor X` is closed, so by Prop. 7.10, neither of these can be a connected component.
The maximal connected subset containing X´, for instance, must be a closed set containing X´
and therefore contains the closure ĚX´, which includes points in X0. Since X0 is path-connected,
it follows that the connected component containing X´ also contains all of X0. But the same
argument applies equally well to X`, and these two observations together imply that all three
path-components are in the same connected component, i.e. X is connected.

The space in Example 7.14 is sometimes called the topologist’s sine curve. There is a certain
“local” character to the pathologies of this space, i.e. part of the reason for its bizarre proper-
ties is that one can zoom in on certain points in X arbitrarily far without making it look more
reasonable—in particular this is true for the points in X0 that are in the closure of X´ and X`.
One can use neighborhoods of points to formalize this notion of “zooming in” arbitrarily far.

Definition 7.15. A space X is locally connected (lokal zusammenhängend) if for all points
x P X , every neighborhood of x contains a connected neighborhood of x.

The version of this for path-connectedness is completely analogous.

Definition 7.16. A space X is locally path-connected (lokal wegzusammenhängend) if for
all points x P X , every neighborhood of x contains a path-connected neighborhood of x.

Local path-connectedness obviously implies local connectedness by Theorem 7.13. Since most
spaces we can easily imagine will have both properties, it is important at this juncture to look at
some examples that do not. The topologist’s sine curve in Example 7.14 is one such space: it is not
locally connected (even though it is connected), since sufficiently small neighborhoods of points
p0, yq P X for ´1 ă y ă 1 always have infinitely many pieces of the sine curve passing through and
are thus disconnected. Here is an example that is path-connected, but not locally:

Example 7.17. Let X Ă R2 denote the compact set

X “
˜ 8ď
n“1

Ln

¸
Y L8,



7. CONNECTEDNESS AND LOCAL COMPACTNESS 41

where for each n P N, Ln denotes the straight line segment from p0, 1q to p1{n, 0q, and the case n “
8 is included for the vertical segment from p0, 1q to p0, 0q. Then sufficiently small neighborhoods
of p0, 0q in this space are never connected, so X is not locally connected. Notice however that
there are continuous paths along the line segments Ln from any point in X to p0, 1q, so X is
path-connected.

Proposition 7.18. If X is locally connected, then its connected components are open subsets.
Similarly, if X is locally path-connected, then its path-components are open subsets.

Proof. If X is locally connected and A Ă X is a maximal connected subset, then for each
x P A, fix a connected neighborhood Ux Ă X of x. Now for U :“ Ť

xPA Ux, any continuous function
f : U Ñ t0, 1u must restrict to a constant on each Ux and also on A, implying that f is constant,
hence U is connected. The maximality of A thus implies A “ U , but U is also a neighborhood of
A and thus contains an open set containing A, therefore A is open.

A completely analogous argument works in the locally path-connected case, taking path-
connected neighborhoods Ux and using the fact that their union must also be path-connected. �

A consequence of this result is that the phenomenon allowing certain spaces to be connected
but not path-connected is essentially local:

Theorem 7.19. Every space that is connected and locally path-connected is also path-connected.

Proof. If X is locally path-connected, then by Prop. 7.18 its path-components are open.
Then if A Ă X is a path-component, XzA is a union of path-components and is therefore also
open, implying that A is both open and closed. If X is connected, it follows that A “ X , so X is
a path-component. �

Exercise 7.20. In this exercise we show that products of (path-)connected spaces are also
(path-)connected, so long as one uses the correct topology on the product.

(a) Prove that if X and Y are both connected, then so is X ˆ Y .
Hint: Start by showing that for any x P X and y P Y , the subsets txu ˆ Y and X ˆ tyu
in X ˆ Y are connected. Then think about continuous maps X ˆ Y Ñ t0, 1u.

(b) Show that for any collection of path-connected spaces tXαuαPI , the space
ś
αPI Xα is

path-connected in the usual product topology.
Hint: You might find Exercise 4.5 helpful.

(c) ConsiderRN with the “box topology” which we discussed in Exercise 4.6. Show that the set
of all elements f P RN represented as functions f : N Ñ R that satisfy limnÑ8 fpnq “ 0

is both open and closed, hence RN in the box topology is not connected (and therefore
also not path-connected).

The rest of this exercise is aimed at generalizing part (a) to the statement that for an arbitrary
collection tXαuαPI of connected (but not necessarily path-connected) spaces,

ś
αPI Xα with the

product topology is also connected. Choose a point tcαuαPI PśαPI Xα and, for each finite subset
J Ă I of the index set, consider the set

XJ :“
#
txαuαPI P

ź
αPI

Xα

ˇ̌̌̌
ˇ xβ “ cβ for all β P IzJ

+
,

endowed with the subspace topology that it inherits from the product topology of
ś
αPI Xα.

(d) Show that for every choice of finite subset J Ă I, XJ is connected.
Hint: This is not really that different from part (a).

(e) Deduce that the union
Ť
J XJ Ăś

αPI Xα is also connected, where J ranges over the set
of all finite subsets of I.
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(f) Show that the closure of the subset
Ť
J XJ Ă ś

αPI Xα is
ś
αPI Xα, and deduce thatś

αPI Xα is also connected.

With the definition of local connectedness in mind, we now briefly revisit the subject of com-
pactness.

Definition 7.21. A space X is locally compact (lokal kompakt) if every point x P X has a
compact neighorhood.

Local compactness is one of the notions for which one can find multiple inequivalent definitions
in the literature, but as we’ll see in a moment, all the plausible definitions of this concept are
equivalent if we only consider Hausdorff spaces. Let’s first note a few examples.

Example 7.22. The Euclidean space Rn is locally compact, and more generally, so is any
closed subset X Ă Rn endowed with the subspace topology. Indeed, since closed and bounded
subsets of Rn are compact, every x P X Ă Rn has a compact neighborhood of the form ĞBrpxq XX
for any r ą 0.

Example 7.23. This is a non-example: a Hilbert space is not locally compact if it is infinite
dimensional. This is due to the fact that every neighborhood of a point x must contain some closed
ball ĞBrpxq, but the latter is not compact (cf. Remark 5.8).

Example 7.24. Since a space is a neighborhood of all of its points, every compact space is
(trivially) locally compact.

The last example is the one that becomes slightly controversial if you look at alternative
definitions of local compactness in the literature, and indeed, if we had phrased Definition 7.21
more analogously to the definition of local (path-)connectedness, it would be easy to imagine spaces
that are compact without being locally compact. As it happens, this never happens for Hausdorff
spaces, and since we will mainly be interested in Hausdorff spaces, we shall take the following
result as an excuse to avoid worrying any further about discrepancies in definitions. It will also be
a useful result in its own right.

Theorem 7.25. If X is Hausdorff, then the following conditions are equivalent:
(i) X is locally compact (in the sense of Definition 7.21);
(ii) For all x P X, every neighborhood of x contains a compact neighborhood of x;
(iii) If K Ă U Ă X where K is compact and U is open, then K Ă V Ă sV Ă U for some open

set V with compact closure sV.
Proof. Since single point subsets txu Ă X are always compact, it is clear that (iii)ñ (ii)ñ (i).

The implication (ii)ñ (iii) is a relatively straightforward exercise using the finite covering property
for the compact set K. We will therefore focus on the implication (i) ñ (ii).

Assume we are given a neighborhood U Ă X of x and would like to find a compact neighborhood
inside U . By assumption, x also has a compact neighborhoodK Ă X . It will do no harm to replace
U with a smaller neighorhood such as the interior of U XK, so without loss of generality, let us
assume U is open and contained in K, in which case (since X is Hausdorff and K is therefore
closed) its closure sU is also contained in K and is thus compact. We define the boundary of sU by

B sU “ sU XĘXzU .
This is a closed subset of sU and is therefore also compact, and we observe that since x is contained
in a neighborhood disjoint from XzU , x is not in the closure ĘXzU and thus

x R B sU .
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Since X is Hausdorff, for every y P B sU there exists a pair of open neighborhoods

x P Ay Ă X, y P By Ă X such that Ay XBy “ H.
Then the sets By for y P B sU form an open cover of the compact set B sU , hence there exists a finite
subset ty1, . . . , yNu Ă B sU such that

B sU Ă
Nď
i“1

Byi .

Now the set

V :“ U X
˜

Nč
i“1

Ayi

¸
is an open neighborhood of x contained in U and disjoint from the neighborhood

ŤN
i“1Byi of B sU .

The latter implies that for any y P B sU , y has a neighborhood disjoint from V , hence y R sV.
Similarly, V Ă U implies y cannot be in the closure of V if it is in the interior of ĘXzU , so we
conclude sV Ă U . The compactness of sV follows because it is a closed subset of sU and the latter is
compact. �

Exercise 7.26. Prove the implication that was skipped in the proof of Theorem 7.25 above,
namely: if X is locally compact and Hausdorff, then for any nested pair of subsets K Ă U Ă X

with K compact and U open, there exists an open set V Ă X with compact closure sV such that
K Ă V Ă sV Ă U .

Exercise 7.27. There is a cheap trick to view any topological space as a compact space with a
single point removed. For a spaceX with topology T , let t8u denote a set consisting of one element
that is not in X , and define the one point compactification of X as the set X˚ “ X Y t8u
with topology T ˚ consisting of all subsets in T plus all subsets of the form pXzKq Y t8u Ă X˚
where K Ă X is closed and compact.

(a) Verify that T ˚ is a topology and that X˚ is always compact.
(b) Show that if X is first countable and Hausdorff, a sequence in X Ă X˚ converges to

8 P X˚ if and only if it has no convergent subsequence with a limit in X . Conclude that
if X is first countable and Hausdorff, X˚ is sequentially compact.

(c) Show that for X “ R, X˚ is homeomorphic to S1. (More generally, one can use stere-
ographic projection to show that the one point compactification of Rn is homeomorphic
to Sn.)

(d) Show that if X is already compact, then X˚ is homeomorphic to the disjoint union
X > t8u.

(e) Show that X˚ is Hausdorff if and only if X is both Hausdorff and locally compact.
Notice that Q is not locally compact, since every neighborhood of a point x P Q contains sequences
without convergent subsequences, e.g. any sequence of rational numbers that converges to an
irrational number sufficiently close to x. The one point compactification Q˚ is a compact space,
and by part (b) it is also sequentially compact, but those are practically the only nice things we
can say about it.

(f) Show that for any x P Q, every neighborhood of x in Q˚ intersects every neighborhood
of 8, so in particular, Q˚ is not Hausdorff.
Advice: Do not try to argue in terms of sequences with non-unique limits (cf. part (g)
below), and do not try to describe precisely what arbitrary compact subsets of Q can
look like (the answer is not nice). One useful thing you can say about arbitrary compact
subsets of Q is that they can never contain the intersection of Q with any open interval.
(Why not?)



44 FIRST SEMESTER (TOPOLOGIE I)

(g) Show that every convergent sequence in Q˚ has a unique limit. (Since Q˚ is not Hausdorff,
this implies via Proposition 6.13 that Q˚ is not first countable—in particular, 8 does not
have a countable neighborhood base.)

(h) Find a point in Q˚ with a neighborhood that does not contain any compact neighborhood.

Exercise 7.28. Given spaces X and Y , let CpX,Y q denote the set of all continuous maps
from X to Y , and consider the natural evaluation map

ev : CpX,Y q ˆX Ñ Y : pf, xq ÞÑ fpxq.
It is easy to show that ev is a continuous map if we assign the discrete topology to CpX,Y q, but
usually one can also find more interesting topologies on CpX,Y q for which ev is continuous. The
compact-open topology is defined via a subbase consisting of all subsets of the form

UK,V :“  
f P CpX,Y q ˇ̌ fpKq Ă V

(
,

where K ranges over all compact subsets of X , and V ranges over all open subsets of Y . Prove:
(a) If Y is a metric space, then convergence of a sequence fn P CpX,Y q in the compact-open

topology means that fn converges uniformly on all compact subsets of X .
(b) If CpX,Y q carries the topology of pointwise convergence (i.e. the subspace topology

defined via the obvious inclusion CpX,Y q Ă Y X), then ev is not sequentially continuous
in general.

(c) If CpX,Y q carries the compact-open topology, then ev is always sequentially continuous.
(d) If CpX,Y q carries the compact-open topology and X is locally compact and Hausdorff,

then ev is continuous.
(e) Every topology on CpX,Y q for which ev is continuous contains the compact-open topol-

ogy. (This proves that if X is locally compact and Hausdorff, the compact-open topology
is the weakest topology for which the evaluation map is continuous.)
Hint: If pf0, x0q P ev´1pV q where V Ă Y is open, then pf0, x0q P O ˆ U Ă ev´1pV q for
some open O Ă CpX,Y q and U Ă X . Is UK,V a union of sets O that arise in this way?

(f) For the compact-open topology on CpQ,Rq, ev : CpQ,Rq ˆQÑ R is not continuous.

Exercise 7.29. One of the good reasons to use the notation XY for the set of all functions
f : Y Ñ X between two sets is that there is an obvious bijection

ZXˆY Ñ pZY qX
sending a function F : X ˆ Y Ñ Z to the function Φ : X Ñ ZY defined by

(7.2) Φpxqpyq “ F px, yq.
The existence of this bijection is sometimes called the exponential law for sets. In this exercise we
will explore to what extent the exponential law carries over to topological spaces and continuous
maps. We will see that this is also related to the question of how to define a natural topology on
the group of homeomorphisms of a space.

If X and Y are topological spaces, let us denote by CpX,Y q the space of all continuous maps
X Ñ Y , with the compact-open topology, which has a subbase consisting of all sets of the form

UK,V :“  
f P CpX,Y q ˇ̌ fpKq Ă V

(
for K Ă X compact and V Ă Y open (see Exercise 7.28 above). Assume Z is also a topological
space.

(a) Prove that if F : X ˆ Y Ñ Z is continuous, then the correspondence (7.2) defines a
continuous map Φ : X Ñ CpY, Zq.

(b) Prove that if Y is locally compact and Hausdorff, then the converse also holds: any
continuous map Φ : X Ñ CpY, Zq defines a continuous map F : X ˆ Y Ñ Z via (7.2).
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Let’s pause for a moment to observe what these two results imply for the case X :“ I “ r0, 1s.
First, here is a quick definition of a notion that will appear very often in the remainder of this
course: given two continuous maps f0, f1 : Y Ñ Z, a continuous map

h : I ˆ Y Ñ Z such that hp0, ¨q “ f0 and hp1, ¨q “ f1

is called a homotopy (Homotopie) between f0 and f1, and we call f0 and f1 homotopic (homo-
top) if a homotopy between them exists. According to part (a), a homotopy between two maps
Y Ñ Z can always be regarded as a continuous path in CpY, Zq, and part (b) says that the converse
is also true if Y is locally compact and Hausdorff, hence two maps Y Ñ Z are homotopic if and
only if they lie in the same path-component of CpY, Zq.5

(c) Deduce from part (b) a new proof of the following result from Exercise 7.28(d): if X is
locally compact and Hausdorff, then the evaluation map ev : CpX,Y qˆX Ñ Y : pf, xq ÞÑ
fpxq is continuous.
Hint: This is very easy if you look at it from the right perspective.
Remark: If you were curious to see a counterexample to part (b) in a case where Y is not
locally compact, you could now extract one from Exercise 7.28(f).

(d) The following cannot be deduced directly from part (b), but it is a similar result and
requires a similar proof: show that if Y is locally compact and Hausdorff, then

CpX,Y q ˆ CpY, Zq Ñ CpX,Zq : pf, gq ÞÑ g ˝ f
is a continuous map.
Hint: Exercise 7.26 is useful here.

Now let’s focus on maps from a space X to itself. A group G with a topology is called a
topological group if the maps

GˆGÑ G : pg, hq ÞÑ gh and GÑ G : g ÞÑ g´1

are both continuous. Common examples include the standard matrix groups GLpn,Rq, GLpn,Cq
and their subgroups, which have natural topologies as subsets of the vector space of (real or
complex) n-by-n matrices. Another natural example to consider is the group

HomeopXq “  
f P CpX,Xq ˇ̌ f is bijective and f´1 P CpX,Xq(

for any topological space X , where the group operation is defined via composition of maps. We
would like to know what topologies can be assigned to CpX,Xq so that HomeopXq Ă CpX,Xq,
with the subspace topology, becomes a topological group. Notice that the discrete topology clearly
works; this is immediate because all maps between spaces with the discrete topology are automat-
ically continuous, so there is nothing to check. But the discrete topology is not very interesting.
Let TH denote the topology on CpX,Xq with subbase consisting of all sets of the form UK,V and
UXzV,XzK , where again K Ă X can be any compact subset and V Ă X any open subset. Notice
that if X is compact and Hausdorff, then for any V open and K compact, XzV is compact and
XzK is open, thus TH is again simply the compact-open topology. But if X is not compact or
Hausdorff, TH may be stronger than the compact-open topology.

5Since CpX ˆ Y,Zq and CpX,CpY, Zqq both have natural topologies in terms of the compact-open topology,
you may be wondering whether the correspondence (7.2) defines a homeomorphism between them. The answer to
this is more complicated than one would like, but Steenrod showed in a famous paper in 1967 [Ste67] that the
answer is “yes” if one restricts attention to spaces that are compactly generated, a property that most respectable
spaces have. The caveat is that CpX, Y q in the compact-open topology will not always be compactly generated if X
and Y are, so one must replace the compact-open topology by a slightly stronger one that is compactly generated
but otherwise has the same properties for most practical purposes. If you want to know what “compactly generated”
means and why it is a useful notion, see [Ste67]. These issues are somewhat important in homotopy theory at more
advanced levels, though it is conventional to worry about them as little as possible.
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(e) Show that if X is locally compact and Hausdorff, then HomeopXq with the topology TH
is a topological group.
Hint: Notice that fpKq Ă V if and only if f´1pXzV q Ă XzK. Use this to show directly
that f ÞÑ f´1 is continuous, and reduce the rest to what was proved already in part (d).

Conclusion: We’ve shown that if X is compact and Hausdorff, then HomeopXq with the compact-
open topology is a topological group. This is actually true under somewhat weaker hypotheses,
e.g. it suffices to know that X is Hausdorff, locally compact and locally connected. (If you’re
interested, a quite clever proof of this fact may be found in [Are46].)

Just for fun, here’s an example to show that just being locally compact and Hausdorff is
not enough: let X “ t0u Y ten | n P Zu Ă R with the subspace topology, and notice that X
is neither compact (since it is unbounded) nor locally connected (since every neighborhood of
0 is disconnected). Consider the sequence fk P HomeopXq defined for k P N by fkp0q “ 0,
fkpenq “ en´1 for n ď ´k or n ą k, fkpenq “ en for ´k ă n ă k, and fkpekq “ e´k. It is not hard
to show that in the compact-open topology on CpX,Xq, fk Ñ Id but f´1

k Ñ Id as k Ñ 8, hence
the map HomeopXq Ñ HomeopXq : f ÞÑ f´1 is not continuous.

8. Paths, homotopy and the fundamental group

The rest of this course will concentrate on algebraic topology. The class of spaces we consider
will often be more restrictive than up to this point, e.g. we will usually (though not always) require
them to be Hausdorff, second countable, locally path-connected and one or two other conditions
that are satisfied in all interesting examples.6 It will happen often from now on that the best
way to prove any given result is with a picture, but I might not always have time to produce the
relevant picture in these notes. I’ll do what I can.

As motivation, let us highlight two examples of questions that the tools of algebraic topology
are designed to answer.

Sample question 8.1. The following figures show two examples of knots K and K0 in R3:

PSfrag replacements

K Ă R3Ă

PSfrag replacements

Ă
K0 Ă R3

The first knot K is known as the trefoil knot (Kleeblattknoten), and the second K0 is the trivial
knot or unknot (Unknoten). Roughly speaking, a knot is a subset in R3 that is homeomorphic to
S1 and satisfies some additional condition to avoid overly “wild” behavior, e.g. one could sensibly
require each of K and K0 to be the image of some infinitely differentiable 1-periodic map RÑ R3.
The question then is: can K be deformed continuously to K0? Let us express this more precisely.
If you imagine K and K0 as physical knots in space, then when you move them around, you don’t

6The question of which examples are considered “interesting” depends highly on context, of course. In functional
analysis, one encounters many interesting spaces of functions that do not have all of the properties we just listed.
But this is not a course in functional analysis.
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move only the knots—you also displace the air around them, and the motion of this collection of
air particles over time can be viewed as defining a continuous family of homeomorphisms on R3.
Mathematically, the question is then, does there exists a continuous map

ϕ : r0, 1s ˆ R3 Ñ R3

such that ϕpt, ¨q : R3 Ñ R3 is a homeomorphism for every t P r0, 1s, ϕp0, ¨q is the identity map on
R3 and ϕp1, ¨q : R3 Ñ R3 sends K0 to K?

It turns out that the answer is no: in particular, if a homeomorphism ϕp1, ¨q on R3 sending
K0 to K exists, then there must also be a homeomorphism between R3zK and R3zK0, and we
will see that the latter is impossible. The reason is because we can associate to these spaces
groups π1pR3zKq and π1pR3zK0q, which would need to be isomorphic if R3zK and R3zK0 were
homeomorphic, and we will be able to compute enough information about both groups to show
that they are not isomorphic.

Sample question 8.2. Here is another pair of spaces defined as subsets of R3:

PSfrag replacements

A

F

1

PSfrag replacements

A

F 1

A question of tremendous practical import: can the set F in the picture at the left be shifted
continuously to match the set F 1 in the picture at the right, but without “passing through” A,
i.e. is there a continuous family of embeddings F ãÑ R3zA that begins as the natural inclusion and
ends by sending F to F 1? If there is, then you may want to adjust your bike lock.

Of course there is no such continuous family of embeddings, and to see why, you could just
delete the bicycle from the picture and pay attention only to the loop representing the bike lock,
which is shown “linked” with A in the left picture and not in the right picture. The precise way
to express the impossibility of deforming one picture to the other is that this loop is parametrized
by a “noncontractible loop” γ : S1 Ñ R3zA, meaning γ represents a nontrivial element in the
fundamental group π1pR3zAq.

Our task in this lecture is to define what the fundamental group is for an arbitrary space. We
will then develop a few more of its general properties in the next lecture and spend the next four
or five weeks developing methods to compute it.

We must first discuss paths in a space X . Since the unit interval r0, 1s will appear very often
in the rest of this course, let us abbreviate it from now on by

I :“ r0, 1s.
For two points x, y P X , a path (Pfad) from x to y is a map γ : I Ñ X satisfying γp0q “ x and
γp1q “ y.7 We will sometimes use the notation

x
γ
 y

to indicate that γ is a path from x to y.
The inverse of a path x

γ
 y is the path

y
γ´1

 x

7This seems a good moment to emphasize that all maps in this course are assumed continuous unless otherwise
noted.
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defined by γ´1ptq :“ γp1 ´ tq. The reason for this terminology and notation will become clearer
when we give the definition of the fundamental group below. The same goes for the notion of
the product of two paths: there is no natural multiplication defined for a pair of paths between
arbitrary points, but given x α

 y and y
β
 z, we can define the product path x

α¨β
 z by

(8.1) pα ¨ βqptq “
#
αp2tq if 0 ď t ď 1{2,
βp2t´ 1q if 1{2 ď t ď 1.

This operation is also called a concatenation of paths. The trivial path at a point x P X is
defined as the constant path x ex

 x, i.e.

exptq “ x.

The idea is for this to play the role of the identity element in some kind of group structure.
If we want to turn concatenation into a product structure on a group, then we have one

immediate problem: it is not associative. In fact, given paths x α
 y, y

β
 z and z

γ
 a, we have

α ¨ pβ ¨ γq ‰ pα ¨ βq ¨ γ,
though clearly the images of these two concatenations are the same, and their difference is only in
the way they are parametrized. We would like to introduce an equivalence relation on the set of
paths that forgets this distinction in parametrizations.

Definition 8.3. Two maps f, g : X Ñ Y are homotopic (homotop) if there exists a map

H : I ˆX Ñ Y such that Hp0, ¨q “ f and Hp1, ¨q “ g.

The map H is in this case called a homotopy (Homotopie) from f to g, and when a homotopy
exists, we shall write

f „
h
g.

It is straightforward to show that „
h
is an equivalence relation. In particular, if there are

homotopies from f to g and from g to h, then by reparametrizing the parameter in I “ r0, 1s we
can “glue” the two homotopies together to form a homotopy from f to h. The definition of the
new homotopy is analogous to the definition of the concatenation of paths in (8.1).

For paths in particular we will need a slightly more restrictive notion of homotopy that fixes
the end points.

Definition 8.4. For two paths α and β from x to y, we write

α „
h` β

and say α is homotopic with fixed end points to β if there exists a map H : I ˆ I Ñ X

satisfying Hp0, ¨q “ α, Hp1, ¨q “ β, Hps, 0q “ x and Hps, 1q “ y for all s P I.
Exercise 8.5. Show that for any two points x, y P X , „

h` defines an equivalence relation on

the set of all paths from x to y.

We will now prove several easy results about paths and homotopies. In most cases we will
give precise formulas for the necessary homotopies, but one can also represent the main idea quite
easily in pictures (see e.g. [Hat02, pp. 26–27]). We adopt the following convenient terminology:
if H : I ˆX Ñ Y is a homotopy from f0 :“ Hp0, ¨q : X Ñ Y to f1 :“ Hp1, ¨q : X Ñ Y , then we
obtain a continuous family of maps fs :“ Hps, ¨q : X Ñ Y for s P I. The words “continuous
family” will be understood as synonymous with “homotopy” in this sense.
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Proposition 8.6. If α „
h` α1 are homotopic paths from x to y and β „

h` β1 are homotopic

paths from y to z, then
α ¨ β „

h` α
1 ¨ β1.

Proof. By assumption, there exist continuous families of paths x αs
 y and y

βs
 z for s P I

with α0 “ α, α1 “ α1, β0 “ β and β1 “ β1. Then a homotopy with fixed end points from α ¨ β to
α1 ¨ β1 can be defined via the continuous family

x
αs¨βs
 z for s P I.

�

We next show that while concatenation of paths is not an associative operation, it is associative
“up to homotopy”.

Proposition 8.7. Given paths x α
 y, y

β
 z and z

γ
 a,

pα ¨ βq ¨ γ „
h` α ¨ pβ ¨ γq.

Proof. A suitable homotopyH : IˆI Ñ X can be defined as a family of linear reparametriza-
tions of the sequence of paths α, β, γ:

Hps, tq “

$’’&’’%
α
´

4t
s`1

¯
if 0 ď t ď s`1

4
,

βp4t´ ps` 1qq if s`1
4
ď t ď s`2

4
,

γ
´

4
2´s pt´ 1q ` 1

¯
if s`2

4
ď t ď 1.

�

And finally, a result that allows us to interpret the constant paths ex as “identity elements”
and γ and γ´1 as “inverses”:

Proposition 8.8. For any path x
γ
 y, the following relations hold:

(i) ex ¨ γ „
h` γ

(ii) γ „
h` γ ¨ ey

(iii) γ ¨ γ´1 „
h` ex

(iv) γ´1 ¨ γ „
h` ey

Proof. For (i), we define a family of reparametrizations of the concatenated path ex ¨ γ that
shrinks the amount of time spent on ex from 1{2 to 0:

Hps, tq “
#
x if 0 ď t ď 1´s

2
,

γ
´

2
s`1

pt´ 1q ` 1
¯

if 1´s
2
ď t ď 1.

The homotopy for (ii) is analogous.
For (iii), the idea is to define a family of paths that traverse only part of γ up to some time

depending on s, then stay still for a suitable length of time and, in a third step, follow γ´1 back
to x:

Hps, tq “
$’&’%
γp2tq if 0 ď t ď 1´s

2
,

γp1´ sq if 1´s
2
ď t ď 1`s

2
,

γp2´ 2tq if 1`s
2
ď t ď 1.

The last relation follows from this by interchanging the roles of γ and γ´1. �
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The last three propositions combine to imply that the group structure in the following definition
is a well-defined associative product which admits an identity element and inverses.

Definition 8.9. Given a space X and a point p P X , the fundamental group (Fundamen-
talgruppe) of X with base point (Basispunkt) p is defined as the set of equivalence classes of
paths p p up to homotopy with fixed end points:

π1pX, pq :“
!
paths p

γ
 p

)L „
h` .

The product of two equivalence classes rαs, rβs P π1pX, pq is defined via concatenation:

rαsrβs :“ rα ¨ βs,
and the identity element is represented by the constant path reps. The inverse element for rγs P
π1pX, pq is represented by the reversed path γ´1.

Before exploring the further properties of the group π1pX, pq, let us clarify in what sense it is a
“topological invariant” of the space X . Intuitively, we would like this to mean that wheneverX and
Y are two homeomorphic spaces, their fundamental groups should be isomorphic groups. What
makes this statement a tiny bit more complicated is that the fundamental group of X doesn’t just
depend on X alone, but also on a choice of base point, so in order to make precise and correct
statements about topological invariance, we will need to carry around a base point as extra data.
The following definition is intended to formalize this notion.

Definition 8.10. A pointed space (punktierter Raum) is a pair pX, pq consisting of a topo-
logical space X and a point p P X . The point p P X is in this case called the base point
(Basispunkt) of X . Given pointed spaces pX, pq and pY, qq, any continuous map f : X Ñ Y

satisfying fppq “ q is called a pointed map or map of pointed spaces, and can be denoted by

f : pX, pq Ñ pY, qq.
We also sometimes refer to such objects as base-point preserving maps. Finally, given two
pointed maps f, g : pX, pq Ñ pY, qq, a homotopy H : I ˆ X Ñ Y from f to g that satisfies
Hps, pq “ q for all s P I is called a pointed homotopy, or homotopy of pointed maps,
or base-point preserving homotopy. One can equivalently describe such a homotopy as a
continuous 1-parameter family of pointed maps fs :“ Hps, ¨q : pX, pq Ñ pY, qq defined for s P I.

Here is the first main result about the topological invariance of π1:

Theorem 8.11. One can associate to every pointed map f : pX, pq Ñ pY, qq a group homo-
morphism

f˚ : π1pX, pq Ñ π1pY, qq : rγs ÞÑ rf ˝ γs,
which has the following properties:

(i) For any pointed maps pX, pq fÑ pY, qq and pY, qq gÑ pZ, rq, pg ˝ fq˚ “ g˚ ˝ f˚.
(ii) The map associated to the identity map pX, pq IdÑ pX, pq is the identity homomorphism

π1pX, pq 1Ñ π1pX, pq.
(iii) Each homomorphism f˚ depends only on the pointed homotopy class of f .

Proof. It is clear that up to homotopy (with fixed end points), the path q
f˝γ
 q in Y depends

only on the path p
γ
 p only up to homotopy with fixed end points; indeed, if H : IˆI Ñ X defines

a homotopy with fixed end points between two paths α and β based at p, then f ˝H : I ˆ I Ñ Y

defines a corresponding homotopy between f ˝ α and f ˝ β. Similarly, if rγs P π1pX, pq and
f, g : pX, pq Ñ pY, qq are homotopic via a base-point preserving homotopy H : I ˆX Ñ Y , then
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h : I ˆ I Ñ Y : ps, tq ÞÑ Hps, γptqq defines a homotopy with fixed end points between f ˝ γ and
g ˝ γ. This shows that f˚ : π1pX, pq Ñ π1pY, qq is a well-defined map that depends on f only up
to base-point preserving homotopy. It is similarly easy to check that f˚ is a homomorphism and
satisfies the first two stated properties: e.g. for any two paths p

α,β
 p, we have

f˚prαsrβsq “ rf ˝ pα ¨ βqs “ rpf ˝ αq ¨ pf ˝ βqs “ f˚rαsf˚rβs
and

f˚reps “ reqs.
�

Corollary 8.12. If X and Y are spaces admitting a homeomorphism f : X Ñ Y , then for
any choice of base point p P X, the groups π1pX, pq and π1pY, fppqq are isomorphic.

Proof. Abbreviate q :“ fppq, so f : pX, pq Ñ pY, qq is a pointed map, and since its inverse
is continuous, f´1 : pY, qq Ñ pX, pq is also a pointed map. Using Theorem 8.11, the commutative
diagram (see Remark 8.14 below) of continuous maps

(8.2)
pY, qq

pX, pq pX, pq
f´1f

Id

then gives rise to a similar commutative diagram of group homomorphisms

(8.3)
π1pY, qq

π1pX, pq π1pX, pq

f´1
˚f˚

1

Reversing the roles of pX, pq and pY, qq produces similar diagrams to show that f˚ and f´1˚ are
inverse homomorphisms, hence both are isomorphisms. �

Remark 8.13. The fancy way to summarize Theorem 8.11 is that π1 defines a “covariant
functor” from the category of pointed spaces and pointed homotopy classes to the category of groups
and homomorphisms. We will discuss categories and functors more next semester in Topologie II.

Remark 8.14. Commutative diagrams such as (8.2) and (8.3) will appear more and more
often as we get deeper into algebraic topology. When we say that such a diagram commutes, it
means that any two maps obtained by composing a sequence of arrows along different paths from
one place in the diagram to another must match, so e.g. the message carried by (8.2) is the relation
f´1 ˝ f “ Id, and (8.3) means f´1˚ ˝ f˚ “ 1. These were especially simple examples, but later we
will also encounter larger diagrams like

A B C˚

A B1 C 1

f

α

g

β γ

f 1 g1

The purpose of this one is to communicate the two relations β ˝ f “ f 1 ˝α and γ ˝ g “ g1 ˝β, along
with all the more complicated relations that follow from these, such as g1 ˝ f 1 ˝ α “ γ ˝ g ˝ f .
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Since the paths representing elements of π1pX, pq have the same fixed starting and ending
point, we often think of them as loops in X . We will establish some general properties of π1pX, pq
in the next lecture, starting with the observation that whenever X is path-connected, π1pX, pq up
to isomorphism does not actually depend on the choice of the base point p P X , thus we can sensibly
write it as π1pXq. Computing π1pXq for a given space X is not always easy or possible, but we will
develop some methods that are very effective on a wide class of spaces. I can already mention two
simple examples: first, π1pRnq is the trivial group, resulting from the relatively obvious fact that
(by linear interpolation) every path in Rn from a point to itself is homotopic with fixed end points
to the constant path. In contrast, we will see that π1pS1q and π1pR2zt0uq are both isomorphic to
the integers, and this simple result already has many useful applications, e.g. we will derive from
it a very easy proof of the fundamental theorem of algebra.

9. Some properties of the fundamental group

We would now like to clarify to what extent π1pX, pq depends on p in addition to X .

Theorem 9.1. Given p, q P X, any homotopy class (with fixed end points) of paths p
γ
 q

determines a group isomorphism

Φγ : π1pX, qq Ñ π1pX, pq : rαs ÞÑ rγ ¨ α ¨ γ´1s.
Proof. Note that in writing the formula above for Φγprαsq, we are implicitly using the fact

(Proposition 8.7) that concatenation of paths is an associative operation up to homotopy, so one
can represent Φγprαsq by either of the paths γ ¨ pα ¨γ´1q or pγ ¨αq ¨γ´1 without the result depending
on this choice. Similarly, Proposition 8.6 implies that the homotopy class of γ ¨ α ¨ γ´1 with fixed
end points only depends on the homotopy classes of γ and α (also with fixed end points).8 This
proves that Φγ is a well-defined map as written. The propositions in the previous lecture imply in
a similarly straightforward manner that Φγ is a homomorphism, i.e.

Φγprαsrβsq “ rγ ¨ α ¨ β ¨ γ´1s “ rγ ¨ α ¨ γ´1 ¨ γ ¨ β ¨ γ´1s “ ΦγprαsqΦγprβsq,
and

Φγpreqsq “ rγ ¨ eq ¨ γ´1s “ rγ ¨ γ´1s “ reps.
It remains only to observe that Φγ and Φγ´1 are inverses of each other, hence both are isomor-
phisms. �

Corollary 9.2. If X is path-connected, then π1pX, pq up to isomorphism is independent of
the choice of base point p P X. �

Due to this corollary, it is conventional to abbreviate the fundamental group by

π1pXq :“ π1pX, pq
whenever X is path-connected, and we will see many theorems about π1pXq in situations where
the base point plays no important role. If X is not path-connected but X0 Ă X denotes the
path-component containing p, then π1pX, pq “ π1pX0, pq – π1pX0q, so in practice it is sufficient to
restrict our attention to path-connected spaces. Some caution is nonetheless warranted in using
the notation π1pXq: strictly speaking, π1pXq is not a concrete group but only an isomorphism
class of groups, and the subtle distinction between these two notions occasionally leads to trouble.
You should always keep in the back of your mind that even if the base point is not mentioned, it
is an essential piece of the definition of π1pXq.

8Note that the homotopy class of γ determines that of γ´1. (Why?)
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We next discuss some alternative ways to interpret π1pX, pq. Recall the following useful nota-
tional device: given a space X with subset A Ă X , we define

X{A :“ X{„
with the quotient topology, where the equivalence relation defines a „ b for all a, b P A. In other
words, this is the quotient space obtained from X by “collapsing” the subset A to a single point.
For example, it is straightforward (see Exercise 5.16) to show that Dn{Sn´1 is homeomorphic to Sn

for every n P N, and if we replace D1 “ r´1, 1s by the unit interval I “ r0, 1s, we obtain the special
case

r0, 1sLt0, 1u “ I
LBI – S1.

Here we have used the notation
BX :“ “boundary of X”,

which comes from differential geometry, so for instance BDn “ Sn´1 and we can therefore also
identify Sn with Dn{BDn. A specific homeomorphism I{BI Ñ S1 can be written most easily by
thinking of S1 as the unit circle in C:

I{BI Ñ S1 : rts ÞÑ e2πit.

Lemma 9.3. For any space X and subset A Ă X, there is a canonical bijection between the
set of all continuous maps f : X Ñ Y that are constant on A and the set of all continuous maps
g : X{AÑ Y . For any two maps f and g that correspond under this bijection, the diagram

X X{A

Y

π

f

g

commutes, where π : X Ñ X{A denotes the quotient projection; in other words, g ˝ π “ f .

Proof. The diagram determines the correspondence: given g : X{A Ñ Y , we can define
f :“ g˝π to obtain a mapX Ñ Y that is automatically constant on A, and conversely, if f : X Ñ Y

is given and is constant on A, then there is a well-defined map g : X{A Ñ Y : rxs ÞÑ fpxq. Our
main task is to show that f is continuous if and only if g is continuous. In one direction this
is immediate: if g is continuous, then f “ g ˝ π is the composition of two continuous maps and
is therefore also continuous. Conversely, if f is continuous, then for every open set U Ă Y , we
know f´1pUq Ă X is open. A point rxs P X{A is then in g´1pUq if and only if x P f´1pUq, so
g´1pUq “ πpf´1pUqq and thus π´1pg´1pUqq “ f´1pUq is open. By the definition of the quotient
topology, this means that g´1pUq Ă X{A is open, so g is continous. �

Lemma 9.3 gives a canonical bijection between the set of all paths p
γ
 p in X beginning and

ending at the base point and the set of all continuous pointed maps

pI{BI, r0sq Ñ pX, pq.
It is easy to check moreover that two paths p

γ
 p are homotopic with fixed end points if and only

if they correspond to maps pI{BI, r0sq Ñ pX, pq in the same pointed homotopy class. Under the
aforementioned homeomorphism I{BI – S1 Ă C that identifies r0s “ r1s with 1, this gives us an
alternative description of π1pX, pq as

π1pX, pq “  
pointed maps γ : pS1, 1q Ñ pX, pq( L „

h`,
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Figure 1. A map f : I2 Ñ D2 which descends to a homeomorphism g : I2{AÑ
D2 in the proof of Theorem 9.4.

where „
h` now denotes the equivalence relation defined by pointed homotopy. The group structure

of π1pX, pq is less easy to see from this perspective, but it will nonetheless be extremely useful to
think of elements of π1pXq as represented by loops γ : S1 Ñ X .

Theorem 9.4. A loop γ : pS1, 1q Ñ pX, pq represents the identity element in π1pX, pq if and
only if there exists a continuous map u : D2 Ñ X with u|BD2 “ γ.

Proof. I can’t explain this proof without a picture, so to start with, have a look at Figure 1.
It depicts a map f : I2 Ñ D2 Ă C that collapses the red region consisting of three sides of the
square

A :“ pBI ˆ Iq Y pI ˆ t1uq Ă I2

to the single point fpAq “ t1u Ă D2, but is bijective everywhere else, and maps the path Iˆt0u Ă I2

to the loop BD2. By Lemma 9.3, f determines a map

g : I2{AÑ D2

which is continuous and bijective, and it is also an open map (i.e. it maps open sets to open sets),
hence its inverse is also continuous and g is therefore a homeomorphism. Now, a path γ : I Ñ X

with γp0q “ γp1q “ p represents the identity in π1pX, pq if and only if there exists a homotopy
H : I2 Ñ X with Hp0, ¨q “ γ and H|A ” p. Applying Lemma 9.3 again, such a map is equivalent
to a map h : I2{A Ñ X which sends the equivalence class represented by every point in A to
the base point p. In this case, h ˝ g´1 is a map D2 Ñ X whose restriction to BD2 is the loop
S1 – I{BI Ñ X determined by γ : I Ñ X . �

Remark 9.5. Maps γ : S1 Ñ X that admit extensions over D2 as in the above theorem are
called contractible loops (zusammenziehbare Schleifen).

Definition 9.6. A space X is called simply connected (einfach zusammenhängend) if it is
path-connected and its fundamental group is trivial.

It is common to denote the trivial group by “0”, so for path-connected spaces, we can write

X is simply connected ô π1pXq “ 0.

By Theorem 9.4, this is equivalent to the condition that every map γ : S1 Ñ X admits a continuous
extension u : D2 Ñ X satisfying u|BD2 “ γ. Note that there was no need to mention the base point
in this formulation: if X is path-connected, then π1pXq “ 0 means π1pX, pq “ 0 for every p, so
for a given loop γ : S1 Ñ X we are free to choose p :“ γp1q P X as the base point and then apply
Theorem 9.4.
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Figure 2. Two equivalent pictures of the same homotopy with fixed end points
x and y between two paths α and β, using a homeomorphism I2 – D2.

Examples 9.7. Though we will need to develop a few more tools before we can prove it, the
sphere S2 is simply connected. (Try to imagine a loop in S2 that cannot be filled in by a disk—but
do not try too hard!)

In contrast, R2zt0u is not simply connected: we will see that the natural inclusion map γ :

S1 ãÑ R2zt0u is an example of a loop that cannot be extended to a map u : D2 Ñ R2zt0u. Of
course, it can be extended to a map D2 Ñ R2, but it will turn out that such an extension must
always hit the origin somewhere—in other words, the loop is contractible in R2, but not contractible
in R2zt0u. This observation has many powerful implications, e.g. we will see in the next lecture
that it is the key idea behind one of the simplest proofs of the fundamental theorem of algebra,
that every nonconstant complex polynomial has a root.

Another example with nontrivial fundamental group is the torus T2 :“ S1 ˆ S1. Pictures
of this space embedded in R3 typically depict it as the surface of a tube (or a doughnut or a
bagel—depending on your cultural preferences). Can you visualize a loop on this surface that is
contractible in R3 but not in T2?

One can also use the fundamental group to gain insight into homotopy classes of non-closed
paths:

Theorem 9.8. Two paths x
α,β
 y in X are homotopic with fixed end points if and only if the

concatenated path x
α¨β´1

 x represents the identity element in π1pX, xq.
Proof. The condition α „

h` β means the existence of a homotopy H : I2 Ñ X with certain

properties as depicted at the left in Figure 2, but by a suitable choice of homeomorphism I2 – D2

as shown to the right of that picture, we can equally well regard H as a map D2 Ñ X . The
loop γ :“ H|BD2 : S1 Ñ X can then be viewed as the concatenation α ¨ ey ¨ β´1 ¨ ex, which by
Proposition 8.8 is homotopic with fixed end points to α ¨β´1. The result then follows directly from
Theorem 9.4. �

Corollary 9.9. A space X is simply connected if and only if for every pair of points p, q P X,
there exists a path from p to q and it is unique up to homotopy with fixed end points. �

Let us finally work out a few concrete examples.

Example 9.10. For each n ě 0, the Euclidean space Rn is simply connected. Indeed, since it
is path-connected, we are free to choose the base point 0 P Rn, and can then observe that every
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loop 0
γ
 0 is homotopic to the constant loop via the continuous family of loops

γs : I Ñ Rn : t ÞÑ sγptq for s P I.
Example 9.11. Since every open ball Brpxq in Rn is homeomorphic to Rn itself, Corollary 8.12

implies that π1pBrpxqq also vanishes, i.e. Brpxq is simply connected. One could also give a direct
proof of this, analogously to Example 9.10: just choose x P Brpxq as the base point and define
γs via linear interpolation between γ and the constant loop at x. A similar trick works in fact
for any convex subset K Ă Rn, i.e. any set K with the property that the straight line segment
connecting any two points x, y P K is also contained in K. It follows that all convex subsets of
finite-dimensional vector spaces are simply connected.

Example 9.12. Our first example of a nontrivial fundamental group (and probably also the
most important one to take note of in this course) is the circle: we claim that

π1pS1q – Z.

The proof is based on a pair of lemmas that we will prove (in more general forms) in a few weeks,
though I suspect you will already find them easy to believe. Regarding S1 as the unit circle in C,
consider the map

f : RÑ S1 : t ÞÑ e2πit.

This is our first interesting example of a so-called covering map (Überlagerung): it is surjective,
and it looks like a homeomorphism on the small scale (i.e. if you zoom in close enough on any
particular point in R), but it is not injective, in fact it “wraps” the line R around S1 infinitely
many times. The next two statements are special cases of results that we will later prove about a
much more general class of covering spaces:

(1) Given a path x
γ
 y in S1 and a point x̃ P f´1pxq, there exists a unique path x̃

γ̃
 ỹ in R

that is a “lift” of γ in the sense that f ˝ γ̃ “ γ.
(2) Given a homotopy H : I ˆ I Ñ S1 of paths x

γ
 y (with fixed end points) and a point

x̃ P f´1pxq, there exists a unique homotopy rH : I ˆ I Ñ R of lifted paths x̃
γ̃
 ỹ which

lifts H in the sense that f ˝ rH “ H .

Now for any rγs P π1pS1, 1q represented by a path 1
γ
 1, there is a unique lift to a path 0

γ̃
 γ̃p1q

in R. Unlike γ, the end point of the lift need not match its starting point, but the fact that it is a
lift implies γ̃p1q P f´1p1q “ Z, and the fact that homotopies can be lifted implies that this integer
does not change if we replace γ with any other representative of rγs P π1pS1, 1q. We therefore
obtain a well-defined map

Φ : π1pS1, 1q Ñ Z : rγs ÞÑ γ̃p1q.
It is easy to show that Φ is a group homomorphism by lifting concatenated paths. Moreover, Φ
is surjective since Φprγksq “ k for each of the loops γkptq “ e2πikt with k P Z, as these have lifts
γ̃ptq “ kt. Injectivity amounts to the statement that γ must be homotopic to a constant whenever
its lift satisfies γ̃p1q “ 0, and this follows from the fact that π1pRq “ 0: indeed, in this case γ̃ is not
just a path in R but is also a loop, thus it represents an element of π1pR, 0q “ 0 and is therefore
homotopic to the constant loop. Composing that homotopy with f : RÑ S1 gives a homotopy of
the original loop γ to a constant.

Exercise 9.13. In this exercise we show that the fundamental group of a product is a product
of fundamental groups.

(a) Given two pointed spaces pX, xq and pY, yq, prove that π1pX ˆ Y, px, yqq is isomorphic to
the product group π1pX, xq ˆ π1pY, yq.
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Hint: Use the projections pX : X ˆY Ñ X and pY : XˆY Ñ Y to define a natural map
from π1 of the product to the product of π1’s, then prove that it is an isomorphism.

(b) Generalize part (a) to the case of an infinite product of pointed spaces (with the product
topology).

Exercise 9.14. Let us regard π1pX, pq as the set of base-point preserving homotopy classes
of maps pS1, ptq Ñ pX, pq, and let rS1, Xs denote the set of homotopy classes of maps S1 Ñ X ,
with no conditions on base points. (The elements of rS1, Xs are called free homotopy classes
of loops in X). There is a natural map

F : π1pX, pq Ñ rS1, Xs
defined by ignoring base points. Prove:

(a) F is surjective if X is path-connected.
(b) F prαsq “ F prβsq if and only if rαs and rβs are conjugate in π1pX, pq.

Hint: If H : r0, 1sˆS1 Ñ X is a homotopy with Hp0, ¨q “ α and Hp1, ¨q “ β, and t0 P S1

is the base point in S1, then γ :“ Hp¨, t0q : r0, 1s Ñ X begins and ends at p, and therefore
also defines a loop. Compare α and the concatenation γ ¨ β ¨ γ´1.

The conclusion is that if X is path-connected, F induces a bijection between rS1, Xs and the set
of conjugacy classes in π1pXq. In particular, π1pXq – rS1, Xs whenever π1pXq is abelian.

10. Retractions and homotopy equivalence

Having proved that two homeomorphic spaces always have isomorphic fundamental groups, it
is natural to wonder whether the converse is true. The answer is an emphatic no, but this will turn
out to be more of an advantage than a disadvantage: it becomes much easier to compute π1pXq
if we are free to replace X with another space X 1 that is not homeomorphic to X but still has
certain features in common. This idea leads us naturally to the notion of homotopy equivalence,
another equivalence relation on topological spaces that is strictly weaker than homeomorphism.

Let us first discuss conditions that make the homomorphisms f˚ : π1pX, pq Ñ π1pY, qq injective
or surjective.

Definition 10.1. For a space X with subset A Ă X , a map f : X Ñ A is called a retraction
(Retraktion) if f |A is the identity map A Ñ A. Equivalently, if i : A ãÑ X denotes the natural
inclusion map, then f being a retraction means that the following diagram commutes:

(10.1)
A A

X

Id

i f

We say in this case that A is a retract of X .

Example 10.2. For A :“ Rˆ t0u Ă R2, the map f : R2 Ñ A : px, yq ÞÑ px, 0q is a retraction.

A wide class of examples of retractions arises from the following general construction.

Definition 10.3. The wedge sum of two pointed spaces pX, pq and pY, qq is the space
X _ Y :“ pX > Y qL„

where the equivalence relation sets p P X equivalent to q P Y and is otherwise trivial. More
generally, any (potentially infinite) collection of pointed spaces tpXα, pαquαPJ has a wedge sumł

αPJ
Xα :“ ž

αPJ
Xα

M
„,
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where the equivalence relation identifies all the base points pα „ pβ for α, β P J . The wedge sum
is naturally also a pointed space, with base point rpαs PŽβ Xβ.

Remark 10.4. I did not specify the topology on X _ Y or
Ž
αXα, but by now you know

enough to deduce from context what it must be: e.g. for the wedge of two spaces, we assign the
disjoint union topology to X > Y and then endow pX > Y q{„ with the resulting quotient topology.
We will see many more constructions of this sort that involve a combination of quotients with
disjoint unions and/or products, so you should always assume unless otherwise specified that the
topology is whatever arises naturally from disjoint union, product and/or quotient topologies.

The notation for wedge sums is slightly nonideal since the definition of
Ž
αXα depends not just

on the spaces Xα but also on their base points pα P Xα, and it is not true in general that changing
base points always produces homeomorphic wedge sums. It is true however for most examples
that arise in practice, so the ambiguity in notation will usually not cause a problem. Note that
since each of the individual spaces Xα are naturally subspaces of

š
β Xβ, they can equally well

be regarded as subspaces of
Ž
βXβ , and it is straightforward to show that the obvious inclusion

Xα ãÑ Ž
β Xβ for each α is a homeomorphism onto its image. As subspaces of a disjoint unionš

αXα, the individual spaces Xβ and Xγ for β ‰ γ are by definition disjoint, whereas in
Ž
αXα,

they intersect each other at the base point, and only there.

Exercise 10.5. Show that for any collection of pointed maps tfα : pXα, pαq Ñ pY, qquαPJ ,
the unique map f :

Ž
αPJ Xα Ñ Y determined by the condition f |Xα

“ fα for each α P J is
continuous.

Example 10.6. For the wedge sum X _ Y of two pointed spaces pX, pq and pY, qq, there is a
natural base-point preserving retraction

f : X _ Y Ñ X : rxs ÞÑ
#
x if x P X,
p if x P Y .

In words, f maps X Ă X _ Y to itself as the identity map while collapsing all of Y Ă X _ Y to
the base point. One can analogously define a natural retraction X _ Y Ñ Y , and for a wedge sum
of arbitrarily many spaces, a natural retraction

Ž
βPJ Xβ Ñ Xα for each α P J .

Exercise 10.7. Convince yourself that the map f : X_Y Ñ X in Example 10.6 is continuous.

Example 10.8. For X “ Y “ S1, the wedge sum S1 _ S1 is a space homeomorphic to the
symbols “8” and “8”, i.e. a so-called figure eight. Note that in this case, we did not need to specify
the base points on the two copies of S1 because choosing different base points leads to wedge sums
that are homeomorphic. As a special case of Example 10.6, there are two retractions S1_S1 Ñ S1

that collapse either the top half or the bottom half of the “8” to a point.

The next example originates in the proof of the Brouwer fixed point theorem that we sketched
at the end of Lecture 1 (cf. Theorem 1.13).

Example 10.9. As explained in Lecture 1, if there exists a continuous map f : Dn Ñ Dn with
no fixed point, then one can use it to define a map g : Dn Ñ BDn “ Sn´1 that satisfies gpxq “ x

for all x P BDn. The idea is to follow the unique line from x through fpxq until arriving at some
point of the boundary, which is defined to be gpxq. This makes g a retraction of Dn to BDn. The
main step in the proof of Brouwer’s fixed point theorem is to show that no such retraction exists.
We will carry this out for n “ 2 in a moment.

Theorem 10.10. If f : X Ñ A is a retraction and i : A ãÑ X denotes the inclusion, then for
any choice of base point a P A, the induced homomorphism i˚ : π1pA, aq Ñ π1pX, aq is injective,
while f˚ : π1pX, aq Ñ π1pA, aq is surjective.
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Proof. Since the maps in the commutative diagram (10.1) all send the base point a P A to
itself, Theorem 8.11 produces a corresponding commutative diagram of homomorphisms:

π1pA, aq π1pA, aq

π1pX, aq

1

i˚ f˚

In particular, f˚ ˝ i˚ is both injective and surjective, which is only possible if i˚ is injective and f˚
is surjective. �

Proof of the Brouwer fixed point theorem for n “ 2. If there is a map f : D2 Ñ D2

with no fixed point, then there is also a retraction g : D2 Ñ BD2 “ S1 as explained in Example 10.9,
so Theorem 10.10 implies that the induced homomorphism g˚ : π1pD2q Ñ π1pS1q is surjective. As
we saw at the end of the previous lecture, π1pS1q – Z, and an easy modification of Example 9.10
shows that π1pD2q “ 0. (In fact, the same argument proves that every convex subset of Rn is
simply connected—this will also follow from the more general Corollary 10.24 below.) But there
is no surjective homomorphism from the trivial group to Z, so this is a contradiction. �

Definition 10.11. Assume X is a space with subset A Ă X and i : A ãÑ X denotes the
inclusion. A deformation retraction (Deformationsretraktion) of X to A is a homotopy H :

I ˆ X Ñ X such that Hps, ¨q|A “ IdA for every s P I, Hp1, ¨q “ IdX and Hp0, ¨q “ i ˝ f for
some retraction f : X Ñ A. If a deformation retraction exists, we say that A is a a deformation
retract (Deformationsretrakt) of X .

You should imagine a deformation retraction as a gradual “pulling” of all points in X toward
the subset A until eventually all of them end up in A.

Example 10.12. We call X Ă Rn a star-shaped domain (sternförmige Menge) if for every
x P X , the rescaled vector tx is also in X for every t P r0, 1s. In this case Hpt, xq :“ tx defines a
deformation retraction of X to the one-point subset t0u.

Example 10.13. This is actually a non-example: while the maps f : S1 _ S1 Ñ S1 in
Example 10.8 are retractions, i ˝ f in this case is not homotopic to the identity on S1 _ S1, so
S1 is not a deformation retract of S1 _ S1. We are not yet in a position to prove this, as it will
require more knowledge of π1pS1 _ S1q than we presently have, but the necessary results will be
proved within the next four lectures. For now, feel free to try to imagine how you might define
a homotopy of maps S1 _ S1 Ñ S1 _ S1 that starts with the identity and ends with a retraction
collapsing one of the circles. (Keep in mind however that it is not possible, so don’t try too hard.)

Example 10.14. The sphere Sn´1 Ă Rnzt0u is a deformation retract of the punctured Eu-
clidean space. A suitable homotopy H : I ˆ pRnzt0uq Ñ Rnzt0u can be defined by

Hpt, xq “ x

t` p1´ tq|x| ,

which makesHp1, ¨q the identity map, whileHp0, xq :“ x{|x| retracts Rnzt0u to Sn´1 andHpt, xq “
x for x P Sn´1. It is important to observe that no continuous map can be defined in this way with
all of Rn as its domain: the removal of one point changes the topology of Rn in an essential way
that makes the deformation retraction to Sn´1 possible. (We will later be able to prove that Rn

does not admit any retraction to Sn´1. When n “ 2, this already follows from Theorem 10.10
since π1pS1q – Z and π1pR2q “ 0.)
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Example 10.15. Writing Sn “  px, zq P Rn ˆ R
ˇ̌ |x|2 ` z2 “ 1

(
, define the two “poles” p˘ “

p0,˘1q. Removing these poles produces a space that can be decomposed into a 1-parameter family
of pn´ 1q-spheres, i.e. there is a homeomorphism

Snztp`, p´u –ÝÑ Sn´1 ˆ p´1, 1q : px, zq ÞÑ
ˆ

x

|x| , z
˙
.

If we identify Snztp`, p´u with Sn´1 ˆ p´1, 1q in this way, then we see that the “equator”
Sn´1 ˆ t0u Ă Sn is a deformation retract of Snztp`, p´u. This follows from the fact that t0u
is a deformation retract of p´1, 1q.

Definition 10.16. A map f : X Ñ Y is a homotopy equivalence (Homotopieäquivalenz) if
there exists a map g : Y Ñ X such that g˝f and f ˝g are each homotopic to the identity map on X
and Y respectively. When this exists, we say that g is a homotopy inverse (Homotopieinverse) of
f , and that the spaces X and Y are homotopy equivalent (homotopieäquivalent). This defines
an equivalence relation on topological spaces which we shall denote in these notes by

X »
h.e.

Y.

Exercise 10.17. Verify that homotopy equivalence defines an equivalence relation.

Remark 10.18. The notation “ »
h.e.

” for homotopy equivalence is not universal, and there are

several similar but slightly different standards that frequently appear in the literature. This one
happens to be my current favorite, but I may change to something else next year.

Example 10.19. A homeomorphism f : X Ñ Y is obviously also a homotopy equivalence,
with homotopy inverse f´1.

Example 10.20. If H : I ˆ X Ñ X is a deformation retraction with Hp0, ¨q “ f ˝ i for a
retraction f : X Ñ A, then the inclusion i : A ãÑ X is a homotopy inverse of f , so that both f
and i are homotopy equivalences and thus X »

h.e.
A. Indeed, the retraction condition implies that

f ˝ i is not just homotopic but also equal to IdA, and adding the word “deformation” provides the
condition i ˝ f „

h
IdX .

Definition 10.21. We say that a space X is contractible (zusammenziehbar or kontrahier-
bar) if it is homotopy equivalent to a one-point space.

Remark 10.22. The above definitions imply immediately that any space admitting a defor-
mation retraction to a one-point subset (as in Example 10.12) is contractible. The converse is not
quite true. Indeed, suppose txu is a one-point space and f : X Ñ txu is a homotopy equivalence
with homotopy inverse g : txu Ñ X and a homotopy H : I ˆ X Ñ X from IdX to g ˝ f . (We
do not need to discuss any homotopy of f ˝ g since there is only one map txu Ñ txu.) Then if
p :“ gpxq P X , F : X Ñ tpu denotes the constant map at p and i : tpu ãÑ X is the inclusion,
we have F ˝ i “ Idtpu, and H is a homotopy from IdX to i ˝ F . Unfortunately, the definition of
homotopy equivalence does not guarantee that this homotopy will satisfy Hpt, pq “ p for all t P I,
so H might not be a deformation retraction in the strict sense of Definition 10.11. It turns out that
this distinction matters, but only for fairly strange spaces: see [Hat02, p. 18, Exercise 6] for an
example of a space that is contractible but does not admit a deformation retraction to any point.

We can now state the main theorem of this lecture.

Theorem 10.23. If f : X Ñ Y is a homotopy equivalence with fppq “ q, then the induced
homomorphism f˚ : π1pX, pq Ñ π1pY, qq is an isomorphism.
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Since a one-point space contains only one path and therefore has trivial fundamental group,
this implies:

Corollary 10.24. For every contractible space X, π1pXq “ 0. �

Proof of Theorem 10.23. Here is a preliminary remark: if you’re only half paying at-
tention, then you might reasonably think this theorem follows immediately from Theorem 8.11.
Indeed, we stated in that theorem that the homomorphism f˚ : π1pX, pq Ñ π1pY, qq depends only
on the pointed homotopy class of f , and the same is of course true of the compositions g ˝ f and
f ˝ g, which ought to make g˚ ˝ f˚ and f˚ ˝ g˚ both the identity if g ˝ f and f ˝ g are homotopic
to the identity. The problem however is that we are not paying attention to the base point: the
definition of homotopy equivalence never mentions any base point and says “homotopy” rather than
“pointed homotopy,” while in Theorem 8.11, maps and homotopies are always required to preserve
base points. In particular, if fppq “ q and g : Y Ñ X is a homotopy inverse of f , then there is
no reason to expect gpqq “ p, in which case g˚ : π1pY, qq Ñ π1pX, gpqqq cannot be an inverse of
f˚ : π1pX, pq Ñ π1pY, qq, as its target is not even the same group as the domain of f˚. The main
content of the following proof is an argument to cope with this annoying detail.

With that out of the way, assume f : X Ñ Y is a map with homotopy inverse g : Y Ñ X ,
satisfying fppq “ q and gpqq “ r, so we have a sequence of pointed maps

pX, pq fÝÑ pY, qq gÝÑ pX, rq
and induced homomorphisms

(10.2) π1pX, pq f˚ÝÑ π1pY, qq g˚ÝÑ π1pX, rq.
By assumption there exists a homotopy H : I ˆX Ñ X , which we shall write as a 1-parameter
family of maps

hs :“ Hps, ¨q : X Ñ X for s P I,
satisfying h0 “ IdX and h1 “ g ˝ f . We can therefore define a path p

γ
 r by

γptq :“ htppq,
and by Theorem 9.1, this gives rise to an isomorphism

Φγ : π1pX, rq Ñ π1pX, pq : rαs ÞÑ rγ ¨ α ¨ γ´1s.
We claim that the diagram

π1pX, pq π1pY, qq

π1pX, rq

f˚

Φ´1
γ

g˚

commutes, or equivalently, Φγ ˝ g˚ ˝ f˚ is the identity map on π1pX, pq. Given a loop p α
 p, the

element Φγ ˝ g˚ ˝ f˚rαs “ Φγ ˝ pg ˝ fq˚rαs is represented by γ ¨ pg ˝ f ˝αq ¨ γ´1, so we need to show
that the latter is homotopic with fixed end points to α. A precise formula for such a homotopy is
provided by the following 1-parameter family of loops: for s P I, let

αs :“ γs ¨ phs ˝ αq ¨ γ´1
s ,

where p
γs
 γpsq denotes the path γsptq :“ γpstq. (For a visualization of what this homotopy is

actually doing, I recommend the picture on page 37 of [Hat02].) This proves the claim, and since
Φγ is an isomorphism, it implies that g˚ ˝ f˚ “ Φ´1

γ is also an isomorphism, from which we deduce
that f˚ is injective and g˚ is surjective.
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The preceding argument was based on the assumption that g ˝ f : X Ñ X is homotopic to
the identity. We have not yet used the assumption that f ˝ g : Y Ñ Y is also homotopic to the
identity, but we can use it now to carry out the same argument again with the roles of f and g
reversed. The conclusion is that f˚ ˝ g˚ is also an isomorphism, implying g˚ is injective and f˚ is
surjective. We conclude that f˚ and g˚ are in fact both isomorphisms. �

Example 10.25. Here are some examples of contractible spaces, which therefore have iso-
morphic (trivial) fundamental groups even though they are not all homeomorphic: Rn, Dn (not
homeomorphic to Rn since it is compact), any convex subset or star-shaped domain in Rn as in
Example 10.12. A quite different type of example comes from graph theory : a graph is a combi-
natorial object consisting of a set V (called the vertices) and a set E whose elements (the edges)
are unordered pairs of vertices. A graph is typically represented by depicting the vertices as points
and the edges tx, yu P E as curves connecting the corresponding vertices x and y to each other.
One can thus naturally view a graph as a topological space in which each vertex is a point and each
edge is a subset homeomorphic to r0, 1s (possibly with its end points identified if its two vertices
are the same one). A graph is called a tree if there is exactly one path (up to parametrization)
connecting any two of its vertices. It is not hard to show that any finite graph with this property is
a contractible space: pick your favorite vertex v P V , draw the unique path from v to every other
vertex, then define a deformation retraction to v by pulling everything back along these paths.

Example 10.26. Viewing S1 as the unit circle in C, associate to each z P C the loop γz :

S1 ãÑ Cztzu : eiθ ÞÑ z` eiθ. Since these are pointed maps pS1, 1q Ñ pCztzu, z` 1q, they represent
elements rγzs P π1pCztzu, z`1q. We claim in fact that this group is isomorphic to Z, and that rγzs
generates it. The proof is mainly the observation that γzpS1q is a deformation retract of Cztzu, by a
construction analogous to Example 10.14, hence γz is a homotopy equivalence and therefore induces
an isomorphism π1pS1, 1q Ñ π1pCztzu, z ` 1q. Since the identity map pS1, 1q Ñ pS1, 1q represents
a generator of π1pS1, 1q, composing this with γz now represents a generator of π1pCztzu, z ` 1q as
claimed.

Exercise 10.27. For a point z P C and a continuous map γ : r0, 1s Ñ Cztzu with γp0q “ γp1q,
one defines the winding number of γ about z as

windpγ; zq “ θp1q ´ θp0q P Z

where θ : r0, 1s Ñ R is any choice of continuous function such that

γptq “ z ` rptqe2πiθptq
for some function r : r0, 1s Ñ p0,8q. Notice that since γptq ‰ z for all t, the function rptq is
uniquely determined, and requiring θptq to be continuous makes it unique up to the addition of a
constant integer, hence θp1q ´ θp0q depends only on the path γ and not on any additional choices.
One of the fundamental facts about winding numbers is their important role in the computation
of π1pS1q: as we saw in Example 9.12, viewing S1 as tz P C | |z| “ 1u, the map

π1pS1, 1q Ñ Z : rγs ÞÑ windpγ; 0q
is an isomorphism to the abelian group pZ,`q. Assume in the following that Ω Ă C is an open set
and f : ΩÑ C is a continuous function.

(a) Suppose fpzq “ w and w R fpUztzuq for some neighborhood U Ă Ω of z. This implies
that the loop f ˝ γǫ for γǫ : r0, 1s Ñ Ω : t ÞÑ z ` ǫe2πit has image in Cztwu for all
ǫ ą 0 sufficiently small, hence windpf ˝ γǫ;wq is well defined. Show that for some ǫ0 ą 0,
windpf ˝ γǫ;wq does not depend on ǫ as long as 0 ă ǫ ď ǫ0.
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(b) Show that if the ball Brpz0q of radius r ą 0 about z0 P Ω has its closure contained in Ω,
and the loop γptq “ z0 ` re2πit satisfies windpf ˝ γ;wq ‰ 0 for some w P C, then there
exists z P Brpz0q with fpzq “ w.
Hint: Recall that if we regard elements of π1pX, pq as pointed homotopy classes of maps
S1 Ñ X , then such a map represents the identity in π1pX, pq if and only if it admits a
continuous extension to a map D2 Ñ X . Define X in the present case to be Cztwu.

(c) Prove the Fundamental Theorem of Algebra: every nonconstant complex polynomial has
a root.
Hint: Consider loops γptq “ Re2πit with R ą 0 large.

(d) We call z0 P Ω an isolated zero of f : Ω Ñ C if fpz0q “ 0 but 0 R fpUztz0uq for
some neighborhood U Ă Ω of z0. Let us say that such a zero has order k P Z if
windpf ˝ γǫ; 0q “ k for γǫptq “ z0 ` ǫe2πit and ǫ ą 0 small (recall from part (a) that this
does not depend on the choice of ǫ if it is small enough). Show that if k ‰ 0, then for
any neighborhood U Ă Ω of z0, there exists δ ą 0 such that every continuous function
g : ΩÑ C satisfying |f ´ g| ă δ everywhere has a zero somewhere in U .

(e) Find an example of the situation in part (d) with k “ 0 such that f admits arbitrarily
close perturbations g that have no zeroes in some fixed neighborhood of U .
Hint: Write f as a continuous function of x and y where x` iy P Ω. You will not be able
to find an example for which f is holomorphic—they do not exist!

General advice: Throughout this problem, it is important to remember that Cztwu is homotopy
equivalent to S1 for every w P C. Thus all questions about π1pCztwuq can be reduced to questions
about π1pS1q.

11. The easy part of van Kampen’s theorem

The main question of this lecture is the following: If X is the union of two subsets AYB and
we know both π1pAq and π1pBq, what can we say about π1pXq?

Example 11.1. The sphere Sn can be viewed as the union of two subsets A and B that are both
homeomorphic to Dn, e.g. when n “ 2, we would take the northern and southern “hemispheres”
of the globe. Since Dn is contractible, π1pAq “ π1pBq “ 0. We will see below that this is almost
enough information to compute π1pSnq.

The next lemma is the “easy” first half of an important result about fundamental groups
known as the Seifert-van Kampen theorem, or often simply van Kampen’s theorem. The much
more powerful “hard” part of the theorem will be dealt with in the two subsequent lectures, though
the easy part already has several impressive applications. We will state it here in somewhat
greater generality than is needed for most applications: on first reading, you are free to replace
the arbitrary open covering X “ Ť

αPJ Aα with a covering by two open subsets X “ AYB, which
will be the situation in all of the examples below.

Lemma 11.2. Suppose X “ Ť
αPJ Aα for a collection of open subsets tAα Ă XuαPJ satisfying

the following conditions:

(1) Aα is path-connected for every α P J ;
(2) Aα XAβ is path-connected for every pair α, β P J ;
(3)

Ş
αPJ Aα ‰ H.

Let Aα
iαãÑ X denote the natural inclusion maps. Then for any base point p P Ş

αPJ Aα, π1pX, pq
is generated by the subgroups

piαq˚ pπ1pAα, pqq Ă π1pX, pq,
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i.e. every element of π1pX, pq is a product of elements of the form piαq˚rγs for some α P J and
rγs P π1pAα, pq.

Before proving the lemma, let’s look at several more examples, starting with a rehash of
Example 11.1 above.

Example 11.3. Denote points in the unit sphere Sn by px, zq P RnˆR such that |x|2`z2 “ 1,
and define the open subsets

A :“ tz ą ´ǫu Ă Sn, B :“ tz ă ǫu Ă Sn

for some ǫ ą 0 small. Then A – B – Rn, so both have trivial fundamental group. Moreover,
AXB – Sn´1ˆp´ǫ, ǫq is path-connected if n ě 2. (Note that this is not true if n “ 1: the 0-sphere
S0 is just the set of two points t1,´1u Ă R, so it is not path-connected.) The lemma therefore
implies that for any p P AXB, π1pSn, pq is generated by images of homomorphisms into π1pSn, pq
from the groups π1pA, pq and π1pB, pq, both of which are trivial, therefore π1pSn, pq is trivial.

We just proved:

Corollary 11.4. For all n ě 2, Sn is simply connected. �

Here is an easy application:

Theorem 11.5. For every n ě 3, R2 is not homeomorphic to Rn.

Proof. The complement of one point in Rn is homotopy eqivalent to Sn´1, thus π1pRnztptuq –
π1pSn´1q “ 0 if n ě 3, while π1pR2ztptuq – π1pS1q – Z. It follows that R2ztptu and Rnztptu for
n ě 3 are not homeomorphic, hence neither are R2 and Rn. �

A wider class of examples comes from the following general construction known as gluing of
spaces. Assume X , Y and A are spaces and we have inclusions9

iX : A ãÑ X, iY : A ãÑ Y.

We then define the space
X YA Y :“ pX > Y qL„

where the equivalence relation identifies iXpaq P X with iY paq P Y for every a P A. As usual in
such constructions, we assign to X > Y the disjoint union topology and then give X YA Y the
quotient topology. We say that X YA Y is the space obtained by gluing X to Y along A. Note
that we can regard X and Y both as subspaces of X YA Y , and their intersection is a subspace
homeomorphic to A. The wedge sum of two spaces (see Example 10.3) is the special case of this
construction where A is a single point. (The notation is slightly non-ideal since XYAY depends on
the inclusions of A into X and Y , not just on the three spaces themselves, but in most interesting
examples the inclusions are obvious, so the notation is easy to interpret.)

Example 11.6. If X “ Y “ Dn and A “ Sn´1 is included in both as the boundary BDn, then
the descriptions of Sn in Examples 11.1 and 11.3 translates into

Dn YSn´1 Dn – Sn.

9The technical meaning of the word inclusion in this context is a map A ãÑ X which is injective and is a
homeomorphism onto its image (with the subspace topology). Such a map is also sometimes called a topological
embedding.
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Example 11.7. In Example 1.2 we gave a description of RP2 as the space obtained by gluing
a disk D2 to a Möbius strip

M :“  peiθ, t cospθ{2q, t sinpθ{2qq P S1 ˆ R2
ˇ̌
eiθ P S1, t P r´1, 1s(

along their boundaries, which are both homeomorphic to S1. Choose a particular inclusion of S1

as the boundary of M, e.g.

S1 ãÑ M : eiθ ÞÑ pe2iθ, cospθq, sinpθqq.
Then our picture of RP2 can be expressed succinctly as

RP
2 – D2 YS1 M.

Lemma 11.2 can now be applied to this as follows. There is an obvious deformation retraction of
M to the “central” circle S1 ˆ t0u ĂM, defined via the homotopy

H : I ˆMÑM : ps, peiθ, t cospθ{2q, t sinpθ{2qqq ÞÑ peiθ, st cospθ{2q, st sinpθ{2qq,
thus M »

h.e.
S1. The gluing construction allows us to view both D2 and M as subsets of RP2,

but they are not open subsets as required by the lemma. This can easily be fixed by slightly
expanding both of them. Concretely, by adding a neighborhood of BM in M to D2, we obtain an
open neighborhood A Ă RP2 of D2 that is homeomorphic to an open disk, and similarly, adding
a neighborhood of BD2 in D2 to M gives an open neighborhood B Ă RP

2 of M that admits a
deformation retraction to M and thus also to the central circle S1 ˆ t0u ĂM. We now have

π1pAq – π1pD̊2q “ 0 and π1pBq – π1pMq – π1pS1q – Z,

and notice also that A and B are both path connected, and so is A X B since we can arrange for
the latter to be homeomorphic to S1 ˆ p´1, 1q, i.e. it is the union of an annular neighborhood of
BD2 in D2 with another annular neighborhood of BM in M. The lemma thus implies that for any
p P A X B, π1pRP2, pq is generated by the element iB˚ rγs P π1pRP2, pq, where iB : B ãÑ RP

2 is
the inclusion and γ : pS1, 1q Ñ pB, pq is any loop such that rγs generates π1pB, pq – Z. In light
of the deformation retraction to the central circle, the inclusion of that circle into B induces an
isomorphism of fundamental groups, thus we can take γ to be the obvious inclusion of S1 into B
as the central circle:

γ : S1 –Ñ S1 ˆ t0u ĂM Ă RP
2,

eiθ ÞÑ peiθ, 0q.(11.1)

The conclusion is that if we regard γ in this way as a loop in RP2, then rγs generates π1pRP2, pq.
The loop γ is not hard to visualize if you translate from our picture of RP2 as D2 YS1 M back to
the usual definition of RP2 as a quotient of S2 (see Example 1.2): in the latter picture you can
realize γ as a path along the equator of S2 that goes exactly halfway around. Note that this is not
a loop in S2, but it becomes a loop when you project it to RP2 since its starting and end point
are antipodal.

A word of caution is in order: we have not yet actually computed π1pRP2q, we have only shown
that every element in π1pRP2q is a power of a single element rγs. It is still possible that π1pRP2q is
trivial because γ is contractible—this will turn out not to be the case, but we are not in a position
to prove it just yet. We can say one more thing, however: rγs2 is the identity element in π1pRP2, pq.
Indeed, rγs2 is represented by the concatenation of γ with itself, which can also be realized as the
projection through S2 πÑ RP

2 of a path that goes all the way around the equator in S2, i.e. it
is the concatenation of two paths that go halfway around. But if α : S1 Ñ S2 parametrizes
this loop around the equator, then there is obviously an extension of α to a map u : D2 Ñ S2

satisfying u|BD2 “ α, namely the inclusion of either the northern or southern hemisphere of S2.
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The map π ˝ u : D2 Ñ RP
2 is then an extension over the disk of our loop representing rγs2, which

proves via Theorem 9.4 that rγs2 is trivial. This proves that π1pRP2q is either the trivial group
or is isomorphic to Z2; we will see that it is the latter when we prove that the generator rγs is
nontrivial.

Here is another pair of general constructions that produce many more examples.

Definition 11.8. Given a space X , the cone (Kegel) of X is the space

CX :“ pX ˆ Iq{pX ˆ t1uq.
The single point in CX represented by px, 1q for every x P X is sometimes called the “summit”

or “node” of the cone.

Exercise 11.9. Show that CSn´1 is homeomorphic to Dn.

Lemma 11.10. For every space X, the cone CX is contractible.

Proof. There is an obvious deformation retraction of X ˆ I to X ˆ t1u defined by pushing
every px, tq P X ˆ I upward in the t-coordinate. Writing down this same deformation retraction
on the quotient pX ˆ Iq{pX ˆ t1uq, the result is that everything gets pushed to a single point, the
summit of the cone. �

Definition 11.11. Given a space X , the suspension (Einhängung) of X is the space

SX :“ C`X YXˆt0u C´X,
where C`X :“ CX as above, and C´X is the “reversed” cone pX ˆ r´1, 0sq{pX ˆ t´1uq. Equiva-
lently, the suspension can be written as

SX “ pX ˆ r´1, 1sqL„
where px, 1q „ py, 1q and px,´1q „ py,´1q for every x, y P X .

Exercise 11.12. Show that SSn´1 – Sn.

We can now generalize the result that π1pSnq “ 0 for n ě 2 as follows.

Theorem 11.13. If X is path-connected, then its suspension SX is simply connected.

Proof. We define A,B Ă SX to be open neighborhoods of C`X and C´X respectively, e.g.

A :“ pX ˆ p´ǫ, 1sqLpX ˆ t1uq, B :“ pX ˆ r´1, ǫqqLpX ˆ t´1uq
for any ǫ P p0, 1q. The subspaces are both contractible for the same reason that C`X and C´X
are: one can define deformation retractions to a point by pushing upward in A and downward
in B. Moreover, AXB “ X ˆ p´ǫ, ǫq is path-connected if and only if X is path-connected, and in
that case, Lemma 11.2 implies that π1pSXq is generated by the images of homomorphisms from
π1pAq and π1pBq, both of which are trivial, therefore π1pSXq is trivial. �

Let us finally prove the lemma.

Proof of Lemma 11.2. We assume X “ Ť
αPJ Aα and p P ŞαPJ Aα, where the sets Aα Ă X

are open and path-connected, and AαXAβ is also path-connected for every pair α, β P J . What we
need to show is that every loop p

γ
 p in X is homotopic with fixed end points to a concatenation

of finitely many loops based at p that are each contained in one of the subsets Aα. To start with,
observe that since γ : I Ñ X is continuous, Iα :“ γ´1pAαq is an open subset of I for every α, and
is therefore a union of open subintervals of I.10 The union of all these open subintervals for all

10Remember that since sets like r0, ǫq Ă I that include an end point are open subsets of I, they are included
in the term “open subinterval of I”.
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α P J thus forms an open covering of I, which has a finite subcovering since I is compact, giving
rise to a finite collection of open subintervals

I “ I1 Y . . .Y IN

such that for each j “ 1, . . . , N , γpIjq Ă Aαj
for some αj P J . After relabeling the αj ’s if necessary,

we can then find a finite increasing sequence

0 “: t0 ă t1 ă . . . ă tN´1 ă tN :“ 1

such that γprtj´1, tjsq Ă Aαj
for each j “ 1, . . . , N . In particular, for j “ 1, . . . , N ´ 1, each γptjq

lies in both Aαj
and Aαj`1

. The intersection of these two sets is path-connected by assumption, so
choose a path βj in Aαj

X Aαj`1
from γptjq to the base point p. Then if we write γj :“ γ|rtj´1,tjs

and reparametrize each of these paths to define them on the usual interval I, we have

γ “ γ1 ¨ . . . ¨ γN „
h` γ1 ¨ β1 ¨ β

´1
1 ¨ γ2 ¨ β2 ¨ β´1

2 ¨ . . . ¨ βN´2 ¨ β´1
N´2 ¨ γN´1 ¨ βN´1 ¨ β´1

N´1 ¨ γN .
The latter is the concatenation we were looking for since γ1 ¨ β1 is a loop from p to itself in Aα1

,
β´1
1 ¨ γ2 ¨ β2 is a loop from p to itself in Aα2

, and so forth up to β´1
N´2 ¨ γN´1 ¨ βN´1 in AαN´1

and
β´1
N´1 ¨ γN in AαN

. �

To conclude this lecture, we would like to restate Lemma 11.2 in more precise terms. This
requires a few notions from combinatorial group theory.

Definition 11.14. Suppose tGαuαPJ is a collection of groups, with the identity element in
each denoted by eα P Gα. For any integer N ě 0, an ordered set b1b2 . . . bN together with a
corresponding ordered set α1, α2, . . . , αN P J is called a word in tGαuαPJ if bi P Gαi

for each
i “ 1, . . . , N . Informally, we call the elements of the sequence letters, and denote the word by
b1 . . . bN even though, strictly speaking, the set of indices α1, . . . , αN P J is also part of the data
defining the word.11 Note that this definition includes the so-called empty word, with N “ 0,
i.e. the word with no letters. A word a1 . . . aN is called a reduced word if:

‚ none of the letters bi are the identity element eαi
P Gαi

in the corresponding group, and
‚ no two adjacent letters bi and bi`1 satisfy αi “ αi`1, i.e. the groups that appear in
adjacent positions are distinct.

Note that the empty word trivially satisfies both conditions, thus it is a reduced word.

There is an obvious map called reduction from the set of all words to the set of all reduced
words: it acts on a given word b1 . . . bN by replacing all adjacent pairs bibi`1 with their product
in Gα whenever αi “ αi`1 “ α, and removing all eα’s.

Definition 11.15. The free product (freies Produkt) ˚αPJ Gα of a collection of groups
tGαuαPJ is defined as the set of all reduced words in tGαuαPJ . The product of two reduced words
w “ b1 . . . bN and w1 “ b11 . . . b1N 1 in this group is defined to be the reduction of the concatenated
word ww1 “ b1 . . . bNb

1
1 . . . b

1
N 1 . The identity element is the empty word, and will be denoted by

e P ˚
αPJ

Gα.

We will typically deal with collections of only finitely many groups G1, . . . , GN , in which case
the free product is usually denoted by

G1 ˚ . . . ˚GN .
11This is important to remember in case some Gα and Gβ contain common elements for α ‰ β, e.g. if they

are both subgroups of a single larger group. If not, then this detail is safe to ignore and the notation b1 . . . bN for a
word is completely unambiguous.
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In general, this is an enormous group, e.g. it is always infinite if there are at least two nontrivial
groups in the collection, no matter how small those groups are. It is also always nonabelian in
those cases. Let us see some examples.

Example 11.16. Consider two copies of the same group G “ H “ Z2, with the unique
nontrivial elements of G and H denoted by a P G and b P H . Then G ˚H consists of all possible
reduced words built out of these two letters, plus the empty word e, so

Z2 ˚ Z2 – G ˚H “ te, a, b, ab, ba, aba, bab, abab, baba, . . .u .
For an example of how multiplication in Z2 ˚ Z2 works, the product of aba and ab is a, i.e. this is
the result of reducing the unreduced word abaab since aa and bb are both identity elements.

Example 11.17. Let G “ Z with a generator denoted by a P G, and H “ Z2 with nontrivial
element b. If we write G as a multiplicative group so that its elements are all of the form ap for
p P Z, then

Z ˚ Z2 – G ˚H “  
e, ap, b, apb, bap, apbaq, bapbaq, apbaqbar, . . .

ˇ̌
p, q, r, . . . P Z

(
.

For an example of a product, apbar times a´1b gives apbar´1b.

With this terminology understood, here is what we actually proved when we proved Lemma 11.2.

Lemma 11.18. Given X “ Ť
αPJ Aα and p P ŞαPJ Aα as in Lemma 11.2, there exists a natural

group homomorphism
˚
αPJ

π1pAα, pq ΦÝÑ π1pX, pq
sending each reduced word rγ1s . . . rγN s P ˚αPJ π1pAα, pq with rγis P π1pAαi

, pq to the concatenation
rγ1 ¨ . . . ¨ γN s P π1pX, pq, and Φ is surjective. �

The existence of the homomorphism Φ is an easy and purely algebraic fact, which we’ll expand
on a bit in the next lecture. The truly nontrivial statement here is that Φ is surjective. If we
can now identify the kernel of Φ, then Φ descends to an isomorphism from the quotient of the
free product by kerΦ to π1pX, pq, and we will thus have a formula for π1pX, pq. Identifying the
kernel and then using the resulting formula in applications will be our main topic for the next two
lectures.

12. Normal subgroups, generators and relations

Before stating the general version of the Seifert-van Kampen theorem, we need to collect a few
more useful algebraic facts about groups and the free product. Recall from the previous lecture
that the free product ˚αPJ Gα of an arbitrary collection of groups tGαuαPJ is defined to consist of
all so-called reduced words g1 . . . gN in which each “letter” gi is an element of one of the groups Gαi

,
and the choice of αi P J such that gi P Gαi

for each i “ 1, . . . , N is considered part of the data
defining the word.12 The word “reduced” means that the sequence of letters in the word cannot
be simplified by computing products in any of the individual groups, hence no consecutive letters
gigi`1 with αi “ αi`1 “: α appear—if such a pair appeared then it could be replaced by a single
letter formed from the product gigi`1 P Gα—and similarly, none of the letters is the identity
element in any of the groups. Products in ˚αPJ Gα are formed by concatenating words and then

12This latter detail is unimportant if the groups Gα are all disjoint sets in the first place, but if any of them
have elements in common, e.g. if some Gα and Gβ for α ‰ β are copies of the same group, then we regard them
as separate copies and always keep track of which letter belongs to which copy. The idea is somewhat analogous
to constructing the disjoint union

š
αPJ Xα of sets, in which Xβ and Xγ for β ‰ γ always become disjoint subsets

of
š

αPJ Xα, even if they are originally defined as the same set, e.g. R > R is by definition two disjoint copies of R,
which is different from the ordinary union RY R “ R.
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reducing them if necessary, so for example, if G and H are two groups containing elements g P G
and h, k P H , then the product of the reduced words gh P G ˚H and h´1k P G ˚H is

pghqph´1kq “ gk P G ˚H,
since the concatenated word ghh´1k can be reduced by replacing hh´1 with the identity element
e P H and then removing e from the word. The identity element in ˚αPJ Gα itself is the so-called
“empty” word, with zero letters, which we will usually denote by e; there should be no danger of
confusing this with the identity elements of the individual groups Gα, since they never appear in
reduced words.

The following result is easy to prove directly from the definitions.

Proposition 12.1. Assume tGαuαPJ is a collection of groups. Then:

(1) For each α P J , the free product ˚βPJ Gβ contains a distinguished subgroup isomorphic
to Gα: it consists of the empty word plus all reduced words of exactly one letter which is
in Gα.

(2) If we regard each Gα as a subgroup of ˚γPJ Gγ as described above, then for every α, β P J
with α ‰ β, the intersection Gα XGβ in ˚γPJ Gγ consists only of the identity element e
(i.e. the empty word), and any two nontrivial elements g P Gα and h P Gβ satisfy gh ‰ hg

in ˚γPJ Gγ.
(3) For any group H with a collection of homomorphisms tΦα : Gα Ñ HuαPJ , there exists a

unique homomorphism
Φ : ˚

αPJ
Gα Ñ H

whose restriction to each of the subgroups Gα Ă ˚βPJ Gβ is Φα.

The third item in this list deserves brief comment: the homomorphism Φ : ˚αPJ Gα Ñ H

exists and is unique because every element of ˚αPJ Gα is uniquely expressible as a reduced word
g1 . . . gN with gi P Gαi

for some specified α1, . . . , αN P J , hence the definition of Φ can only be

Φpg1 . . . gN q “ Φα1
pg1q . . .ΦαN

pgN q P H.
It is similarly straightfoward to verify that Φ by this definition is a homomorphism.

Remark 12.2. In Lemma 11.18 at the end of the previous lecture the homomorphism

(12.1) ˚
αPJ

π1pAα, pq ΦÝÑ π1pX, pq
is determined as in the proposition above by the homomorphisms piαq˚ : π1pAα, pq Ñ π1pX, pq
induced by the inclusions iα : Aα ãÑ X .

We now address the previously unanswered question about the homomorphism (12.1) from
Lemma 11.18: what is its kernel?

We can make two immediate observations about this: first, for any group homomorphism
Ψ : G Ñ H , kerΨ is a normal subgroup of G. Recall that a subgroup K Ă G is called normal if
it is invariant under conjugation with arbitrary elements of G, i.e.

gkg´1 P K for all k P K and g P G.
This condition is abbreviated by “gKg´1 “ K”. It is obviously satisfied ifK “ kerΨ since Ψpkq “ e

implies Ψpgkg´1q “ ΨpgqΨpkqΨpg´1q “ ΨpgqeΨpgq´1 “ e. Recall further that for any subgroup
K Ă G, the quotient G{K is defined as the set of all left cosets of K, meaning subsets of the
form gK :“ tgh | h P Ku for fixed elements g P G. For arbitrary subgroups K Ă G, the quotient
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G{K does not have a natural group structure, but it does when K is a normal subgroup: indeed,
the condition gKg´1 “ K gives rise to a well-defined product

paKqpbKq :“ pabqK P G{K
since, as subsets of G, aKbK “ apbKb´1qbK “ abKK “ abK. In particular, any homomorphism
Ψ : GÑ H between groups G and H gives rise to a normal subgroup K :“ kerΨ Ă G and thus a
quotient group G{K, such that Ψ determines a a well-defined map

G{ kerΨÑ H : gK ÞÑ Ψpgq,
meaning that the value Ψpgq of this map does not depend on the choice of element g P G repre-
senting the coset gK P G{K. It is easy to check that this map is also a group homomorphism, in
which case we say that Ψ descends to a homomorphism G{K Ñ H , and moreover, it is injective
since Ψpgq “ e means g P kerΨ “ K and thus gK “ K “ eK, which is the identity element of
G{K. It follows that the induced map G{ kerΨ Ñ H is an isomorphism whenever the original
homomorphism Ψ is surjective. (A standard reference for these basic notions from group theory is
[Art91].)

The second observation concerns certain specific elements that obviously belong to the kernel
of the map (12.1). Consider the inclusions

jαβ : Aα XAβ ãÑ Aα

for each pair α, β P J , and recall that iα : Aα ãÑ X denotes the inclusion of Aα Ă X . Then the
following diagram commutes,

Aα

Aα XAβ X

Aβ

iα
jαβ

jβα
iβ

meaning iα ˝ jαβ “ iβ ˝ jβα, since both are just the inclusion of Aα X Aβ into X . This trivial
observation has a nontrivial consequence for the homomorphism Φ. Indeed, for any loop p

γ
 p in

AαXAβ representing a nontrivial element of π1pAαXAβ , pq, the two elements pjαβq˚rγs P π1pAα, pq
and pjβαq˚rγs P π1pAβ , pq belong to distinct subgroups in the free product ˚γPJ π1pAγ , pq, yet
clearly

piαq˚pjαβq˚rγs “ piβq˚pjβαq˚rγs P π1pX, pq
since iα ˝ jαβ “ iβ ˝ jβα. It follows that Φppjαβq˚rγsq “ Φppjβαq˚rγsq, hence kerΦ must contain
the reduced word formed by the two letters pjαβq˚rγs P π1pAα, pq and pjβαq˚rγs´1 P π1pAβ , pq:

pjαβq˚rγspjβαq˚rγs´1 P kerΦ.

Combining this with the first observation, kerΦ must contain the smallest normal subgroup of
˚γPJ π1pAγ , pq that contains all elements of this form.

Definition 12.3. For any group G and subset S Ă G, we denote by

xSy Ă G

the smallest subgroup of G that contains S, i.e. xSy is the set of all products of elements g P S and
their inverses g´1. Similarly,

xSyN Ă G
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denotes the smallest normal subgroup of G that contains S. Concretely, this means xSyN is the
set of all conjugates of products of elements of S and their inverses.

We are now in a position to state the complete version of the Seifert-van Kampen theorem.
The first half of the statement is just a repeat of Lemma 11.18, which we have proved already. The
second half tells us what kerΦ is, and thus gives a formula for π1pX, pq.

Theorem 12.4 (Seifert-van Kampen). Suppose X “ Ť
αPJ Aα for a collection of open and

path-connected subsets tAα Ă XuαPJ with nonempty intersection, denote by iα : Aα ãÑ X and
jαβ : Aα XAβ ãÑ Aα the inclusion maps for α, β P J , and fix p P ŞαPJ Aα.

(1) If Aα XAβ is path-connected for every pair α, β P J , then the natural homomorphism

Φ : ˚
αPJ

π1pAα, pq Ñ π1pX, pq
induced by the homomorphisms piαq˚ : π1pAα, pq Ñ π1pX, pq is surjective.

(2) If additionally Aα XAβ XAγ is path-connected for every triple α, β, γ P J , then
kerΦ “

A!
pjαβq˚rγspjβαq˚rγs´1

ˇ̌̌
α, β P J, rγs P π1pAα XAβ , pq

)E
N
.

In particular, Φ then descends to an isomorphism

˚
αPJ

π1pAα, pq
M
kerΦ

–ÝÑ π1pX, pq.
Remark 12.5. In most applications, we will consider coverings of X by only two subsets

X “ A Y B, and the condition on triple intersections in the second half of the statement then
merely demands that AX B be path-connected, which we already needed for the first half. (One
can take the third subset in that condition to be either A or B; we never said that α, β and γ need
to be distinct!)

I will give you the remaining part of the proof of this theorem in the next lecture. Let’s now
discuss some simple applications.

Example 12.6. Consider the figure-eight S1 _ S1 with its natural base point p P S1 _ S1,
i.e. S1 _ S1 is the union of two circles A,B Ă S1 _ S1 with A X B “ tpu. These are not open
subsets, but since a neighborhood of p in S1 _ S1 has a fairly simple structure, we can get away
with the usual trick (cf. Examples 11.3 and 11.7) of replacing both with homotopy equivalent open
neighborhoods: define A1 Ă S1 _ S1 as a small open neighborhood of A and B1 Ă S1 _ S1 as a
small open neighborhood of B such that there exist deformation retractions of A1 to A and B1
to B. The inclusions A ãÑ A1 and B ãÑ B1 then induce isomorphisms Z – π1pA, pq –ÝÑ π1pA1, pq
and Z – π1pB, pq –ÝÑ π1pB1, pq. The intersection A1 X B1 is now a pair of line segments with one
intersection point at p, so it admits a deformation retraction to p and is thus contractible, implying
π1pA1 XB1, pq “ 0. This makes kerΦ in Theorem 12.4 trivial, hence the map

π1pA, pq ˚ π1pB, pq Ñ π1pS1 _ S1, pq
determined by the homomorphisms of π1pA, pq and π1pB, pq to π1pS1 _ S1, pq induced by the
inclusions A,B ãÑ S1 _ S1 is an isomorphism. To see more concretely what this group looks like,
fix generators α P π1pA, pq – Z and β P π1pB, pq – Z, each of which can also be identified with
elements of π1pS1 _ S1, pq via the inclusions of A and B into S1 _ S1. Then

π1pS1 _ S1, pq – Z ˚ Z “ te, αp, βq, αpβq, βpαq, αpβqαr, . . . | p, q, r, . . . P Zu .
These elements are easy to visualize: α and β are represented by loops that start and end at p and
run once around the circles A or B respectively, so each element in the above list is a concatenation
of finitely many repetitions of these two loops and their inverses. Notice that αβ ‰ βα, so
π1pS1 _ S1q is our first example of a nonabelian fundamental group.
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Example 12.7. Recall from Exercise 7.27 that for each n P N, one can identify Sn with the
one point compactification of Rn, a space defined by adjoining a single point called “8” to Rn:

Sn – Rn Y t8u.
This gives rise to an inclusion map Rn

iãÑ Sn with image Snzt8u. We claim that for any compact
subset K Ă R3 such that R3zK is path-connected, and any choice of base point p P R3zK,

i˚ : π1pR3zK, pq Ñ π1pS3zK, pq
is an isomorphism. To see this, define the open subset A :“ R3zK Ă S3zK, and choose B0 Ă S3zK
to be an open ball about 8, i.e. a set of the form pR3zĞBRp0qqYt8u where ĞBRp0q Ă R3 is any closed
ball large enough to contain K. Since p might not be contained in B0 but R3zK is path-connected,
we can then define a larger set B by adjoining to B0 the neighborhood in R3zK of some path from
a point in B0 to p: this can be done so that both B0 and B are homeomorphic to an open ball, so in
particular they are contractible. The intersection AXB is then Bzt8u and is thus homoemorphic
to R3zt0u and homotopy equivalent to S2, implying π1pA X Bq “ 0. The Seifert-van Kampen
theorem therefore gives an isomorphism π1pR3zK, pq ˚ π1pB, pq Ñ π1pS3zK, pq, but π1pB, pq is the
trivial group, so this proves the claim.

A frequently occuring special case of this example is when K Ă R3 is a knot, i.e. the image of
an embedding S1 ãÑ R3. The fundamental group π1pR3zKq is then called the knot group of K,
and the argument above shows that we are free to adjoin a point at infinity and thus replace the
knot group with π1pS3zKq. This will be convenient for certain computations.

As in the previous lecture, we shall conclude this one by introducing some more terminology
from combinatorial group theory in order to state a more usable variation on the Seifert-van
Kampen theorem.

Definition 12.8. Given a set S, the free group on S is defined as

FS :“ ˚
αPS

Z,

or in other words, the set of all reduced words ap11 a
p2
2 . . . a

pN
N for N ě 0, pi P Z with pi ‰ 0,

ai P S and ai ‰ ai`1 for every i, with the product defined by concatenation of words followed by
reduction. The elements of S are called the generators of FS .

Example 12.9. The computation in Example 12.6 gives π1pS1 _ S1q – Ftα,βu – Z ˚Z, where
the set generating Ftα,βu consists of the two loops α and β parametrizing the two circles that form
S1 _ S1.

Proposition 12.10. For any set S, group G and map φ : S Ñ G, there is a unique group
homomorphism Φ : FS Ñ G satisfying Φpaq “ φpaq for single-letter words a P FS defined by
elements a P S.

Proof. Writing elements of FS in the form a
p1
1 a

p2
2 . . . a

pN
N , there is clearly only one formula

for Φ : FS Ñ G that will match φ on single-letter words and also be a homomorphism, namely

Φpap11 . . . a
pN
N q “ φpa1qp1 . . . φpaN qpN .

It is straightforward to check that this defines a homomorphism. �

Proposition 12.11. Every group is isomorphic to a quotient of a free group by some normal
subgroup.

Proof. Pick any subset S Ă G that generates G, e.g. one can choose S :“ G, though smaller
subsets are usually also possible. Then the unique homomorphism Φ : FS Ñ G sending each
g P S Ă FS to g P G is surjective, thus Φ descends to an isomorphism FS{ kerΦÑ G. �
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Definition 12.12. Given a set S, a relation in S is defined to mean any equation of the form
“a “ b” where a, b P FS .

Definition 12.13. For any set S and a set R consisting of relations in S, we define the group

tS | Ru :“ FS

M
xR1yN

where R1 is the set of all elements of the form ab´1 P FS for relations “a “ b” in R. The elements
of S are called the generators of this group, and elements of R are its relations.

Let us pause a moment to interpret this definition. By a slight abuse of notation, we can write
each element of tS | Ru as a reduced word w formed out of letters in S, with the understanding that
w represents an equivalence class in the quotient FS{xR1yN , thus it is possible to have w “ w1 in
tS | Ru even if w and w1 are distinct elements of FS . This will happen if and only if w´1w1 belongs
to the normal subgroup xR1yN , and in particular, it happens whenever “w “ w1” is one of the
relations in R. The relations are usually necesary because most groups are not free groups: while
free groups are easy to describe (they depend only on their generators), most groups have more
interesting structure than free groups, and this structure is encoded by relations. Proposition 12.11
implies that every group can be presented in this way, i.e. every group is isomorphic to tS | Ru
for some set of generators S and relations R. Indeed, if G “ FS{ kerΦ for a set S and a surjective
homomorphism Φ : FS Ñ G, then we can take S as the set of generators and define R to consist
of all relations of the form “a “ b” such that ab´1 P kerΦ; the latter is equivalent to the condition
Φpaq “ Φpbq, so the relations tell us precisely when two products of generators give us the same
element in G.

Definition 12.14. Given a group G, a presentation of G consists of a subset S Ă G together
with a set R of relations in S such that the unique homomorphism FS Ñ G matching the inclusion
S ãÑ G on single-letter words descends to a group isomorphism

tS | Ru –ÝÑ G.

We say that G is finitely presented if it admits a presentation such that S and R are both finite
sets.

Example 12.15. The group tau :“ ta | Hu consisting of a single generator a with no relations
is isomorphic to the free group Ftau on one element. The isomorphism ap ÞÑ p identifies this with
the integers Z.

Example 12.16. The group ta, b | ab “ bau has two generators and is abelian, so it is isomor-
phic to Z2. An explicit isomorphism is defined by apbq ÞÑ pp, qq. To see that this is an isomorphism,
observe first that since Fta,bu is free, there exists a unique homomorphism Φ : Fta,bu Ñ Z2 with
Φpaq “ p1, 0q and Φpbq “ p0, 1q, and Φ is clearly surjective since it necesarily sends apbq to pp, qq.
Since Z2 is abelian, we also have

Φpabpbaq´1q “ Φpaba´1b´1q “ Φpaq ` Φpbq ´ Φpaq ´ Φpbq “ 0,

so kerΦ contains abpbaq´1 and therefore also contains the smallest normal subgroup containing
abpbaq´1, which is the group xR1yN appearing in the quotient ta, b | ab “ bau “ Fta,bu{xR1yN . This
proves that Φ descends to a surjective homomorphism ta, b | ab “ bau Ñ Z2. Finally, observe that
since ab “ ba in the quotient ta, b | ab “ bau, every reduced word in Fta,bu is equivalent in this
quotient to a word of the form apbq for some pp, qq P Z2, and Φpapbqq then vanishes if and only if
apbq “ e, proving that Φ is also injective.

Example 12.17. The group ta | ap “ eu is isomorphic to Zp :“ Z{pZ, with an explicit
isomorphism defined in terms of the unique homomorphism Ftau Ñ Zp that sends a to r1s.
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Example 12.18. We will prove in Lecture 14 that for the trefoil knot K Ă R3 Ă S3, (see
Lecture 8), π1pS3zKq – ta, b | a2 “ b3u, and Exercise 12.20 below proves that this group is not
abelian. By contrast, we will also see that the unknot K0 Ă R3 Ă S3 has π1pS3zK0q – Z, which
is abelian. This implies via Example 12.7 that π1pR3zKq fl π1pR3zK0q, so R3zK and R3zK0 are
not homeomorphic, hence the trefoil cannot be deformed continuously to the unknot.

Note that for any given set of generators S and relations R, it is often possible to reduce these
to smaller sets without changing the isomorphism class of the group that they define. For the
relations in particular, it is easy to imagine multiple distinct choices of the subset R1 Ă FS that
will produce the same normal subgroup xR1yN . In general, it is a very hard problem to determine
whether or not two groups described via generators and relations are isomorphic; in fact, it is
known that there does not exist any algorithm to decide whether a given presentation defines the
trivial group. Nonetheless, generators and relations provide a very convenient way to describe
many simple groups that arise in practice, especially in the context of van Kampen’s theorem.
This is due to the following reformulation of Theorem 12.4 for the case of two open subsets when
all fundamental groups are finitely presented.

Corollary 12.19 (Seifert-van Kampen for finitely-presented groups). Suppose X “ A Y B

where A,B Ă X are open and path-connected subsets such that AXB is also path-connected, and
jA : A X B ãÑ A and jB : A X B ãÑ B denote the inclusions. Suppose moreover that there exist
finite presentations

π1pAq –  taiu ˇ̌ tRju( , π1pBq –  tbku ˇ̌ tSℓu( , π1pAXBq –  tcpu ˇ̌ tTqu( ,
with the indices i, j, k, ℓ, p, q each ranging over finite sets. Then

π1pXq –  taiu Y tbku ˇ̌ tRju Y tSℓu Y tpjAq˚cp “ pjBq˚cpu( .
�

In other words, as generators for π1pXq, one can take all generators of π1pAq together with all
generators of π1pBq. The relations must then include all of the relations among the generators of
π1pAq and π1pBq separately, but there may be additional relations that mix the generators from
π1pAq and π1pBq: these extra relations set pjAq˚cp P π1pAq equal to pjBq˚cp P π1pBq for each of
the generators cp of π1pA X Bq. These extra relations are exactly what is needed to describe the
normal subgroup kerΦ in the statement of Theorem 12.4. The relations in π1pAXBq do not play
any role.

Exercise 12.20. Let us prove that the finitely-presented groupG “ tx, y | x2 “ y3u mentioned
in Example 12.18 is nonabelian.

(a) Denoting the identity element by e, consider the related group

H “ tx, y | x2 “ y3, y3 “ e, xyxy “ eu.
Show that every element of H is equivalent to one of the six elements e, x, y, y2, xy, xy2 P
H . This proves that H has order at most six, though in theory it could be less, since
some of those six elements might still be equivalent to each other. To prove that this is
not the case, construct (by writing down a multiplication table) a nonabelian group H 1
of order six that is generated by two elements a, b satisfying the relations a2 “ b3 “ e and
abab “ e. Show that there exists a surjective homomorphism H Ñ H 1, which is therefore
an isomorphism since |H| ď 6.
Remark: You don’t need this fact, but if you’ve seen some of the standard examples of
finite groups before, you might in any case notice that H is isomorphic to the dihedral
group (Diedergruppe) of order 6.
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(b) Show that H is a quotient of G by some normal subgroup, and deduce that G is also
nonabelian.

Exercise 12.21. Given a group G, the commutator subgroup rG,Gs Ă G is the subgroup
generated by all elements of the form

rx, ys :“ xyx´1y´1

for x, y P G.
(a) Show that rG,Gs Ă G is always a normal subgroup, and it is trivial if and only if G is

abelian.
(b) The abelianization (Abelisierung) of G is defined as the quotient group G

LrG,Gs. Show
that this group is always abelian, and it is equal to G if G is already abelian.13

(c) Given any two abelian groups G,H , find a natural isomorphism from the abelianization
of the free product G ˚H to the Cartesian product GˆH .

(d) Prove that the abelianization of tx, y | x2 “ y3u is isomorphic to Z.
Hint: An isomorphism ϕ from the abelianization to Z will be determined by two integers,
ϕpxq and ϕpyq. If ϕ exists, how must these two integers be related to each other?

13. Proof of the Seifert-van Kampen theorem

We have put off the proof of the Seifert-van Kampen theorem long enough. Here again is the
statement.

Theorem 13.1 (Seifert-van Kampen). Suppose X “ Ť
αPJ Aα for a collection of open and

path-connected subsets tAα Ă XuαPJ , iα : Aα ãÑ X and jαβ : Aα X Aβ ãÑ Aα denote the natural
inclusion maps for α, β P J , and p P ŞαPJ Aα.

(1) If Aα XAβ is path-connected for every pair α, β P J , then the unique homomorphism

Φ : ˚
αPJ

π1pAα, pq Ñ π1pX, pq
that restricts to each subgroup π1pAα, pq Ă ˚βPJ π1pAβ , pq as piαq˚ is surjective.

(2) If additionally Aα XAβ XAγ is path-connected for every triple α, β, γ P J , then
kerΦ “ xSyN ,

meaning kerΦ is the smallest normal subgroup containing the set

S :“
!
pjαβq˚rγspjβαq˚rγs´1

ˇ̌̌
α, β P J, rγs P π1pAα XAβ , pq

)
.

In particular, if we abbreviate F :“ ˚αPJ π1pAα, pq, then Φ descends to an isomorphism

F
M
xSyN Ñ π1pX, pq.

Proof. We proved the first statement already in Lecture 11, so assume the hypothesis of the
second statement holds. As observed in the previous lecture, Φppjαβq˚γq “ Φppjβαq˚γq for every
α, β P J and γ P π1pAα X Aβ , pq, thus kerΦ clearly contains xSyN , and in particular, Φ descends
to a surjective homomorphism F

LxSyN Ñ π1pX, pq. We need to show that this homomorphism is
injective, or equivalently, that whenever Φpwq “ Φpw1q for a pair of reduced words w,w1 P F , their
equivalence classes in F

LxSyN must match.

13Note that ifG “ tS | Ru is a finitely-presented group with generators S and relations R, then its abelianization
is tS | R1u where R1 is the union of R with all relations of the form “ab “ ba” for a, b P S.
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Given a loop p
γ
 p in X , let us say that a factorization of γ is any finite sequence tpγi, αiquNi“1

such that αi P J and p
γi
 p is a loop in Aαi

for each i “ 1, . . . , N , and

γ „
h` γ1 ¨ . . . ¨ γN .

The first half of the theorem follows from the fact (proved in Lemma 11.2) that every γ has a
factorization. Now observe that any factorization as described above determines a reduced word
w P F , defined as the reduction of the word rγ1s . . . rγN s with rγis P π1pAαi

, pq for i “ 1, . . . , N ,
and this word satisfies Φpwq “ rγs. Conversely, every reduced word w P Φ´1prγsq can be realized
as a factorization of γ by choosing specific loops to represent the letters in w. The theorem will
then follow if we can show that any two factorizations of γ can be related to each other by a finite
sequence of the following operations and their inverses:

(A) Given two adjacent loops γi and γi`1 such that αi “ αi`1, replace them with their
concatenation p

γi¨γi`1

 p. (This does not change the corresponding reduced word in F ,
as it just implements a step in the reduction of an unreduced word.)

(B) Replace some γi with any loop γ1i that is homotopic (with fixed end points) in Aαi
. (This

also does not change the corresponding reduced word in F ; in fact it doesn’t even change
the unreduced word from which it is derived.)

(C) Given a loop γi that lies in Aαi
X Aβ for some β P J , replace αi with β. (In the

corresponding reduced word in F , this replaces a letter of the form pjαiβq˚rγis P π1pAαi
, pq

with one of the form pjβαi
q˚rγis P π1pAβ , pq, thus it changes the word but does not change

its equivalence class in F
LxSyN .)

We now prove that any two factorizations tpγi, αiquNi“1 and tpγ1i, α1iquN 1
i“1 of γ are related by these

operations. By assumption γ1 ¨ . . . ¨ γN „
h` γ

1
1 ¨ . . . ¨ γ1N 1 , so after choosing suitable parametrizations

of both of these concatenations on the unit interval I,14 there exists a homotopy

H : I2 Ñ X

with Hp0, ¨q “ γ1 ¨ . . . ¨ γN , Hp1, ¨q “ γ11 ¨ . . . ¨ γ1N and Hps, 0q “ Hps, 1q “ p for all s P I. Since I2 is
compact, one can find a number ǫ ą 0 such that for every ps, tq P I2,15 the intersection of I2 with
the box

rs´ 2ǫ, s` 2ǫs ˆ rt´ 2ǫ, t` 2ǫs Ă R2

is contained in H´1pAαq for some α P J . For suitably small ǫ “ 1{n with n P N, we can therefore
break up I2 into n2 boxes of side length ǫ which are each contained in H´1pAαq for some α P J
(possibly a different α for each box), forming a grid in I2. For each box in the diagram there may
be multiple α P J that satisfy this condition, but let us choose a specific one to associate to each
box. (These choices are indicated by the three colors in Figure 3.) Notice that each vertex in the
grid is contained in the intersection of H´1pAαq for each of the α P J associated to boxes that it
touches. We can now perturb this diagram slightly to fill I2 with a collection of boxes of slightly
varying sizes such that every vertex in the interior touches only three of them (see the right side
of Figure 3). We can similarly assume after such a perturbation that the vertices in ts “ 0u and
ts “ 1u never coincide with the starting or ending times of the loops γi, γ1i in the concatenations

14Recall that concatenation of paths is associative up to homotopy, so the N-fold concatenation γ1 ¨ . . . ¨ γN is
not a uniquely determined path I Ñ X if N ą 2, but it is unique up to homotopy with fixed end points.

15I do not consider this statement completely obvious, but it is a not very difficult exercise in point-set topology,
and since that portion of the course is now over, I would rather leave it as an exercise than give the details here.
Here is a hint: if the claim is not true, one can find a sequence psk, tkq P I2 such that for each k, the intersection
of I2 with the box of side length 1{k about psk, tkq is not fully contained in any of the subsets H´1pAαq. This
sequence has a convergent subsequence. What can you say about its limit?
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perturbation

PSfrag replacements
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Figure 3. A grid on the domain of the homotopy H : I2 Ñ X between two
factorizations γ1 ¨ . . . ¨ γN and γ11 ¨ . . . ¨ γ1N 1 of a loop p

γ
 p in X . In this example,

there are three open sets Aα, Aβ , Aγ Ă X , and colors are used to indicate that
each of the small boxes filling I2 has image lying in (at least) one of these subsets.
In the perturbed picture at the right, every vertex in the interior touches exactly
three boxes.

γ1 ¨ . . . ¨γN and γ11 ¨ . . . ¨γ1N 1 . Moreover, each vertex still lies in the same intersection of sets H´1pAαq
as before, assuming the perturbation is sufficiently small.

Now suppose ps, tq P I2 is a vertex in the interior of the perturbed grid. Then ps, tq is on the
boundary of exactly three boxes in the diagram, each of which belongs to one of the sets H´1pAαq,
H´1pAβq and H´1pAγq for three associated elements α, β, γ P J (they need not necessarily be
distinct). If p0, tq is a vertex with t R t0, 1u, then it is on the boundary of exactly two boxes
and thus lies in H´1pAα X Aβq for two associated elements α, β P J , but it also lies in H´1pAγq
where γ :“ αi is associated to the particular path γi whose domain as part of the concatenation
Hp0, ¨q “ γ1 ¨ . . . ¨ γN contains p0, tq. For vertices p1, tq with t R t0, 1u, choose Aγ :“ Aα1i similarly
in terms of the concatenation γ11 ¨ . . . ¨ γ1N 1 . In any of these cases, we have associated to each vertex
ps, tq a path-connected set Aα XAβ XAγ that contains Hps, tq, thus we can choose a path16

Hps, tq δps,tq p in Aα XAβ XAγ .

Since Hps, tq “ p for t P t0, 1u, this definition can be extended to vertices with t P t0, 1u by
defining δps,tq as the trivial path. Now if E is any edge in the diagram, i.e. a side of one of the
boxes, connecting two neighboring vertices ps0, t0q and ps1, t1q, then we can identify E with the
unit interval in order to regard H|E : E Ñ X as a path, and thus associate to E a loop

p
γE
 p in Aα XAβ , γE :“ δ´1

ps0,t0q ¨H|E ¨ δps1,t1q,
where α, β P J are the two (not necessarily distinct) elements associated to the boxes bordered
by E.

16This is the specific step where we need the assumption that triple intersections are path-connected. If
you’re curious to see an example of the second half of the theorem failing without this assumption, I refer you to
[Hat02, p. 44].
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With these choices in place, any path through I2 that follows a sequence of edges E1, . . . , Ek
starting at some vertex in ps0, 0q and ending at a vertex ps1, 1q produces various factorizations of γ
in the form tpγEi

, βiquki“1. Here there is some freedom in the choices of βi P J : whenever a given
edge Ei lies in H´1pAβq XH´1pAγq, we can choose βi to be either β or γ and thus produce two
valid factorizations, which are related to each other by operation (C) in the list above.

We can now describe a procedure to modify the factorization tpγi, αiquNi“1 to tpγ1i, α1iquN 1
i“1. We

show first that tpγi, αiquNi“1 is equivalent via our three operations to the factorization corresponding
to the sequence of edges in ts “ 0u moving from t “ 0 to t “ 1. This is not so obvious because,
although Hp0, ¨q is a parametrization of the concatenated path γ1 ¨ . . . ¨ γN , the times that mark
the boundaries between one path and the next in this concatenation need not have anything to
do with the vertices of our chosen grid. Instead, our perturbation of the grid ensured that each γi
in the concatenation hits vertices only in the interior of its domain, not at starting or end points.
Denote by p0, t1q, . . . , p0, tm´1q the particular grid vertices in the domain of γi, thus splitting up
γi into a concatenation of paths γi “ γ1i ¨ . . . ¨ γmi which have these vertices as starting and/or end
points. Then

γi „
h` pγ

1
i ¨ δp0,t1qq ¨ pδ´1

p0,t1q ¨ γ2i ¨ δp0,t2qq ¨ . . . ¨ pδ´1
p0,tm´1q ¨ γmi q in Aαi

.

We can now apply operations (B) and (A) in that order to replace γi with the sequence of loops
of the form δ´1

p0,tj´1q ¨ γji ¨ δp0,tjq in Aαi
as indicated above. The result is a new factorization that

has more loops in the sequence, but the resulting concatenation is broken up along points that
include all vertices in ts “ 0u. It is also broken along more points, corresponding to the pieces of
the original concatenation γ1 ¨ . . . ¨ γN , but after applying operation (C) if necessary, we can now
apply operation (A) to combine all adjacent loops whose domains belong to the same edge. The
result is precisely the factorization corresponding to the sequence of edges in ts “ 0u. The same
procedure can be used to modify tpγ1i, α1iquN 1

i“1 to the factorization corresponding to the sequence
of edges in ts “ 1u.

To finish, we need to show that the factorization given by the edges in ts “ 0u can be trans-
formed into the corresponding factorization at ts “ 1u by applying our three operations. The core
of the idea for this is shown in Figure 4, where the purple curves show two sequences of edges which
represent two factorizations. In this case the difference between one path and the other consists
only of replacing two edges on adjacent sides of a particular box Q Ă I2 with their two opposite
sides, and we can change from one to the other as follows. First, if the box Q is in H´1pAαq,
apply the operation (C) to both factorizations until all the loops corresponding to sides of Q are
regarded as loops in Aα. Having done this, both factorizations now contain two consecutive loops
in Aα that correspond to two sides of Q, so we can apply the operation (A) to concatenate each of
these pairs, reducing two loops to one distinguished loop through Aα in each factorization. Those
two distinguished loops are also homotopic in Aα, as one can see by choosing a homotopy of paths
through the square Q that connects two adjacent sides to their two opposite sides (Figure 4, right).
This therefore applies the operation (B) to change one factorization to the other.

We note finally that for any sequence of edges that includes edges in tt “ 0u or tt “ 1u, those
edges represent the constant path at the base point p, and since concatenation with constant paths
produces homotopic paths, adding these edges or removing them from the diagram changes the
factorization by a combination of operations (A) and (B). It now only remains to observe that the
path of edges along ts “ 0u can always be modified to the path of edges along ts “ 1u by a finite
sequence of the modifications just described.

�
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Figure 4. The magenta paths in both pictures are sequences of edges that define
factorizations of γ, differing only at pairs of edges that surround a particular boxQ.
We can change one to the other by applying the three operations in our list.

Exercise 13.2. Recall that the wedge sum of two pointed spaces pX, xq and pY, yq is defined
as X _ Y “ pX > Y q{„ where the equivalence relation identifies the two base points x and y. It is
commonly said that whenever X and Y are both path-connected and are otherwise “reasonable”
spaces, the formula

(13.1) π1pX _ Y q – π1pXq ˚ π1pY q

holds. We saw for instance in Example 12.6 that this is true when X and Y are both circles. The
goal of this problem is to understand slightly better what “reasonable” means in this context, and
why such a condition is needed.

(a) Show by a direct argument (i.e. without trying to use Seifert-van Kampen) that if X and
Y are both Hausdorff and simply connected, then X _ Y is simply connected.
Hint: Hausdorff implies that Xztxu and Y ztyu are both open subsets. Consider loops
γ : r0, 1s Ñ X_Y based at rxs “ rys and decompose r0, 1s into subintervals in which γptq
stays in either X or Y .

(b) Call a pointed space pX, xq nice17 if x has an open neighborhood that admits a deforma-
tion retraction to x. Show that the formula (13.1) holds whenever pX, xq and pY, yq are
both nice, and more generally, the formula

π1

˜ł
αPJ

Xα

¸
– ˚
αPJ

π1pXαq

holds for any (possibly infinite) collection of nice pointed spaces tpXα, xαquαPJ .

17Not a standardized term, I made it up.
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(c) Here is an example of a space that is not “nice” in the sense of part (b):
for each n P N, let S1

n Ă R2 denote the circle of radius 1{n centered
at p1{n, 0q. The union of all these circles is a space known informally
as the Hawaiian earring

H :“ ď
nPN

S1
n Ă R2.

As usual, we assign to H the subspace topology induced by the stan-
dard topology of R2. Show that in this space, the point p0, 0q does
not have any simply connected open neighborhood.

(d) It is tempting to liken the Hawaiian earring H to the infinite wedge sum of circles X :“Ž8
n“1 S

1, defined as above by choosing a base point in each copy of the circle and then
identifying all the base points in the infinite disjoint union

š8
n“1 S

1. Both are unions of
infinite collections of circles that all intersect each other at one point. Show in fact that
there exists a continuous map

f : X Ñ H

that is a bijection sending the natural base point of
Ž
n S

1 to p0, 0q P Şn S
1
n, but that X

(unlike H) is a “nice” space, hence f : X Ñ H cannot be a homeomorphism.
Hint: Continuity of maps defined on wedge sums is easy to check—see Exercise 10.5.

(e) Show that there exists a surjective continuous map S1 Ñ H , but continuous maps S1 Ñ X

are never surjective.
Hint: In H , start at p0, 0q and traverse the largest circle first, then continue to smaller
circles.

(f) Show that for any finite subset J Ă N, there exists a retraction

rJ : H Ñ ď
nPJ

S1
n Ă H,

and deduce from this that the map f˚ : π1pXq Ñ π1pHq is injective.
Hint: Unlike H ,

Ť
nPJ S1

n really is homeomorphic to a wedge sum of circles, the crucial
detail in this case being that there are only finitely many.

(g) Writing rn :“ rtnu : H Ñ S1
n for each individual value of n P N, show that the homomor-

phism
π1pHq Ñ

ź
nPN

π1pS1
nq –

ź
nPN

Z

determined by the maps prnq˚ : π1pHq Ñ π1pS1
nq is surjective, and deduce from this that

f˚ : π1pXq Ñ π1pHq is not injective.
Remark: The direct product

ś
nPN Z of infinitely many groups (or in this case copies of the

same group) is much larger than the direct sum
À

nPN Z, and in fact, the standard “Cantor
diagonal trick” that is typically used for proving the uncountability of R implies thatś
nPN Z is likewise an uncountable set. It follows that π1pHq itself is uncountable, whereas

π1pXq – ˚nPN Z, being generated by countably many countable groups, is countable.

14. Surfaces and torus knots

We will discuss two applications of the Seifert-van Kampen theorem in this lecture: one to the
study of surfaces, and the other to knots. Let’s begin with surfaces.

Someday, when we talk about topological manifolds in this course (namely in Lecture 18), I
will give you a precise mathematical definition of what the word “surface” means, but that day is
not today. For now, we’re just going to consider a class of specific examples that can be presented
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in a way that is convenient for computing their fundamental groups. A theorem we will discuss
later in the semester implies that all compact surfaces can be presented in this way, but that is
rather far from obvious.

We are going to consider pictures of polygons such as the following:

PSfrag replacements
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c

Suppose in general that P Ă R2 is a compact region bounded by some collection of N smooth
curves that are arranged in a cyclic sequence with matching end points and do not intersect each
other except at the matching end points. We will refer to these curves as edges, and label each of
them with a letter ai and an arrow. The letters a1, . . . , aN need not all be distinct. We then define
a topological space

X :“ P
L„,

where the equivalence relation is trivial on the interior of P but identifies all vertices with each
other, thus collapsing the set of vertices to a single point, and it also identifies any pair of edges
labeled by the same letter with each other via a homeomorphism that matches the directions of
the arrows. (The exact choice of this homeomorphism will not matter.) In the picture above, this
means the two edges labeled with “a” get identified, and so do the two edges labeled with “b”. (By
the time you’ve read to the end of this lecture, you should be able to form a fairly clear picture of
this surface in your mind, but I suggest reading somewhat further before you try this.)

Example 14.1. Take P to be a square whose sides have two labels a and b such that opposite
sides of the square have matching letters and arrows pointing in the same direction. You could then
build a physical model of X “ P {„ in two steps: take a square piece of paper and bend it until
you can tape together the two opposite sides labeled a, producing a cylinder. The two boundary
components of this cylinder are circles labeled b, so if you were doing this with a sufficiently
stretchable material (paper is not stretchable enough), you could then bend the cylinder around
and tape together its two circular boundary components. The result is what’s depicted in the
picture at the right, a space conventionally known as the 2-torus (or just “the torus” for short)
and denoted by T2. It is homeomorphic to the product S1 ˆ S1.

PSfrag replacements

a

a

bb

Example 14.2. If you relax your usual understanding of what a “polygon” is, you can also
allow edges of the polygon to be curved as in the following example with only two edges:
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The polygon itself is homeomorphic to the disk D2, but identifying the two edges via a homeomor-
phism matching the arrows means we identify each point on BD2 with its antipodal point. The
result matches the second description of RP2 that we saw in the first lecture, see Example 1.2.

Theorem 14.3. Suppose X “ P {„ is a space defined as described above by a polygon P with
N edges labeled by (possibly repeated) letters a1, . . . , aN , where we are listing them in the order in
which they appear as the boundary is traversed once counterclockwise. Let G denote the set of all
letters that appear in this list, and for each i “ 1, . . . , N , write pi “ 1 if the arrow at edge i points
counterclockwise around the boundary and pi “ ´1 otherwise. Then π1pXq is isomorphic to the
group with generators G and exactly one relation ap11 . . . a

pN
N “ e:

π1pXq –  
G

ˇ̌
a
p1
1 . . . a

pN
N “ e

(
.

Proof. Let P 1 :“ BPL„ Ă X . Since all vertices are identified to a point, P 1 is homeomorphic
to a wedge sum of circles, one for each of the letters that appear as labels of edges, hence by an
easy application of the Seifert-van Kampen theorem (cf. Exercise 13.2(b)),

π1pP 1q – π1pS1q ˚ . . . ˚ π1pS1q – Z ˚ . . . ˚ Z “ FG,

the free group generated by the set G. Now decompose X into two open subsets A and B, where
A is the interior of the polygon (not including its boundary) and B is an open neighborhood
of P 1. We can arrange this so that AXB is homeomorphic to an annulus S1 ˆ p´1, 1q occupying
a neighborhood of BP in the interior of P , so for any choice of base point p P A X B, π1pA X
B, pq – Z is generated by a loop that circles around parallel to BP . Since the neighborhood
of BP admits a deformation retraction to BP , there is similarly a deformation retraction of B
to P 1, giving π1pB, pq – π1pP 1q “ FG. Likewise, A is homeomorphic to an open disk, hence
π1pAq “ 0. The Seifert-van Kampen theorem then idenifies π1pX, pq with a quotient of the free
product π1pA, pq˚π1pB, pq – π1pP 1q “ FG, modulo the normal subgroup generated by the relation
that if jA : AXB ãÑ A and jB : AXB ãÑ B denote the inclusion maps and rγs P π1pAXB, pq – Z

is a generator, then pjAq˚rγs “ pjBq˚rγs. The left hand side of this equation is the trivial element
since π1pAq “ 0. On the right hand side, we have the element of π1pB, pq represented by a
loop p

γ
 p in the annulus A X B that is parallel to the boundary of the polygon. Under the

deformation retraction of A X B to P 1, γ becomes the concatenated loop ap11 . . . a
pN
N defined by

composing a traversal of BP with the quotient projection BP Ñ P 1, thus producing the relation
a
p1
1 . . . a

pN
N “ e. �

Example 14.4. Applying the theorem to the torus in Example 14.1 gives

π1pT2q – ta, b | aba´1b´1 “ eu “ ta, b | ab “ bau – Z2.

Notice that this matches the result of applying Exercise 9.13(a), which gives π1pS1ˆS1q – π1pS1qˆ
π1pS1q – Zˆ Z.

Example 14.5. For the picture of RP2 in Example 14.2, we obtain

π1pRP2q – ta | a2 “ eu – Z2.

We already saw in Example 11.7 that π1pRP2q is generated by a single loop γ : S1 Ñ RP2, the
projection to RP

2 “ S2{„ of a path that goes halfway around the equator of the sphere from one
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point to its antipodal point. We have now shown that rγs really is a nontrivial element of π1pRP2q,
but its square is trivial. The latter was also observed in Example 11.7, where it followed essentially
from the fact that S2 is simply connected: the concatenation of γ with itself is the projection to
RP

2 of a path that goes all the way around the equator in S2, i.e. it is a loop, and can then be
filled in with a map D2 Ñ S2 since π1pS2q “ 0. Composing the map D2 Ñ S2 with the projection
S2 Ñ RP

2 then contracts the loop γ2 in RP
2. However, we could not have deduced so easily from

our knowledge of S2 the fact that γ itself is not a contractible loop in RP2; that required the full
strength of the Seifert-van Kampen theorem.

In Lecture 1, I drew you some pictures of topological spaces that I called “surfaces of genus g”
for various values of a nonnegative integer g. I will now give you a precise definition of this space
which, unfortunately, looks completely different from the original pictures, but we will soon see
that it is equivalent.

Definition 14.6. For any integer g ě 0, the closed orientable surface Σg of genus
(Geschlecht) g is defined to be S2 if g “ 0, and otherwise Σg :“ P {„ where P is a polygon
with 4g edges labeled by 2g distinct letters tai, biugi“1 in the order

a1, b1, a1, b1, a2, b2, a2, b2, . . . , ag, bg, ag, bg,

such that the arrows point counterclockwise on the first instance of each letter in this sequence
and clockwise on the second instance.

Once you’ve fully digested this definition, you may recognize that Σ1 is defined by the square
in Example 14.1, i.e. it is the torus T2. The diagram for Σ2 is shown at the bottom of Figure 5.
The projective plane RP2 is not an “orientable” surface, so it is not Σg for any g, though it is
sometimes called a “non-orientable surface of genus 1”. This terminology will make more sense
when we later discuss the classification of surfaces.

In order to understand what Σg has to do with pictures we’ve seen before, we consider an
operation on surfaces called the connected sum. It can be defined on any pair of surfaces Σ and
Σ1, or more generally, on any pair of n-dimensional topological manifolds, though for now we will
consider only the case n “ 2. Since I haven’t yet actually given you precise definitions of the terms
“surface” and “topological manifold,” for now you should just assume Σ and Σ1 come from the list
of specific examples Σ0 “ S2, Σ1 “ T2, Σ2, Σ3, . . . defined above.

Given a pair of inclusions D2 ãÑ Σ and D2 ãÑ Σ1, the connected sum (zusammenhängende
Summe) of Σ and Σ1 is defined as the space

Σ#Σ1 :“
´
ΣzD̊2

¯
YS1

´
Σ1zD̊2

¯
.

The result of this operation is not hard to visualize in many concrete examples, see e.g. Figure 6.
More generally, for topological n-manifoldsM andM 1, one defines the connected sum M#M 1

by choosing inclusions of Dn into M and M 1, then removing the interiors of these disks and gluing
together MzD̊n and M 1zD̊n along Sn´1 “ BDn. The notation M#M 1 obscures the fact that the
definition of the connected sum depends explicitly on choices of inclusions of Dn into both spaces,
and it is not entirely true in general that M#M 1 up to homeomorphism is independent of this
choice. It is true however for surfaces:

Lemma 14.7 (slightly nontrivial). Up to homeomorphism, the connected sum Σ#Σ1 of two
closed connected surfaces Σ and Σ1 does not depend on the choices of inclusions D2 ãÑ Σ and
D2 ãÑ Σ1.

Sketch of a proof. A complete proof of this would be too much of a digression and require
more knowledge about the classification of surfaces than is presently safe to assume, but I can
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Figure 5. The connected sum T2#T2 is formed by cutting holes D2 out of two
copies of T2 along some loop γ, and then gluing together the two copies of T2zD2.
The result is Σ2, the closed orientable surface of genus 2.

give the rough idea. The main thing you need to believe is that “up to orientation” (I’ll come
back to that detail in a moment), any inclusion i0 : D2 ãÑ Σ can be deformed into any other
inclusion i1 : D2 ãÑ Σ through a continuous family of inclusions it : D2 ãÑ Σ for t P I. You should
imagine this roughly as follows: since D2 is homeomorphic via the obvious rescalings to the disk
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Figure 6. The connected sum of two surfaces is defined by cutting a hole out
of each of them and gluing the rest together along the resulting boundary circle.

D2
r of radius r for every r ą 0, one can first deform i0 and i1 to inclusions whose images lie in

arbitrarily small neighborhoods of two points z0, z1 P Σ. Now since Σ is connected (and therefore
also path-connected, as all topological manifolds are locally path-connected), we can choose a path
γ from z0 to z1, and the idea is then to define it as a continuous family of inclusions D2 ãÑ Σ such
that the image of it lies in an arbitrarily small neighborhood of γptq for each t. You should be able
to imagine concretely how to do this in the special case Σ “ R2. That it can be done on arbitrary
connected surfaces Σ depends on the fact that every point in Σ has a neighborhood homeomorphic
to R2 (in other words, Σ is a topological 2-manifold).

Now for the detail that was brushed under the rug in the previous paragraph: even if i0, i1 :

D2 ãÑ Σ are two inclusions that send 0 to the same point z P Σ and have images in an arbitrarily
small neighborhood of z, it is not always true that i0 can be deformed to i1 through a continuous
family of inclusions. For example, if we take Σ “ R2, it is not true for the two inclusions i0, i1 :

D2 ãÑ R2 defined by i0px, yq “ pǫx, ǫyq and i1px, yq “ pǫx,´ǫyq. In this example, both inclusions
are defined as restrictions of injective linear maps R2 Ñ R2, but one has positive determinant and
the other has negative determinant, so one cannot deform from one to the other through injective
linear maps. One can use the technology of local homology groups (which we’ll cover next semester)
to remove the linearity from this argument and show that there also is no deformation from i0
to i1 through continuous inclusions. The issue here is one of orientations : i0 is an orientation-
preserving map, while i1 is orientation-reversing. It turns out that two inclusions of D2 into R2

can be deformed to each other through inclusions if and only if they are either both orientation
preserving or both orientation reversing. This obstruction sounds like bad news for our proof,
but the situation is saved by the following corollary of the classification of surfaces: every closed
orientable surface admits an orientation-reversing homeomorphism to itself. For example, if you
picture the torus as the usual tube embedded in R3 and you embed it so that it is symmetric
about some 2-dimensional coordinate plane, then the linear reflection through that plane restricts
to a homeomorphism of T2 that is orientation reversing. Once we see what all the other closed
orientable surfaces look like, it will be easy to see that one can do that with all of them. Actually,
it is also not so hard to see this for the surfaces Σg defined as polygons: you just need to choose
a sufficiently clever axis in the plane containing the polygon and reflect across it. Once this is
understood, you realize that the orientation of your inclusion D2 ãÑ Σ does not really matter, as
you can always replace it with an inclusion having the opposite orientation, and the picture you
get in the end will be homeomorphic to the original.

With this detail out of the way, you just have to convince yourself that if you have a pair of
continuous families of inclusions it : D2 ãÑ Σ and jt : D2 ãÑ Σ1 defined for t P r0, 1s, then the
resulting glued surfaces

Σ#tΣ
1 :“

´
ΣzitpD̊2q

¯
YS1

´
Σ1zjtpD̊2q

¯
are homeomorphic for all t. It suffices in fact to prove that this is true just for t varying in an
arbitrarily small interval pt0 ´ ǫ, t0 ` ǫq, since r0, 1s is compact and can therefore be covered by
finitely many such intervals. A homeomorphism Σ#tΣ

1 Ñ Σ#sΣ
1 for t ‰ s is easy to define if we

can first find a homeomorphism Σ Ñ Σ that sends itpzq ÞÑ ispzq for every z P D2 and similarly
on Σ1. This is not hard to construct if t and s are sufficiently close. �
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Now we are in a position to relate Σg with the more familiar pictures of surfaces.

Theorem 14.8. For any nonnegative integers g, h, Σg#Σh – Σg`h. In particular, Σg is the
connected sum of g copies of the torus:

Σg – T2# . . .#T2loooooomoooooon
g

Proof. The result becomes obvious if one makes a sufficiently clever choice of hole to cut
out of Σg and Σh, and Lemma 14.7 tells us that the resulting space up to homeomorphism is
independent of this choice. The example of g “ h “ 1 is shown in Figure 5, and the same idea
works (but is more effort to draw) for any values of g and h. �

Now that we know how to draw pretty pictures of the surfaces Σg, we can also observe that we
have already proved something quite nontrivial about them: we have computed their fundamental
groups!

Corollary 14.9 (of Theorem 14.3). The closed orientable surface Σg of genus g ě 0 has a
fundamental group with 2g generators and one relation, namely

π1pΣgq –  
a1, b1, . . . , ag, bg

ˇ̌
a1b1a

´1
1 b´1

1 a2b2a
´1
2 b´1

2 . . . agbga
´1
g b´1

g “ e
(
.

�

Using the commutator notation from Exercise 12.21, the relation in Corollary 14.9 can be
conveniently abbreviated as

gź
i“1

rai, bis “ e.

Exercise 14.10. Show that the abelianization (cf. Exercise 12.21) of π1pΣgq is isomorphic to
the additive group Z2g.
Hint: π1pΣgq is a particular quotient of the free group on 2g generators. Observe that the abelian-
ization of that free group is identical to the abelianization of π1pΣgq. (Why?)

By the classification of finitely generated abelian groups, Zm and Zn are never isomorphic
unless m “ n, so Exercise 14.10 implies that π1pΣgq and π1pΣhq are not isomorphic unless g “ h.
This completes the first step in the classification of closed surfaces:

Corollary 14.11. For two nonnegative integers g ‰ h, Σg and Σh are not homeomorphic. �

Exercise 14.12. Assume X and Y are path-connected topological manifolds of dimension n.
(a) Use the Seifert-Van Kampen theorem to show that if n ě 3, then π1pX#Y q – π1pXq ˚

π1pY q. Where does your proof fail in the cases n “ 1 and n “ 2?
(b) Show that the formula of part (a) is false in general for n “ 1, 2.

Exercise 14.13. For integers g,m ě 0, let Σg,m denote the compact surface obtained by
cutting m disjoint disk-shaped holes out of the closed orientable surface with genus g. (By this
convention, Σg “ Σg,0.) The boundary BΣg,m is then a disjoint union of m circles, e.g. the case
with g “ 1 and m “ 3 is shown in Figure 7.

(a) Show that π1pΣg,1q is a free group with 2g generators, and if g ě 1, then any simple
closed curve parametrizing BΣg,1 represents a nontrivial element of π1pΣg,1q.18
Hint: Think of Σg as a polygon with some of its edges identified. If you cut a hole in
the middle of the polygon, what remains admits a deformation retraction to the edges.
Prove it with a picture.

18Terminology: one says in this case that BΣg,1 is homotopically nontrivial or essential, or equivalently,
BΣg,1 is not nullhomotopic.
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Figure 7. The surface Σ1,3 as in Exercise 14.13.

(b) Assume γ is a simple closed curve separating Σg
into two pieces homeomorphic to Σh,1 and Σk,1
for some h, k ě 0. (The picture at the right shows
an example with h “ 2 and k “ 4.) Show that
the image of rγs P π1pΣgq under the natural pro-
jection to the abelianization of π1pΣgq is trivial.

PSfrag replacements

–
γ

Hint: What does γ look like in the polygonal picture from part (a)? What is it homotopic
to?

(c) Prove that if g ě 2 and G denotes the group
 
a1, b1, . . . , ag, bg

ˇ̌ śg
i“1rai, bis “ e

(
, then

for any proper subset J Ă t1, . . . , gu, śiPJ rai, bis is a nontrivial element of G.
Hint: Given j P J and ℓ P t1, . . . , guzJ , there is a homomorphism Φ : Fta1,b1,...,ag ,bgu Ñ
Ftx,yu that sends aj ÞÑ x, bj ÞÑ y, aℓ ÞÑ y, bℓ ÞÑ x and maps all other generators to the
identity. Show that Φ descends to the quotient G and maps

ś
iPJ rai, bis P G to something

nontrivial.
(d) Deduce from part (c) that if h ą 0 and k ą 0, then the curve γ in part (b) represents a

nontrivial element of π1pΣgq.
(e) Generalize part (a): show that if m ě 1, π1pΣg,mq is a free group with 2g ` m ´ 1

generators.

Now let’s talk about knots. Back in Lecture 8, I showed you two simple examples of knots
K Ă R3: the trefoil and the unknot. I claimed that it is impossible to deform one of these knots
into the other, and in fact that the complements of both knots in R3 are not homeomorphic. It is
time to prove this.

We will consider both as special cases of a more general class of knots called torus knots. Fix
the standard embedding of the torus

f : T2 “ S1 ˆ S1 ãÑ R3,

where by “standard,” I mean the one that you usually picture when you imagine a torus embedded
in R3 (see the surface bounding the grey region in Figure 9). Given any two relatively prime
integers p, q P Z, the pp, qq-torus knot is defined by

Kp,q :“  
fpepiθ, eqiθq ˇ̌ θ P R

( Ă R3.

In other words, Kp,q is a knot lying on the image of the embedded torus fpT2q Ă R3, obtained from
a loop that rotates p times around one of the dimensions of T2 “ S1 ˆ S1 while rotating q times
around the other. It is conventional to assume p and q are relatively prime, since the definition of
Kp,q above would not change if both p and q were multiplied by the same nonzero constant.

Example 14.14. K2,3 is the trefoil knot (Figure 8, left).

Example 14.15. K1,0 is the unknot (Figure 8, right).
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Figure 8. The trefoil knot K2,3 and unknot K1,0.

The knot group of a knot K Ă R3 is defined as the fundamental group of the so-called knot
complement, π1pR3zKq. We saw in Example 12.7 that the natural inclusion R3 ãÑ S3 defined by
identifying S3 with the one-point compactification R3Yt8u induces an isomorphism of π1pR3zKq
to π1pS3zKq, thus in order to compute knot groups, we may as well regard the knot K Ă R3 as a
subset of the slightly larger but compact space S3 and compute π1pS3zKq. We shall now answer
the question: given relatively prime integers p and q, what is π1pS3zKp,qq?

Here is a useful trick for picturing S3. By definition, S3 “ BD4, but notice that D4 is also
homeomorphic to the “box” D2 ˆ D2, whose boundary consists of the two pieces BD2 ˆ D2 and
D2 ˆ BD2, intersecting each other along BD2 ˆ BD2. The latter is a copy of T2, and the pieces
S1 ˆ D2 and D2 ˆ S1 are called solid tori since we usually picture them as the region in R3

bounded by the standard embedding of the torus. The homeomorphism D4 – D2ˆD2 thus allows
us to identify S3 with the space constructed by gluing together these two solid tori along the
obvious identification of their boundaries:

S3 – pS1 ˆ D2q YT2 pD2 ˆ S1q.
A picture of this decomposition is shown in Figure 9. Here the 2-torus along which the two solid
tori are glued together is depicted as the standard embedding of T2 in R3, so this is where we
will assume Kp,q lies. The region bounded by this torus is S1 ˆ D2, shown in the picture as an
S1-parametrized family of disks D2. It requires a bit more imagination to recognize D2 ˆ S1 in
the picture: instead of a family of disks, we have drawn it as a D2-parametrized family of circles,
where it is important to understand that one of those circles passes through 8 P S3 and thus
looks like a line instead of a circle in the picture. This picture will now serve as the basis for a
Seifert-van Kampen decomposition of S3zKp,q into two open subsets. They will be defined as open
neighborhoods of the two subsets

A0 :“ pS1 ˆ D2qzKp,q, B0 :“ pD2 ˆ S1qzKp,q.

In order to define suitable neighborhoods, let us identify a neighborhood of fpT2q in R3 with
p´1, 1q ˆ T2 such that fpT2q becomes t0u ˆ T2 Ă R3. We then define

A :“
´
S1 ˆ D̊2

¯
Y `p´1, 1q ˆ pT2zf´1pKp,qqq˘ ,

and
B :“

´
D̊2 ˆ S1

¯
Y `p´1, 1q ˆ pT2zf´1pKp,qqq˘ .
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Figure 9. The sphere S3 “ R3 Y t8u decomposed as a union of two solid
tori whose common boundary is the “standard” embedding of T2 in R3: S3 –
BpD2ˆD2q “ pS1ˆD2q YT2 pD2 ˆS1q. The vertical blue line passing through the
middle is actually a circle in S3 passing through the point at 8.

By contracting the interval p´1, 1q, we can define a deformation retraction of A to A0 and then
retract further by contractng the disk D2 to its center, eventually producing a deformation retrac-
tion of A to the circle S1 ˆ t0u at the center of the inner solid torus—this is the red circle in
Figure 9 that passes through the center of each disk. In an analogous way, there is a deformation
retraction of B to the center t0uˆ S1 of the outer solid torus, which is the blue line through 8 in
the picture, though you might prefer to perturb this to one of the parallel circles tzuˆS1 Ă D2ˆS1

for z ‰ 0, since these actually look like circles in the picture. We can now regard π1pAq and π1pBq
as separate copies of the integers whose generators we shall call a and b respectively,

π1pAq – ta | Hu, π1pBq – tb | Hu.
The intersection is

AXB “ p´1, 1q ˆ `
T2zf´1pKp,qq˘ »

h.e.
T2zf´1pKp,qq »

h.e.
S1.

That last homotopy equivalence deserves an explanation: if you draw T2 as a square with its
sides identified, then f´1pKp,qq looks like a straight line that periodically exits one side of the
square and reappears at the opposite side. Now draw another straight path parallel to this one (I
recommend using a different color), and you will easily see that after removing f´1pKp,qq from T2,
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what remains admits a deformation retraction to the parallel path, which is an embedded copy
of S1. We will call the generator of its fundamental group c,

π1pAXBq – tc | Hu.
According to the Seifert-van Kampen theorem (in particular Corollary 12.19, the version for finitely-
presented groups), we can now write

π1pS3zKp,qq –  
a, b

ˇ̌ pjAq˚c “ pjBq˚c( ,
where jA and jB denote the inclusions of A X B into A and B respectively. To interpret this
properly, we should choose a base point in AXB and picture a, b and c as represented by specific
loops through this base point, so without loss of generality, a is a loop near the boundary T2 of
S1 ˆ D2 that wraps once around the S1 direction, and b is another loop near T2 that wraps once
around the S1-direction of D2ˆS1, which is the other dimension of T2 “ S1ˆS1. The interesting
part is c, as it is represented by a loop in T2 that is parallel to Kp,q, thus it wraps p times around
the direction of a and q times around the direction of b. This means pjAq˚c “ ap and pjBq˚c “ bq,
so putting all of this together yields:

Theorem 14.16. π1pS3zKp,qq – ta, b | ap “ bqu. �

Example 14.17. For pp, qq “ p1, 0q, we obtain the knot group of the unknot: π1pS3zK1,0q –
ta, b | a “ eu “ tb | Hu “ Z. In particular, this is an abelian group.

Example 14.18. The knot group of the trefoil is π1pS3zK2,3q – ta, b | a2 “ b3u. We proved
in Exercise 12.20 that this group is not abelian, in contrast to Example 14.17, hence π1pS3zK2,3q
and π1pS3zK1,0q are not isomorphic.

Corollary 14.19. The knot complements R3zK1,0 and R3zK2,3 are not homeomorphic. �

Before moving on19 from the Seifert-van Kampen theorem, I would like to sketch one more
application, which answers the question, “which groups can be fundamental groups of nice spaces?”
If we are only interested in finitely-presented groups and decide that “nice” should mean “compact
and Hausdorff”, then the answer turns out to be that there is no restriction at all.

Theorem 14.20. Every finitely-presented group is the fundamental group of some compact
Hausdorff space.

Proof. The following lemma will be used as an inductive step. Suppose X0 is a compact
Hausdorff space with a finitely-presented fundamental group

π1pX0, pq –  taiu ˇ̌ tRju( .
Then for any loop γ : pS1, 1q Ñ pX0, pq, we claim that the space

X :“ D2 Yγ X0 :“ `
D2 >X0

˘M
z „ γpzq P X0 for all z P BD2

is compact and Hausdorff with

π1pX, pq –  taiu ˇ̌ tRju, rγs “ e
(
,

i.e. its fundamental group has the same generators and one new relation, defined by setting rγs P
π1pX0, pq equal to the trivial element. This claim follows easily20 from the Seifert-van Kampen

19We ran out of time in the actual lecture before we could talk about Theorem 14.20, but I am including it in
the notes just because it is interesting.

20I am glossing over the detail where we need to prove that X is also compact and Hausdorff. This is not
completely obvious, but it is yet another exercise in point-set topology that I feel justified in not explaining now
that that portion of the course is finished.
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theorem using the decomposition X “ A Y B where A “ D̊2 and B is an open neighborhood
of X0 obtained by adding a small annulus near the boundary of BD2. Since the annulus admits
a deformation retraction to BD2, we have B »

h.e.
X0, while A X B »

h.e.
S1 and A is contractible.

According to Corollary 12.19, π1pX, pq then inherits all the generators and relations of π1pBq –
π1pX0q, no new generators from π1pAq “ 0, and one new relation from the generator of π1pAXBq –
Z, whose inclusion into A is trivial, so the relation says that its inclusion into B must become the
trivial element. That inclusion is precisely rγs P π1pX0, pq, hence the claim is proved.

Now suppose G is a finitely-presented group with generators x1, . . . , xN and relations w1 “
e, . . . , wm “ e for wi P Ftx1,...,xNu. We start with a space X0 whose fundamental group is the
free group on tx1, . . . , xNu: the wedge sum of N circles will do. As the previous paragraph
demonstrates, we can then attach a 2-disk for each individual relation we would like to add to the
fundamental group, and doing this finitely many times produces a compact Hausdorff space with
the desired fundamental group. �

15. Covering spaces and the lifting theorem

We now leave the Seifert-van Kampen theorem behind and introduce the second major tool
for computing fundamental groups: the theory of covering spaces.

Definition 15.1. A map f : Y Ñ X is called a covering map (Überlagerung), or simply a
cover of X , if for every x P X , there exists an open neighborhood U Ă X such that

f´1pUq “ ď
αPJ

Vα

for a collection of disjoint open subsets tVα Ă Y uαPJ such that f |Vα
: Vα Ñ U is a homeomorphism

for each α P J . The domain Y of this map is called a covering space (Überlagerungsraum) of X .
Any subset U Ă X satisfying the conditions stated above is said to be evenly covered.

Example 15.2. The map f : RÑ S1 : θ ÞÑ eiθ is a covering map of S1.

Example 15.3. The map S1 Ñ S1 sending eiθ to ekiθ for any nonzero k P Z is also a covering
map of S1.

Example 15.4. The n-dimensional torus Tn :“ S1 ˆ . . .ˆ S1looooooomooooooon
n

admits a covering map

Rn Ñ Tn : pθ1, . . . , θnq ÞÑ peiθ1 , . . . , eiθnq.
More generally, it is straightforward to show that given any two covering maps fi : Yi Ñ Xi for
i “ 1, 2, there is a “product” cover

Y1 ˆ Y2
f1ˆf2ÝÑ X1 ˆX2 : px1, x2q ÞÑ pf1px1q, f2px2qq.

Example 15.5. For any space X , the identity map X Ñ X is trivially a covering map.

Example 15.6. Another trivial example of a covering map can be defined for any space X
and any set J by setting Xα :“ X for every α P J and defining f :

š
αPJ Xα Ñ X as the unique

map that restricts to each Xα “ X as the identity map on X . This is a disconnected covering
map. We will usually restrict our attention to covering spaces that are connected.

Example 15.7. For each n P N, the quotient projection Sn Ñ RP
n “ Sn{„ is a covering map.

Theorem 15.8. If X is connected and f : Y Ñ X is a cover, then the number (finite or
infinite) of points in f´1pxq Ă Y does not depend on the choice of a point x P X.
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Proof. Given x P X , choose an evenly covered neighborhood U Ă X of x and write f´1pUq “Ť
αPJ Vα. Then for every y P U , |f´1pyq| “ |J |, and it follows that for every n P t0, 1, 2, 3, . . . ,8u,

the subset Xn :“ tx P X | |f´1pxq| “ nu Ă X is open. If x P Xn, notice that
Ť
m‰nXm is also

open, thus Xn is also closed, so connectedness implies Xn “ X . �

In the setting of the above theorem, the number of points in f´1pxq is called the degree
(Grad) of the cover. If degpfq “ n, we sometimes call f an n-fold cover.

Examples 15.9. The cover S1 Ñ S1 : z ÞÑ zk from Example 15.3 has degree |k|, while the
quotient projection Sn Ñ RP

n has degree 2 and the cover RÑ S1 from Example 15.2 has infinite
degree.

Remark 15.10. Some authors strengthen the definition of a covering map f : Y Ñ X by
requiring f to be surjective. We did not require this in Definition 15.1, but notice that if X
is connected, then it follows immediately from Theorem 15.8. In practice, it is only sensible to
consider covers of connected spaces, and we shall always assume connectedness.

Note that in Definition 15.1, one should explicitly require the sets Vα Ă f´1pUq to be open.
This is important, as part of the point of that definition is that X can be covered by open neigh-
borhoods U whose preimages are homeomorphic to disjoint unions of copies of U , i.e.

f´1pUq – ž
αPJ

U .

This is true specifically because each of the sets Vα is open, and therefore (as the complement ofŤ
β‰α Vβ) also closed in f´1pUq. To put it another way, in a covering map, every point x P X has

a neighborhood U such that f´1pUq is the disjoint union of homeomorphic neighborhoods of the
individual points in f´1pxq. An important consequence of this definition is that every covering
map f : Y Ñ X is also a local homeomorphism, meaning that for each y P Y and x :“ fpyq, f
maps some neighborhood of y homeomorphically to some neighborhood of x.

Almost every result in covering space theory is based on the answer to the following question:
given a map f : A Ñ X and a covering map p : Y Ñ X , can f be “lifted” to a map f̃ : A Ñ Y

satisfying p ˝ f̃ “ f? This problem can be summarized with the diagram

(15.1)
Y

A X

p
f̃

f

in which the maps f and p are given, but the dashed arrow for f̃ indicates that we do not know
whether such a map exists. If it does, then we call f̃ a lift of f to the cover. It is easy to see that
lifts do not always exist: take for instance the cover p : R Ñ S1 : θ ÞÑ eiθ and let f : S1 Ñ S1

be the identity map. A lift f̃ : S1 Ñ R would need to associate to every eiθ P S1 some point
φ :“ f̃peiθq such that eiφ “ eiθ. It is easy to define a function that does this, but can we make it
continuous? If it were continuous, then f̃peiθq would have to increase by 2π as eiθ turns around
the circle from θ “ 0 to θ “ 2π, producing two values f̃pe2πiq “ f̃p1q ` 2π even though e2πi “ 1.
The goal for the remainder of this lecture is to determine precisely which maps can be lifted to
which covering spaces and which cannot.

We start with the following observation: choose base points a P A and x P X to make
f : pA, aq Ñ pX, xq into a pointed map. Then if a lift f̃ : A Ñ Y exists and we set y :“ f̃paq to
make f̃ a pointed map, p now becomes one as well since ppyq “ ppf̃paqq “ fpaq “ x, hence (15.1)



15. COVERING SPACES AND THE LIFTING THEOREM 93

becomes a diagram of pointed maps and induces a corresponding diagram of group homomorphisms

(15.2)

π1pY, yq

π1pA, aq π1pX, xq.
p˚

f̃˚

f˚

The existence of this diagram implies a nontrivial condition that relates the homomorphisms f˚
and p˚ but has nothing intrinsically to do with the lift: it implies im f˚ Ă im p˚, i.e. these are
two subgroups of π1pX, xq, and one of them must be contained in the other. The lifting theorem
states that under some assumptions that are satisfied by most reasonable spaces, this necessary
condition is also sufficient.

Theorem 15.11 (lifting theorem). Assume X,Y,A are all path-connected spaces, A is also
locally path-connected, p : Y Ñ X is a covering map and f : pA, a0q Ñ pX, x0q is a base-point
preserving map. Then for any choice of base point y0 P f´1px0q Ă Y , f admits a base-point
preserving lift f̃ : pA, a0q Ñ pY, y0q if and only if

f˚ pπ1pA, a0qq Ă p˚ pπ1pY, y0qq ,
and the point y0 “ f̃pa0q uniquely determines the lift f̃ .

Let us discuss some applications before we get to the proof.

Corollary 15.12. For any covering map p : Y Ñ X between path-connected spaces and any
space A that is simply connected and locally path-connected, every map f : A Ñ X can be lifted
to Y . �

Corollary 15.13. For every base-point preserving covering map p : pY, y0q Ñ pX, x0q between
path-connected spaces, the homomorphism p˚ : π1pY, y0q Ñ π1pX, x0q is injective.

Proof. Suppose γ̃ : pS1, 1q Ñ pY, y0q is a loop such that p˚rγ̃s “ e P π1pX, x0q. Then
γ :“ p ˝ γ̃ : pS1, 1q Ñ pX, x0q admits an extension u : pD2, 1q Ñ pX, x0q with u|BD2 “ γ. But D2 is
simply connected, so u admits a lift ũ : pD2, 1q Ñ pY, y0q satisfying p ˝ ũ “ u, thus p ˝ ũ|BD2 “ γ

implies that ũ|BD2 : pS1, 1q Ñ pY, y0q is a lift of γ. Uniqueness of lifts then implies ũ|BD2 “ γ̃ and
thus rγ̃s “ e P π1pY, y0q. �

Corollary 15.14. If X is simply connected, then every path-connected covering space of X
is also simply connected. �

Example 15.15. Corollary 15.14 implies that there does not exist any covering map S1 Ñ R.

Here is an application important in complex analysis. Observe that

p : CÑ C˚ :“ Czt0u : z ÞÑ ez

is a covering map. Writing ppx` iyq “ exeiy, we can picture p as a transformation from Cartesian
to polar coordinates: it maps every horizontal line tIm z “ constu to a ray in C˚ emanating from
the origin, and every vertical line tRe z “ constu to a circle in C˚, which it covers infinitely many
times. This shows that p is not bijective, so it has no global inverse, but it will admit inverses if we
restrict it to suitably small domains, and it is useful to know what domains will generally suffice
for this. In other words, we would like to know which open subsets U Ă C˚ can be the domain of
a continuous function

log : U Ñ C such that elog z “ z for all z P U .
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For simplicity, we will restrict our attention to path-connected21 domains and also assume 1 P U ,
so that we can adopt the convention logp1q :“ 0. Defining f : pU , 1q ãÑ pC˚, 1q as the inclusion,
the desired function log : pU , 1q Ñ pC, 0q will then be the unique solution to the lifting problem

pC, 0q

pU , 1q pC˚, 1q
p

log

f

Theorem 15.11 now gives the answer: log : U Ñ C exists if and only if f˚pπ1pU , 1qq Ă p˚pπ1pC, 0qq “
0, or in other words, if every loop in U can be extended to a map D2 Ñ C˚. Using the notion of
the winding number from Exercise 10.27, this is the same as saying every loop γ : S1 Ñ U satisfies
windpγ; 0q “ 0. For example, log : U Ñ C can be defined whenever U is simply connected, or if U
has the shape of an annulus whose outer circle does not enclose the origin. Examples that do not
work include any annulus whose inner circle encloses the origin: this will always contain a loop
that winds nontrivially around the origin, so that trying to define log along this loop produces a
function that shifts by 2πi as one rotates fully around the loop. Notice that when log : U Ñ C

exists, it is uniquely determined by the condition logp1q “ 0; without this one could equally well
modify any given definition of log by adding integer multiples of 2πi.

The proof of the lifting theorem requires two lemmas that are also special cases of the theorem.
We assume for the remainder of this lecture that pY, y0q pÑ pX, x0q is a covering map and X , Y
and A are all path-connected.

Lemma 15.16 (the path lifting property). Every path γ : pI, 0q Ñ pX, x0q has a unique lift
γ̃ : pI, 0q Ñ pY, y0q.

Proof. Since I is compact, we can find a finite partition 0 “: t0 ă t1 ă . . . ă tN´1 ă tN :“ 1

such that for each j “ 1, . . . , N , the image of γj :“ γ|rtj´1,tjs lies in an evenly covered open subset
Uj Ă X with p´1pUjq “ Ť

αPJ Vα. Now given any y P p´1pγptj´1qq, we have y P Vα for a unique
α P J , and γj has a unique lift γ̃j : rtj´1, tjs Ñ Y with γ̃jptj´1q “ y, defined by

γ̃j “ pp|Vα
q´1 ˝ γj .

With this understood, the unique lift γ̃ of γ with γ̃p0q “ y0 can be constructed by lifting γ̃1 as
explained above, then lifting γ̃2 with starting point γ̃2pt1q :“ γ̃1pt1q, and continuing in this way to
cover the entire interval. �

Lemma 15.17 (the homotopy lifting property). Suppose H : I ˆ A Ñ X is a homotopy with
Hp0, ¨q “ f : AÑ X, and f̃ : AÑ Y is a lift of f . Then there exists a unique lift rH : I ˆAÑ Y

of H satisfying rHp0, ¨q “ f̃ .

Proof. The previous lemma implies that each of the paths s ÞÑ Hps, aq P X for a P A

have unique lifts s ÞÑ rHps, aq P Y with rHp0, aq “ f̃paq. One should then check that the maprH : I ˆAÑ Y defined in this way is continuous; I leave this as an exercise. �

Proof of Theorem 15.11. We shall first define an appropriate map f̃ : A Ñ Y and then
show that the definition is independent of choices. Its uniqueness will be immediately clear, but its
continuity will not be: in the final step we will use the hypothesis that A is locally path-connected
in showing that f̃ is continuous.

21Since U Ă C˚ is open, it is locally path-connected, thus it will automatically be path-connected if it is
connected.
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Given a P A, choose a path a0
α
 a, giving a path x0

f˝α
 fpaq, which lifts via Lemma 15.16 to

a unique path Ćf ˝ α in Y that starts at y0. If a lift f̃ exists, it clearly must satisfy

f̃paq “ Ćf ˝ αp1q.
We claim that this point in Y does not depend on the choice of the path α, and thus gives a
well-defined (though not necessarily continuous) map f̃ : A Ñ Y . Indeed, suppose a0

β
 a is

another path. Then α ¨ β´1 is a loop based at a0 and thus represents an element of π1pA, a0q, and
f˚rα ¨β´1s P π1pX, x0q is represented by the loop pf ˝αq ¨ pf ˝β´1q. The hypothesis im f˚ Ă im p˚
then implies the existence of a loop y0

γ̃
 y0 in Y such that

rpf ˝ αq ¨ pf ˝ β´1qs “ p˚rγ̃s “ rp ˝ γ̃s,
so there is a homotopy H : I2 Ñ X with Hp0, ¨q “ γ :“ p ˝ γ̃, Hp1, ¨q “ pf ˝ αq ¨ pf ˝ β´1q,
and Hps, 0q “ Hps, 1q “ x0 for all s P I. Notice that γ̃ is a lift of γ : pI, 0q Ñ pX, x0q. Now
Lemma 15.17 provides a lift rH : I2 Ñ Y of H with rHp0, ¨q “ γ̃. In this homotopy, the paths
s ÞÑ rHps, 0q and s ÞÑ rHps, 1q are lifts of the constant path Hp¨, 0q “ Hp¨, 1q ” x0 starting at
γ̃p0q “ γ̃p1q “ y0, so the uniqueness in Lemma 15.16 implies that both are also constant paths,
hence rHps, 0q “ rHps, 1q “ y0 for all s P I. This shows that the unique lift of pf ˝ αq ¨ pf ˝ β´1q
to a path in Y starting at y0 is actually a loop, i.e. its end point is also y0: indeed, this lift isrHp1, ¨q. This lift is necessarily the concatenation of the lift Ćf ˝ α of f ˝ α starting at y0 with the
lift of f ˝ β´1 starting at Ćf ˝ αp1q. Since it ends at y0, we conclude that this second lift is simply
the inverse of Ćf ˝ β, implying that Ćf ˝ αp1q “ Ćf ˝ βp1q,
which proves the claim.

It remains to show that f̃ : A Ñ Y as defined by the above procedure is continuous. Given
a P A with x “ fpaq P X and y “ f̃paq P Y , choose any neighborhood V Ă Y of y that is small
enough for U :“ ppVq Ă X to be an evenly covered neighborhood of x, with p|V : V Ñ U a
homeomorphism. It will suffice to show that a has a neighborhood O Ă A with f̃pOq Ă V . Since
A is locally path-connected, we can choose O Ă f´1pUq to be a path-connected neighborhood of a,

fix a path a0
γ
 a in A and, for any a1 P O, choose a path a

β
 a1 in O. Now γ ¨ β is a path from

a0 to a1, so
f̃paq “ Ćf ˝ γp1q “ y P V and f̃pa1q “ Ćf ˝ γ ¨ Ćf ˝ βp1q,

where Ćf ˝ β is the unique lift of f ˝ β starting at y. Since f ˝ β lies entirely in the evenly covered
neighborhood U , this second lift is simply pp|Vq´1 ˝ pf ˝ βq, which lies entirely in V , proving
f̃pa1q P V . �

Example 15.18. If the local path-connectedness assumption on A is dropped, then the proof
above gives a procedure for defining a unique lift f̃ : AÑ Y , but it may fail to be continuous. A
concrete example is depicted in [Hat02, p. 79], Exercise 7. The idea is to define A as a space that
mostly consists of the usual circle S1 Ă R2, but replace a portion just to the right of the top point
p0, 1q with a curve resembling the graph of the function y “ sinp1{xq`1. The point p0, 1q is included
in A, along with every point of the usual circle just to the left of it, but on the right, A consists
of an infinitely long curve that is compressed into a compact space and has accumulation points
along an interval but no well-defined limit. This space is path-connected, because one can start
from p0, 1q and go around the circle to reach any other point, including any point on the infinitely
long compressed sine curve; it is also simply connected, due to the fact that continuous paths
along the compressed sine curve can never actually reach the end of it, but must instead go back
the other way around the circle before they can reach p0, 1q. But A is not locally path-connected,
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because sufficiently small neighborhoods of p0, 1q in A always contain many disjoint segments of
the compressed sine curve and thus cannot be path-connected. Now consider the covering map
R Ñ S1 : θ ÞÑ eiθ and a continuous map f : A Ñ S1 defined as the identity on most of A, but
projecting the graph of y “ sinp1{xq ` 1 to the circle in the obvious way near p0, 1q. One can
define a lift f̃ : AÑ R by choosing f̃p0, 1q to be any point in p´1pfp0, 1qq and then lifting paths to
define f̃ everywhere else. But since every neighborhood of p0, 1q contains some points that cannot
be reached except by paths rotating almost all the way around the circle, this neighborhood will
contain points a P A for which f̃paq differs from f̃p0, 1q by nearly 2π. In particular, f̃ cannot be
continuous at p0, 1q.

16. Classification of covers

Throughout this lecture, all spaces should be assumed path-connected and locally path-connected
unless otherwise noted. We will occasionally need a slightly stronger condition, which we will ab-
breviate with the word “reasonable”:22

Definition 16.1. We will say that a space X is reasonable if it is path-connected and locally
path-connected, and every point x P X has a simply connected neighborhood.

For the purposes of the theorems in this lecture, the definition of the term “reasonable” can
be weakened somewhat at the expense of making it more complicated, but we will stick with the
above definition since it is satisfied by almost all spaces we would ever like to consider. A popular
example of an “unreasonable” space is the so-called Hawaiian earring, see Exercise 13.2(c).

We will state several theorems in this lecture related to the problem of classifying covers of
a given space. All of them are in some way applications of the lifting theorem (Theorem 15.11).
Before stating them, we need to establish what it means for two covers of the same space to be
“equivalent”.

Definition 16.2. Given two covers pi : Yi Ñ X for i “ 1, 2, a map of covers from p1 to p2
is a map f : Y1 Ñ Y2 such that p2 ˝ f “ p1, i.e. the following diagram commutes:

(16.1)
Y1 Y2

X

f

p1
p2

Additionally, we call f an isomorphism of covers if there also exists a map of covers from p2 to
p1 that inverts f ; this is true if and only if the map f : Y1 Ñ Y2 is a homeomorphism, since its
inverse f´1 : Y2 Ñ Y1 is then automatically a map of covers from p2 to p1. If such an isomorphism
exists, we say that the two covers p1 and p2 are isomorphic (or equivalent). If base points
x P X and yi P Yi are specified such that pi : pYi, yiq Ñ pX, xq and f : pY1, y1q Ñ pY2, y2q are also
pointed maps, then we call f an isomorphism of pointed covers. In the case where p1 and p2
are both the same cover p : Y Ñ X , an isomorphism of covers from p to itself is called a deck
transformation23 (Decktransformation) of p : Y Ñ X .

The terms covering translation and automorphism are also sometimes used as synonyms
for “deck transformation”. The set of all deck transformations of a given cover p : Y Ñ X forms a

22This is not a universally standard term.
23This terminology gives you a hint that some portion of this subject was developed by German mathematicians

in the time before English was fully established as an international language. I don’t happen to know who invented
the term.
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Figure 10. A 3-fold cover of S1 _ S1 with trivial automorphism group.

group, called the automorphism group

Autppq :“  
f : Y Ñ Y

ˇ̌
f is a homeomorphism such that p ˝ f “ p

(
,

where the group operation is defined by composition of maps.

Example 16.3. For the cover p : RÑ S1 : θ ÞÑ eiθ, Autppq consists of all maps fk : RÑ R of
the form fkpθq “ θ ` 2πk for k P Z, so in particular, Autppq is isomorphic to Z.

Example 16.4. Figure 10 illustrates a covering map p : Y Ñ S1 _ S1 of degree 3. If we label
the base point of S1_S1 as x, then the three elements of p´1pxq Ă Y are the three dots in the top
portion of the diagram: label them y1, y2 and y3 from bottom to top. The covering map is defined
such that each loop or path beginning and ending at any of the points y1, y2, y3 is sent to the
loop in S1 _ S1 labeled by the same letter with the orientations of the arrows matching. Suppose
f : Y Ñ Y is a deck transformation satisfying fpy1q “ y2. Then since f is a homeomorphism, it
must map the loop labeled a based at y1 to a loop based at y2 that also must be labeled a. But no
such loop exists, so we conclude that there is no deck transformation sending y1 to y2. By similar
arguments, it is not hard to show that the only deck transformation of this cover is the identity
map, in other words, Autppq is the trivial group.

Almost everything we will be able to prove about maps of covers is based on the following
observation: if the diagram (16.1) commutes, it means that f : Y1 Ñ Y2 is a lift of the map
p1 : Y1 Ñ X to the cover Y2, i.e. in our previous notation for lifts, f “ p̃1. The fact that p1 itself is
a covering map is irrelevant for this observation. Now if all the spaces involved are path-connected
and locally path-connected, the lifting theorem gives us a condition characterizing the existence
and uniqueness of a map of covers: for any choices of base points x P X , y1 P p´1

1 pxq Ă Y1 and
y2 P p´1

2 pxq Ă Y2, a map of covers f : Y1 Ñ Y2 satisfying fpy1q “ y2 exists (and is unique) if and
only if

pp1q˚π1pY1, y1q Ă pp2q˚π1pY2, y2q.
This map will then be an isomorphism if and only if there exists a map of covers going the other
direction, and the latter exists if and only if the reverse inclusion holds. This proves:

Theorem 16.5. Two covers pi : Yi Ñ X for i “ 1, 2 are isomorphic if and only if for some
choice of base points x P X and yi P p´1

i pxq Ă Yi for i “ 1, 2, the subgroups pp1q˚π1pY1, y1q and
pp2q˚π1pY2, y2q in π1pX, xq are identical. �

Next we use the same perspective to study deck transformations of a single cover p : Y Ñ X .
Given x P X and y1, y2 P p´1pxq Ă Y , the uniqueness of lifts implies that there exists at most
one deck transformation f : Y Ñ Y sending y1 to y2. We’ve seen in Example 16.4 that this
transformation might not always exist.
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Definition 16.6. A cover p : Y Ñ X is called regular (or equivalently normal) if for every
x P X and all y1, y2 P p´1pxq Ă Y , there exists a deck transformation sending y1 to y2.

The following exercise says that in order to check whether a cover of a path-connected space is
regular, it suffices to choose a base point x P X and investigate whether deck transformations can
be used to relate arbitrary points in the preimage of that particular point. The proof is an easy
application of the path lifting property (Lemma 15.16).

Exercise 16.7. Show that if p : Y Ñ X is a covering map and X is path-connected, then
p is also regular if the following slightly weaker condition holds: for some fixed x P X , any two
elements y1, y2 P p´1pxq Ă X satisfy y2 “ fpy1q for some deck transformation f P Autppq.

If degppq ă 8, the previous remarks about uniqueness of deck transformations imply |Autppq| ď
degppq, and equality is satisfied if and only if p is regular. By the lifting theorem, the desired deck
transformation sending y1 to y2 will exist if and only if

(16.2) p˚π1pY, y1q “ p˚π1pY, y2q.
Let us try to translate this into a condition for recognizing when p is regular. Recall that any path
y1

γ̃
 y2 in Y determines an isomorphism

Φγ̃ : π1pY, y2q Ñ π1pY, y1q : rαs ÞÑ rγ̃ ¨ α ¨ γ̃´1s.
Since y1 and y2 are both in p´1pxq, the projection of this concatenation down to X gives a
concatenation of loops, i.e. γ :“ p˝ γ̃ is a loop x x and thus represents an element rγs P π1pX, xq.
Now in order to check whether (16.2) holds, we can represent an arbitrary element of π1pY, y1q as
Φγ̃rαs for some loop y2

α
 y2, and then observe

p˚Φγ̃rαs “ rp ˝ pγ̃ ¨ α ¨ γ̃´1qs “ rγ ¨ pp ˝ αq ¨ γ´1s “ rγsp˚rαsrγs´1.

This proves that the subgroup p˚π1pY, y1q Ă π1pX, xq is the conjugate of p˚π1pY, y2q Ă π1pX, xq
by the specific element rγs P π1pX, xq, so the desired deck transformation exists if and only if
p˚π1pY, y2q is invariant under conjugation with rγs. We could now ask the same question about
deck transformations sending yi to y2 for arbitrary yi P p´1pxq, and the answer in each case can be
expressed in terms of conjugation of p˚π1pY, y2q by some element rγs P π1pX, xq for which the loop

γ lifts to a path yi
γ̃
 y2. Now observe: any loop x

γ
 x can arise in this way for some choice of

yi P p´1pxq. Indeed, if γ is given, then γ´1 has a unique lift to a path from y2 to some other point
in p´1pxq, and the inverse of this path is then a lift of γ. Using Exercise 16.7 above, the question
of regularity therefore reduces to the question of whether p˚π1pY, y2q is invariant under arbitrary
conjugations, and we have thus proved:

Theorem 16.8. If Y and X are path-connected and locally path-connected, then a cover p :

pY, y0q Ñ pX, x0q is regular if and only if the subgroup p˚π1pY, y0q Ă π1pX, x0q is normal. �

Notice that while the algebraic condition in this theorem appears to depend on a choice of base
points, the condition of p being regular clearly does not. It follows that if p˚π1pY, y0q Ă π1pX, x0q
is a normal subgroup, then this condition will remain true for any other choice of base points x P X
and y P p´1pxq Ă Y .

The next two results require the restriction to “reasonable” spaces in the sense of Definition 16.1.

Theorem 16.9 (the Galois correspondence). If X is a reasonable space with base point x0 P X,
there is a natural bijection from the set of all isomorphism classes of pointed covers p : pY, y0q Ñ
pX, x0q to the set of all subgroups of π1pX, x0q: it is defined by

rp : pY, y0q Ñ pX, x0qs ÞÑ p˚π1pY, y0q.
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It is easy to verify from the definition of isomorphism for covers that the map in this theorem is
well defined, and we proved in Theorem 16.5 that it is injective. Surjectivity will be a consequence
of the following result, which will be proved in the next lecture.

Theorem 16.10. Every reasonable space admits a simply connected covering space.

Notice that if pi : pYi, yiq Ñ pX, x0q for i “ 1, 2 are two reasonable covers satisfying π1pY1q “
π1pY2q “ 0, then Theorem 16.5 implies that they are isomorphic covers. For this reason it is
conventional to abuse terminology slightly by referring to any simply connected cover of a given
space X as “the” universal cover (universelle Überlagerung) of X . It is often denoted by rX.

Examples 16.11. The universal coverĂS1 of S1 is R, due to the covering map RÑ S1 : θ ÞÑ eiθ.
Similarly, ĄRPn – Sn for n ě 2, and ĂTn – Rn.

A substantially less obvious class of examples is given by the surfaces Σg of genus g ě 2: these
have universal cover rΣg – R2. It would take us too far afield to explain why, but one standard way
of constructing this cover comes from hyperbolic geometry, where instead of R2 we consider the
open disk D̊2 with a Riemannian metric that has constant negative curvature. One can identify
each of the surfaces Σg with the quotient of D̊2 by a suitable group of isometries and then define
a covering map D̊2 Ñ Σg as the quotient projection.

For the remainder of this lecture, fix a base-point preserving covering map p : pY, y0q Ñ pX, x0q
where X and Y are assumed reasonable, and denote

G :“ π1pX, x0q, H :“ p˚π1pY, y0q Ă G.

If H is not a normal subgroup, then there is no natural notion of a quotient group G{H , but we
can still define G{H as the set of left cosets

G
M
H “  

gH Ă G
ˇ̌
g P G( ,

where gH denotes the subset tgh | h P Hu Ă G. One can similarly consider the set of right cosets

H
I
G “  

Hg Ă G
ˇ̌
g P G( .

These two sets are identical if and only if H is normal, in which case both are denoted by G{H
and they form a group. With or without this condition, G

M
H and H

I
G have the same number

(finite or infinite) of elements, which is called the index of H in G and denoted by

rG : Hs :“
ˇ̌̌
G
M
H
ˇ̌̌
“
ˇ̌̌
H
I
G
ˇ̌̌
.

In the following we will make repeated use of the fact that for any y P p´1px0q, any path y0
γ̃
 y

gives rise to a loop γ :“ p ˝ γ̃ based at x0, and conversely, any such loop gives rise to a path that
starts at y0 and ends at some point in p´1px0q.

Lemma 16.12. There is a natural bijection

Φ : p´1px0q Ñ H
I
G : y ÞÑ Hrγs,

where x0
γ
 x0 is any loop that lifts to a path y0

γ̃
 y.

Corollary 16.13. degppq “ rG : Hs. �
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Proof of Lemma 16.12. We first show that Φ is well defined. Given two choices of paths
α̃, β̃ from y0 to y, we have loops α :“ p ˝ α̃ and β :“ p ˝ β̃ based at x0, and α̃ ¨ β̃´1 is a loop based
at y0. We therefore have

rαsrβs´1 “ rp ˝ pα̃ ¨ β̃´1qs “ p˚rα̃ ¨ β̃´1s P H,
implying Hrαs “ Hrβs.

The surjectivity of Φ is obvious: given rγs P G, there exists a lift γ̃ of γ to a path from y0 to
some point y P p´1px0q, so Φpyq “ Hrγs.

To see that Φ is injective, suppose Φpyq “ Φpy1q, choose paths y0 α̃
 y and y0

β̃
 y1, giving rise

to loops α :“ p ˝ α̃ and β :“ p ˝ β̃ based at x0 such that

Hrαs “ Φpyq “ Φpy1q “ Hrβs,
thus rαsrβs´1 P H . It follows that there exists a loop y0

γ̃
 y0 projecting to γ :“ p ˝ γ̃ such that

rα ¨ β´1s “ rγs, hence rαs “ rγs ¨ rβs, so α is homotopic to γ ¨ β with fixed end points. Since γ lifts
to a loop γ̃ and homotopies can also be lifted, we conclude that α̃ is homotopic to γ̃ ¨ β̃ with fixed
end points, implying y “ α̃p1q “ β̃p1q “ y1. �

If the cover is regular so H Ă G is normal, then degppq “ |Autppq|, and Corollary 16.13
therefore implies that Autppq has the same order as the quotient group G{H . The next result
should then seem relatively unsurprising.

Theorem 16.14. For a regular cover p : pY, y0q Ñ pX, x0q of reasonable spaces with π1pX, x0q “
G and p˚π1pY, y0q “ H Ă G, there exists a group isomorphism

Ψ : Autppq Ñ G{H : f ÞÑ rγsH,
where x0

γ
 x0 is any loop that has a lift to a path from y0 to fpy0q.

Notice that the universal cover p : p rX, x̃0q Ñ pX, x0q is automatically regular since the trivial
subgroup of π1pX, x0q is always normal, so applying this theorem to the universal cover gives:

Corollary 16.15. For the universal cover p : p rX, x̃0q Ñ pX, x0q, there is an isomorphism
Autppq Ñ π1pX, x0q sending each deck transformation f to the homotopy class of any loop x0  x0
that lifts to a path x̃0  fpx̃0q. �

Proof of Theorem 16.14. Regularity implies that the map Autppq Ñ p´1px0q : f ÞÑ fpy0q
is bijective, so Ψ is then well defined and bijective due to Lemma 16.12. For the identity element
Id P Autppq, we have ΨpIdq “ rγsH for any loop γ that lifts to a loop from y0 to Idpy0q “ y0, which
means rγs P H , so rγsH is the identity element in G{H .

It remains to show that Ψpf ˝ gq “ ΨpfqΨpgq for any two deck transformations f, g P Autppq.
Choose loops α, β based at x0 which lift to paths y0

α̃
 fpy0q and y0 β̃

 gpy0q. Then f ˝ β̃ is a path
from fpy0q to f ˝ gpy0q and can thus be concatenated with α̃, forming a path

y0
α̃¨pf˝β̃q
 f ˝ gpy0q.

Now since f P Autppq, p ˝ f “ p implies p ˝ pf ˝ β̃q “ p ˝ β̃ “ β, thus

Ψpf ˝ gq “ rp ˝ pα̃ ¨ pf ˝ β̃qqs “ rαsrβs “ ΨpfqΨpgq.
�
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Corollary 16.15 says that we can compute the fundamental group of any reasonable space X if
we can understand the deck transformations of its universal cover. Combining this with the natural
bijection Autppq Ñ p´1px0q that sends each deck transformation to its image on the base point,
we also obtain from this an intuitively appealing interpretation of the meaning of π1pX, x0q: every
loop γ based at x0 lifts uniquely to a path starting at x̃0 and ending at some point in p´1px0q. As
far as π1pX, x0q is concerned, all that matters is the end point of the lift: two loops are equivalent
in π1pX, x0q if and only if their lifts to rX have the same end point, and a loop is trivial in π1pX, x0q
if and only if its lift to rX is also a loop.

Example 16.16. Applying Corollary 16.15 to the cover p : R Ñ S1 : θ ÞÑ eiθ reproduces the
isomorphism π1pS1, 1q – Z we discussed at the end of Lecture 9. The loop γkptq :“ e2πikt in S1

for each k P Z lifts to R with base point 0 as the path γ̃kptq “ 2πkt.

Example 16.17. For each n ě 2, Corollary 16.15 implies π1pRPnq – Z2, as this is the auto-
morphism group of the universal cover p : Sn Ñ RPn, defined as the natural quotient projection.
Concretely, after fixing base points x0 P RP

n and y0 P p´1px0q Ă Sn, each loop in RP
n based at

x0 lifts to Sn as a path that starts at y0 and ends at either y0 or its antipodal point ´y0. The
nontrivial element of π1pRPn, x0q is thus represented by any loop whose lift to Sn starts and ends
at antipodal points.

17. The universal cover and group actions

In Theorem 16.14, we saw a formula that can be used to compute the automorphism group of
any regular cover as a quotient of two fundamental groups. I want to mention how this generalizes
for non-regular covers, though I will leave most of the details as an exercise. One way to approach
the problem is as follows: any pointed covering map p : pY, y0q Ñ pX, x0q of reasonable spaces can
be fit into a diagram

(17.1) pZ, z0q pY, y0q pX, x0q,q

P

p

in which q and P are also pointed covering maps and are both regular. For example, if you already
believe that every reasonable space has a universal cover (and we shall prove this below), then we
can always take q : Z Ñ Y to be the universal cover of Y , which makes P : Z Ñ X the universal
cover of X since π1pZq “ 0, and universal covers are always regular because the trivial subgroup
is always normal. In this case, Corollary 16.15 gives us natural isomorphisms AutpP q – π1pX, x0q
and Autpqq – π1pY, y0q. This is not true if Z is not simply connected, and we will not assume
this in the following exercise, but it turns out that if P and q are nonetheless regular, then we can
derive a formula for Autppq in terms of the other two automorphism groups.

Exercise 17.1. Assuming the spaces in (17.1) are all reasonable, let us abbreviate the auto-
morphism groups of P and q by

G :“ AutpP q, and H :“ Autpqq.
(a) Use the path-lifting property to prove the following lemma: If Ψ P G and ψ P Autppq are

deck transformations for which the relation q ˝Ψ “ ψ ˝ q holds at the base point z0 P Z,
then it holds everywhere.
Hint: For any z P Z, choose a path from z0 to z, then use Ψ, ψ and the covering
projections to cook up other paths in Z, Y and X . Some of them are lifts of others, and
two important ones will turn out to be the same.
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(b) Deduce from part (a) that H is the subgroup of G consisting of all deck transformations
Ψ : Z Ñ Z for P that satisfy Ψpz0q P q´1py0q.

(c) Show that if P : Z Ñ X is regular then so is q : Z Ñ Y . Give two proofs: one using the
result of part (b), and another using the characterization of regularity in terms of normal
subgroups.

(d) The normalizer (Normalisator)NpHq Ă G of the subgroupH is by definition the largest
subgroup of G that contains H as a normal subgroup, i.e.

NpHq :“  
g P G ˇ̌

gHg´1 “ H
(
.

Show that if the cover q : Z Ñ Y is regular, then for any Ψ P NpHq, there exists a deck
transformation ψ : Y Ñ Y of p satisfying the relation q ˝ Ψ “ ψ ˝ q, and it is unique.
Moreover, the correspondence Ψ ÞÑ ψ defines a group homomorphism NpHq Ñ Autppq
whose kernel is H .

(e) Show that if the cover P : Z Ñ X is also regular, then the homomorphism NpHq Ñ
Autppq in part (d) is also surjective, and thus descends to an isomorphism

NpHq{H –ÝÑ Autppq.
Applying Exercise 17.1 with Z simply connected now gives:

Corollary 17.2. For any covering map p : pY, y0q Ñ pX, x0q of reasonable spaces with
π1pX, x0q “ G and p˚π1pY, y0q “ H Ă G, there is a natural isomorphism Autppq – NpHq{H. �

Notice that there always exists a subgroup of G in which H is normal, e.g. H itself is such a
subgroup, and it may well happen that no larger subgroup satisfies this condition, in which case
NpHq “ H and Autppq is therefore trivial. If H is normal in G, then NpHq “ G and the cover is
therefore regular, hence Corollary 17.2 reduces to Theorem 16.14.

Moving on from non-regular covers, we have some unfinished business from the previous lecture:
it remains to prove the surjectivity of the Galois correspondence (Theorem 16.9), and the existence
of the universal cover (Theorem 16.10). The latter is actually a special case of the former: recall
from Corollary 15.13 that the homomorphism p˚ : π1pY, y0q Ñ π1pX, x0q induced by a covering
map p : pY, y0q Ñ pX, x0q is always injective, thus the existence of a universal cover amounts to the
statement that the image of the Galois correspondence includes the trivial subgroup of π1pX, x0q.
We will prove this first, and then use it to deduce the Galois correspondence in full generality.

As before, we need to restrict our attention to “reasonable spaces,” meaning spaces that are
path-connected and locally path-connected, and in which every point has a simply connected
neighborhood. The first two conditions are needed in order to apply the lifting theorem, which we
used several times in the previous lecture. The third condition has not yet been used, but this is the
moment where we will need it. In constructing a universal cover p : p rX, x̃0q Ñ pX, x0q, the theorems
at the end of the previous lecture give some useful intuition on what to aim for: in particular,
there needs to be a one-to-one correspondence between p´1px0q Ă rX and π1pX, x0q. What we will
actually construct is a cover for which these two sets are not just in bijective correspondence but
are literally the same set. In set-theoretic terms, the construction is quite straightforward, but
giving it a topology that makes it a covering map is a bit subtle—that is where we will need to
assume that simply connected neighborhoods exist.

Proof of Theorem 16.10 (the universal cover). We will not give every detail but sketch
the main idea. Given a reasonable space X with base point x0 P X , define the setrX :“ tpaths γ : pI, 0q Ñ pX, x0qu L„

h`,
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i.e. it is the set of all equivalence classes of paths that start at the base point, with equivalence
defined as homotopy with fixed end points. Since this definition does not specify the end point of
any path but the equivalence relation leaves these end points unchanged, we obtain a natural map

p : rX Ñ X : rγs ÞÑ γp1q,
which is obviously surjective since X is path-connected. Notice that p´1px0q “ π1pX, x0q.

We claim that rX can be assigned a topology that makes p : rX Ñ X into a covering map. To
see this, suppose U Ă X is a path-connected subset and iU : U ãÑ X denotes its inclusion. For
any point x P U , the induced homomorphism iU˚ : π1pU , xq Ñ π1pX, xq is trivial if and only if every
loop S1 Ñ U based at x can be extended to a map D2 Ñ X . Notice that this is weaker in general
than demanding an extension D2 Ñ U ; the latter would mean that U is simply connected, but we
do not want to assume this. Notice also that if this condition holds for some choice of base point
x P U , then the usual change of base-point arguments imply that it will hold for any other base
point y P U , thus we can sensibly speak of the condition that iU˚ : π1pUq Ñ π1pXq is trivial. With
this understood, consider the collection of sets

B :“  
U Ă X

ˇ̌
U is open and path-connected and iU˚ : π1pUq Ñ π1pXq is trivial( .

It is a straightforward exercise to verify the following properties:

(1) U P B if and only if for every pair of paths α, β in U with the same end points, α and β
are homotopic in X with fixed end points (cf. Corollary 9.9).

(2) If U P B and V Ă U is a path-connected open subset, then V P B.
(3) B is a base for the topology of X .

In particular, the third property holds because X is reasonable: every point x P X has a simply
connected neighborhood, which contains an open neighborhood that necessarily belongs to B, and
it follows that every open subset of X is a union of such sets.

Now for any U P B with a point x P U and a path γ in X from x0 to x, let

Urγs :“
!
rγ ¨ αs P rX ˇ̌̌

α is a path in U starting at x
)
.

Notice that Urγs depends only on the homotopy class rγs P rX ; this relies on the fact that since
U P B, the path α in the definition above is uniquely determined up to homotopy in X by its end
point. It follows in fact that p : rX Ñ X restricts to a bijection

Urγs
pÑ U .

With all this in mind, one can now show thatrB :“
!
Urγs Ă rX ˇ̌̌

U P B and rγs P rX with γp1q P U

)
is a base for a topology on rX such that each U P B is evenly covered by p : rX Ñ X . We leave the
details of this as an exercise.

There is an obvious choice of base point in rX : define x̃0 P rX as the homotopy class of
the constant path at x0. It remains to prove that π1p rX, x̃0q “ 0. Since we now know that
p : p rX, x̃0q Ñ pX, x0q is a covering map, Corollary 15.13 implies that p˚ : π1p rX, x̃0q Ñ π1pX, x0q
is injective, thus it will suffice to show that the subgroup p˚π1p rX, x̃0q in π1pX, x0q is trivial. This
subgroup is the set of homotopy classes rγs P π1pX, x0q for which the loop γ lifts to a loop γ̃ based
at x̃0. The lift of γ to rX can be written as

γ̃ptq “ rγts P rX,
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where for each t P I we define

γtpsq :“
#
γpsq for 0 ď s ď t,

γptq for t ď s ď 1.

Then assuming γ̃ is a loop, we find γ̃p1q “ rγs “ γ̃p0q “ rconsts, which is simply the statement
that γ is homotopic with fixed end points to a constant loop, hence rγs P π1pX, x0q is the trivial
element. �

I do not have the energy to draw the picture myself, but I highly recommend looking at
the picture of the universal cover of S1 _ S1 on page 59 of [Hat02]. The idea here is that for
every homotopically nontrivial loop in S1 _ S1, one obtains a non-closed path in the universal
cover rX. One can thus construct rX one path at a time if one denotes by a and b the generators
of π1pS1 _ S1, xq – Fta,bu: at each step, the loops a, b, a´1 and b´1 furnish four homotopically
distinct choices of loops to traverse, which lift to four distinct paths in rX from one copy of the base
point to another. Starting at the natural base point x̃0 and following this procedure recursively
produces the fractal picture in [Hat02, p. 59].

The application to the Galois correspondence requires a brief digression on topological groups
and group actions.

Definition 17.3. A topological group (topologische Gruppe) is a group G with a topology
such that the maps

GˆGÑ G : pg, hq ÞÑ gh and GÑ G : g ÞÑ g´1

are both continuous.

Popular examples of topological groups include the various subgroups of the real or com-
plex general linear groups GLpn,Rq and GLpn,Cq, e.g. the orthogonal group Opnq and unitary
group Upnq, the special linear groups SLpn,Rq and SLpn,Cq, and so forth. We saw in Exercise 7.29
that for any locally compact and locally connected Hausdorff space X , the group of homeomor-
phisms HomeopXq is a topological group with the group operation defined by composition. Finally,
any group can be regarded as a topological group if we assign to it the discrete topology; this fol-
lows from the fact that every map on a space with the discrete topology is continuous. Topological
groups with the discrete topology are often referred to as discrete groups.

Definition 17.4. Given a topological group G and a space X , a (continuous) G-action
(Wirkung) on X is a (continuous) map

GˆX Ñ X : pg, xq ÞÑ g ¨ x
such that the identity element e P G satisfies e ¨ x “ x for all x P X and pghq ¨ x “ g ¨ ph ¨ xq holds
for all g, h P G and x P X .

Notice that for any G-action on X , there is a natural group homomorphism G Ñ HomeopXq
sending g P G to the homeomorphism ϕg : X Ñ X defined by ϕgpxq “ g ¨ x. If G is a discrete
group then the converse is also true: every group homomorphism G Ñ HomeopXq comes from a
G-action on X . This is true because as long as the topology of G is discrete, the map G ˆX Ñ
X : pg, xq ÞÑ g ¨ x is continuous if and only if the map X Ñ X : x ÞÑ g ¨ x is continuous for every
fixed g P G. If G has a more interesting topology, then continuity of the map pg, xq ÞÑ g ¨ x with
respect to g P G is also a nontrivial condition that would need to be checked—but we have no need
to worry about this right now, as most of the groups we will deal with below are discrete.

Example 17.5. For any covering map p : Y Ñ X , Autppq acts as a discrete group on Y by
f ¨ y :“ fpyq.
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Example 17.6. Regarding Z2 as a discrete group, a Z2-action on any space X is determined
by the homeomorphism ϕ1 : X Ñ X associated to the nontrivial element r1s P Z{2Z “: Z2, and
this is necessarily an involution, i.e. it is its own inverse. A frequently occurring example is the
action of Z2 on Sn defined via the antipodal map x ÞÑ ´x.

Example 17.7. Here is a non-discrete example: any subgroup of the orthogonal group Opnq
acts on Sn´1 Ă Rn by matrix-vector multiplication, A ¨ x “ Ax.

For any G-action on X and a subset U Ă X , we denote

g ¨ U :“ tg ¨ x | x P Uu Ă X.

Similarly, for each point x P X , we define its orbit (Bahn) as the subset

G ¨ x :“ tg ¨ x | g P Gu Ă X.

One can easily check that for any two points x, y P X , their orbits G ¨x and G ¨y are either identical
or disjoint, thus there is an equivalence relation „ on X such that x „ y if and only if G ¨x “ G ¨y.
The quotient topological space defined by this equivalence relation is denoted by

X{G :“ X{„ “ torbits G ¨ x Ă X | x P Xu.
Example 17.8. The quotient Sn{Z2 arising from the action in Example 17.6 is RPn.

Proposition 17.9. Regarding π1pX, x0q as a discrete group, any covering map p : pY, y0q Ñ
pX, x0q of reasonable spaces with π1pY q “ 0 gives rise to a natural action of π1pX, x0q on Y .

Proof. There are at least two ways to see the action of π1pX, x0q on a simply connected cover.
First, Corollary 16.15 identifies π1pX, x0q with Autppq, and the latter acts on Y as explained in
Example 17.5.

Alternatively, one can appeal to the uniqueness of the universal cover, so p : pY, y0q Ñ pX, x0q
is necessarily isomorphic to the specific cover rX “ tpaths x0  xu{„

h` that we constructed in the

proof of Theorem 16.10. Then the obvious way for homotopy classes of loops rαs P π1pX, x0q to
act on homotopy classes of paths rγs P rX is by concatenation:

rαs ¨ rγs :“ rα ¨ γs.
It is easy to verify that this also defines a group action. �

Exercise 17.10. Show that the two actions of π1pX, x0q on the universal cover constructed
in the above proof are the same.

Definition 17.11. A G-action on X is free (frei) if the only element g P G satisfying g ¨x “ x

for some x P X is the identity g “ e.
The action is called properly discontinuous (eigentlich diskontinuierlich) if every x P X has

a neighborhood U Ă X such that
pg ¨ Uq X U “ H

for every g P G with g ¨ x ‰ x.

Exercise 17.12. Show that if a G-action is free and properly discontinuous, then G is discrete.

Exercise 17.13. Show that for any covering map p : Y Ñ X , the action of Autppq on Y as in
Example 17.5 is free and properly discontinuous.

The observation that actions of deck transformation groups are free already has some nontrivial
consequences, for instance:

Proposition 17.14. There exists no covering map p : D2 Ñ X with degppq ą 1.
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Proof. If degppq ą 1, then since π1pD2q “ 0, we observe that the cover p : D2 Ñ X must be
regular and therefore has a nontrivial deck transformation group Autppq which acts freely on D2.
But the Brouwer fixed point theorem rules out the existence of any nontrivial free group action
on D2. �

The main purpose of the above definitions is that they lead to the following theorem, whose
proof is now an easy exercise.

Theorem 17.15. If G acts on X freely and properly discontinuously, then the quotient projec-
tion

q : X Ñ X{G : x ÞÑ G ¨ x
is a regular covering map with Autpqq “ G. �

Now we are ready to finish the proof of the Galois correspondence.

Proof of Theorem 16.9. We have already shown that the correspondence is well defined
and injective, so we need to prove surjectivity, in other words: given a reasonable space X with
base point x0 P X and any subgroup H Ă G :“ π1pX, x0q, we need to find a reasonable space Y
with a covering map p : pY, y0q Ñ pX, x0q such that p˚π1pY, y0q “ H . Since X is reasonable, there
exists a universal cover f : p rX, x̃0q Ñ pX, x0q, whose automorphism group is isomorphic to G, so
this isomorphism defines a free and properly discontinuous action of G on rX. It also defines a free
and properly discontinuous action of every subgroup of G on rX, and in particular an H-action.
Define

Y :“ rX{H and p : Y Ñ X : H ¨ x̃ ÞÑ fpx̃q.
It is straightforward to check that this is a covering map, and it is base-point preserving if we
define y0 :“ H ¨ x̃0 as the base point of Y . Moreover, the quotient projection q : p rX, x̃0q Ñ pY, y0q
is now the universal cover of Y , and it fits into the following commutative diagram:

p rX, x̃0q pX, x0q

pY, y0q

f

q
p

Given a loop γ in X based at x0, let γ1 denote its lift to a path in Y starting at y0, and let γ̃
denote the lift to a path in rX starting at x̃0, The subgroup p˚π1pY, y0q Ă π1pX, x0q is precisely
the set of all homotopy classes rγs P π1pX, x0q for which γ1 is a loop. Notice that since all maps in
the diagram are covering maps, γ̃ is also a lift of γ1 via the covering map q. Then rγs P H so that
γ1 is a loop if and only if the end point of γ̃ is in q´1py0q “ H ¨ x̃0. Under the natural bijection
between π1pX, x0q and f´1px0q “ G ¨ x̃0, this just means rγs P H , hence p˚π1pY, y0q “ H . �

18. Manifolds

I have mentioned manifolds already a few times in this course, but now it is time to discuss
them somewhat more precisely. While we do not plan to go to deeply into this subject this semester,
the goal is in part to understand what the main definitions are and why, forming the basis of the
subject known as “geometric topology”. In so doing, we will also establish an inventory of examples
and concepts that will serve as useful intuition when we start to talk about homology next week.

Definition 18.1. A topological manifold (Mannigfaltigkeit) of dimension n ě 0 (often
abbreviated with the term “n-manifold”) is a second countable Hausdorff space M such that every
point p PM has a neighborhood homeomorphic to Rn.
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More generally, a topological n-manifold with boundary (Mannigfaltigkeit mit Rand) is
a second countable Hausdorff space M such that every point p P M has a neighborhood homeo-
morphic to either Rn or the so-called “n-dimensional half-space”

Hn :“ r0,8qˆ Rn´1.

The third condition in each of these definitions is probably the most intuitive and is the
most distinguishing feature of manifolds: we abbreviate it by saying that manifolds are “locally
Euclidean”. It means in effect that sufficiently small open subsets of a manifold can be described via
local coordinate systems. The technical term for this is “chart”: a chart (Karte) on an n-manifold
with boundary is a homeomorphism

ϕ : U Ñ Ω

where U Ă M and Ω Ă Hn are open subsets. As special cases, Ω may be the whole of Hn, or an
open ball in Hn disjoint from

BHn :“ t0u ˆ Rn´1,

in which case Ω is also homeomorphic to Rn. It follows that on any n-manifold (with or without
boundary), every point is in the domain of a chart. Conversely, if we are given a collection of charts
tϕα : Uα Ñ ΩαuαPJ such thatM “ Ť

αPJ Uα, then after shrinking the domains and targets of these
charts if necessary, we can assume every point p PM is in the domain of some chart ϕα : Uα Ñ Ωα
such that Ωα is either an open ball in HnzBHn or a half-ball with boundary on BHn, so that Ω

is homeomorphic to either Rn or Hn. This means M is locally Euclidean, so both versions of the
third condition in our definition can be rephrased as the condition that M is covered by charts.
The boundary of a manifold M with boundary can now be defined as the subset

BM :“  
p PM ˇ̌

ϕppq P BHn for some chart ϕ
(
,

which is clearly an pn´ 1q-manifold (without boundary).
The word “topological” is included before “manifold” in order to make the distinction between

topological manifolds and smooth manifolds, which we will discuss a little bit below. By default
in this course, you should assume that everything we refer to simply as a “manifold” is actually
a topological manifold unless otherwise specified. (If this were a differential geometry course,
you would instead want to assume that “manifold” always means smooth manifold.) One can
regard manifolds without boundary as being special cases of manifolds M with boundary such
that BM “ H, so we shall also use “manifold” as an abbreviation for the term “manifold with
boundary” and will generally specify “without boundary” when we want to assume BM “ H. You
should be aware that some books adopt different conventions for such details, e.g. some authors
assume BM “ H always unless the words “with boundary” are explicitly included.

Remark 18.2. The following detail deserves emphasis: the way we have expressed the defini-
tion of the boundary BM Ă M above makes sense in part because when we defined the notion of
a chart ϕ : U Ñ Ω, we required24 its image Ω to be an open subset of the half-space Hn, and not
necessarily an open subset of Rn. If we were allowing arbitrary open subsets Ω Ă Rn, then every
point p P M would be a boundary point, because e.g. one could take any chart ϕ : U Ñ Ω with
p P U and compose it with a translation on Rn so that ϕppq “ 0 P BHn. Requiring Ω Ă Hn prevents
this in general, because if we start with a chart ϕ : U Ñ Ω whose image contains an open ball
around ϕppq, then translating it to achieve ϕppq “ 0 will produce something whose image cannot
be contained in Hn. In fact, the translation trick works only for points p P U with ϕppq P BHn, as

24This convention is not universal: many books allow charts to have images that are arbitrary open subsets
of Rn. The latter is a sensible convention especially if one only wants to consider manifolds with empty boundary,
and even if nonempty boundaries are allowed, one can work with charts defined in this way, but the definition of
BM Ă M would need to be expressed a bit differently.
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these are precisely the points for which Ω does not contain any ball around ϕppq. It can happen
that Ω Ă Hn is also an open subset of Rn: this is true if and only if ΩXBHn “ H, and in that case,
none of the points in the domain of the chart are boundary points. One can show that whenever
ϕppq P BHn for some chart ϕ : U Ñ Ω with p P U , the same must hold for all other charts whose
domains contain p; in other words, no point of M can be simultaneously a boundary point and an
interior point, where the latter means that some chart maps it into HnzBHn. For n ď 2, this can
be proved using methods that we have already developed (see Exercise 19.13); the proof for n ą 2

requires some other methods that we haven’t developed yet, but will soon, e.g. singular homology.

Manifolds are usually what we have in mind when we think of spaces that are “nice” or “rea-
sonable”. In particular, the following is an immediate consequence of the observation that every
point in Rn or Hn has a neighborhood homeomorphic to the closed n-disk:

Proposition 18.3. For an n-manifold M and a point p PM , every neighborhood of p contains
one that is homeomorphic to Dn. �

Corollary 18.4. Manifolds are locally compact and locally path-connected. They are also
locally contractible, meaning every neighborhood of every point in M contains a contractible
neighborhood. In particular, they are “reasonable” in the sense of Definition 16.1. �

It follows via Theorem 7.19 that a manifold M is connected if and only if it is path-connected.
More generally, the path-components ofM are the same as its connected components (cf. Prop. 7.18),
each of which are open and closed subsets, hence M is homeomorphic to the disjoint union of its
connected components. It is similarly easy to show that these connected components are also
manifolds.

Definition 18.5. A manifold M is closed (geschlossen) if it is compact and BM “ H. It is
open (offen) if none of its connected components are closed, i.e. all of them either are noncompact
or have nonempty boundary.

You need to be aware that these usages of the words “closed” and “open” are different from
the notions of closed or open subsets in a topological space. The distinction between a “closed
manifold” and a “closed subset” is at least more explicit in German: the former is a geschlossene
Mannigfaltigkeit, while the latter is an abgeschlossene Teilmenge. For openness there is the same
ambiguity in German and English, but it is rarely a problem: you just need to pay attention to the
context in which these adjectives are used and what kinds of nouns they are modifying. We will
not have much occasion to talk about open manifolds in this course, and many authors apparently
dislike seeing the word “open” used in this way, but it has some advantages, e.g. in differential
topology, there are some elegant theorems that can be stated most naturally for open manifolds
but are not true for manifolds that are not open.

Example 18.6. Any discrete space with only countably many points is a 0-manifold. (Dis-
crete spaces with uncountably many points are excluded because they are not second countable.)
Conversely, this is an accurate description of every 0-manifold, and the closed ones are those that
are finite. Note that a 0-manifold can never have boundary.

Example 18.7. The line R, the interval p´1, 1q and the circle S1 are all examples of 1-manifolds
without boundary, where S1 is closed and the others are open. Further examples without boundary
are obtained by taking arbitrary countable disjoint unions of these examples, e.g. S1 > R is a 1-
manifold without boundary, though it is neither closed nor open since it has one closed component
and one that is not closed. Some examples of 1-manifolds with nonempty boundary include the
interval I “ r0, 1s, whose boundary is the compact 0-manifold BI “ t0, 1u, and r0, 1q, whose
boundary is Br0, 1q “ t0u.
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Example 18.8. The word surface (Fläche) refers in general to a 2-dimensional manifold.
Examples without boundary include S2, T2 “ S1 ˆ S1, the surfaces Σg of genus g ě 0, RP2, R2,
and arbitrary countable disjoint unions of any of these. One can also take connected sums of these
examples to obtain more, though as we’ve seen, not all of the examples that arise in this way are
new, e.g. Σg for g ě 1 is the g-fold connected sum of copies of T2. Some compact examples with
boundary include D2 (with BD2 “ S1) and the surface Σg,m of genus g with m ě 1 holes cut out,
which has BΣg,m – šm

i“1 S
1. An obvious noncompact example with nonempty boundary is the

half-plane H2, with BH2 – R.

Example 18.9. Some examples of arbitrary dimension n without boundary are Sn, RPn,
Rn, Tn :“ S1 ˆ . . . ˆ S1, any open subset of any of these, and anything obtained from these by
(countable) disjoint unions or connected sums.25 Some obvious examples with nonempty boundary
are Dn (with BDn “ Sn´1), and r´1, 1sˆTn´1, whose boundary is the disjoint union of two copies
of Tn´1.

While we don’t plan to do very much with it in this course, we now make a brief digression on
the subject of smooth manifolds, which are the main object of study in differential geometry and
differential topology. As preparation, observe that if ϕα : Uα Ñ Ωα and ϕβ : Uβ Ñ Ωβ are two
charts on the same manifold M , then on any region Uα X Uβ where they overlap, we can think of
them as describing two alternative coordinate systems, so that there is a well-defined “coordinate
transformation” map switching from one to the other. To be more precise, ϕαpUα X Uβq and
ϕβpUα XUβq are open subsets of Ωα and Ωβ respectively, and there is a homeomorphism from one
to the other defined via the following diagram:

Uα X Uβ

ϕαpUα X Uβq ϕβpUα X Uβq
ϕα

ϕβ

ϕβ˝ϕ´1
α

The map ϕβ ˝ ϕ´1
α is called the transition map (Übergang) relating ϕα and ϕβ . The key point

about a transition map is that its domain and target are open subsets of a Euclidean space (or half-
space), thus we know what it means for such a map to be “differentiable”. This observation makes
it possible to do differential calculus on manifolds and to speak of functions f : M Ñ R as being
differentiable or not: the idea is that f should be called differentiable if it appears differentiable
whenever it is written in a local coordinate system. But for this to be well defined, we need to be
assured that the answer to the differentiability question will not change if we change coordinate
systems, i.e. if we compose our local coordinate expression for f with a transition map. If all
conceivable charts for M are allowed, then the answer will indeed sometimes change, because the
composition of a differentiable function with a non-differentiable map is not usually differentiable.
We therefore need to be able to assume that transition maps are always differentiable, and since
this is not true if all conceivable charts are allowed, we need to restrict the class of charts that
we consider. This restriction introduces a bit of structure on M that is not determined by its
topology, but is something extra:

Definition 18.10. A smooth structure (glatte Struktur) on an n-dimensional topological
manifold M is a maximal collection of charts tϕα : Uα Ñ ΩαuαPJ for which M “ Ť

αPJ Uα and the
corresponding transition maps ϕβ ˝ ϕ´1

α for all α, β P J are of class C8. A topological manifold
endowed with a smooth structure is called a smooth manifold (glatte Mannigfaltigkeit).

25Recall from Lecture 13 the connected sum of two n-manifoldsM and N : it is defined by deleting the interiors
of two embedded n-disks from M and N and then gluing them together along the spheres Sn´1 at the boundaries
of these disks.
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It is easy to see that a single topological manifold can have multiple distinct smooth structures,
e.g. on M “ R, the functions ϕαptq “ t and ϕβptq “ t3 are homeomorphisms RÑ R and can thus
be regarded as charts, but ϕα ˝ϕ´1

β is not everywhere differentiable, hence ϕα and ϕβ can each be
regarded as belonging to smooth structures on R, but they are distinct smooth structures. That
is a relatively uninteresting example, but there are also known examples of topological manifolds
admitting multiple smooth structures that are not even equivalent up to diffeomorphism (the
smooth version of homeomorphism), as well as topological manifolds that do not admit any smooth
structure at all. Such things are very hard to prove, but you should not worry about them right
now, because the basic fact is that most manifolds we encounter in nature have natural smooth
structures. A very high proportion of them come from the following geometric version of the
implicit function theorem.

Theorem 18.11 (implicit function theorem). Suppose U Ă Rn is an open subset, F : U Ñ Rk

is a C8-map and q P Rk is a point such that for all p P F´1pqq, the derivative dF ppq : Rn Ñ Rk

is surjective (we say in this case that q is a regular value of F ). Then F´1pqq Ă Rn is a smooth
manifold of dimension n´ k. �

The above theorem is provided “for your information,” meaning we do not plan to either prove
or use it in any serious way in this course, but you should be aware that it exists because it provides
many examples of manifolds that arise naturally in various applications. For instance:

Example 18.12. The n-sphere Sn “ F´1p1q, where F : Rn`1 Ñ R : x ÞÑ |x|2, which has 1 as
a regular value.

Example 18.13. The special linear group SLpn,Rq “ det´1p1q for the determinant map det :

Rnˆn Ñ R. One can show that 1 is a regular value of det by relating the derivative of the
determinants of a family of matrices passing through 1 to the trace of the derivative of that family
of matrices. Thus SLpn,Rq is a smooth manifold of dimension n2 ´ 1.

Now let’s look at a couple of non-examples.

Example 18.14. The wedge sum S1_S1 is not a manifold of any dimension. It does look like a
1-manifold in the complement of the base point x P S1_S1, but x does not have any neighborhood
homeomorphic to Euclidean space. Indeed, sufficiently small neighborhoods U Ă S1 _ S1 of x all
look like two line segments intersecting, so that if we delete the point x, we obtain a space Uztxu
with four path-components. This cannot happen in an n-manifold for any n, as deleting a point
from R produces two path-components, while deleting a point from Rn with n ě 2 leaves a space
that is still path-connected.

Example 18.15. Here is a space that is locally Euclidean and second countable, but not
Hausdorff: the line with two zeroes, i.e. X :“ pRˆt0, 1uq{„ with px, 0q „ px, 1q for all x ‰ 0. If we
endow X with the quotient topology induced by the natural topology of Rˆ t0, 1u – R > R, then
a subset U Ă X is open if and only if its preimage under the quotient projection Rˆ t0, 1u Ñ X

is open, and it follows in particular that the images of Rˆ t0u and Rˆ t1u under this projection
are open subsets of X that are each (in obvious ways) homeomorphic to R. The two zeroes
00 :“ rp0, 0qs and 01 :“ rp0, 1qs therefore each have neighborhoods homeomorphic to R, and so
(for more obvious reasons) does every other point, so the line with two zeroes would count as
a 1-manifold if we did not require manifolds to be Hausdorff. We should emphasize that we are
considering the quotient topology on X , not the pseudometric topology (cf. Example 6.12); X with
the pseudometric topology is not locally homeomorphic to R, because every neighborhood of 00
must also contain 01 and vice versa, so the two subsets described above would no longer be open.
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Example 18.16. The following is a compact variation on the previous example: writing X for
the line with two zeroes, its one point compactification X˚ is obtained by adding a single point
called 8, which is the limit of any sequence in X that has no bounded subsequence. Just as the
one point compactification RYt8u of R is homeomorphic to S1, we can think of X˚ as the result
of replacing one point 0 P R Ă S1 with a pair of points 00, 01 P X˚ that each have neighborhoods
homeomorphic to R, but with every neighborhood of 00 intersecting every neighborhood of 01.
This would also be a 1-manifold if manifolds were not required to be Hausdorff.

You probably don’t need much convincing by this point that spaces which are Hausdorff and
second countable are “good,” while those that lack either of these properties are “bad”. Nonetheless,
it’s worth taking a moment to consider why it would be bad if we dropped either of these conditions
from the definition of a manifold. The first answer is clearly that if we dropped the Hausdorff axiom,
then Example 18.15 would be a manifold, and we don’t like Example 18.15. But there are better
reasons. One of them is related to the implicit function theorem, Theorem 18.11 above, which
produces many examples of manifolds that are subsets of larger-dimensional Euclidean spaces.
Notice that in this situation, it is completely unnecessary to verify whether those subsets are
Hausdorff or second countable, because every subset of a finite-dimensional Euclidean space is
both. (See Exercise 5.9 if you’ve forgotten how we know that Rn is second countable.) Now, it is
reasonable to ask whether all conceivable manifolds arise from something similar to Theorem 18.11,
i.e. are all of them embeddable into RN for some N P N? The answer is yes, though clearly it
would not be if the Hausdorff and second countability conditions were not included:

Theorem 18.17. Every topological manifold is homeomorphic to a closed subset of RN for
N P N sufficiently large. �

This is another theorem that I am providing “for your information,” as I do not intend to
use it for anything and therefore will not prove it. A readable proof for the case of a compact
manifold appears in [Hat02, Corollary A.9]. The noncompact case is significantly harder and
proofs typically do not appear in textbooks, but the idea is outlined and some precise references
given in [Lee11, p. 116]. I would caution you in any case against taking this theorem more
seriously than it deserves: while it’s nice to know that all manifolds are in some sense submanifolds
of some RN , many of them do not come with any canonical choice of embedding into RN , so this
property is not in any way intrinsic to their structure and one should (and usually can) avoid using
it to prove things about manifolds. It might also be argued that Theorem 18.17 undermines my
point about the Hausdorff and second countability assumptions being indispensable, since it may
seem desirable to be able to consider “manifolds” that are more general than just submanifolds of
Euclidean spaces.

As a general principle, mathematicians consider a definition to be a “good” definition if it
appears as the hypothesis for a good theorem. I’m not sure if Theorem 18.17 truly qualifies as a
good theorem. But I want to talk about another one that I think is better.

Theorem 18.18. Every connected nonempty 1-manifold without boundary is homeomorphic to
either S1 or R.

If this statement sounds at first too restrictive, it makes up for it by being extremely useful. In
combination with the implicit function theorem, one can deduce from it e.g. the possible topologies
of regular level sets of arbitrary smooth functions F : Rn Ñ Rn´1. This ability has a surprising
number of beautiful applications in differential topology and related fields; one example is the
definition of the “mapping degree,” sketched in Exercise 19.14. Those applications are typically
based on the following corollary for compact manifolds with boundary.

Corollary 18.19. Every compact 1-manifold M with boundary is homeomorphic to a disjoint
union of finitely many copies of S1 and r0, 1s. In particular, BM consists of evenly many points.
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Proof. Since M is compact, it can have at most finitely many connected components (oth-
erwise we can find a noncompact closed subset by choosing one point from every component).
Restricting to connected components, it will therefore suffice to show that every connected com-
pact 1-manifoldM is either S1 or r0, 1s. Theorem 18.18 implies thatM – S1 if BM “ H, so assume
otherwise. Then BM is a closed subset and therefore is compact, and it is also a 0-manifold, which
means it is a nonempty finite set. Let us modifyM by attaching a half-line r0,8q to each boundary
point, that is, let

xM :“M YBM

˜ ž
pPBM

r0,8q
¸
.

This makes xM a noncompact connected 1-manifold with empty boundary, so by Theorem 18.18,xM – R. It follows that M Ă xM is homeomorphic to a path-connected compact subset of R. All
such subsets are compact intervals ra, bs, hence M – r0, 1s. �

The proof of Theorem 18.18 given below is based on a series of exercises outlined in [Gal87].
I will not go through every step in exhaustive detail, as my main objective is just to point out
explicitly where the Hausdorff and second countability conditions are needed. You saw already from
Examples 18.15 and 18.16 that the theorem becomes false if the Hausdorff condition is dropped,
and after the proof we will look at an even stranger example to see what can happen without
second countability.

Here is a lemma that depends explicitly on the Hausdorff property, e.g. you will find if you
look again at the line with two zeroes (Example 18.15) that it is not satisfied in that particular
example.

Lemma 18.20. Suppose M is a Hausdorff space with two overlapping open subsets Uα,Uβ ĂM

that are each homeomorphic to R, and neither is contained in the other. Then each connected
component W of Uα X Uβ is homeomorphic to R and has compact closure ĎW ĂM homeomorphic
to r0, 1s, whose boundary consists of a point pα P Uα that is not in Uβ and a point pβ P Uβ that is
not in Uα.

Proof. Choose explicit homeomorphisms ϕα : Uα Ñ R and ϕβ : Uβ Ñ R. The image
ϕβpWq Ă R is necesarily a connected open subset of R, and is therefore an open interval, implying
W – R. But ϕβpWq cannot be the entirety of R, as that would imply W “ Uβ since ϕβ is a
homeomorphism, and thus Uβ Ă Uα, which was excluded in the hypotheses. For the same reasons,
ϕαpWq is an open interval in R, but not the entirety of R.

Let us show that the closure ĎW Ă M contains two boundary points pα, pβ with the stated
properties. To find pα, choose a point t P R that is in the closure of ϕαpWq Ă R but not in
ϕαpWq. Since ϕα is a homeomorphism, there must then exist a sequence xn P W converging to
a point pα :“ ϕ´1

α ptq P Uα, and pα cannot belong to Uβ since this would imply pα P W and thus
t P ϕαpWq. We claim: |ϕβpxnq| Ñ 8. Indeed, if this does not hold, then after replacing xn with a
suitable subsequence, we can assume ϕβpxnq converges to some point y P R, in which case xn also
converges to x :“ ϕ´1

β pyq P Uβ since ϕβ is a homeomorphism. But we already know xn Ñ pα, so
the assumption that M is Hausdorff implies x “ pα and gives a contradiction, since pα R Uβ.

It follows from the claim above that ϕβpWq Ă R is an unbounded interval, and since it is not
the entirety of R, it is therefore an infinite half-interval of the form p´8, aq or pb,8q for some
a, b P R. Reversing the roles of α and β, a similar conclusion holds for ϕαpWq, so for concreteness,
let us suppose

ϕαpWq “ p´8, aq and ϕβpWq “ pb,8q,
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in which case the recipe described above for defining pα, pβ P ĎW gives

pα “ ϕ´1
α paq, pβ “ ϕ´1

β pbq.
(Only minor modifications to this discussion are necessary if ϕαpWq is instead bounded below or
ϕβpWq bounded above.) Moreover, the transition map

R Ą ϕαpWq “ p´8, aq ϕβ˝ϕ´1
αÝÑ pb,8q “ ϕβpWq Ă R,

being a homeomorphism between two open intervals in R, is a monotone function whose value
approaches ˘8 at the bounded end of its domain, and the same applies to its inverse, implying
that this transition map also has a finite limit at the unbounded end of its domain. Now if xn PW

is any sequence that has no subsequence converging to any point in W or to pβ , it follows that
|ϕβpxnq| Ñ 8 and thus ϕαpxnq Ñ a, implying xn Ñ pα. This proves that the union of W with the
two points pα, pβ is compact, as claimed. Putting the obvious topology on the extended interval
rb,8s, ϕβ now has a unique extension to a homeomorphism ĎW Ñ rb,8s that sends pα ÞÑ 8, soĎW has the topology of a compact interval. �

Note that in the setting of the lemma, Uα X Uβ may in general have multiple connected
components, but the proof showed that a homeomorphism ϕα : Uα Ñ R sends each of them to
an unbounded half-interval. Here’s a useful fact we know about R: you can’t fit more than two
disjoint unbounded half-intervals into it!

Corollary 18.21. In the setting of Lemma 18.20, Uα X Uβ has either one or two connected
components. �

Exercise 18.22. Show that the compact non-Hausdorff space in Example 18.16 admits an open
covering by two sets homeomorphic to R whose intersection with each other has three connected
components.

Proof of Theorem 18.18. Given a nonempty connected 1-manifold M without boundary,
every point has an open neighborhood homeomorphic to R, and since M is second countable,
we can cover M with a finite or countable collection tUn Ă MuNn“1 of such neighborhoods with
homeomorphisms ϕn : Un Ñ R; here N is either a natural number or 8. After removing some
of these sets from the collection, we can assume without loss of generality that none of them are
contained in any one of the others.

If N “ 1, then M is homeomorphic to R, and we are done.
If N ě 2, then since M is also Hausdorff and connected, we can appeal to Lemma 18.20 and

Corollary 18.21 in order to relabel the subsets tUnuNn“1 in the following manner. Choose U1 to be
an arbitrary set in the collection. By definition U1 is an open subset of M , but it might also be
a closed subset—if it is, then since M is connected, we can conclude that M “ U1 – R, so again
we are done. If however U1 ĂM is not a closed subset, then it is not the complement of any open
set, and in particular it is not the complement of the union of the rest of the sets in our collection,
which means at least one of them—which we shall now call U2—must intersect U1. There are now
three possibilities:

(1) If U1XU2 has two connected components, one can deduce from Lemma 18.20 that U1YU2 is
homeomorphic to S1, which is compact and is therefore (since M is Hausdorff) a closed
subset of M . Since it is clearly also an open subset and M is connected, this implies
M “ U1 Y U2 – S1, so we are done.

(2) If U1XU2 has only one connected component, then U1YU2 must be homeomorphic to R.
If U1YU2 is also a closed subset ofM , then connectedness again impliesM “ U1YU2 – R,
and we are done.
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(3) If U1 X U2 has only one connected component and the subset U1 Y U2 ĂM is not closed,
then appealing again to the fact that M is connected, U1 Y U2 must intersect one of the
remaining subsets in our collection, which we shall now call U3.

Now repeat the previous step like so: if pU1 Y U2q X U3 has two connected components, we can
concludeM “ U1YU2YU3 – S1, and if not, then U1YU2YU3 – R and either this is all ofM or it
has nonempty intersection with one of the remaining sets in the collection. If the latter happens,
repeat. And so on.

If N is finite, this process eventually exhausts all the sets U1, . . . ,UN and produces a homeo-
morphism of M to either S1 or R, the former if an intersection with two connected components
ever occurs, and the latter otherwise.

IfN is infinite, the process may still terminate if an intersection with two connected components
appears, implying that finitely many of the sets Un cover M and it is homeomorphic to S1.

The remaining possibility is that the process never terminates, but instead produces a countable
sequence of nested open subsets

I1 Ă I2 Ă I3 Ă . . .

8ď
n“1

In “M,

where each In :“ U1Y. . .YUn is homeomorphic to R and is obtained from In´1 by gluing two copies
of R together along a pair of connected half-intervals of infinite length. Up to homeomorphism,
we could instead describe this process as follows: identify I1 with p0, 1q, and by induction, if In´1

for some n ě 2 has been identified with a finite interval pa, bq, then In is identified with the union
of pa, bq and another finite open interval that contains either a or b in its interior and has an end
point in pa, bq. Up to homeomorphism, we can thus assume In´1 “ pa, bq and In is either pa´ 1, bq
or pa, b ` 1q. Continuing this process indefinitely, the union

Ť8
n“1 In gets identified with some

subinterval in R, and is thus homeomorphic to R. �

The second countability axiom became relevant in the last step of this proof because M was
presented as the union of a countable collection of intervals; if we had been forced to assume that
the collection of Euclidean neighborhoods covering M was uncountable, we would not have been
able to conclude in the same manner that M is homeomorphic to R. I would now like to describe
an example showing that this danger is serious, and that something other than S1 or R can indeed
arise if the second countability axiom is dropped. We will need to appeal to a rather non-obvious
result from elementary set theory. Recall that a totally ordered set pI,ăq consists of a set I
with a partial order ă such that for all pairs of elements x, y P I, at least one of the conditions
x ă y or y ă x holds. Such a set is said to be well ordered if every subset of I contains a smallest
element. The most familiar example of a well-ordered set is the natural numbers. For the purposes
of our example below, we need a well-ordered set that is uncountable.

Lemma 18.23. There exists an uncountable well-ordered set pω1,ďq such that for every x P ω1,
at most countably many elements y P ω1 satisfy y ď x.

Understanding this lemma requires some knowledge of the ordinal numbers (Ordinalzahlen),
which we do not have time to describe here in detail, but the intuitive idea is to think of any
well-ordered set as a “number,” call two such numbers equivalent if there exists an order-preserving
bijection from one to the other, and write x ď y whenever there exists an order-preserving injection
from x into y. Informally, an ordinal number can be regarded as an equivalence class of well-ordered
sets under this notion of equivalence. We can then think of each natural number n P N as an
ordinal number by identifying it with the set t1, . . . , nu, and this identification obviously produces
the correct ordering relation for the natural numbers. But there are also infinite ordinal numbers,
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e.g. the set N itself. Informally again, the set ω1 in the above lemma is defined to be the “smallest
uncountable ordinal”.

To see what this really means, we need a slightly more formal definition of the ordinal
numbers—the informal description above is a bit hard to make precise in formal set-theoretic
terms. A more concrete description of the ordinal numbers was introduced by Johann von Neu-
mann, and the idea is to regard each ordinal number as a set whose elements are also sets, namely
each ordinal is the set of all ordinals that precede it. In particular, we label the empty set H as 0,
identify the natural number 1 with the set t0u “ tHu, identify 2 with the set t0, 1u “ tH, tHuu,
identify

3 “ t0, 1, 2u “ tH, tHu, ttHuuu
and so forth. Although the notation quickly becomes confusing, one can make sense of von Neu-
mann’s general definition:

Definition 18.24. A set S is an ordinal number if and only if S is well ordered with respect
to set membership and every element of S is also a subset of S.

If this definition makes your head spin, rest assured that I have the same reaction, but the
concept of the ordinal numbers does not rely on anything other than the standard axioms of set
theory. With this definition in place, one can define ω1 as the union of all countable ordinals,
which is necessarily uncountable since it would otherwise contain itself.

We now use this to construct a Hausdorff space that is path-connected and locally homeomor-
phic to R but is not second countable. This space and various related constructions are sometimes
referred to as the long line. Let

L “ ω1 ˆ r0, 1q,
and define a total order on L such that px, sq ď py, tq whenever either x ď y or both x “ y and
s ď t hold. Writing x ă y to mean x ď y and x ‰ y for x, y P L, the total order determines
a natural topology on L, called the order topology, whose base is the collection of all “open”
intervals

pa, bq :“ tx P L | a ă x ă bu
for arbitrary values a, b P L. The proof of the following statement is an amusing exercise for a
rainy day.

Proposition 18.25. Every point of L has a neighborhood homeomorphic to either R or (in the
case of p0, 0q P L) the half-interval r0,8q. Moreover, L is Hausdorff and is sequentially compact,
but not compact; in particular the set tpx, 1{2q | x P ω1u Ă L is an uncountable discrete subset of
L, implying that L cannot be second countable. �

I’m guessing you find it especially surprising that this enormous space L is sequentially com-
pact, but that has to do with a peculiar property built into the definition of the set ω1: every
sequence in ω1 has an upper bound. This is almost immediate from the definition of the ordinal
numbers, as for any given sequence xn P ω1, the elements xn are also (necessarily countable) sets
of ordinal numbers, hence their union

Ť
n xn is another ordinal number and is countable, meaning

it is an element of ω1, and it clearly bounds the sequence from above.
In dimensions n ě 2, there are further constructions of non-second countable but locally

Euclidean Hausdorff spaces which do not rely on anything so exotic as the ordinal numbers. An
example is the Prüfer surface; see the exercise below. But I’m only talking about these things now
in order to explain why I will never mention them again.

Exercise 18.26. The Prüfer surface is an example of a space that would be a connected
2-dimensional manifold if we did not require manifolds to be second countable. It is defined as
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follows: let H “ tpx, yq P R2 | y ą 0u, and associate to each a P R a copy of the plane Xa :“ R2.
The Prüfer surface is then

Σ :“ H >
˜ž
aPR

Xa

¸N
„

where the equivalence relation identifies each point px, yq P Xa for y ą 0 with the point pa`yx, yq P
H. Notice that H and Xa for each a P R can be regarded naturally as subspaces of Σ.

(a) Prove that Σ is Hausdorff.
(b) Prove that Σ is path-connected.
(c) Prove that every point in Σ has a neighborhood homeomorphic to R2.
(d) Prove that a second countable space can never contain an uncountable discrete subset.

Then find an uncountable discrete subset of Σ.

19. Surfaces and triangulations

As far as I’m aware, dimension one is the only case in which the problem of classifying arbitrary
(compact or noncompact) manifolds up to homeomorphism has a reasonable solution. In this
lecture we will do the next best thing in dimension two: we will classify all compact surfaces. We
will focus in particular on closed and connected surfaces. The classification of compact connected
surfaces with boundary can easily be derived from this (see Exercise 20.13), and of course compact
disconnected surfaces are all just disjoint unions of finitely many connected surfaces, so we lose no
generality by restricting to the connected case.

Let us first enumerate the closed connected surfaces that we are already familiar with.

Examples 19.1. The sphere S2 “ Σ0 and torus T2 “ Σ1 are both examples of “oriented
surfaces of genus g,” which can be defined for any nonnegative integer g ě 0 and denoted by Σg.
In particular, we’ve seen that for each g ě 1, Σg is homeomorphic to the g-fold connected sum of
copies of T2, and we have also computed its fundamental group

π1pΣgq –
#
a1, b1, . . . , ag, bg

ˇ̌̌̌ gź
i“1

rai, bis “ e

+
,

whose abelianization is isomorphic to Z2g.

Examples 19.2. An analogous sequence of surfaces can be defined by taking repeated con-
nected sums of copies of RP2, e.g. RP2#RP

2 is homeomorphic to the Klein bottle. By the same
trick that we used in Lecture 13 to understand Σg, the g-fold connected sum #

g
i“1RP

2 is homeo-
morphic to a space obtained from a polygon with 2g edges by identifying them in pairs according
to the sequence a1, a1, . . . , ag, ag, thus

π1
`
#
g
i“1RP

2
˘ –  

a1, . . . , ag
ˇ̌
a21 . . . a

2
g “ e

(
.

Exercise 19.3. For i “ 1, . . . , g´ 1, let ei P Zg´1 denote the ith standard basis vector. Show
that there is a well-defined homomorphism G :“ ta1, . . . , ag | a21 . . . a2g “ eu Ñ Zg´1‘Z2 such that

ai ÞÑ
#
pei, 0q for i “ 1, . . . , g ´ 1,

p´1, . . . ,´1, 1q for i “ g,

and that it descends to an isomorphism of the abelianization of G to Zg´1 ‘ Z2.

Appealing to the standard classification of finitely generated abelian groups, we deduce from
the above exercise that all of our examples so far are topologically distinct:
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Lemma 19.4. No two of the closed surfaces listed in Examples 19.1 and 19.2 are homeomorphic.
�

You might now be wondering whether new examples can be constructed by taking the con-
nected sum of a surface from Example 19.1 with some surface from Example 19.2. The answer is
no:

Proposition 19.5. RP
2#T2 is homeomorphic to the connected sum of RP2 with the Klein

bottle.26

Proof. Given any surface Σ with two disjoint disks removed, one can construct a new surface
by attaching a “handle” of the form r´1, 1s ˆ S1:

Σ1 :“
´
ΣzpD̊2 > D̊2q

¯
YS1>S1

`r´1, 1s ˆ S1
˘
.

This operation is essentially the same as the connected sum, except we allow the two disks to be
embedded (disjointly) into a single surface Σ rather than two separate surfaces; we sometimes call
this a “self-connected sum”. As with the connected sum, it depends on a choice of embedding

i1 > i2 : D2 > D2 ãÑ Σ,

but only up to homotopy through embeddings, i.e. modifying the embedding through a continuous
1-parameter family of embeddings will change Σ1 into something homeomorphic to the original Σ1.

Let us now shift our perspective on the operation that changes Σ into Σ1. For this it would be
helpful to have some pictures, and I do not have time to draw them, but I recommend having a
look at Figure 1 in [FW99]. Suppose the two holes you’re drilling in Σ are right next to each other,
but before you drill them, you push the surface up a bit from underneath, creating a disk-shaped
lump. Now pick two smaller disk-shaped areas within that lump and push those up even further.
Then drill the holes in those two places and attach the handle. We haven’t changed any of the
topology in creating these “lumps,” but we have changed the picture, and if you’re imagining it the
way that I intended, it now looks like instead of cutting out two holes and attaching a handle, you
cut out one hole (the base of the original lump) and attached Σ1,1, the torus with a disk removed.
In other words, you performed the connected sum of Σ with T2:

Σ1 – Σ#T2.

So far so good. . . now let’s modify the procedure once more. Viewing D2 as the unit disk in C, let’s
replace one of our embeddings i1 : D2 Ñ Σ with another one that has the same image but changes
the parametrization by complex conjugation:

i11 : D2 ãÑ Σ : z ÞÑ i1pz̄q.
While we will now be cutting out the same two holes in Σ, the way that we attach the handle at
the first hole needs to change because i11|BD2 parametrizes the circle in the opposite direction from
i1|BD2 . The effect is the same as if you were to cut open Σ1 along the circle at the boundary of the
first hole, flip it’s orientation and then glue it back together. Unfortunately you cannot do this in
3-dimensional space—for the same reasons that you cannot embed a Klein bottle into R3—but it’s
easy to define the topological space that results from this modification. The effect is precisely to
replace the torus in the above description of a connected sum with the Klein bottle; if we call Σ2
the space that results from attaching the handle along this modified gluing map, we have

Σ2 – Σ#K2,

where K2 denotes the Klein bottle.

26This proposition has its very own Youtube video, see https://www.youtube.com/watch?v=aBbDvKq4JqE&t=20s.
Maybe you’ll find it helpful. . . I’m not entirely sure if I did.

https://www.youtube.com/watch?v=aBbDvKq4JqE&t=20s
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Finally, let’s specify this to the case Σ “ RP
2. The projective plane has a special property that

many surfaces don’t: it contains an embedded Möbius band, call it M. Now suppose we construct
RP2#T2 by embedding two small disks disjointly into M Ă RP2, then cutting both out and gluing
in a handle. By the previous remarks, the homeomorphism type of the resulting surface will not
change if we now move the first hole continuously along a circle traversing M, and the orientation
reversal as we traverse M thus allows us to deform i1 : D2 ãÑ RP2 to i11 : D2 ãÑ RP2 through a
continuous family of embeddings disjoint from the second disk. This proves that if Σ “ RP2, then
the two surfaces Σ1 and Σ2 described above are homeomorphic. �

It is sometimes useful to make a distinction between two types of handle attachment that were
described in the above proof. In one case, the two holes D2 ãÑ Σ are embedded “right next to each
other” and with opposite orientations—in precise terms, this means we focus on the domain of a
single chart on Σ, assume both holes are in this domain, define i11 by translating the image of i2
in some direction to make it disjoint, and then define i1pzq “ i11pz̄q. The handle attachment that
results is straightforward to draw, see e.g. Figure 1 in [FW99]. If we then leave the positions of the
two holes the same but reverse an orientation by replacing i1 with i11, the handle attachment can
no longer be embedded in R3, though this does not stop some authors from trying to draw pictures
of it anyway (see Figure 2 in [FW99]). This type of handle attachment is sometimes referred to
as a cross-handle. One should not take this terminology too seriously since the main point of the
above prove was that in certain cases such as Σ “ RP

2, there is no globally meaningful distinction
between ordinary handles and cross-handles, i.e. if the two holes do not lie in the same chart, it
is not always possible to say that we are dealing with one type of handle and not the other. The
distinction does make sense however if both holes are in the same chart, so we will occasionally
also use the term “cross-handle” in this situation.

Proposition 19.5 told us that the most obvious way to produce new examples of closed con-
nected surfaces out of the inventory in Examples 19.1 and 19.2 does not actually give anything
new. The reason for this turns out to be that there are no others:

Theorem 19.6. Every closed connected surface is homeomorphic to either Σg for some g ě 0

or #
g
i“1RP

2 for some g ě 1, where the integer g is in each case unique.

The uniqueness in this statement already follows from the computations of fundamental groups
explained above, so in light of Proposition 19.5, we only still need to show that every closed
connected surface other than the sphere is homeomorphic to something constructed out of copies
of T2 and RP

2 by connected sums. (Note that whenever both T2 and RP
2 appear in this collection,

Prop. 19.5 allows us to replace T2 with two copies of RP2, as RP2#RP
2 is the Klein bottle.) We

will sketch a proof of this below that is due to John Conway and known colloquially as Conway’s
“ZIP proof”. Another readable account of it is given in [FW99].

To frame the problem properly, let us say that for Σ a compact (but not necessarily closed or
connected) surface, Σ is ordinary if there is a finite sequence of compact surfaces

Σp0q,Σp1q, . . . ,Σpmq “ Σ

such that Σp0q is a finite disjoint union of spheres
šN
i“1 S

2, and each Σpj`1q is homeomorphic to
something obtained from Σpjq by performing one of the following operations:

(1) Removing an open disk from the interior, i.e.

Σpj`1q – ΣpjqzD̊2

for some embedding D2 ãÑ ΣpjqzBΣpjq;
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(2) Attaching a handle (or “cross-handle”) to connect two separate boundary components
ℓ1, ℓ2 Ă BΣpjq, i.e.

Σpj`1q – Σpjq Yℓ1>ℓ2 pr´1, 1s ˆ S1q
for some choice of homeomorphism Bpr´1, 1s ˆ S1q “ S1 > S1 Ñ ℓ1 > ℓ2;

(3) Attaching a disk (called a cap) to a boundary component ℓ Ă BΣpjq, i.e.

Σpj`1q – Σpjq Yℓ D2

for some choice of homeomorphism BD2 “ S1 Ñ ℓ;
(4) Attaching a Möbius band (called a cross-cap) M to a boundary component ℓ Ă BΣpjq,

i.e.
Σpj`1q – Σpjq Yℓ M

for some choice of homeomorphism BM – S1 Ñ ℓ.
The classification of 1-manifolds is implicitly in the background of the last three operations: since
Σpjq is a compact 2-manifold, BΣpjq is a closed 1-manifold and is therefore always a finite disjoint
union of circles. Observe now that each of the operations can be reinterpreted in terms of connected
sums, e.g. cutting out two holes and then attaching a handle or cross-handle is equivalent to taking
the connected sum with T2 or RP2#RP2, while attaching a cap or cross-cap gives connected sums
with S2 or RP2 respectively. It follows that any ordinary surface that is also closed and connected
necessarily belongs to our existing inventory of closed and connected surfaces, thus it will suffice
to prove:

Lemma 19.7. Every closed surface is ordinary.

At this point in almost every topology class, it becomes necessary to cheat a bit and appeal to a
fundamental result about surfaces that is believable and yet far harder to prove than we have time
to discuss in any detail. I’m referring to the existence of triangulations. This is not only a useful
tool in classifying surfaces, but also will play a large motivational role when we introduce homology.
The following is thus simultaneously a necessary digression behind the proof of Lemma 19.7 and
also a preview of things to come.

The idea of a triangulation is to decompose a topological n-manifold into many homeomorphic
pieces that we think of as “n-dimensional triangles”. More precisely, the standard n-simplex is
defined as the set

∆n :“  pt0, . . . , tnq P In`1
ˇ̌
t0 ` . . .` tn “ 1

(
for each integer n ě 0. This makes ∆0 the one-point space t1u Ă R, while ∆1 is a compact line
segment in R2 homeomorphic to the interval I, ∆2 is the compact region in a plane bounded by
a triangle, ∆3 is the compact region in a 3-dimensional vector space bounded by a tetrahedron,
and so forth. For a surface Σ, we would now like to view copies of ∆2 as fundamental building
blocks of Σ, arranged in such a way that the intersection between any two of those building blocks
is either empty or is a copy of ∆1 or ∆0. One can express this condition in purely combinatorial
terms by thinking of ∆n as the convex hull of its n ` 1 vertices, which are the standard basis
vectors of Rn`1. In this way, an n-simplex is always determined by n ` 1 vertices, and this idea
can be formalized via the notion of a simplicial complex.

Definition 19.8. A simplicial complex (Simplizialkomplex) K consists of two sets V and
S, called the sets of vertices (Eckpunkte) and simplices (Simplizes) respectively, where the
elements of S are nonempty finite subsets of V , and σ P S is called an n-simplex of K if it has
n` 1 elements. We require the following conditions:

(1) Every vertex v P V gives rise to a 0-simplex in K, i.e. tvu P S;
(2) If σ P S then every subset σ1 Ă σ is also an element of S.
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For any n-simplex σ P S, its subsets are called its faces (Seiten or Facetten), and in particular the
subsets that are pn ´ 1q-simplices are called boundary faces (Seitenflächen) of σ. The second
condition above thus says that for every simplex in the complex, all of its boundary faces also
belong to the complex. With this condition in place, the first condition is then equivalent to the
requirement that every vertex in the set V belongs to at least one simplex.

The complex K is said to be finite if V is finite, and it is n-dimensional if

sup
σPS

|σ| “ n` 1,

i.e. n is the largest number for which K contains an n-simplex.

Though the definition above is purely combinatorial, there is a natural way to associate a
topological space |K| to any simplicial complex K. We shall describe it only in the case of a
finite complex,27 since that is what we need for our discussion of compact surfaces. Given K “
pV, Sq, choose a numbering of the vertices V “ tv1, . . . , vNu and associate to each k-simplex
σ “ tvi0 , . . . , viku the set

∆σ :“
!
pt1, . . . , tNq P IN

ˇ̌̌
ti0 ` . . .` tik “ 1 and tj “ 0 for all vj R σ

)
.

Notice that ∆σ is homeomorphic to the standard k-simplex ∆k, but lives in the subspace of RN

spanned by the specific coordinates corresponding to its vertices. The polyhedron (Polyeder) of
K is then the compact space

|K| :“ ď
σPS

∆σ Ă RN .

While the definition above makes |K| a subset of a Euclidean space that may have very large
dimension in general, it is not so hard to picture |K| in a few simple examples.

Example 19.9. Suppose V “ tv0, v1, v2u and S is defined to consist of all subsets of V . Then
|K| is just the standard 2-simplex ∆2.

Example 19.10. Suppose V “ tv0, v1, v2, v3u and S contains the subsets A :“ tv0, v1, v2u and
B :“ tv1, v2, v3u, plus all of their respective subsets. Then |K| contains two copies of the triangle
∆2, which we can label A and B, and they intersect each other along a single common edge
connecting the vertices labeled v1 and v2. In particular, |K| is homeomorphic to a 2-dimensional
square I2, formed by gluing two triangles together along one edge.

Definition 19.11. A triangulation (Triangulierung) of a compact topological n-manifold
M is a homeomorphism of M to the polyhedron of a finite n-dimensional simplicial complex.

In particular, this makes precise the notion of decomposing a surface Σ into triangles (copies
of ∆2) whose intersections with each other are always simplices of lower dimension. Observe that
in a triangulated surface Σ with BΣ “ H, the fact that every point in one of the 1-simplices σ has
a neighborhood homeomorphic to R2 implies that σ is a boundary face of exactly two 2-simplices
in the triangulation. One can say the same about the pn ´ 1q-simplices in any triangulation of
a closed n-manifold. This is not a property that arbitrary simplicial complexes have, but it is a
general property of the complexes that appear in triangulations of closed manifolds.

Theorem 19.12. Every closed surface admits a triangulation.

27The polyhedron of a finite simplicial complex has an obvious topology because it comes with an embedding
into some finite-dimensional Euclidean space. For infinite complexes this is not true, and thus more thought is
required to define the right topology on |K|. We would need to talk about this if we wanted to define triangulations
of noncompact spaces, but since we don’t want that right now, we will not. The correct topology on infinite
complexes will be discussed next semester; see 29.
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This theorem is old enough for the first proof to have been published in German [Rad25],
and it was not the main result of the paper in which it appeared, yet it is in some sense far harder
than it has any right to be—it seems to be one of the rare instances in mathematics where learning
cleverer high-powered techniques does not really help. I can at least sketch what is involved. Since
a closed surface Σ can be covered by finitely many charts, it can also be covered by a finite collection
of regions homeomorphic to D2, which is homeomorphic to the standard 2-simplex ∆2. Of course
the interiors of these 2-simplices overlap, which is not allowed in a triangulation, but the idea is to
examine each of the overlap regions and subdivide it further into simplices. By “overlap region,”
what I mean is the following: if D1, . . . , DN Ă Σ denote the finite collection of disks Di – ∆2

covering Σ, whose boundaries are loops BDi, then the closure of each connected component of
ΣzŤi BDi is a region that needs to be subdivided into triangles. After perturbing each of the disks
Di so that its boundary intersects the other boundaries only finitely many times, we can arrange
for each of these overlap regions to be bounded by embedded circles, and notice that since each of
the regions is contained in at least one of the disks Di, we can view them as subsets of R2. Now, I
don’t know about you, but I find it not so hard to believe that regions in R2 bounded by embedded
circles can be subdivided into triangles in a reasonable way—I would imagine that writing down
a complete algorithm to do this is a pain in the neck, but it sounds plausible. It may surprise you
however to know that it is very far from obvious what the region bounded by an embedded circle
in R2 can look like in general. Actually the answer is simple and is what you would expect: the
region is homeomorphic to a disk, but this is not at all easy to prove, it is an important theorem
in classical topology known as the Schönflies theorem. With this result in hand, one can formulate
an algorithm for triangulating surfaces as sketched above by triangulating the disk-like overlap
regions. Complete accounts of this are given in [Moi77] and [Tho92].

Note that if Σ is not just a topological 2-manifold but also has a smooth structure, then one
can avoid the Schönflies theorem by appealing to some basic facts from Riemannian geometry.
Choosing a Riemannian metric allows us to define the notion of a “straight line” (geodesic) on
the manifold, and one can arrange in this case for the disks Di to be convex, so that the overlap
regions are also convex and therefore obviously homeomorphic to disks. This trick actually works
in arbitrary dimensions, leading to the result that smooth manifolds can be triangulated in any
dimension. For topological manifolds this is not true in general: it is true in dimension three (see
[Moi77]), but from dimension four upwards there are examples of topological manifolds that do
not admit triangulations. The case of dimension five has only been understood since 2013—see
[Man14] for a readable survey of this subject and its history.

But enough about triangulations: let’s just assume that surfaces can be triangulated and use
this to finish the classification theorem.

Proof of Lemma 19.7. Assume Σ is a closed surface homeomorphic to the polyhedron |K|
of a finite 2-dimensional simplicial complex K “ pV, Sq with 2-simplices σ1, . . . , σN . By abuse of
notation, we shall also denote by σ1, . . . , σN the corresponding subsets of Σ homeomorphic to the
standard 2-simplex ∆2. The latter is homeomorphic to D2 – S2zD̊2, thus

Σp0q :“ σ1 > . . . > σN
is ordinary. The idea now is to reconstruct Σ from this disjoint union by gluing pairs of 2-simplices
together along corresponding boundary faces one at a time, producing a sequence of compact
surfaces Σpjq, each of which may be disconnected and have nonempty boundary except for the last
in the sequence, which is Σ. The operation changing Σpjq to Σpj`1q is performed by gluing together
two arcs ℓ1, ℓ2 Ă BΣpjq, i.e. we can write

Σpj`1q “ ΣpjqL„ where „ identifies ℓ1 with ℓ2,
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with ℓ1 and ℓ2 assumed to be individual boundary faces of two distinct 2-simplices. These boundary
faces are each homeomorphic to the compact interval I, and their interiors are disjoint subsets
of Σpjq, but they may have boundary points (vertices of the triangulation) in common if some
neighboring pair of corresponding boundary faces has already been glued together in the process
of turning Σp0q into Σpjq. One can now imagine various scenarios, based on the knowledge (thanks
to the classification of 1-manifolds) that every connected component of BΣpjq is a circle:

Case 1 : ℓ1 Y ℓ2 forms a single connected component of BΣpjq. Gluing them together is then
equivalent to attaching either a cap or a cross-cap to that boundary component, depending on the
orientation of the homeomorphism that identifies them.

Case 2 : ℓ1 and ℓ2 form part of a single connected component of BΣpjq, but not all of it,
i.e. their boundary vertices are not exactly the same, so that there are either one or two gaps
between them forming additional arcs on some circle in BΣpjq. Gluing them together then is
equivalent to attaching a cap or cross-cap as in case 1, except that it leaves one or two holes where
the gaps were, so we can realize this operation by attaching the cap/cross-cap and drilling holes
afterward.

Case 3 : ℓ1 and ℓ2 lie on different connected components of BΣpjq. Then neither can be the
entirety of a boundary component since both are homeomorphic to I instead of S1, though it’s
useful to imagine what would happen if both really were the entirety of a boundary component:
gluing them together would then be equivalent to attaching a handle. The useful way to turn this
picture into reality is to imagine both ℓ1 and ℓ2 as making up most of their respective boundary
components, each leaving a very small gap where their end points fail to come together. Gluing ℓ1
to ℓ2 is then equivalent to attaching a handle but then drilling a small hole in it.

In all of these cases, the operation that converts Σpjq into Σpj`1q can be realized by a finite
sequence of operations from our stated list, so carrying out this procedure as many times as
necessary to convert Σp0q into Σ produces a surface that is ordinary. �

Exercise 19.13. Recall that if Σ is a surface with boundary, the boundary BΣ is defined as
the set of all points p P Σ such that some chart ϕ : U

–Ñ Ω Ă H2 defined on a neighborhood U Ă Σ

of p satisfies ϕppq P BH2. Here H2 :“ r0,8q ˆ R Ă R2, BH2 :“ t0u ˆ R Ă H2, and Ω is an open
subset of H2. One can analogously define p P Σ to be an interior point of Σ of some chart maps it
to H2zBH2. Prove that no point on BΣ is also an interior point of Σ.
Hint: If you have two charts defined near p such that one sends p to BH2 while the other sends it to
H2zBH2, then a transition map relating these two charts maps some neighborhood in H2 of a point
x P H2zBH2 to a neighborhood in H2 of a point y P BH2. What happens to this homeomorphism
if you remove the points x and y? Think about the fundamental group.
Remark: A similar result is true for topological manifolds of arbitrary dimension, but you do not
yet have enough tools at your disposal to prove this. A proof using singular homology will be
possible before the end of the semester.

Exercise 19.14. This exercise concerns manifolds with smooth structures, which were dis-
cussed briefly in Lecture 18 (see especially Definition 18.10 and Theorem 18.11). We will need the
following additional notions:

‚ For two smooth manifolds M and N , a map f : M Ñ N is called smooth if for every
pair of smooth charts ψβ on N and ϕα onM , the map fβα :“ ψβ ˝f ˝ϕ´1

α is C8 wherever
it is defined. (In other words, f is “C8 in local coordinates”.)

‚ For f : M Ñ N a smooth map between smooth manifolds, a point q P N is a regular
value of f if for all charts ϕα onM and ψβ on N such that q is in the domain of ψβ , ψβpqq
is a regular value of fβα. (In other words, q is a “regular value of f in local coordinates”.)
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An easy corollary of the usual implicit function theorem (Theorem 18.11) then states that if M is
a smooth m-manifold without boundary, N is a smooth n-manifold and f : M Ñ N is a smooth
map that has q P N as a regular value, the preimage f´1pqq Ă M is a smooth submanifold28 of
dimension m´n. IfM has boundary, then one should assume additionally that q is a regular value
of the restricted map f |BM : BM Ñ N , and the conclusion is then that Q :“ f´1pqq is a smooth
manifold of dimension m´ n with boundary BQ “ QX BM .

We will use the following perturbation lemma as a block box: ifM and N are compact smooth
manifolds, q P N and f : M Ñ N is continuous, then every neighborhood of f in CpM,Nq with
the compact-open topology (cf. Exercise 7.28) contains a smooth map fǫ : M Ñ N for which q is
a regular value of both fǫ and fǫ|BM . Moreover, if f |BM is already smooth and has q as a regular
value, then the perturbation can be chosen such that fǫ|BM “ f |BM . Proofs of these statements
can be found in standard books on differential topology such as [Hir94].

If you take all of this as given, then you can use it to define something quite beautiful. Assume
M and N are closed connected smooth manifolds of the same dimension n. Then for any smooth
map f : M Ñ N with regular value q P N , the implicit function theorem implies that f´1pqq is a
compact 0-manifold, i.e. a finite set of points. Define the mod 2 mapping degree deg2pfq P Z2

of f by
deg2pfq :“ |f´1pqq| (mod 2),

i.e. deg2pfq is 0 P Z2 if the number of points in f´1pqq is even, and 1 P Z2 if it is odd.
(a) Prove that for any given choice of the point q P N , the degree deg2pfq P Z2 depends only

on the homotopy class of the map f :M Ñ N .
Hint: If you have a homotopy H : IˆM Ñ N between two maps, perturb it as necessary
and look at H´1pqq. Use the classification of compact 1-manifolds.
Remark: One can show with a little more effort that deg2pfq also does not depend on the
choice of the point q, and moreover, it has a well-defined extension to continuous (but
not necessarily smooth) maps f :M Ñ N , defined by setting deg2pfq :“ deg2pfǫq for any
sufficiently close smooth perturbation fǫ that has q as a regular value.

(b) Prove that every continuous map f : S2 Ñ S2 homotopic to the identity is surjective.
(c) What goes wrong with this discussion of we allow M to be a noncompact manifold?

Describe two homotopic maps f, g : R Ñ S1 for which deg2pfq and deg2pgq can be
defined in the manner described above but are not equal.

(d) Prove that if n ą m, every continuous map Sm Ñ Sn is homotopic to a constant map.
Hint: What does it mean for a point q P Sn to be a regular value of f : Sm Ñ Sn if
n ą m?

20. Orientations

This lecture is in part an addendum to the classification of surfaces, though it will also introduce
some concepts that will be useful to have in mind when we discuss homology.

I have used the word “orientation” many times in this course without giving any precise expla-
nation of what it means. I want to do that now, at least for manifolds of dimensions one and two.
The canonical example to have in mind is the Klein bottle:

28A subset Y ĂM of a smoothm-manifoldM is called a smooth submanifold (glatte Untermannigfaltigkeit)
of dimension k if every point p P Y has a neighborhood U Ă M admitting a so-called slice chart (Bügelkarte),
meaning a smooth chart ϕ : U Ñ Rn with the property that Y X U “ ϕ´1pRk ˆ t0uq. Covering Y with slice
charts then gives Y the structure of a smooth k-manifold for which the inclusion Y ãÑ M is a smooth map. As an
important special case: the boundary BM Ă M of a smooth m-manifold is always a smooth pm ´ 1q-dimensional
submanifold.
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This standard picture of the Klein bottle is unfortunately the image of a non-injective map i :

K2 Ñ R3 into 3-dimensional Euclidean space from a certain closed 2-manifold K2: in differential
geometry, one would call i : K2 Ñ R3 an immersion, which fails to be an embedding (and its image
is therefore not a submanifold of R3) because one can see a pair of disjoint circles C1, C2 Ă K2

such that ipC1q “ ipC2q. For the following informal discussion, however, let us ignore this detail
and pretend that i : K2 Ñ R3 is an embedding, with no self-intersections.29 Now, aside from
the fact that it cannot be embedded into R3, what most of us really find strange about the Klein
bottle is that we cannot make a meaningful distinction between the “inside” and the “outside” of
the surface. If, for instance, you were an insect and somebody tried to trap you inside a glass Klein
bottle, then you could just walk along the surface until you are standing on the opposite side of the
glass, and you are free. In mathematical terms, this means that the Klein bottle K2 Ă R3 admits
an embedded loop γ : I Ñ K2 along which a continuous family of nonzero vectors V ptq P R3 can
be found which are orthogonal to the surface at each γptq and satisfy V p1q “ ´V p0q. By contrast,
if you take any embedded loop γ : I Ñ T2 Ă R3 on the torus in its standard representation as
a tube-like subset of R3, and choose a normal vector field V ptq along this loop, V p1q will always
need to be a positive multiple of V p0q. That’s because there is a meaningful distinction between
the outside and inside of the torus T2 Ă R3.30

But this discussion of “inside” vs. “outside” is not really satisfactory, because whenever we talk
about normal vectors, we are referring to a piece of data that is not intrinsic to the spaces T2

or K2. It depends rather on how we choose to embed or immerse them in R3. So how can we talk
about orientations without mentioning normal vectors?

To answer this, imagine again that you are an insect standing on the surface of the Klein
bottle, and while standing in place, you turn around in a circle, rotating 360 degrees to your left.
An observer from the outside will see you turn, but the direction of the turn that observer sees
will depend on which side of the glass you are standing on. In particular, if you turn around like
this and then follow the aforementioned path to come back to the same point but on the other side
of the glass, then when you turn again 360 degrees to the left, the outside observer will see you
turning the other way. We can use this turning idea to formulate a precise notion of orientation
without mentioning normal vectors.

Informally, let us agree that an orientation of a surface should mean a choice of which kinds of
rotations at each point are to be labeled “clockwise” as opposed “counterclockwise”. This is still not
a precise mathematical definition, but now we are making progress. The term “counterclockwise
rotation” has a precise and canonical definition in R2, for instance, thus we can agree that R2

has a canonical orientation. The natural thing to do is then to use charts to define orientations

29Notice that if we were willing to map K2 into R4 instead of R3, then we could easily turn i into an injective
map K2 ãÑ R4 just by slightly perturbing the fourth coordinate along C1 but not along C2.

30The fancy way of saying this in differential-geometric language is that the normal bundle of the standard
immersion K2 í R3 is nontrivial, whereas the standard embedding T2 ãÑ R3 has trivial normal bundle. If you
don’t know what that means, don’t worry about it for now.
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on a surface Σ via their local identifications with R2. There’s just one obvious problem with this
idea: if all charts are allowed, then the definition of an orientation at some point might depend on
our choice of chart to use near that point, because the transition map relating two charts might
interchange counterclockwise and clockwise rotations. It therefore becomes important to restrict
the class of allowed charts so that transition maps do not change orientations, i.e. so that they are
orientation preserving. Our main task is to give the latter term a precise definition, and this can
be done in terms of winding numbers.

Recall the following notion from Exercise 10.27. For z P C and ǫ ą 0, define a counterclockwise
loop about z by

γz,ǫ : S
1 ãÑ C : eiθ ÞÑ z ` ǫeiθ.

Note that for fixed z P C, varying the value of ǫ ą 0 does not change the homotopy class of this
loop in Cztzu, and for a suitable choice of base point it is always a generator of π1pCztzuq – Z.
For k P Z, define also the loop

γkz,ǫ : S
1 Ñ C : eiθ ÞÑ z ` ǫekiθ,

which covers γz,ǫ exactly k times if k ą 0, covers it |k| times with reversed orientation if k ă 0,
and is constant if k “ 0. Now for any other loop α : S1 Ñ Cztzu, the winding number
(Windungszahl) of α about z is an integer characterized uniquely by the condition

windpα; zq “ k ðñ α „
h
γkz,ǫ in Cztzu.

If U ,V Ă C are open subsets and f : U Ñ V is a homeomorphism, then for any z P U with
fpzq “ w P V , we can assume the loop γz,ǫ lies in U for all ǫ ą 0 sufficiently small, and the fact
that f is bijective makes f ˝ γz,ǫ a loop in Cztwu. It follows that there is a well-defined winding
number windpf ˝ γz,ǫ;wq P Z, and shrinking ǫ ą 0 to a smaller number ǫ1 ą 0 obviously will not
change it since γz,ǫ and γz,ǫ1 are homotopic in Uztzu, so that f ˝ γz,ǫ and f ˝ γz,ǫ1 are homotopic
in Cztwu.

Lemma 20.1. In the situation described above, windpf ˝ γz,ǫ;wq is always either 1 or ´1.
Proof. Choose ǫ ą 0 small enough so that the image of f ˝ γz,ǫ lies in a ball Brpwq about

w with radius r ą 0 sufficiently small such that Brpwq Ă V . Then for δ P p0, rq, the homotopy
class of γw,δ generates π1pBrpwqztwuq – π1pCztwuq – Z, and k :“ windpf ˝ γz,ǫ;wq is the unique
integer such that f ˝ γz,ǫ is homotopic in Brpwqztwu to γkw,δ. Since γz,ǫ generates π1pCztzuq, there
is also a unique integer ℓ P Z such that f´1 ˝ γw,δ is homotopic in Cztzu to γℓz,ǫ. This implies

γz,ǫ “ f´1 ˝ f ˝ γz,ǫ „
h
f´1 ˝ γkw,δ „

h
γkℓz,ǫ in Cztzu,

hence kℓ “ 1. Since k and ℓ are both integers, we conclude both are ˘1. �

Exercise 20.2. Show that in the setting of Lemma 20.1, the subsets U˘ “ tz P U | windpf ˝
γz,ǫ; fpzqq “ ˘1u are each both open and closed, so in particular, the sign of this winding number
is constant on each connected component of U .
Hint: Since the two sets are complementary, it suffices to prove both are open. What happens to
windpf ˝ γz,ǫ;wq if you perturb z and w independently of each other by very small amounts?

One can define winding numbers just as well for loops in R2 by identifying R2 with C via
px, yq Ø x ` iy. We have been using complex numbers purely for notational convenience, but
in the following we will refer instead to domains in R2 or the half-plane H2. The discussion also
makes sense for homeomorphisms between open subsets of H2 as long as we only consider points
z in the interior H2zBH2, since the loop γz,ǫ is then contained in H2 for ǫ sufficiently small. Note
that by Exercise 19.13, a homeomorphism between open subsets of H2 always maps points in BH2

to BH2 and points in H2zBH2 to H2zBH2.
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Definition 20.3. Given open subsets U ,V Ă H2, a homeomorphism f : U Ñ V is called
orientation preserving (orientierungserhaltend) if windpf ˝ γz,ǫ; fpzqq “ 1 for all z P H2zBH2

and ǫ ą 0 sufficiently small. It is called orientation reversing (orientierungsumkehrend) if
windpf ˝ γz,ǫ; fpzqq “ ´1 for all z P H2zBH2 and ǫ ą 0 sufficiently small.

Lemma 20.1 and Exercise 20.2 together imply that a homeomorphism is always either orienta-
tion preserving or orientation reversing on each individual connected component. Similar notions
can also be defined in all positive dimensions, not only dimension two, though one needs to replace
winding numbers with a different way of measuring the local behavior of a homeomorphism in
higher dimensions. In dimension one, the proper definition is fairly obvious:

Definition 20.4. Given open subsets U ,V in R or H :“ r0,8q, a homeomorphism f : U Ñ V

is called orientation preserving if it is an increasing function, and orientation reversing if it
is a decreasing function.

I will refrain for now from stating the definition for dimensions n ě 3, since it requires a certain
amount of language (involving degrees of maps between spheres) that we have not yet adequately
defined. A more straightforward definition is available however if you are willing to restrict from
homeomorphisms to diffeomorphisms, i.e. bijections that are C8 and have C8 inverses. Actually,
C1 is good enough: the point is that the derivative dfpxq : Rn Ñ Rn of such a map at any point
x is guaranteed to be an invertible linear map, so it has a nonzero determinant. One then calls
the map orientation preserving if the determinant of its derivative is everywhere positive, and
orientation reversing if that determinant is everywhere negative. We will not worry about this in
the following since we will almost exclusively talk about orientations for manifolds of dimension
at most two. Nonetheless, there is no harm in stating a definition of orientation that is valid for
topological manifolds of arbitrary dimension, and the definition will look slightly familiar if you
recall our discussion of smooth structures in Lecture 18.

Definition 20.5. An orientation (Orientierung) of an n-manifoldM for n ě 1 is a maximal
collection of charts tϕα : Uα Ñ ΩαuαPJ such that M “Ť

αPJ Uα and all transition maps ϕβ ˝ ϕ´1
α

are orientation preserving. If M is a 0-manifold, we define an orientation on M to be a function
ǫ : M Ñ t1,´1u, which partitions M into sets of positively/negatively oriented points M˘ :“
ǫ´1p˘1q.

We say that M is orientable (orientierbar) if it admits an orientation, and refer to any
manifold endowed with the extra structure of an orientation as an oriented manifold (orientierte
Mannigfaltigkeit).

Specializing again to dimension 2, an orientation of M allows you to draw small loops around
arbitrary points in M and label them “counterclockwise” or “clockwise” in a consistent way, where
consistency means in effect that you can never deform a counterclockwise loop continuously through
small loops around other points and end up with a clockwise loop. The actual definition of
counterclockwise comes from the special collection of charts that an orientation provides: we call
these oriented charts, and define a small loop about a point in M to be counterclockwise if and
only if it looks counterclockwise in an oriented chart.

If M is a 1-manifold, then instead of talking about loops or rotations, we can simply label
orientations with arrows: the orientation defines which paths in M can be called “increasing” as
opposed to “decreasing”.

Remark 20.6. One can show that any orientation-preserving homeomorphism between open
subsets of H2 restricts to the boundary as an orientation-preserving homeomorphism between open
subsets of BH2 – R. It follows that there is a natural notion of induced boundary orientation,
i.e. on any orientable surface Σ with boundary, a choice of orientation on Σ induces a natural
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orientation on BΣ by taking the oriented charts on the latter to be restrictions of the oriented
charts on Σ. An analogous statement is true for manifolds with boundary in all dimensions.
For dimM “ 1, one defines the boundary orientation of BM by setting ǫppq “ 1 whenever the
“increasing” direction of M points from the interior of M toward the boundary point p P BM , and
ǫppq “ ´1 whenever this direction points from p P BM toward the interior. (Different authors may
define this in slightly different ways, but it usually doesn’t matter: the point is just to choose a
convention and be consistent about it.)

Let us specialize this discussion to manifolds with triangulations, i.e. manifolds that are home-
omorphic to the polyhedron of a simplicial complex. The latter is an essentially combinatorial
notion, so orientations of such objects can also be defined in combinatorial terms. Recall that
if J is any finite set, any bijection π : J Ñ J is a permutation of its elements, that is, one can
identify π with some element of the symmetric SN group on N objects after choosing a numbering
v1, . . . , vN for the elements in J . The symmetric group SN is generated by flips, meaning permu-
tations that interchange two elements of J while leaving the rest fixed, and we say that π P SN
is an even permutation if it can be written as a composition of evenly many flips; otherwise it is
an odd permutation. If we represent π by an N -by-N matrix permuting the N standard basis
vectors of RN , then we can recognize the even/odd permutations as those for which this matrix
has positive/negative determinant respectively; in fact, the matrices of even permutations always
have determinant `1, and those of odd permutations have determinant ´1. To motivate the next
definition, recall the definition of the standard n-simplex ∆n “ tpt0, . . . , tnq | t0 ` . . . ` tn “ 1u.
Any element of the symmetric group on n ` 1 objects can be regarded as a permutation of the
vertices of ∆n numbered from 0 to n, and the matrix representation of this permutation then
defines a linear map on Rn`1 that permutes the standard basis vectors accordingly. That linear
map preserves the subset ∆n Ă Rn`1, and it is an orientation-preserving transformation on Rn`1

if and only if its determinant is positive, which is equivalent to requiring the permutation to be
even.

Definition 20.7. For a simplicial complex K “ pV, Sq, an orientation of an n-simplex σ P S
for n ě 1 is an equivalence class of orderings of the vertices v P σ, where two orderings are defined
to be equivalent if and only if they are related to each other by an even permutation. An orientation
of a 0-simplex is defined simply as an assignment of the number `1 or ´1 to that vertex.

For simplices of dimension 1 or 2 there are easy ways to illustrate in pictures what this definition
means; see Figure 11. The figure shows the six possible ways of ordering the three vertices of a 2-
simplex, where the individual choices in each row are related to each other by even permutations and
thus define equivalent orientations, whereas each choice is related to the one directly underneath
it by a single flip, which is an odd permutation. We can represent the orientation itself by drawing
a circular arrow that follows the direction of the sequence of vertices labeled 0, 1, 2, and this
arrow depends only on the orientation since even permutations of three objects are also cyclical
permutations.

Another intuitive fact you can infer from Figure 11 is that an orientation of a 2-simplex
induces a natural boundary orientation for each of its 1-dimensional boundary faces. The latter
orientations are represented in the picture by arrows pointing from one vertex to another, meant
to indicate the ordering of the two vertices, and the visual recipe is simply that the arrows of
all three edges together should describe the same kind of rotation as the circular arrow on the
2-simplex. This can also be reduced to a purely combinatorial algorithm, and it makes sense in
every dimension. For an n-simplex σ “ tv0, . . . , vnu, the kth boundary face Bpkqσ of σ is the
pn´1q-simplex whose vertices include all the v0, . . . , vn except vk. Clearly if the vertices v0, . . . , vn
come with an ordering, then the vertices of Bpkqσ inherit an ordering from this, though here we
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Figure 11. The six distinct orderings that define the two possible orientations
of a 2-simplex.

have to be a bit careful because applying an even permutation to v0, . . . , vn and then eliminating
vk may produce a sequence that differs from v0, . . . , vk´1, vk`1, . . . , vn by an odd permutation. To
get a well-defined orientation on Bpkqσ, one can instead do the following: notice that the sequence
v0, . . . , vk can be reordered as vk, v0, . . . , vk´1, vk`1, . . . , vn by a sequence of k flips. Permutations
of this new sequence that fix the first object vk are then equivalent to permutations of the vertices
of Bpkqσ, so the even/odd parity of the permutation does not change if we remove vk from the list.
We must not forget however that in order to produce the list with vk at the front, we performed k
flips, meaning a permutation that is even if and only if k is even. This discussion implies that the
following notion of boundary orientation is well defined.

Definition 20.8. Given an oriented n-simplex for n ě 2 with vertices v0, . . . , vn ordered
accordingly, the induced boundary orientation of its kth boundary face Bpkqσ is defined as the
same ordering of its vertices (with vk removed) if k is even, and otherwise it is defined by any odd
permutation of this ordering. For n “ 1, the boundary orientations are defined by assigning the
sign `1 to Bp0qσ “ tv1u and ´1 to Bp1qσ “ tv0u.

You should now take a moment to stare again at Figure 11 and assure yourself that the
boundary orientations indicated there are consistent with this definition.

Definition 20.9. An oriented triangulation of a closed surface Σ is a triangulation Σ – |K|
together with a choice of orientation for each 2-simplex in the complex K such that for every 1-
simplex σ in K, the two induced boundary orientations that it inherits as a boundary face of two
distinct 2-simplices are opposite.

The point of the condition on 1-simplices is to ensure that the orientations of any two neigh-
boring 2-simplices are “compatible” in the sense that each of the circular arrows can be pushed
continuously into the other. Figure 12 (left) shows an example of an oriented triangulation of T2.
The arrows on 1-simplices in this picture are not meant to represent boundary orientations, but
are just the usual indications of which 1-simplices on the boundary of the square should be glued
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Figure 12. An oriented triangulation of the 2-torus (left) and a failed attempt
to orient a triangulation of the Klein bottle (right).

together and how. We see in particular that the orientations indicated by these arrows on sim-
plices c and d are the right boundary orientation on the right hand side but the wrong one on
the left hand side. According to Definition 20.9, this is exactly what we want. Figure 12 (right)
then shows what goes wrong if we try to do the same thing with a Klein bottle. If we imagine
that this triangulation admits an orientation, then it will be represented by either clockwise or
counterclockwise loops in each 2-simplex in the picture, all of them the same because they must
induce opposite orientations on all the 1-dimensional boundary faces between them. In the picture
they are all drawn counterclockwise. But notice that in both copies of each of the 1-simplices c
and d, the arrow matches the induced boundary orientation, so this picture does not define a valid
oriented triangulation. The next theorem implies in fact that no triangulation of the Klein bottle
can be oriented.

Theorem 20.10. The following conditions are equivalent for any closed connected surface Σ.
(1) Σ is orientable.
(2) Σ admits an oriented triangulation.
(3) Σ does not contain any subset homeomorphic to the Möbius band.

Corollary 20.11. Every closed, connected and orientable surface is homeomorphic to Σg for
some g ě 0. �

All of the ideas required for proving Theorem 20.10 have been discussed already, so let us merely
sketch how they need to be put together. The equivalence of (1) and (2) is easy to understand by
drawing small loops: clearly a choice of “counterclockwise loops” around points in the interior of
any 2-simplex σ Ă Σ determines a cyclic ordering of the vertices of that simplex, and conversely.
Notice that this correspondence has a slightly non-obvious corollary: if some triangulation of Σ
can be oriented, then so can all others. It should also be intuitively clear why (1) implies (3): if
Σ contains a Möbius band, then no globally consistent notion of counterclockwise loops can be
defined, since deforming it continuously along certain closed paths around the Möbius band would
reverse it. For the converse, we can appeal to the classification of surfaces and observe that any
surface Σ satisfying the third condition is homeomorphic to one of the surfaces Σg, which can be
represented by a polygon with 4g sides. In the polygon picture, it is an easy exercise to construct
an oriented triangulation for Σg. Alternatively, one can understand the relationship between (2)
and (3) in terms of the presence of cross-caps or cross-handles in our proof of the classification



130 FIRST SEMESTER (TOPOLOGIE I)

of surfaces: the orientable surfaces are precisely those which can be constructed without any
cross-caps or cross-handles, which turns out to work if and only if the 2-simplices can be assigned
orientations for which the gluing maps between matching 1-simplices are orientation reversing.

Exercise 20.12. Construct an explicit oriented triangulation of Σg for each g ě 0. Then, just
for fun, count how many k-simplices it has for each k “ 0, 1, 2. You will find that the number of
0-simplices minus the number of 1-simplices plus the number of 2-simplices is 2 ´ 2g. (Someday
next semester we’ll discuss the Euler characteristic, and then you’ll see why this is true.)

Exercise 20.13. In Exercise 14.13 we considered the space Σg,m, defined by cutting the
interiors of m ě 0 disjoint disks out of the oriented surface Σg of genus g ě 0.

(a) Prove that every compact, orientable, connected surface with boundary is homeomorphic
to Σg,m for some values of g,m ě 0.
Hint: If Σ is a compact 2-manifold, then BΣ is a closed 1-manifold, and we classified all of
the latter. With this knowledge, there is a cheap trick by which you can turn any compact
surface with boundary into a closed surface, and then apply what you have learned about
the classification of closed surfaces. Don’t forget to keep track of orientations.

(b) Prove that Σg,m is homeomorphic to Σh,n if and only if g “ h and m “ n.

This concludes our discussion of surfaces.

21. Higher homotopy, bordism, and simplicial homology

The rest of this semester’s course will be about homology, but before defining it, I want to
discuss some related ideas that should help motivate the definition. In some sense, all of the
algebraic topological invariants we discuss in this course can be viewed as methods for “detecting
holes” in a topological space. Let me start by describing a few concrete examples in which the
fundamental group either does or does not succeed in this task.

Example 21.1. If we replace R2 with R2zD̊2, then the fundamental group changes from 0

to Z, with the boundary of D2 representing a generator of π1pR2zD̊2q, so this is one type of hole
that π1 detects very well.

Example 21.2. A 3-dimensional generalization of Example 21.1 is to replace R3 by pR2zD̊2qˆ
R, which amounts to cutting the neighborhood of a line t0uˆR Ă R2ˆR out of R3. Since the extra
factor R is contractible, this example essentially admits a deformation retraction to the previous
one, so we still find a generator of π1ppR2zD̊2q ˆ Rq – π1pR2zD̊2q – Z which detects the removal
of the tube D̊2 ˆ R.

Example 21.3. A different type of generalization of Example 21.1 is to remove a 3-dimensional
ball from R3, and here the fundamental group performs less well: π1pR3q is 0, and π1pR3zD̊3q is
still zero since R3zD̊3 is homotopy equivalent to S2 and the latter is simply connected. There
clearly is a “hole” here, but π1 does not see it.

Example 21.4. There are also examples in which π1 seems to detect something other than a
hole. Let Σg,m denote the surface of genus g with m holes cut out, so Σ2 is homeomorphic to a
surface constructed by gluing together two copies of Σ1,1 along their common boundary:

Σ2 – Σ1,1 YBΣ1,1
Σ1,1.

Let γ : S1 Ñ Σ2 denote a loop parametrizing the common boundary of these copies of Σ1,1. As we
saw in Exercise 14.13, γ represents a nontrivial element in π1pΣ2q, though it is in the kernel of the
natural homomorphism of π1pΣ2q to its abelianization. The latter will turn out to be related to
the following geometric observation: while γ cannot be extended to any map D2 Ñ Σ2, it can be
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extended to a map on some surface with boundary S1, e.g. it admits an extension to the inclusion
Σ1,1 ãÑ Σ2. In this sense, there is no actual hole there for γ to detect; it is instead detecting a
different phenomenon that has to do with the distinction between “disk-shaped” holes and “holes
with genus”.

I’m now going to start suggesting possible remedies for the drawbacks encountered in the last
two examples. We will have to try a few times before we can point to the “right” remedy, but all
of the objects we discuss along the way are also interesting and worthy of study.

Remedy 1: Higher homotopy groups. For any integer k ě 0, fix a base point t0 P Sk and
associate to any pointed space pX, x0q the set

πkpX, x0q “  
f : pSk, t0q Ñ pX, x0q(L „

h`,

where the equivalence relation „
h` here means base-point preserving homotopy. This clearly repro-

duces the fundamental group when k “ 1. When k “ 0, S0 “ BD1 “ t1,´1u is a discrete space
with two points, one of which must be the base point and is thus constrained to map to x0, but
the other can move freely within each path-component of X , so π0pX, x0q is in bijective correspon-
dence with the set of path-components of X . This set does not naturally have any group structure,
though it does naturally have a “neutral” element, represented by the map that sends both points
in S0 to the base point x0. It turns out that for k ě 2, πkpX, x0q can always be given the structure
of an abelian group whose identity element is represented by the constant map

0 :“ rpSk, t0q Ñ pX, x0q : t ÞÑ x0s.
The precise definition of the group operation is a bit less obvious than for k “ 1, so I will not
go into it in this brief sketch. As with the fundamental group, one can show that πkpX, x0q is
independent of the base point up to isomorphism whenever X is path-connected, and it is also
isomorphic for any two spaces that are homotopy equivalent. We will prove these statements next
semester in Topologie II, but feel free to have a look at [Hat02, §4.1] if you can’t bear to wait.

Here are a couple of things that can be proved about the higher homotopy groups using
something resembling our present state of knowledge in this course:

Example 21.5. The identity map Sk Ñ Sk represents a nontrivial element of πkpSkq for every
k ě 1. This follows from Exercise 19.14, which sketches the notion of the mod 2 mapping degree
in order to show that every map Sk Ñ Sk homotopic to the identity is surjective (and therefore
nonconstant). More generally, one can use the integer-valued mapping degree for maps Sk Ñ Sk

to prove that πkpSkq – Z, just like the case k “ 1. A very nice account of this is given in [Mil97].

Example 21.6. For every pair of integers k, n P N with n ą k, πkpSnq “ 0. This follows easily
from a general result in differential topology that allows us to approximate any continuous map
between smooth manifolds by a smooth map for which any given point in the target space can be
assumed to be a regular value. When n ą k, the latter means that for any given q P Sn and a
continuous map f : Sk Ñ Sn, we can approximate f with a map whose image does not contain q
and is thus contained in Snztqu – Rn. The latter admits a deformation retraction to any point it
contains, so composing the perturbed map Sk Ñ Snztqu with a deformation retraction of Snztqu
to the base point gives a homotopy of f to the constant map.

Now here is the first piece of bad news about πk: in general it is rather hard to compute. So
hard, in fact, that the answers to certain basic questions about πk remain unknown, e.g. one of the
most popular open questions in modern topology is how to compute πkpSnq in general when k ą n.
Various special cases are known, but the as-yet incomplete effort to extend these special cases to a
general theorem has played a large role in motivating the development of modern homotopy theory.
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We will need to have more and easier techniques at our disposal before we can discuss such things
in earnest.

Remedy 2: Bordism groups. The higher homotopy groups do remedy one of the drawbacks
of π1 that I pointed out above: e.g. π2 can be used to detect the hole in R3zD̊3 since, by homotopy
invariance,

π2pR3zD̊3q – π2pS2q – Z,

with the inclusion S2 ãÑ R3zD̊3 representing a generator. But there’s another drawback here:
while πk can detect higher-dimensional holes, they are still holes of a fairly specific type which one
might call “sphere-shaped” holes. What kind of hole is not sphere-shaped, you ask? Is there such
a thing as a “torus-shaped” hole? How about this one:

Example 21.7. Let X “ S1ˆR2 and X0 “ S1ˆ D̊2, so XzX0 “ S1ˆpR2zD̊2q admits a defor-
mation retraction to B sX0 “ S1ˆS1 “ T2. By homotopy invariance, we have π1pXq – π1pS1q – Z

and π1pXzX0q – π1pT2q – Z2, so π1 does at least partly detect the removal of X0 from X . But
since XzX0 is homotopy equivalent to a surface, there is also an intrinsically 2-dimensional phe-
nonomenon going on in this picture, and it seems natural to ask: does XzX0 contain any surface
detecting the fact that X0 has been removed from X? We can almost immediately give the fol-
lowing answer: if such a surface exists, it is not a sphere, in fact π2pXq “ π2pXzX0q “ 0. To see
this, we can use the homotopy invariance of π2: the spaces X and XzX0 are homotopy equivalent
to S1 and T2 respectively, so it suffices to prove π2pS1q “ π2pT2q “ 0. Now observe that both
S1 and T2 are spaces whose universal covers (R and R2 respectively) happen to be contractible.
In general, suppose p : rY Ñ Y denotes the universal cover of some reasonable space Y , and rY is
contractible. Since S2 is simply connected, any map f : S2 Ñ Y can be lifted to f̃ : S2 Ñ rY ,
but the contractibility of rY then implies that f̃ is homotopic to a constant map. Composing that
homotopy with p : rY Ñ Y gives a corresponding homotopy of f “ p ˝ f̃ : S2 Ñ Y to a constant
map, proving π2pY q “ 0.

The preceding example is meant to provide motivation for a new invariant that might be able
to detect holes that are not “sphere-shaped”. The idea is to forget about the special roll played by
spheres in the definition of πk, but remember the fact that Sk is a closed k-dimensional manifold.
Similarly, if M is a k-manifold, the homotopy relation for maps defined on M is defined in terms
of maps on I ˆM , which gives a special status to a very particular class of pk ` 1q-manifolds
with boundary. Since we are now allowing arbitrary closed k-manifolds in place of spheres, it also
seems natural to allow arbitrary compact pk`1q-manifolds with boundary for defining equivalence,
instead of just manifolds of the form IˆM . Following this train of thought to its logical conclusion
leads to bordism theory.31

For any space X and each integer k ě 0, let

ΩkpXq :“ tpM, fqu L„,
31In the older literature, “bordism theory” was usually called “cobordism theory,” and it is still common in

most subfields of geometry and topology to refer to manifolds whose boundaries are disjoint unions of a given pair
of closed manifolds as “cobordisms” instead of “bordisms”. The elimination of the “co-” in “cobordism” is presumably
motivated by the fact that bordism groups define a covariant functor instead of a contravariant functor, which
makes it more analogous to homology than to cohomology. I promise you this footnote will make more sense after
Topologie II.
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where M is any closed (but not necessarily connected or nonempty)32 k-manifold, f :M Ñ X is a
continuous map, and we write pM`, f`q „ pM´, f´q if and only if there exists a compact pk ` 1q-
manifold W with BW –M´ >M` and a map F :W Ñ X such that F |M˘ “ f˘. You should take
a moment to think about why „ defines an equivalence relation. Any two pairs that are equivalent
in this sense are said to be bordant, and the pair pW,F q is called a bordism between them.

Example 21.8. pM, fq „ pM, gq whenever f and g are homotopic maps M Ñ X , as the
homotopy H : I ˆM Ñ X defines a bordism pI ˆM,Hq.

Example 21.9. Recall from Example 21.4 the loop γ : S1 Ñ Σ2 whose image separates Σ2

into two pieces both homeomorphic to Σ1,1. Either of the two inclusions Σ1,1 ãÑ Σ2 in this picture
can be viewed as a bordism between pS1, γq and pH, ¨q, where ¨ denotes the unique map H Ñ X .
Hence rpS1, γqs “ rpH, ¨qs P Ω1pΣ2q.

Since the manifolds representing elements of ΩkpXq need not be connected, the disjoint union
provides an obvious definition for a group operation on ΩkpXq. This operation is necessarily
commutative since X >Y has a natural identification with Y >X for any two spaces X and Y . Now
would be a good moment to mention the following notational convention: whenever a group G is
known a priori to be abelian, we shall from now on denote the group operation in G as addition
(with a “`” sign) rather than multiplication.

Definition 21.10. We give ΩkpXq the structure of an abelian group by defining

rpM1, f1qs ` rpM2, f2qs :“ rpM1 >M2, f1 > f2qs,
where f1 > f2 :M1 >M2 Ñ X denotes the unique map whose restriction to Mi ĂM1 >M2 is fi for
i “ 1, 2. The identity element is

0 :“ rpH, ¨qs,
with ¨ : HÑ X denoting the unique map. The group ΩkpXq is called the k-dimensional unori-
ented bordism group of X . We say that a pair pM, fq is null-bordant whenever rpM, fqs “ 0,
meaning there exists a compact pk ` 1q-manifold W with BW – M and a map F : W Ñ X with
F |M “ f .

Referring back to Example 21.7, one can now show that the bordism class represented by the
inclusion T2 “ B sX0 ãÑ XzX0 is nontrivial in Ω2pXzX0q. One way to prove this uses the mod 2

mapping degree (cf. Exercise 19.14) for maps f : T2 Ñ T2: by an argument similar to the proof
that deg2pfq depends only on the homotopy class of f , one can show that degpfq “ 0 whenever
pT2, fq is null-bordant. It follows that rpT2, Idqs ‰ 0 P Ω2pT2q since deg2pIdq “ 1, and this element
of Ω2pT2q can be identified with the aforementioned inclusion using the homotopy equivalence
between T2 and XzX0. In summary, Ω2 does indeed detect “T2-shaped” holes.

The algebraic structure of ΩkpXq is also extremely simple, one might even say too simple, in
light of the following result saying that every element in ΩkpXq is its own inverse:

Proposition 21.11. For every rpM, fqs P ΩkpXq, rpM, fqs ` rpM, fqs “ 0.

Proof. Let W “ I ˆM and F : W Ñ X : ps, xq ÞÑ fpxq. Then BW – H > pM >Mq and
F |M>M “ f > f , hence pW,F q is a bordism between pM >M, f > fq and pH, ¨q.33 �

32Note that the empty set is a k-manifold for every k P Z. Look again at the definition of manifolds, and you
will see that this is true.

33One of the slightly confusing things about ΩkpXq is that there is always some ambiguity about how to split
up the various connected components of BW into M´ and M`. For the bordism in the proof of Prop. 21.11, one
can equally well view it as a bordism between pM,fq and pM, fq, but we are ignoring this because it does not give
us any information beyond the fact that the bordism relation is reflexive.
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One obtains a slightly more interesting algebraic structure by restricting to orientable manifolds
and keeping track of orientations. Recall from the previous lecture that a manifold endowed with
the extra structure of an orientation is called an oriented manifold ; we will continue to denote
such objects by single letters such as M , but you should keep in mind that they include slightly
more data than just a set with its topology. If M is an oriented manifold, we shall denote by
´M the same manifold with its orientation reversed: this can always be defined by replacing each
of the oriented charts on M by their compositions with an orientation-reversing homeomorphism
Hn Ñ Hn such as px1, . . . , xn´1, xnq ÞÑ px1, . . . , xn´1,´xnq. Recall also from Remark 20.6 that any
oriented manifold W with boundary determines a natural boundary orientation on BW . Whenever
we write expressions like BW – M in the context of oriented manifolds, we will always mean
there is a homeomorphism BW Ñ M that matches the given orientation of M to the boundary
orientation of BW induced by the given orientation of W .

Definition 21.12. The k-dimensional oriented bordism group of X is34

ΩSO
k pXq :“ tpM, fqu L„,

whereM is a closed (but not necessarily connected or nonempty) oriented k-manifold, f :M Ñ X

is continuous, and the oriented bordism relation pM`, f`q „ pM´, f´q means that there exists a
compact oriented pk ` 1q-manifold W and a map F :W Ñ X such that

BW – ´M´ >M`
and F |M˘ “ f˘. The group operation on ΩSO

k pXq is defined via disjoint union as with ΩkpXq.
Proposition 21.11 is not true for oriented bordism groups: its proof fails due to the fact that

the oriented boundary of I ˆM is ´M >M , not M >M .
Let us compare both groups in the case k “ 0. We claim that

Ω0pXq –
à
π0pXq

Z2,

while
ΩSO

0 pXq – à
π0pXq

Z,

where π0pXq is an abbreviation for the set of path-components of X . For concreteness, consider a
case where X has exactly three path-components X1, X2, X3 Ă X , so the claim is that Ω0pXq – Z3

2

and ΩSO
0 pXq – Z3. An element of Ω0pXq is an equivalence class of pairs pM, fq, where M is a

closed 0-manifold, i.e. a finite discrete set, and f : M Ñ X . Let us number the elements of
M as x1, . . . , xN , and suppose there are two elements that are mapped by f to the same path-
component, say fpx1q, fpx2q P X1. Then there exists a path γ : I12 Ñ X , where I12 :“ I, satisfying
γp0q “ fpx1q and γp1q “ fpx2q. Now define W :“ I12 > I3 > . . . > IN where each Ij for j “ 3, . . . , N

is another copy of I, and decompose the boundary BW “ M´ >M` so that M` contains BI12
and 1 P BIj for every j “ 3, . . . , N , while M´ contains 0 P BIj for every j “ 3, . . . , N . Defining
F : W Ñ X such that F |I12 :“ γ and F sends Ij to the constant fpxjq for each j “ 3, . . . , N , we
now have a bordism between pM, fq and pM 1, f 1q whereM 1 :“Mztx1, x2u and f 1 is the restriction
of f . One can do this for any pair of points in M that are mapped to the same path-component,
so that whenever pM, fq and pN, gq have the same number of points (mod 2) mapped into each
path-component, there exists a bordism between them. Conversely, any bordism between two
pairs pM, fq and pN, gq is of the form pW,F q where W is a compact 1-manifold with boundary,

34The “SO” in the notation ΩSO

k
pXq stands for the group SOpkq, the special orthogonal group. This has to

do with the fact that SOpkq is precisely the subgroup of Opkq consisting of orthogonal transformations that are
orientation preserving.
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and by the classification of 1-manifolds, this can only mean a finite disjoint union of circles and
compact intervals. Since each of these components individually can only be mapped into one of
the path-components X1, X2, X3 and each has either zero or two boundary points, it follows that
for each i “ 1, 2, 3, the number of points of M or N that are mapped into Xi can only differ by an
even number. We have just proved the following: given rpM, fqs P Ω0pXq, let fi P Z2 for i “ 1, 2, 3

denote the number (mod 2) of points in M that f maps into Xi. Then

Ω0pXq Ñ Z3
2 : rpM, fqs ÞÑ pf1, f2, f3q

is an isomorphism.
To understand ΩSO

0 pXq, we need to keep in mind that an oriented 0-manifold M is not just a
finite set of points, but it also comes with a map ǫ :M Ñ t1,´1u telling us which points are to be
regarded as “positively oriented” as opposed to “negatively oriented” (cf. Definition 20.5). It is now
no longer possible to cancel arbitrary pairs as in the unoriented case, but supposeM “ tx1, . . . , xN u
and f sends both x1 and x2 into X1, and also that ǫpx1q “ ´1 while ǫpx2q “ `1. We can again
choose a path γ : I12 Ñ X1 with γp0q “ fpx1q and γp1q “ fpx2q, and define W “ I12 > I3 > . . .> IN
and F : W Ñ X as before. Before we can call pW,F q an oriented bordism, we need to specify
the orientation of W . Let us assume I12 is oriented so that ǫp1q “ `1 and ǫp0q “ ´1, while for
j “ 3, . . . , N , orient Ij such that ǫp1q “ ǫpxjq and ǫp0q “ ´ǫpxjq. We now have BW “ ´M 1 >M
where M 1 “ Mztx1, x2u with the same orientations on the points x3, . . . , xN , hence pW,F q is
an oriented bordism between pM, fq and pM 1, f 1q. It is possible to construct such a bordism to
eliminate any pair of points in M that have opposite signs and are mapped to the same path-
component of X . Thus if we define fi P Z for each i “ 1, 2, 3 by

fi :“
ÿ

xPf´1pXiq
ǫpxq,

it follows that any two pairs pM, fq and pN, gq for which fi “ gi for every i must admit an oriented
bordism. Conversely, the classification of 1-manifolds again implies that an arbitrary oriented
bordism pW,F q between two pairs pM, fq and pN, gq is a map defined on a finite disjoint union
of oriented intervals and circles, and since the two boundary points of an oriented interval I are
always oriented with opposite signs, any component of W whose boundary lies entirely in one of
M or ´N contributes zero to the counts defining the numbers fi and gi, while components that
have one boundary point in M and one in ´N make the same contribution ˘1 to fi and gi. This
proves that the map

ΩSO
0 pXq Ñ Z3 : rpM, fqs ÞÑ pf1, f2, f3q

is well defined and is also an isomorphism.
While computing the 0-dimensional bordism groups is not hard, we run into a serious (though

interesting!) difficulty with the higher-dimensional bordism groups: they can be nontrivial even if
X is only a one-point space. When X “ tptu, we abbreviate

Ωk :“ Ωkptptuq, ΩSO
k :“ ΩSO

k ptptuq,
and notice that since there is only one map from each manifold to tptu, the elements of ΩSO

k

are equivalence classes of oriented closed manifolds M where M „ N whenever BW – ´M > N
for some compact oriented manifold W ; elements of Ωk can be described in the same way after
deleting the word “oriented” everywhere. In particular, we have rM s “ 0 P Ωk if and only if M
is homeomorphic to the boundary of some compact pk ` 1q-manifold. The question of whether a
given manifold can be the boundary of another compact manifold is interesting, and the answer
is often not obvious. For k “ 1 it is not so hard: the classification of 1-manifolds implies that
every bordism class rM s in Ω1 or ΩSO

1 is represented by a finite disjoint union of circles, and since
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S1 “ BD2, all of these are (oriented) boundaries, hence

Ω1 “ ΩSO
1 “ 0.

It is similarly easy to see that all closed oriented surfaces are boundaries of compact oriented 3-
manifolds: just take your favorite embedding of Σg into R3 and consider the region bounded by that
embedded surface. For the oriented 3-dimensional case, we do not have any simple classification
result to rely upon, but one can instead appeal to a standard (though not so trivial) result from low-
dimensional topology known as the Dehn-Lickorish theorem, which can be interpreted as presenting
arbitrary closed oriented 3-manifolds as boundaries of compact oriented 4-manifolds obtained by
attaching “2-handles” to D4. We can therefore say

ΩSO
2 “ ΩSO

3 “ 0.

However, in the unoriented case there is already trouble in dimension two: it is known that there
does not exist any compact 3-manifold whose boundary is homeomorphic to RP

2. This can be
proved using methods that we will cover in Topologie II, notably the Poincaré duality isomorphism
between the homology and cohomology groups of closed manifolds. A similar argument implies that
the complex counterpart of RP2, the complex projective space CP2, is a closed oriented 4-manifold
that never occurs as the boundary of any compact oriented 5-manifold. This implies

rRP2s ‰ 0 P Ω2, and rCP2s ‰ 0 P ΩSO
4 .

This reveals that in general, the k-dimensional bordism groups of a one-point space contain a lot
more information than one might expect: instead of just telling us something about the rather
boring space tptu, they tell us something about the classification of closed k-manifolds, namely
which ones can appear as boundaries of other compact manifolds and which ones cannot. That is
an interesting question, and one that is very much worth studying at some point, but as with the
higher homotopy groups, we will need to have a much wider range of simpler techniques at our
disposal before we are equipped to tackle it.

Remedy 3: Simplicial homology (AKA “triangulated bordism”). The first version of
homology theory that we will now discuss can be regarded as an attempt to capture much of the
same information about X that is seen by the bordism groups ΩnpXq and ΩSO

n pXq, but without
requiring us to know anything about the (generally quite hard) problem of classifying closed n-
manifolds. The first idea is that instead of allowing arbitrary closed manifolds as domains, we
consider manifolds with triangulations, so that all the data can be expressed in terms of simplices.
The followup idea is that now that everything is expressed in terms of simplices, there is no need
to mention manifolds at all.

Consider a simplicial complex K “ pV, Sq with associated polyhedron X :“ |K|, and for each
integer n ě 0, let Spnq Ă S denote the set of n-simplices. As auxiliary data, we also fix an abelian
group G, which in principle can be arbitrary, but for reasons related to the distinction between
oriented and unoriented bordism, we will typically want to choose G to be either Z or Z2.

Definition 21.13. The group of n-chains in K (with coefficients in G) is the abelian group

CnpK;Gq :“ à
σPSpnq

G,

whose elements can be written as finite sums
ř
i aiσi with ai P G and σi P Spnq, with the group

operation defined by ÿ
i

aiσi `
ÿ
i

biσi “
ÿ
i

pai ` biqσi.
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An n-chain is in some sense an abstract algebraic object, but if we chooseG “ Z and consider an
n-chain

ř
i aiσi whose coefficients are all ai “ ˘1, then you can picture the chain geometrically as

the union of the n-simplices in X corresponding to each σi in the sum, with orientations determined
by the signs ai. These subsets are always compact, and if the particular set of n-simplices is chosen
appropriately, then they will sometimes look like n-dimensional manifolds embedded in X . Our
goal is now to single out a special class of n-chains that are analogous to closed n-dimensional
manifolds embedded in X , i.e. the n-chains that have “empty boundary”. This can be done by
writing down an algebraic operation that describes the boundary of each individual simplex. To
define this properly, we need to choose an orientation for every simplex in S; note that this has
nothing intrinsically to do with oriented triangulations, as it is a completely arbitrary choice with
no compatibility conditions required, so it can always be done. With this choice in place, for each
σ “ tv0, . . . , vnu P Spnq, set

Bσ :“
nÿ
k“0

ǫkBpkqσ P Cn´1pK;Zq,

where as usual Bpkqσ “ tv0, . . . , vk´1, vk`1, . . . , vnu denotes the kth boundary face of σ, and ǫk P
t1,´1u is defined to be `1 if the chosen orientation of the pn ´ 1q-simplex Bpkqσ matches the
boundary orientation it inherits from σ (see Definition 20.8), and ´1 if these two orientations are
opposite. There is now a uniquely determined group homomorphism

Bn : CnpK;Gq Ñ Cn´1pK;Gq : ÿ
i

aiσi ÞÑ
ÿ
i

aipBσiq,

where the multiplication of each coefficient ai P G by a sign ǫk “ ˘1 is defined in the obvious way
as an element of G. (Notice that if G “ Z2, the signs ǫk become irrelevant because every coefficient
ai then satisfies ai “ ´ai.) Strictly speaking, the definition above only makes sense for n ě 1 since
there are no p´1q-simplices; in light of this, we set

B0 :“ 0.

We call the subgroup ker Bn Ă CnpK;Gq the group of n-cycles, or equivalently, the closed
n-chains. The elements of the subgroup im Bn`1 Ă CnpK;Gq are called boundaries.

Lemma 21.14. Bn´1 ˝ Bn “ 0 for all n P N.

Proof. You should think of this as an algebraic or combinatorial expression of the geometric
fact that the boundary of any n-manifold with boundary is always an pn´ 1q-manifold with empty
boundary. On a more mundane level, the result holds due to cancelations, e.g. suppose A is an
oriented 2-simplex whose oriented 1-dimensional boundary faces are denoted by a, b, c, giving

B2A “ a` b` c.

Suppose further that the vertices of A are denoted by α, β, γ, all oriented with positive signs, but
the arrow determined by the orientation of a points toward α and away from γ, while b points
toward β and away from α, and c points toward γ but away from β. This gives the three relations

B1a “ α´ γ, B1b “ β ´ α, B1c “ γ ´ β,

thus B1 ˝ B2A “ B1pa` b` cq “ pα´ γq` pβ´αq` pγ´βq “ 0. Similar cancelations occur in every
dimension. �

Lemma 21.14 is often abbreviated with the formula

B2 “ 0,
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and we will sometimes abbreviate B :“ Bn when there is no chance of confusion. The formula
implies in particular that im Bn`1 is a subgroup of Bn for every n ě 0. Since all these groups are
abelian and subgroups are therefore normal, we can now consider quotients:

Definition 21.15. The nth simplicial homology group of the complex K (with coefficients
in G) is

H∆
n pK;Gq :“ ker BnL im Bn`1.

It is worth comparing this definition to the bordism groups ΩnpXq and ΩSO
n pXq, as the extra

layer of algebra involved in the definition of homology obscures a fairly direct analogy. Instead of
closed n-manifolds M with maps f :M Ñ X , homology considers n-cycles, meaning formal linear
combinations of n-simplices c :“ ř

i aiσi with Bc “ 0. The bordism relation pM`, f`q „ pM´, f´q
is now replaced by the conditition that two cycles c, c1 P ker Bn represent the same homology class
rcs “ rc1s P H∆

n pK;Gq if c ´ c1 P im Bn`1, i.e. their difference is the boundary of an pn ` 1q-chain
(analogous to a map defined on a compact pn` 1q-manifold with boundary). When this holds, we
say that the cycles c and c1 are homologous. Finally, we will see that the distinction between
ΩSO
n pXq and ΩnpXq now corresponds to the distinction between H∆

n pK;Zq and H∆
n pK;Z2q.

Let’s compute an example. Figure 13 shows an oriented triangulation of T2 with eighteen
2-simplices, twenty-seven 1-simplices, and nine vertices labeled as follows:

S2 “ tσ1, τ1, . . . , σ9, τ9u,
S1 “ ta1, a2, a3, b1, b2, b3, . . . , f1, f2, f3, g1, . . . , g9u,
S0 “ tP1, P2, P3, Q1, Q2, Q3, R1, R2, R3u.

In addition to the orientations of the 2-simplices that come from this being an oriented trian-
gulation, the figure shows (via arrows) an arbitrary choice of orientations for all 1-simplices, and
we shall assume all the 0-simplices are oriented with a positive sign. One can now begin writing
down relations such as

Bσ1 “ g1 ´ a1 ´ d3, Bτ1 “ b1 ` e3 ´ g1, Ba1 “ P2 ´ P1

and so forth, but writing down all such relations would be rather tedious, so let us instead try to
reason more geometrically. The computation of H∆

0 pK;Zq is not hard in any case: all 0-chains
are cycles since B0 “ 0, including the nine generators Pi, Qi, Ri for i “ 1, 2, 3, but all nine of them
are also homologous to each other since any pair of them can be connected by a path of oriented
1-simplices leading from one to the other, e.g. Ba1 “ P2´P1 implies rP1s “ rP2s, and Be3 “ P2´R2

implies rP2s “ rR2s. The result is
H∆

0 pK;Zq – Z,

with a canonical generator represented by any of the vertices in the complex. Notice that this
matches the oriented bordism group ΩSO

0 pT2q since T2 is path-connected.
Let’s look at the 1-cycles. There is a 1-cycle for every continuous loop we can find that follows

a path through 1-simplices—we just have to insert minus signs wherever there is an arrow pointing
the wrong way, in order to ensure the necessary cancelation of 0-simplices. For example, traversing
the boundary of the lower-right square gives

Bpa3 ` d1 ´ c3 ´ f1q “ 0,

so a3` d1´ c3´ f1 is a 1-cycle, but not a very interesting one, since it is also the boundary of the
region filled by the 2-simplices σ9 and τ9: in particular,

Bpσ9 ` τ9q “ pg9 ´ c3 ´ f1q ` pa3 ` d1 ´ g9q “ a3 ` d1 ´ c3 ´ f1,

hence ra3 ` d1 ´ c3 ´ f1s “ 0 P H∆
1 pK;Zq. To find more interesting 1-cycles, it helps to remember

what we already know about π1pT2q – Z2. We can easily find two loops through 1-simplices that
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Figure 13. A simplicial complex with |K| “ T2.

represent the two distinct generators of this fundamental group: one of them is a1 ` a2 ` a3, and
we easily see that

Bpa1 ` a2 ` a3q “ pP2 ´ P1q ` pP3 ´ P2q ` pP1 ´ P3q “ 0.

Another is b1`b2`b3, but notice that the loops corresponding to these two 1-cycles are homotopic
in T2, and relatedly, they form the boundary of the region filled by the six 2-simplices σi, τi for
i “ 1, 2, 3,

Bpσ1 ` σ2 ` σ3 ` τ1 ` τ2 ` τ3q “ pb1 ` b2 ` b3q ´ pa1 ` a2 ` a3q,
implying ra1`a2`a3s “ rb1`b2`b3s P H∆

1 pK;Zq. Similar reasoning shows that c1`c2`c3 is yet
another 1-cycle representing the same homology class as both of these. One can show however that
this homology class really is nontrivial, and it is not the only one: the other generator of π1pT2q
corresponds to any of the three homologous 1-cycles d1` d2` d3, e1` e2` e3 or f1` f2` f3. The
end result is

H∆
1 pK;Zq – Z2,

the same as the fundamental group.
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As observed at the beginning of this lecture, the fact that T2 has a contractible universal
cover implies that π2pT2q “ 0, so if there are any interesting 2-cycles in T2, they will not look like
spheres. But if you think that H2pK;Zq should have something to do with the oriented bordism
group ΩSO

2 pT2q, then there is a fairly obvious candidate for a 2-cycle in this picture: T2 itself is a
closed oriented manifold, and the oriented triangulation we have chosen turns it into a 2-cycle:

Bpσ1 ` τ1 ` . . .` σ9 ` τ9q “ 0.

The point is that since the triangulation is oriented, writing down each individual term in this
sum would produce a linear combination of 1-simplicies in which every 1-simplex in the complex
appears exactly twice, but with opposite signs, thus adding up to 0. It should be easy to convince
yourself that no nontrivial 2-chain that does not include all eighteen of the 2-simplices can ever be
a cycle, as its boundary will have to include some 1-simplices that have nothing to cancel with. It
follows easily that all 2-cycles in this complex are integer multiples of the one found above, and
none of them are boundaries, since there are no 3-simplices, thus

H∆
2 pK;Zq – Z.

I can now state a theorem that is really rather amazing, though I’m sorry to say that we will
not be able to prove it until next semester:

Theorem 21.16. For any simplicial complex K, the simplicial homology groups H∆
n pK;Gq

depend (up to isomorphism) on the topological space X “ |K|, i.e. the polyhedron of K, but not on
the complex K itself.

This theorem seems to have been known for quite a while before the reasons behind it were
properly understood. At the dawn of homology theory, the subject had a very combinatorial
flavor, and the use of triangulations as a tool for understanding manifolds proved to be very
successful. A fairly natural strategy for proving Theorem 21.16 was formulated near the beginning
of the 20th century and was based on a conjecture called the Hauptvermutung:35 it claims
essentially that any two triangulations of the same topological space can be turned into the same
triangulation by a process of subdivision. Subdivision replaces each individual simplex σ with a
triangulation by smaller simplices, so it makes the chain groups CnpK;Gq much larger, but it is not
too hard to show that the homology resulting from these enlarged chain groups is isomorphic to the
original, hence if the Hauptvermutung is true, Theorem 21.16 follows. The only trouble is that the
Hauptvermutung is false, as was discovered in the 1960’s; moreover, we now also know examples
of closed topological manifolds that cannot be triangulated at all, so that simplicial complexes do
not provide the ideal framework for understanding manifolds in general. But in the mean time,
the mathematical community discovered much better ways of proving Theorem 21.16, namely by
defining another invariant for arbitrary topological spaces X that manifestly only depends on the
topology of X without any auxiliary structure, but also can be shown to match simplicial homology
whenever X is a polyhedron. That invariant is singular homology, and it will be our topic for the
rest of this semester.

22. Singular homology

So here’s the challenge: how do we define a topological invariant that captures the same
information as simplicial homology, but without ever referring to a simplicial complex? The answer
to this turns out to be fairly simple, but speaking for myself, the first time I heard it, I thought
it sounded crazy. There seemed to be no way that one could ever compute such a thing, or if one
could, then it was hard to imagine what geometric insight would be gained from the computation.

35This is what the conjecture was called in English—one does not translate the word Hauptvermutung.
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I’ve been leading up to this definition gradually over the last few lectures in order to give you some
intuition about what kind of invariant we are looking for and why. The hope is that, equipped
with this intuition, your first reaction to seeing the definition of singular homology might be that
it has a fighting chance of answering some question you actually care about.

It will be convenient to first establish some basic principles of the subject known as homological
algebra. We have already seen an example of the first definition in our discussion of simplicial
homology.

Definition 22.1. A (Z-graded) chain complex (Kettenkomplex) of abelian groups pC˚, Bq
consists of a sequence tCnunPZ of abelian groups together with homomorphisms Bn : Cn Ñ Cn´1

for each n P Z such that Bn´1 ˝ Bn : Cn Ñ Cn´2 is the trivial homomorphism for every n.

We sometimes denote the direct sum of all the chain groups Cn in a chain complex by

C˚ :“à
nPZ

Cn,

whose elements can all be written as finite sums
ř
i ai with ai P Cni

for some integers ni P Z.
An element x P C˚ is said to have degree (Grad) n if x P Cn. The individual homomorphisms
Bn : Cn Ñ Cn´1 extend uniquely to a homomorphism B : C˚ Ñ C˚ which has degree ´1, meaning
it maps elements of any given degree to elements of one degree less. We sometimes indicate this
by abusing notation and writing

B : C˚ Ñ C˚´1.

The collection of relations Bn´1 ˝ Bn “ 0 for all n can now be abbreviated by the single relation

B2 “ 0,

which is equivalent to the condition that im Bn`1 Ă ker Bn for every n. We call B the boundary
map (Randoperator) in the complex. Elements in ker B Ă C˚ are called cycles (Zykel), while
elements in im B Ă C˚ are called boundaries (Ränder).

Definition 22.2. The homology (Homologie) of a chain complex pC˚, Bq is the sequence of
abelian groups

HnpC˚, Bq :“ ker BnL im Bn`1

for n P Z. We sometimes denote

H˚pC˚, Bq :“
à
nPZ

HnpC˚, Bq,

which makes H˚pC˚, Bq a Z-graded abelian group.

Every element ofHnpC˚, Bq can be written as an equivalence class rcs for some n-cycle c P ker Bn,
and we call rcs the homology class (Homologieklasse) represented by c. Two cycles a, b P ker Bn
are called homologous (homolog) if ras “ rbs P HnpC˚, Bq, meaning a´ b P im Bn`1.

Remark 22.3. For the examples of chain complexes pC˚, Bq we consider in this course, Cn is
always the trivial group for n ă 0, mainly because the degree n typically corresponds to a geometric
dimension and dimensions cannot be negative. But there is no need to assume this in the general
algebraic definitions. In other settings, there are plenty of interesting examples of chain complexes
that have nontrivial elements of negative degree.

The next definition will be needed when we want to show that continuous maps between
topological spaces induce homomorphisms of their singular homology groups.
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Definition 22.4. Given two chain complexes pA˚, BAq and pB˚, BBq, a chain map (Ketten-
abbildung) from pA˚, BAq to pB˚, BBq is a sequence of homomorphisms fn : An Ñ Bn for n P Z

such that the following diagram commutes:

(22.1)
. . . An`1 An An´1 . . .

. . . Bn`1 Bn Bn´1 . . .

BAn`1

fn`1

BAn

fn

BAn´1

fn´1

BBn`1 BBn BBn´1

In other words, a chain map is a homomorphism f : A˚ Ñ B˚ of degree zero satisfying BB ˝ f “
f ˝ BA.

Proposition 22.5. Any chain map f : pA˚, BAq Ñ pB˚, BBq determines homomorphisms
f˚ : HnpA˚, BAq Ñ HnpB˚, BBq for every n P Z via the formula

f˚ras :“ rfpaqs.
Proof. There are two things to prove: first, that whenever a P An is a cycle, so is fpaq P Bn.

This is clear since BAa “ 0 implies BBpfpaqq “ fpBAaq “ 0 by the chain map condition. Second,
we need to know that f maps boundaries to boundaries, so that it descends to a well-defined
homomorphism ker BAn { im BAn`1 Ñ ker BBn { im BBn`1. This is equally clear, since a “ BAx implies
fpaq “ fpBAxq “ BBfpxq. �

With these algebraic preliminaries out of the way, we now proceed to define the chain complex
of singular homology. As in simplicial homology, we fix an arbitrary abelian group G as auxiliary
data, called the coefficient group; in practice it will usually be either Z or Z2, occasionally Q.
Recall that for integers n ě 0, the standard n-simplex is the set

∆n “ tpt0, . . . , tnq P In`1 | t0 ` . . .` tn “ 1u.
For each k “ 0, . . . , n, the kth boundary face of ∆n is the subset

Bpkq∆n :“ ttk “ 0u Ă ∆n,

which is canonically homeomorphic to ∆n´1 via the map

(22.2) Bpkq∆n Ñ ∆n´1 : pt0, . . . , tk´1, 0, tk`1, . . . , tnq ÞÑ pt0, . . . , tk´1, tk`1, . . . , tnq.
Definition 22.6. Given a topological space X , a singular n-simplex in X is a continuous

map σ : ∆n Ñ X .

Let KnpXq denote the set of all singular n-simplices in X , and define the singular n-chain
group with coefficients in G by

CnpX ;Gq “ à
σPKnpXq

G.

Note that this definition also makes sense for n ă 0 if we agree that KnpXq is then empty since
there is no such thing as a simplex of negative dimension, hence the groups CnpX ;Gq are trivial
in these cases. In general, elements in CnpX ;Gq can be written as finite sums Σiaiσi where ai P G
and σi P KnpXq. This clearly looks similar to the simplicial chain groups, but if you’re paying
attention properly, you may at this point be feeling nervous about the fact that CnpX ;Gq is a
bloody enormous group: algebraically it is very simple, but the set KnpXq that generates it is
usually uncountably infinite. It’s probably even larger than you are imagining, because a singular
n-simplex is not just a “simplex-shaped” subset of X , but it is also the parametrization of that
subset, so any two distinct parametrizations σ : ∆n Ñ X , even if they have exactly the same image,
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define different elements of KnpXq and thus different generators of CnpX ;Gq.36 If this makes you
nervous, then you are right to feel nervous: it is a minor miracle that we will eventually be able
to extract useful and computable information from groups as large as CnpX ;Gq. You will see.

The next step is to define a boundary map CnpX ;Gq Ñ Cn´1pX ;Gq. As in simplicial ho-
mology, this is done by writing a formula for Bσ for each generator σ P KnpXq, and the formula
follows the same orientation convention that we saw in our discussion of oriented triangulations,
cf. Definition 20.8: set

Bσ :“
nÿ
k“0

p´1qk `σ|Bpkq∆n

˘ P Cn´1pX ;Zq,

where each σ|Bpkq∆n is regarded as a singular pn´1q-simplex using the identification Bpkq∆n “ ∆n´1

from (22.2).
This uniquely determines a homomorphism

B : CnpX ;Gq Ñ Cn´1pX ;Gq : ÿ
i

aiσi ÞÑ
ÿ
i

ai Bσi,

and the usual cancelation phenomenon implies:

Lemma 22.7. B2 “ 0. �

The nth singular homology group (singuläre Homologiegruppe) with coefficients in G is
now defined by

HnpX ;Gq :“ Hn pC˚pX ;Gq, Bq .
In the case G “ Z, this is often abbreviated by

HnpXq :“ HnpX ;Zq.
The direct sum of these groups for all n is denoted by H˚pX ;Gq, though informally, this notation
is also sometimes used with the symbol “˚” acting as an integer-valued variable just like n.

I encourage you to compare the following result with our computation of the bordism groups
Ω0pXq and ΩSO

0 pXq in Lecture 21.

Proposition 22.8. For any space X and any coefficient group G, H0pX ;Gq – À
π0pXqG,

i.e. it is a direct sum of copies of G for every path-component of X.

Proof. Since ∆0 is a one-point space, the set K0pXq of singular 0-simplices σ : ∆0 Ñ X

can be identified naturally with X , and we shall write 0-chains accordingly as finite sums
ř
i aixi

with ai P G and xi P X . Similarly, ∆1 is homeomorphic to the unit interval I “ r0, 1s, and if we
choose a homeomorphism r0, 1s Ñ ∆1 sending 1 to Bp0q∆1 and 0 to Bp1q∆1, we can think of each
σ P K1pXq as a path σ : I Ñ X and write the boundary operator as

Bσ “ σp1q ´ σp0q P C0pX ;Zq.
Since there are no p´1q-chains, every a P G and x P X then define a 0-cycle ax P C0pX ;Gq, but
ax and ay are homologous whenever x and y belong to the same path-component since then any
path σ : I Ñ X from x to y gives Bpaσq “ ay ´ ax. Choosing a point xα in each path-component
Xα, we can now say that every 0-cycle is homologous to a unique 0-cycle of the form

ř
α cαxα,

where the sum ranges over all the path-components of X but only finitely many of the coefficients
cα P G are nonzero. If two cycles of this form are homologous, then they differ by the boundary of
a 1-chain, which is a finite linear combination of paths, and since each path is confined to a single

36The word “singular” in this context refers to the fact that there is no condition beyond continuity required
for the maps σ : ∆n Ñ X, i.e. they need not be injective, nor differentiable (even if X happens to be a smooth
manifold), and so their images might not look “simplex-shaped” at all, but could instead be full of singularities.
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path-component and has two end points with opposite orientations, the conclusion is that both
0-cycles have the same coefficients. �

The next result is a straightforward exercise based on the definitions, and you should also
compare it with our previous discussion of the bordism groups of a point, if only to observe that
the result is very different: while bordism groups require some information about the classification
of manifolds which has nothing to do with the one-point space, the singular homology of tptu is
much simpler.

Exercise 22.9. Show that for the 1-point space tptu and any coefficient group G, singular
homology satisfies

Hnptptu;Gq –
#
G for n “ 0,

0 for n ‰ 0.

Hint: For each integer n ě 0, there is exactly one singular n-simplex ∆n Ñ tptu, so the chain
groups Cnptptu;Gq are all naturally isomorphic to G. What is B : Cnptptu;Gq Ñ Cn´1ptptu;Gq?

Let us discuss the group H1pX ;Zq for an arbitrary space X . As noted above in our proof of
Proposition 22.8, ∆1 is homeomorphic to the interval I, thus there is a bijection

(22.3) tpaths I Ñ Xu Ø K1pXq
which identifies each path γ with a singular 1-simplex (denoted by the same symbol) such that,
under the canonical identification of K0pXq with X ,

Bγ “ γp1q ´ γp0q.
Notice in particular that if γ is a loop, then it also defines a 1-cycle. More generally, let us write
elements of C1pX ;Zq as finite sums

ř
imiγi where mi P Z and the γi are understood as singular

1-simplices via the above bijection, so

Bÿ
i

miγi “
ÿ
i

mi pγip1q ´ γip0qq P C0pX ;Zq.

Now observe that since the coefficients mi are integers, we are free to assume they are all ˘1 at
the cost of allowing repeats in the finite list of paths γi. It will then be convenient to think of ´γi
as the reversed path γ´1

i , which makes sense if you look at the boundary formula since

Bp´γiq “ ´pγip1q ´ γip0qq “ γip0q ´ γip1q “ γ´1
i p1q ´ γ´1

i p0q “ Bpγ´1
i q.

Thinking in these terms and continuing to assume mi “ ˘1, řimiγi will now be a cycle if and
only if the finite set of paths γmi

i can be arranged in some order so that they form a loop, i.e. each
can be concatenated with the next in the list, and the last can be concatenated with the first. This
is precisely what is needed in order to ensure that every 0-simplex in Břimiγi cancels out. This
suggests a relationship between H1pX ;Zq and π1pXq, but notice that there is some ambiguity in
the correspondence: in general there may be multiple ways that the paths γmi

i can be ordered to
produce a loop, and different loops produced in this way need not always be homotopic to each
other. In fact, one should not expect H1pX ;Zq and π1pXq to be the same, sinceH1pX ;Zq is abelian
by definition, but π1pXq usually is not. It turns out that the next best thing is true.

Theorem 22.10. For any path-connected space X with base point x0 P X, the bijection (22.3)
determines a group homomorphism

h : π1pX, x0q Ñ H1pX ;Zq
which descends to an isomorphism of the abelianization π1pX, x0q{rπ1pX, x0q, π1pX, x0qs to H1pX ;Zq.
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We say that a cycle c P C˚pX ;Gq is nullhomologous if rcs “ 0 P H˚pX ;Gq, or equivalently,
c is a boundary. According to the discussion above, every loop γ : I Ñ X with γp0q “ γp1q “ x0
can be viewed as a 1-cycle, and that cycle is nullhomologous if and only if rγs belongs to the
commutator subgroup of π1pX, x0q.

Example 22.11. Recall from Exercise 14.13 the embedded loop γ : S1 Ñ Σg for g ě 2 whose
image separates Σg into two surfaces of genus h ě 1 and k ě 1 respectively with one boundary
component each:

PSfrag replacements

–
γ

We computed in that exercise that rγs is a nontrivial element of the commutator subgroup of
π1pΣgq, thus by Theorem 22.10, γ represents the trivial class in H1pΣg;Zq. This should not be
surprising, since γ also parametrizes the boundary of a compact oriented submanifold of Σg, e.g. for
this same reason, γ also represents the trivial bordism class in ΩSO

1 pΣgq. One can find an explicit
2-chain whose boundary is γ by decomposing the surface Σh,1 into 2-simplices so as to reinterpret
the inclusion Σh,1 ãÑ Σg as a linear combination of singular 2-simplices in Σg.

The proof of Theorem 22.10 is not trivial, but it is simple enough to leave as a guided homework
problem (see Exercise 22.12 below). The homomorphism h : π1pXq Ñ H1pX ;Zq is called the
Hurewicz map. There exists a similar Hurewicz homomorphism πkpXq Ñ HkpX ;Zq for every
k ě 1, which we will discuss near the end of Topologie II if time permits. Note that for k ě 2,
πkpXq is always abelian, so it is reasonable in those cases to hope that the Hurewicz map might
be an honest isomorphism. A result called Hurewicz’s theorem gives conditions under which this
turns out to hold, thus providing a nice way to compute higher homotopy groups in some cases
since, as we will see, computing homology is generally easier. But there are also simple examples
in which πkpXq and HkpX ;Zq are totally different. We saw for instance in the previous lecture
that π2pT2q “ 0 due to the lifting theorem, but one can use any oriented triangulation of T2 to
produce a singular 2-cycle that can be shown to be nontrivial in H2pT2;Zq. Homology classes in
the image of the Hurewicz map are sometimes called spherical homology classes. The example of
T2 shows that for n ě 2, one cannot generally expect all classes in HnpX ;Zq to be spherical.

Exercise 22.12. Let us prove Theorem 22.10. AssumeX is a path-connected space, fix x0 P X
and abbreviate π1pXq :“ π1pX, x0q, so elements of π1pXq are represented by paths γ : I Ñ X with
γp0q “ γp1q “ x0. Identifying the standard 1-simplex

∆1 :“  pt0, t1q P R2
ˇ̌
t0 ` t1 “ 1, t0, t1 ě 0

(
with I :“ r0, 1s via the homeomorphism ∆1 Ñ I : pt0, t1q ÞÑ t1, every path γ : I Ñ X corresponds
to a singular 1-simplex ∆1 Ñ X , which we shall denote by h̃pγq and regard as an element of the
singular 1-chain group C1pX ;Zq. Show that h̃ has each of the following properties:

(a) If γ : I Ñ X satisfies γp0q “ γp1q, then Bh̃pγq “ 0.
(b) For any constant path e : I Ñ X , h̃peq “ Bσ for some singular 2-simplex σ : ∆2 Ñ X .
(c) For any paths α, β : I Ñ X with αp1q “ βp0q, the concatenated path α ¨ β : I Ñ X

satisfies h̃pαq ` h̃pβq ´ h̃pα ¨ βq “ Bσ for some singular 2-simplex σ : ∆2 Ñ X .
Hint: Imagine a triangle whose three edges are mapped to X via the paths α, β and α ¨β.
Can you extend this map continuously over the rest of the triangle?
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(d) If α, β : I Ñ X are two paths that are homotopic with fixed end points, then h̃pαq´h̃pβq “
Bf for some singular 2-chain f P C2pX ;Zq.
Hint: If you draw a square representing a homotopy between α and β, you can decompose
this square into two triangles.

(e) Applying h̃ to paths that begin and end at the base point x0, deduce that h̃ determines
a group homomorphism h : π1pXq Ñ H1pX ;Zq : rγs ÞÑ rh̃pγqs.

We call h : π1pXq Ñ H1pX ;Zq the Hurewicz homomorphism. Notice that since H1pX ;Zq
is abelian, kerh automatically contains the commutator subgroup rπ1pXq, π1pXqs Ă πpXq (see
Exercise 12.21), thus h descends to a homomorphism on the abelianization of π1pXq,

Φ : π1pXq
M
rπ1pXq, π1pXqs Ñ H1pX ;Zq.

We will now show that this is an isomorphism by writing down its inverse. For each point p P X ,
choose arbitrarily a path ωp : I Ñ X from x0 to p, and choose ωx0

in particular to be the constant
path. Regarding singular 1-simplices σ : ∆1 Ñ X as paths σ : I Ñ X under the usual identification
of I with ∆1, we can then associate to every singular 1-simplex σ P C1pX ;Zq a concatenated pathrΨpσq :“ ωσp0q ¨ σ ¨ ω´1

σp1q : I Ñ X

which begins and ends at the base point x0, hence rΨpσq represents an element of π1pXq. Let Ψpσq
denote the equivalence class represented by rΨpσq in the abelianization π1pXq{rπ1pXq, π1pXqs. This
uniquely determines a homomorphism37

Ψ : C1pX ;Zq Ñ π1pXqLrπ1pXq, π1pXqs : ÿ
i

miσi ÞÑ
ÿ
i

miΨpσiq.

(f) Show that ΨpBσq “ 0 for every singular 2-simplex σ : ∆2 Ñ X , and deduce that Ψ

descends to a homomorphism Ψ : H1pX ;Zq Ñ π1pXq{rπ1pXq, π1pXqs.
(g) Show that Ψ ˝Φ and Φ ˝Ψ are both the identity map.
(h) For a closed surface Σg of genus g ě 2, find an example of a nontrivial element in the

kernel of the Hurewicz homomorphism π1pΣgq Ñ H1pΣgq. Hint: See Exercise 14.13.

23. Relative homology and long exact sequences

The above results for H0pX ;Gq and H1pX ;Zq provide some evidence that in spite of being
defined as quotients of groups with uncountably many generators, the singular homology groups
HnpX ;Gq might turn out to be computable more often than we’d expect. In this lecture we’ll
introduce a powerful computational tool that is also a fundamental concept in homological algebra.
But before that, let us clarify in what sense singular homology is a topological invariant.

Lemma 23.1. Every continuous map f : X Ñ Y determines a chain map f˚ : C˚pX ;Gq Ñ
C˚pY ;Gq via the formula f˚σ :“ f ˝ σ for singular n-simplices σ : ∆n Ñ X.

Proof. It is straightforward to check that Bpf˚σq “ f˚pBσq P Cn´1pY ;Zq for all σ : ∆n Ñ X ,
thus the uniquely determined homomorphism

f˚ : CnpX ;Gq Ñ CnpY ;Gq : ÿ
i

aiσi ÞÑ
ÿ
i

aipf ˝ σiq

defines a chain map. �

37Since π1pXq{rπ1pXq, π1pXqs is abelian, we are adopting the convention of writing its group operation as ad-
dition, so the multiplication of an integer m P Z by an element Ψpσq P π1pXq{rπ1pXq, π1pXqs is defined accordingly.
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Notice that the chain maps in the above lemma also satisfy pf ˝gq˚ “ f˚ ˝g˚ whenever f and g
are composable continuous maps, and the chain map induced by the identity map onX is simply the
identity homomorphism on C˚pX ;Gq. Applying Proposition 22.5 thus gives the following result,
which implies that homeomorphic spaces always have isomorphic singular homology groups:

Corollary 23.2. Continuous maps f : X Ñ Y determine group homomorphisms f˚ :

HnpX ;Gq Ñ HnpY ;Gq for every n and G such that pf ˝ gq˚ “ f˚ ˝ g˚ whenever f and g can
be composed, and the identity map satisfies pIdq˚ “ 1. �

Remark 23.3. Recall that in the analogue of Corollary 23.2 for the fundamental group, the
map f : X Ñ Y is required to be base-point preserving, due to the fact that the definitions of
π1pXq and π1pY q require choices of base points in X and Y respectively. In most applications,
base points are an extra piece of data that one doesn’t actually care about but needs to keep track
of anyway. One of the advantages of singular homology in comparison with the fundamental group
is that its definition does not require any choice of base point, and Corollary 23.2 thus holds for
arbitrary continuous maps f : X Ñ Y .

We will show in the next lecture that the homomorphisms f˚ induced by continuous maps f
only depend on f up to homotopy, which has the easy consequence that H˚pX ;Gq only depends
on the homotopy type of X .

But first, let us generalize the discussion somewhat. Algebraic gadgets often have the feature
that they become easier to compute if you add more structure to them, sometimes at the cost of
making the basic definitions slightly more elaborate. We will now do that with singular homology
by introducing the relative homology groups of pairs. A pair of spaces pX,Aq, often abbreviated
as simply a “pair,” (topologisches Paar) consists of a topological space X and a subset A Ă X .
Given two pairs pX,Aq and pY,Bq, a map f : X Ñ Y is called a map of pairs if fpAq Ă B, and
in this case we write

f : pX,Aq Ñ pY,Bq.
This is an obvious generalization of the definition of a pointed map, where arbitrary subsets have
now replaced base points. Similarly, two maps of pairs f, g : pX,Aq Ñ pY,Bq are homotopic if
there exists a homotopy H : I ˆX Ñ Y between f and g such that Hps, ¨q : pX,Aq Ñ pY,Bq is a
map of pairs for every s P I, or equivalently,

HpI ˆAq Ă B.

Two pairs pX,Aq and pY,Bq are homeomorphic if there exist maps of pairs f : pX,Aq Ñ pY,Bq
and g : pY,Bq Ñ pX,Aq such that g ˝ f and f ˝ g are the identity maps on pX,Aq and pY,Bq
respectively, and f and g are in this case called homeomorphisms of pairs. If g ˝ f and f ˝ g
are not necessarily equal but are homotopic (as maps of pairs) to the respective identity maps,
then we call each of them a homotopy equivalence of pairs and say that pX,Aq and pY,Bq are
homotopy equivalent, written

pX,Aq »
h.e.

pY,Bq.
One can regard every individual space X as a pair by identifying it with pX,Hq, in which case the
above definitions reproduce the usual ones for maps between ordinary spaces.

The relative homology of a pair pX,Aq is based on the trivial observation that since every
singular simplex in A is also a singular simplex in X whose boundary faces are all contained in A,
CnpA;Gq is naturally a subgroup of CnpX ;Gq for each n, and the boundary map B : CnpX ;Gq Ñ
Cn´1pX ;Gq sends CnpA;Gq to Cn´1pA;Gq. It follows that B descends to a sequence of well-defined
homomorphisms on the quotients

CnpX,A;Gq :“ CnpX ;GqLCnpA;Gq,
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and since B2 is still zero, pC˚pX,A;Gq, Bq is a chain complex, called the relative singular chain
complex of the pair pX,Aq with coefficients in G. Its homology groups are the relative singular
homology (relative singuläre Homologie),

HnpX,A;Gq :“ Hn pC˚pX,A;Gq, Bq .
The case A “ H reproduces HnpX ;Gq as we defined it in the previous lecture, and these are
sometimes called the absolute homology groups of X so as to distinguish them from relative
homology groups. As in absolute homology, we may sometimes abbreviate the case of integer
coefficients by

HnpX,Aq :“ HnpX,A;Zq.
Lemma 23.1 extends in an obvious way to the relative chain complex: if f : pX,Aq Ñ pY,Bq

is a map of pairs, then the absolute chain map f˚ : C˚pX ;Gq Ñ C˚pY ;Gq sends the subgroup
C˚pA;Gq into C˚pB;Gq and thus descends to a chain map

f˚ : C˚pX,A;Gq Ñ C˚pY,B;Gq,
implying the relative version of Corollary 23.2:

Theorem 23.4. Maps of pairs f : pX,Aq Ñ pY,Bq determine group homomorphisms f˚ :

HnpX,A;Gq Ñ HnpY,B;Gq for every n and G such that pf ˝gq˚ “ f˚˝g˚ whenever f and g can be
composed, and the identity map on pX,Aq induces the identity homomorphism on HnpX,A;Gq. �

Since CnpX,A;Gq is a quotient, its elements are technically equivalence classes, but in order
to avoid having too many equivalence relations floating around in the same discussion, let us
instead think of them as ordinary n-chains c P CnpX ;Gq, keeping in mind that two such n-chains
a, b P CnpX ;Gq define the same element of CnpX,A;Gq whenever a´ b P CnpA;Gq, meaning a and
b differ by a linear combination of simplices that are all contained in A. A chain c P CnpX ;Gq can
then be called a relative cycle if the element of CnpX,A;Gq it determines is a cycle, which means
Bc belongs to Cn´1pA;Gq. Notice that a relative cycle need not be an absolute cycle in general
(meaning Bc “ 0), though absolute cycles also define relative cycles. Relative cycles c P CnpX ;Gq
define relative homology classes rcs P CnpX,A;Gq, and two relative cycles b, c P CnpX ;Gq are
homologous (meaning rbs “ rcs P HnpX,A;Gq) if and only if

b´ c “ a` Bx for some a P CnpA;Gq, x P Cn`1pX ;Gq.
In particular, a relative cycle is nullhomologous if and only if it is the sum of a boundary plus
a chain contained in A. If you find these algebraic relations overly abstract and would like some
advice on how to actually visualize relative cycles, see the extended digression at the end of this
lecture.

The reason for introducing the relative homology groups H˚pX,A;Gq was not that we wanted
a tool for distinguishing non-homeomorphic pairs—the relative homology is such a tool, but our
primary interest remains the space X on its own, rather than the pair pX,Aq. The usefulness
of relative homology lies in the fact that there is a relation between the three groups H˚pX ;Gq,
H˚pA;Gq and H˚pX,A;Gq for any pair pX,Aq, and indeed, one might hope to encounter situations
in which two out of these three groups are easy to compute, so that a computation of the third
one then comes for free. Let’s make this idea more precise.

We begin with a seemingly trivial observation: let i : A ãÑ X and j : X “ pX,Hq ãÑ pX,Aq
denote the natural inclusions,38 and consider the sequence of chain maps

(23.1) 0 ÝÑ C˚pA;Gq i˚ÝÑ C˚pX ;Gq j˚ÝÑ C˚pX,A;Gq Ñ 0,

38Strictly speaking, j in this context is just the identity map on X, but we cannot call it that since we are
viewing it as a map between two non-identical pairs of spaces. It is a map of pairs due to the trivial fact that
H Ă A.
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where the first and last maps are each trivial. The map j˚ is obviously surjective, as it is actually
just the quotient projection

C˚pX ;Gq Ñ C˚pX,GqLC˚pA;Gq “ C˚pX,A;Gq.
The map i˚ is similarly the inclusion C˚pA;Gq ãÑ C˚pX ;Gq and is thus injective, and its image is
precisely the kernel of j˚. This means that every term in this sequence has the property that the
image of the preceding map equals the kernel of the next one. In general, a sequence of abelian
groups with homomorphisms

. . . ÝÑ An´2
fn´2ÝÑ An´1

fn´1ÝÑ An
fnÝÑ An`1

fn`1ÝÑ An`2 ÝÑ . . .

is called exact (exakt) if ker fn “ im fn´1 for every n P Z. If all the groups except for two
neighboring groups in the sequence are trivial, then it suffices to look at a sequence of four groups
with only one nontrivial homomorphism

0 ÝÑ A1
fÝÑ A2 ÝÑ 0,

and the exactness of the sequence then simply means that f : A1 Ñ A2 is both injective and surjec-
tive, i.e. it is an isomorphism. In this sense, one can think of an exact sequence as a generalization
of the notion of an isomorphism between two abelian groups. The next simplest case is what is
called a short exact sequence (kurze exakte Sequenz), in which all except three of the groups
and two of the homomorphisms are trivial,

0 ÝÑ A1
f1ÝÑ A2

f2ÝÑ A3 ÝÑ 0.

Exactness in this case means three things: f1 is injective, f2 is surjective, and im f1 “ ker f2.
The sequence in (23.1) is what we call a short exact sequence of chain maps, because the
abelian groups in each term are also chain complexes and the homomorphisms between them are
chain maps. One can now wonder what happens if we replace these chain complexes with their
homology groups and the chain maps with the induced homomorphisms on homology: will the
resulting sequence be exact? The answer is no, but what is actually true is much better and more
useful than this:

Theorem 23.5. Suppose pA˚, BAq, pB˚, BBq and pC˚, BCq are chain complexes and

0 ÝÑ A˚
fÝÑ B˚

gÝÑ C˚ ÝÑ 0

is a short exact sequence of chain maps. Then there exists a natural homomorphism B˚ : HnpC˚, BCq Ñ
Hn´1pA˚, BAq for each n P Z such that the sequence

. . .
B˚ÝÑ Hn`1pA˚, BAq f˚ÝÑ Hn`1pB˚, BBq g˚ÝÑ Hn`1pC˚, BCq

B˚ÝÑ HnpA˚, BAq f˚ÝÑ HnpB˚, BBq g˚ÝÑ HnpC˚, BCq
B˚ÝÑ Hn´1pA˚, BAq f˚ÝÑ Hn´1pB˚, BBq g˚ÝÑ Hn´1pC˚, BCq B˚ÝÑ . . .

(23.2)

is exact.

The sequence of homology groups in this theorem is called a long exact sequence (lange
exakte Sequenz), and the maps B˚ : HnpC˚, BCq Ñ Hn´1pA˚, BAq are called the connecting
homomorphisms in this sequence. In particular, this result turns (23.1) into the so-called long
exact sequence of the pair pX,Aq,
(23.3) . . .Ñ Hn`1pX,A;Gq B˚Ñ HnpA;Gq i˚Ñ HnpX ;Gq j˚Ñ HnpX,A;Gq B˚Ñ Hn´1pA;Gq Ñ . . .

To see why this might be useful, notice what it implies if we happen to know for some reason that
one of the three groups HnpX ;Gq, HnpA;Gq or HnpX,A;Gq is trivial for every n; for concreteness,
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let’s suppose it is known that H˚pX,A;Gq “ 0. This knowledge turns the long exact sequence
(23.3) into an infinite collection of two-term exact sequences

0 ÝÑ HnpA;Gq i˚ÝÑ HnpX ;Gq ÝÑ 0,

implying that for every n, the map i˚ : HnpA;Gq Ñ HnpX ;Gq is an isomorphism. If we are
also lucky enough to know already what H˚pA;Gq is, then the computation of H˚pX ;Gq is thus
complete. An argument of this type will be used in Lecture 25 as the final step in computing
H˚pSn;Zq for every n ě 1.

Theorem 23.5 is a purely algebraic statement, and it is proved by a straightforward but nonethe-
less slightly surprising procedure known as “diagram chasing”. I will not give the full argument
here, because that would bore you to tears, but I will explain the first couple of steps, and I highly
recommend that you work through the rest yourself the next time you are half-asleep and in need
of amusement on an airplane, or recovering from surgery on heavy pain medication, as the case
may be.39 The basic idea is to write down a great big commutative diagram, examine at each
step exactly what information you can deduce from exactness and commutativity, and then let the
diagram tell you what to do.

Here is the diagram we need—it commutes because f and g are chain maps, and each of its
rows is an exact sequence of abelian groups:

...
...

...

0 An`1 Bn`1 Cn`1 0

0 An Bn Cn 0

0 An´1 Bn´1 Cn´1 0

0 An´2 Bn´2 Cn´2 0

...
...

...

BA BB BC
f

BA

g

BB BC
f

BA

g

BB BC
f

BA

g

BB BC
f

BA

g

BB BC

We start by writing down a reasonable candidate for the map B˚ : HnpC˚, BCq Ñ Hn´1pA˚, BAq.
Given rcs P HnpC˚, BCq, c P Cn is necessarily a cycle, and exactness tells us that g : Bn Ñ Cn is
surjective, hence c “ gpbq for some b P Bn. Then using commutativity,

0 “ BCc “ BCgpbq “ gpBBbq,
so BBb P ker g Ă Bn´1, and using exactness again, this implies BBb “ fpaq for some a P An´1.
Notice that a is uniquely determined by b since (using exactness again) f is injective. Applying
commutativity again, we now observe that

fpBAaq “ BBpfpaqq “ BBBBb “ 0

39I first learned about exact sequences around the same time that I had all four of my wisdom teeth removed
in a complicated procedure that left me drowsily dependent on prescription pain medication for about three weeks
afterward. It turns out that that was exactly the right frame of mind in which to work through diagram chasing
arguments without getting bored.



23. RELATIVE HOMOLOGY AND LONG EXACT SEQUENCES 151

since pBBq2 “ 0, and the injectivity of f then implies BAa “ 0. So just by chasing the diagram
from Cn to An´1, we found a cycle a P An´1, and it seems reasonable to define

B˚rcs :“ ras P Hn´1pA, BAq.
We need to check that this is well defined, as two arbitrary choices were made in the procedure
going from rcs to ras. One was the choice of an element b P Bn with gpbq “ c, so we could get a
different cycle a1 P An´1 by choosing a different element b1 P g´1pcq and requiring fpa1q “ BBb1.
But then b1´ b belongs to ker g “ im f , hence we can write b1´ b “ fpxq for some x P An, implying

fpa1 ´ aq “ fpa1q ´ fpaq “ BBpb1 ´ bq “ BBpfpxqq “ fpBApxqq,
and since f is injective, a1 ´ a “ BAx, implying that a and a1 are homologous cycles. The other
choice we made was the cycle c P Cn, which in principle we are free to replace by any homologous
cycle c1 P Cn and then follow the same procedure to produce a different cycle a1 P An´1. If we do
this, then c1 ´ c “ BCz for some z P Cn`1, and since g is surjective, z “ gpyq for some y P Bn`1.
We then have

c1 ´ c “ BCpgpyqq “ gpBBpyqq,
and since we now know that we are free to choose any b P g´1pcq and b1 P g´1pc1q, we can set

b1 :“ b` BBpyq.
This implies BBb1 “ BBb, thus the condition fpa1q “ BBb1 produces a1 “ a, and we have finished
the proof that B˚ is well defined.

It remains to prove that B˚ really is a homomorphism, and that the long exact sequence really
is exact, i.e. that ker B˚ “ im g˚, ker g˚ “ im f˚ and ker f˚ “ im B˚. This can all be done by the
same kinds of straightforward arguments as above, but I’m sure you can see now why I’m not going
to write down the complete details here.

I have one final remark however about the long exact sequence of a pair pX,Aq. If you redo
the diagram chase above for the particular short exact sequence (23.1), you end up with a precise
and very natural formula for the connecting homomorphisms

B˚ : HnpX,A;Gq Ñ Hn´1pA;Gq.
The procedure starts with a relative n-cycle c P CnpX,A;Gq, from which we need to pick b P
j´1˚ pcq Ă CnpX ;Gq, but if we apply the usual convention of regarding relative cycles in pX,Aq as
chains in X , then c is already in CnpX ;Gq and we can pick b to be exactly the same chain c. Next
we look at Bc P Cn´1pX ;Gq and find the unique cycle a P Cn´1pA;Gq that is sent to Bc under the
inclusion Cn´1pA;Gq ãÑ Cn´1pX ;Gq. In other words, a “ Bc, so the “obvious” formula is the right
one:

(23.4) B˚rcs “ rBcs.
This looks more trivial than it is, e.g. you might think that rBcs should automatically be 0 because
Bc is a boundary, but the point is that c is a chain in X , it might not be confined to A, so Bc is
certainly a cycle in A (as a consequence of the fact that c is a relative chain in pX,Aq) but it need
not be the boundary of any chain in A, and rBcs may very well be a nontrivial homology class in
Hn´1pA;Gq.

Exercise 23.6. Use the formula (23.4) to give a direct proof that the sequence (23.3) is exact.

Remark 23.7. Exercise 23.6 is straightforward and doable in a much shorter time than the
proof of Theorem 23.5, so we could have skipped the abstract homological algebra discussion
without losing anything that is essential for the current semester. However, I wanted to make the
point that the long exact sequence of a pair is not just an isolated topological phenomenon—it is a
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special case of a much more general algebraic principle, and that principle reappears in many other
contexts in various branches of mathematics. We will see it again several times in Topologie II.

The following extended digression is not logically necessary for our development of basic
homology theory, but you might still appreciate some intuition on the following question: what do
relative n-cycles actually look like? Actually, that’s also a valid question when applied to absolute
n-cycles, and we’ve only really addressed it so far for n “ 0 and n “ 1. The best way I know for
visualizing absolute cycles is via the analogy with bordism theory. Recall that elements of ΩSO

n pXq
are equivalence classes of maps f :M Ñ X where M is a closed oriented n-manifold. If M admits
an oriented triangulation, then after choosing an ordering for all the vertices in this triangulation
and assigning orientations accordingly to each simplex in the triangulation, one can identify each k-
simplex σ ĂM with a map ∆k ÑM that parametrizes it, thus defining a singular k-simplex inM .
For k “ n in particular, the condition in Definition 20.9 relating the orientations of neighboring
n-simplices implies that the sum

ř
i ǫiσi of all the singular n-simplices in the triangulation—with

appropriate signs ǫi “ ˘1 attached in order to describe their orientations in the triangulation—is
a cycle in CnpM ;Zq. This is true because in Bři ǫiσi, every pn ´ 1q-simplex of the triangulation
appears exactly twice, but the orientation condition requires these two instances to appear with
opposite signs. The resulting singular homology class is denoted by

rM s :“
«ÿ
i

ǫiσi

ff
P HnpM ;Zq

and called the fundamental class (Fundamentalklasse) of M . We cannot prove it right now,
but we will see in Topologie II that rM s does not depend on the choice of triangulation, and it
can even be defined for arbitrary closed and oriented topological manifolds, which need not admit
triangulations. The map f : M Ñ X then determines a corresponding cycle

ř
i ǫipf˝σiq P CnpX ;Zq

and an n-dimensional homology class f˚rM s P HnpX ;Zq.
How can we recognize when two n-cycles in X defined in this way are homologous, or equiva-

lently, when
ř
i ǫipf ˝ σiq is nullhomologous? A nice answer can again be extracted from bordism

theory. If rpM, fqs “ 0 P ΩSO
n pXq, it means there exists a compact oriented pn ` 1q-manifold W

with BW –M and a map F :W Ñ X with F |M “ f . SupposeW admits an oriented triangulation
that restricts to BW as an oriented triangulation of M . Identifying the pn` 1q-simplices τj in this
triangulation with singular pn ` 1q-simplices in W and then adding them up with suitable signs
ǫj “ ˘1 as in the previous paragraph produces an pn ` 1q-chain in X of the form

ř
j ǫjpF ˝ τjq,

whose boundary is the n-cycle representing f˚rM s. Thus if oriented triangulations can always
be assumed to exist, then f˚rM s “ 0 P HnpX ;Zq whenever pM, fq is nullbordant, and similarly,
f˚rM s “ g˚rN s P HnpX ;Zq will hold whenever pM, fq and pN, gq are related by an oriented
bordism. We will also see in Topologie II that these statements remain true without mentioning
triangulations.

You may be wondering how general this discussion really is, i.e. does every integral homology
class in X arise from a map of a closed manifold into X? The answer is in general no, but if X is
a nice enough space like the polyhedron of a finite simplicial complex, then something almost as
good is true. The proof of the following famous result of Thom would be far beyond the scope of
this course, and we will not make use of it, but it is nice to know that it exists.

Theorem 23.8 (R. Thom [Tho54]). If X is a compact polyhedron, then for every n ě 0 and
A P HnpX ;Zq, there exists a closed n-manifold M , a map f : M Ñ X and a number k P N such
that kA “ f˚rM s. �

To talk about relative homology classes, we could now allow M to be a compact oriented
n-manifold with boundary and assume that its oriented triangulation also defines an oriented
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triangulation of BM . The chain
ř
i ǫiσi P CnpM ;Zq is then no longer a cycle, because pn ´ 1q-

simplices on BM are not canceled, they each appear exactly once. Instead, Bři ǫiσi is an pn´ 1q-
cycle representing the fundamental class of BM , and

ř
i ǫiσi is therefore a relative cycle in pM, BMq,

defining a relative fundmental class

rM s P HnpM, BM ;Zq.
Given a pair pX,Aq, any map f : pM, BMq Ñ pX,Aq now determines a relative cycle

ř
i ǫipf ˝σiq P

CnpX,A;Zq and relative homology class f˚rM s P HnpX,A;Zq. For intuition, it is usually helpful
to assume that f is an embedding, so a relative n-cycle in pX,Aq then looks like an oriented and
triangulated compact n-dimensional submanifold in X whose boundary lies in A.

Finally, note that one can drop the orientations from this entire discussion at the cost of
replacing Z coefficients with Z2. Indeed, if M is closed and has a triangulation but not one that
is orientable, then the n-chain defined by adding up the n-simplices may not be a cycle because
its boundary may include some pn ´ 1q-simplex that appears twice without canceling. But since
2 “ 0 P Z2, this sum still defines a cycle in CnpM ;Z2q and therefore also a fundamental class

rM s P HnpM ;Z2q.
This reveals that unoriented bordism classes in ΩnpXq determine homology classes in HnpX ;Z2q,
and the analogue of Theorem 23.8 remains true in this case without any need for the multiplicative
factor k P N.

24. Homotopy invariance and excision

We need to prove two more theorems about singular homology before it becomes a truly useful
tool. Both will require a bit of work, but the almost immediate payoff will be that we can then
compute the homology of spheres in every dimension. This has several important applications,
including the general case of the Brouwer fixed point theorem, and the basic fact that open sets in
Rn are never homeomorphic to open sets in Rm unless n “ m. It is also the first step in developing
an algorithm to compute the singular homology of any CW-complex, a general class of “reasonable”
spaces that includes all smooth manifolds and all simplicial complexes.

Our first task for today is homotopy invariance.

Theorem 24.1. The map f˚ : HnpX,A;Gq Ñ HnpY,B;Gq induced for each n P Z by a map
of pairs f : pX,Aq Ñ pY,Bq depends only on the homotopy class of f (as a map of pairs).

The obvious corollary about homotopy equivalent spaces is a result of tremendous theoretical
importance, and I would like to point out how much simpler its proof is than that of the corre-
sponding statement about fundamental groups (Theorem 10.23). The complication in the case of
π1 was that its definition depends on a choice of base point, but the notion of homotopy equivalence
does not—as a result, we had to find a workaround to cope with the fact that homotopy inverses
need not be base-point preserving. In homology, one can also allow for base points by considering
pairs pX,Aq where A Ă X is a single point, but homotopies between maps of pairs are required
to respect this extra data, which makes the proofs easier. And unlike the fundamental group,
homology also makes sense for pairs pX,Aq with A “ H, in which case the terms “homotopy” and
“homotopy equivalence” mean the same thing that they always did.

Corollary 24.2. If f : pX,Aq Ñ pY,Bq is a homotopy equivalence of pairs, then the induced
maps f˚ : HnpX,A;Gq Ñ HnpY,B;Gq are isomorphisms.

Proof. Suppose f : pX,Aq Ñ pY,Bq is a homotopy equivalence, so it has a homotopy inverse
g : pY,Bq Ñ pX,Aq. Then f ˝ g and g ˝ f are homotopic to the identity maps on pY,Bq and pX,Aq
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respectively, so that Theorem 24.1 gives f˚ ˝ g˚ “ 1 and g˚ ˝ f˚ “ 1 for the induced maps on
homology, implying that both are isomorphisms. �

The proof of Theorem 24.1 requires another fundamental notion from homological algebra. It
should be clear that if f, g : X Ñ Y are two non-identical maps, then the induced chain maps
f˚, g˚ : C˚pX ;Gq Ñ C˚pY ;Gq will not be identical, even if f and g are homotopic. It is still possible
however for two distinct chain maps to descend to exactly the same map between homology groups.
What we need for Theorem 24.1 is an algebraic mechanism to recognize when this happens, and
that mechanism is called chain homotopy.

Definition 24.3. A chain homotopy (Kettenhomotopie) between two chain maps f, g :

pA˚, BAq Ñ pB˚, BBq is a sequence of homomorphisms hn : An Ñ Bn`1 such that for every n P Z,

fn ´ gn “ BBn`1 ˝ hn ` hn´1 ˝ BAn .
In other words, a chain homotopy between f and g is a homomorphism h : A˚ Ñ B˚ of degree `1
such that f ´ g “ BB ˝ h` h ˝ BA. We sometimes abuse notation and write

h : A˚ Ñ B˚`1

to emphasize that a chain homotopy is a homomorphism of degree 1.

Two chain maps that admit a chain homotopy between them are called chain homotopic
(kettenhomotop), and it is not hard to show that this defines an equivalence relation on chain maps.
You can picture a chain homotopy as a sequence of down-left diagonal arrows in the diagram (22.1),
though you need to be a little careful with that diagram since a chain homotopy does not make it
commute. The main importance of chain homotopies comes from the following result.

Proposition 24.4. If there exists a chain homotopy between two chain maps f and g from
pA˚, BAq to pB˚, BBq, then they induce the same homomorphisms

f˚ “ g˚ : HnpA˚, BAq Ñ HnpB˚, BBq
for all n P Z.

Proof. If h : A˚ Ñ B˚`1 is a chain homotopy, then given any ras P HnpA˚, BAq, we have
BAa “ 0 and thus

fpaq ´ gpaq “ BBhpaq ` hpBAaq “ BB phpaqq ,
hence fpaq and gpaq are homologous cycles. �

If you’re seeing the notion of chain homotopies for the first time, you might think that the
definition above looks a bit unmotivated—it is not obvious for instance whether this is the only
reasonable algebraic condition that makes two chain maps induce the same map on homology.
However, the following lemma and its proof provide convincing evidence that this definition is the
right one: it turns out that chain homotopies are the natural algebraic structure that arises in the
singular chain complex from a homotopy between continuous maps. We will see that they arise
naturally in many other contexts as well.

Lemma 24.5. If there exists a homotopy between the maps of pairs f, g : pX,Aq Ñ pY,Bq,
then there also exists a chain homotopy between the induced chain maps f˚, g˚ : C˚pX,A;Gq Ñ
C˚pY,B;Gq.

Theorem 24.1 is an immediate consequence of this lemma and Proposition 24.4, so our remain-
ing task is to prove the lemma. For notational simplicity, let us start under the assumption

A “ B “ H,
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as the general case will only require a few extra remarks beyond this. Suppose H : I ˆX Ñ Y is a
homotopy between f “ Hp0, ¨q and g “ Hp1, ¨q. Associate to each singular n-simplex σ : ∆n Ñ X

the map
hσ : I ˆ∆n Ñ Y : ps, tq ÞÑ Hps, σptqq,

so hσp0, ¨q “ f ˝ σ and hσp1, ¨q “ g ˝ σ. If we pretend for a moment that the maps in this picture
are all embeddings, then we can picture hσ as tracing out a “prism-shaped” region in Y whose
boundary consists of three pieces, two of which are the n-simplices traced about by f˚σ and g˚σ.
If we pay proper attention to orientations, then f˚σ will get a negative orientation because the
boundary orientation for BpI ˆ∆nq induces opposite orientations on t0u ˆ∆n and t1u ˆ∆n. But
there is a third piece of BpI ˆ∆nq that we haven’t mentioned yet, namely I ˆ B∆n. If we regard
I ˆ∆n as a compact oriented pn ` 1q-manifold with boundary, then its oriented boundary turns
out to be40

(24.1) BpI ˆ∆nq “ p´t0u ˆ∆nq Y pt1u ˆ∆nq Y p´I ˆ B∆nq .
This relation will be the geometric motivation behind the chain homotopy formula.

The idea now is to define a chain homotopy h : C˚pX ;Gq Ñ C˚`1pY ;Gq by associating to each
singular n-simplex σ : ∆n Ñ X a linear combination of singular pn` 1q-simplices in Y determined
by the prism map hσ : I ˆ∆n Ñ Y . Unfortunately, I ˆ∆n is not a simplex, but there are various
natural ways to decompose it into simplices, i.e. to triangulate it. In principle, the result should
not depend on how this is done, so long as the triangulation has reasonable properties, thus we
will not explain the details here except to state what properties are needed:

Lemma 24.6. There exists a sequence of oriented triangulations of the sequence of spaces Iˆ∆n

for n “ 0, 1, 2, . . . satisfying the following properties:
(1) t0u ˆ ∆n and t1u ˆ ∆n are boundary faces of pn ` 1q-simplices in the triangulation of

I ˆ∆n;
(2) Under the natural identification of each boundary face Bpkq∆n with ∆n´1, the triangulation

of I ˆ∆n restricts to I ˆ Bpkq∆n as the triangulation of I ˆ∆n´1.

A precise algorithm to produce such triangulations of I ˆ∆n is described in [Hat02, p. 112].
I recommend taking a moment to draw pictures of how it might be done for n “ 1 and n “ 2.
In the following, we will assume that parametrizations τi : ∆n`1 Ñ I ˆ ∆n of the finite set of
pn ` 1q-simplices in these triangulations have also been chosen such that for a suitable choice of
signs ǫi “ ˘1 determined by their orientations,ÿ

i

ǫiτi P Cn`1pI ˆ∆n;Zq

defines a relative cycle in pI ˆ ∆n, BpI ˆ ∆nqq; in other words, all interior n-simplices in the
triangulation of I ˆ∆n appear twice with opposite signs in Bři ǫiτi, so that what remains is an
n-chain in the boundary. The stated conditions on the triangulation guarantee in fact that Bři ǫiτi
will consist of the following terms:

(1) A single term for the obvious parametrization ∆n Ñ t1uˆ∆n, whose attached coefficient
we can assume without loss of generality is `1;

(2) Another term for the obvious parametrization ∆n Ñ t0uˆ∆n, whose attached coefficient
must now be ´1 for orientation reasons;

40One can deduce the signs in (24.1) from things that were said in Lecture 20, though it’s a bit tedious, and
for now I would encourage you to just believe me that the signs are correct. There is an easier way to see it using
the notion of orientation for smooth manifolds and their tangent spaces, which we do not have space to talk about
here, but you’ll likely see things like this again in differential geometry at some point.
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(3) Linear combinations (with coefficients ˘1) of the n-simplices triangulating I ˆ Bpkq∆n “
I ˆ∆n´1 for each boundary face of ∆n.

With this in hand, there is a unique homomorphism h : CnpX ;Gq Ñ Cn`1pY ;Gq defined on
each singular n-simplex σ : ∆n Ñ X by the formula

hpσq :“ÿ
i

ǫiphσ ˝ τiq P Cn`1pY ;Zq,

where the sum is over all the parametrized pn`1q-simplices τi : ∆n`1 Ñ Iˆ∆n in our triangulation
from Lemma 24.6, and the ǫi “ ˘1 are determined by their orientations as outlined above. In light
of (24.1), we then have

Bhpσq “ g˚σ ´ f˚σ ´ hpBσq,
where the third term comes from the restriction of hσ to the triangulated subset ´I ˆ B∆n in the
oriented boundary of I ˆ∆n. It follows that h : C˚pX ;Gq Ñ C˚`1pY ;Gq satisfies B ˝ h` h ˝ B “
g˚ ´ f˚, i.e. h is a chain homotopy.

This concludes the proof of Lemma 24.5 in the case A “ B “ H. In the general case, the given
homotopy satisfies the additional assumption

HpI ˆAq Ă B,

thus following through with the above construction, hσ has image contained in B whenever σ has
image in A. It follows that the chain homotopy we constructed sends CnpA;Gq into Cn`1pB;Gq
and thus descends to the quotients as a chain homotopy

h˚ : C˚pX,A;Gq Ñ C˚`1pY,B;Gq
between the relative chain maps f˚, g˚ : C˚pX,A;Gq Ñ C˚pY,B;Gq. The proof of the lemma is
now complete, and with it, the proof of the homotopy invariance of singular homology.

Let us pick some low-hanging fruit from this result.

Corollary 24.7 (via Exercise 22.9). For any contractible space X and any coefficient group G,
HnpX ;Gq is isomorphic to G for n “ 0 and vanishes for n ‰ 0. �

Corollary 24.8 (via Theorem 22.10). If X is homotopy equivalent to S1, then H1pX ;Zq –
Z. �

The second big theorem for today is called the excision property. It is based on the intuition
that since H˚pX,A;Gq is supposed to ignore anything that happens entirely inside the subset A,
removing smaller subsets B Ă A should not change the relative homology, i.e. we expect

H˚pXzB,AzB;Gq – H˚pX,A;Gq.
This works under a mild assumption on what it means for a subset B to be “smaller” than A.

Theorem 24.9 (excision). For any pair pX,Aq, if B Ă A is a subset with closure contained
in the interior of A, then the inclusion of pairs i : pXzB,AzBq ãÑ pX,Aq induces isomorphisms

i˚ : HnpXzB,AzB;Gq –ÝÑ HnpX,A;Gq
for all n and G.

The assumption B Ă sB Ă Å Ă A Ă X means essentially that the two open subsets Å
and Xz sB cover X . In this setting, let us say that a chain c P CnpX ;Gq is decomposable if c
can be written as a sum of a chain in A plus a chain in XzB, i.e. c belongs to the subgroup
CnpA;Gq ` CnpXzB;Gq Ă CnpX ;Gq. The excision theorem is closely related to the observation
that every relative n-cycle in pX,Aq is homologous to one that is decomposable. Indeed, if this is
true and every rcs P HnpX,A;Gq can be written without loss of generality as c “ cA ` cXzB for
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some cA P CnpA;Gq and CXzB P CnpXzB;Gq, then since c is a relative cycle, Bc P Cn´1pA;Gq,
implying BcXzB is also in Cn´1pA;Gq since BcA must be as well, thus BcXzB P Cn´1pAzB;Gq. This
proves that cXzB is a relative n-cycle for the pair pXzB,AzBq, so it represents a homology class
in HnpXzB,AzB;Gq, and obviously

i˚rcXzBs “ rcs
since cA P CnpA;Gq represents the trivial element of CnpX,A;Gq. This proves surjectivity in The-
orem 24.9, modulo the detail about why we are allowed to restrict our attention to decomposable
chains. The latter is where most of the hard work is hidden.

Let us reframe the discussion slightly and suppose U ,V Ă X are two subsets whose interiors
form an open cover of X ,

X “ Ů Y V̊ .

We would like to develop a procedure for replacing any given chain c P CnpX ;Gq with one that
is in the subgroup CnpU ;Gq ` CnpV ;Gq Ă CnpX ;Gq but represents the same homology class in
cases where c is a (relative) cycle. If you followed the extended digression on how to visualize
n-cycles at the end of the previous lecture, then you can imagine an intuitive reason why this
should be possible: consider a homology class that is presented in the form f˚rM s P HnpX ;Zq for
some triangulated oriented n-manifold M and a map f :M Ñ X . In this case, the definition of a
cycle representing f˚rM s depends on a choice of oriented triangulation forM , but we do not really
expect the homology class f˚rM s to depend on this triangulation, and in particular, we should
be free to replace the triangulation by a finer one, which has more simplices but each one small
enough to be contained in either U or V (or both). It is not hard to imagine that one could achieve
this simply by triangulating each individual simplex in M to decompose it into strictly smaller
simplices, and the process could then be repeated finitely many times to make the simplices as
small as we like. This process is called subdivision. We shall now describe an inductive algorithm
that makes the idea precise.

The barycentric subdivision of the standard n-simplex ∆n is an oriented triangulation of
∆n defined as follows. If n “ 0, then ∆0 is only a single point, so it cannot be subdivided any
further and our triangulation of ∆0 will consist only of that single 0-simplex. Now by induction,
assume the desired triangulation of ∆m has already been defined for all m ď n ´ 1. Under the
natural identification of each boundary face Bpkq∆n with ∆n´1, this means in particular that a
triangulation of Bpkq∆n has been chosen for each k “ 0, . . . , n. Now for each pn´ 1q-simplex σ in
that triangulation, define σ1 to be the n-simplex in ∆n that is linearly spanned by the n vertices
of σ plus one extra vertex that is in the interior of ∆n, the so-called barycenter

bn :“
ˆ

1

n` 1
, . . . ,

1

n` 1

˙
P ∆n.

It is straightforward to check that the collection of all n-simplices σ1 defined in this way from
pn´ 1q-simplices σ in boundary faces Bpkq∆n forms a triangulation of ∆n, and one can also assign
it an orientation based on the orientations of the triangulations of Bpkq∆n. Some pictures for
n “ 1, 2, 3 are shown in [Hat02, p. 120].

As usual with triangulations of manifolds, one can assign to each n-simplex σ1 Ă ∆n in the
barycentric subdivision of ∆n a parametrization τ : ∆n –Ñ σ1 Ă ∆n such that the sum over all
such parametrized simplices τi with attached signs ǫi “ ˘1 determined by their orientations in the
triangulation produces a relative n-cycle in p∆n, B∆nq,ÿ

i

ǫiτi P Cnp∆n;Zq, Bÿ
i

ǫiτi P Cn´1pB∆n;Zq,

where pn´ 1q-simplices in the interior of ∆n do not appear in Bři ǫiτi because each is a boundary
face of two n-simplices whose induced boundary orientations cancel. We can then use this to define
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a homomorphism
S : CnpX ;Gq Ñ CnpX ;Gq

via the formula
Spσq :“ÿ

i

ǫipσ ˝ τiq

for each n ě 0 and σ : ∆n Ñ X . Essentially, S replaces each singular n-simplex σ by a linear
combination (with coefficients ˘1) of the restrictions of σ to the subdivided pieces of its domain.

Lemma 24.10. S : C˚pX ;Gq Ñ C˚pX ;Gq is a chain map.

Proof. This follows from the relation BSpσq “ SpBσq for each σ : ∆n Ñ X , which is a
direct consequence of the inductive nature of the subdivision algorithm: boundary faces of the
smaller simplices in the subdivision are also the simplices in a subdivision of the original boundary
faces. �

Lemma 24.11. S : C˚pX ;Gq Ñ C˚pX ;Gq is chain homotopic to the identity map.

Proof. As in the proof of Lemma 24.5, the chain homotopy here comes from a particular
choice of oriented triangulation of the prism I ˆ∆n. A picture of this triangulation and a precise
algorithm to construct it are given in [Hat02, p. 122]. We want it in particular to have the
following properties:

(1) Its restriction to t1u ˆ∆n is the barycentric subdivision of ∆n;
(2) Its restriction to t0u ˆ∆n consists only of that one n-simplex, with no subdivision;
(3) Its restriction to each I ˆ Bpkq∆n matches the chosen triangulation of I ˆ∆n´1.

The third property means that the construction is again inductive: we start with n “ 0 by choosing
the trivial triangulation of I ˆ∆0 “ I, and then increase the dimension one at a time such that
the triangulation already defined for I ˆ∆n´1 determines the triangulation of I ˆ∆n. Since it is
an oriented triangulation, one can now define a relative pn` 1q-cycle in pI ˆ∆n, BpI ˆ∆nqq of the
form ÿ

i

ǫiτi P Cn`1pI ˆ∆n;Zq,

where τi : ∆n`1 Ñ I ˆ∆n are parametrizations of the simplices in the triangulation and the signs
ǫi “ ˘1 are determined by their orientations. Let

π : I ˆ∆n Ñ ∆n

denote the obvious projection map. The desired chain homotopy h : CnpX ;Gq Ñ Cn`1pX ;Gq is
then determined by the formula

hpσq “ÿ
i

ǫi pσ ˝ π ˝ τiq .

In computing Bhpσq, n-simplices in the interior of I ˆ∆n make no contribution due to the usual
cancelations, but there are contributions from the induced triangulation of BpI ˆ ∆nq, and the
chain homotopy relation again follows from the geometric formula (24.1) for the oriented boundary
of I ˆ∆n. Namely, restricting to t1u ˆ∆n gives the barycentric subdivision Spσq, restricting to
´t0u ˆ∆n gives ´σ, and restricting to ´I ˆ B∆n gives the same operator applied to Bσ, hence

Bhpσq “ Spσq ´ σ ´ hpBσq,
proving S ´ 1 “ Bh` hB. �
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The chain homotopy result implies that our subdivision map S : C˚pX ;Gq Ñ C˚pX ;Gq has
the main property we want, namely it induces the identity homomorphism H˚pX ;Gq Ñ H˚pX ;Gq,
and since S clearly also preserves C˚pA;Gq for any A Ă X , the same is also true for the relative
homology groups of pX,Aq. It then remains true if we replace S by any iteration Sm for integers
m ě 1, thus we can apply S repeatedly in order to make the individual simplices in a chain as
small as we like. In particular, for any c P C˚pX ;Gq, we will have Smc P C˚pU ;Gq ` C˚pV ;Gq for
m sufficiently large. This is enough information to prove the excision theorem, so let’s go ahead
and do that.

Proof of Theorem 24.9. The hypotheses of the theorem imply that X is the union of the
interiors of XzB and A, so given any class rcs P HnpX,A;Gq with a relative n-cycle c P CnpX ;Gq
representing it, c can be replaced by an iterated subdivision Smc for large m P N that represents
the same relative homology class rSmcs “ rcs P HnpX,A;Gq but is also decomposable, meaning it
is the sum of a chain in XzB with a chain in A. Let’s assume that c has already been replaced
with Smc in this way, so that without loss of generality,

c “ cA ` cXzB for some cA P CnpA;Gq, cXzB P CnpXzB;Gq.
Having made this assumption, the reason why i˚ : HnpXzB,AzB;Gq Ñ HnpX,A;Gq is surjective
was explained already in the paragraph after the statement of the theorem: the fact that c P
CnpX,A;Gq is a relative n-cycle means Bc P CnpA;Gq and therefore also BcXzB P CnpA;Gq, so
that cXzB is a relative n-cycle in pXzB,AzBq, thus representing a class rcXzBs P HnpXzB,AzB;Gq
that satisfies

i˚rcXzBs “ rcs.
The proof that i˚ : HnpXzB,AzB;Gq Ñ HnpX,A;Gq is injective uses subdivision in a slightly

different way. Suppose c P CnpXzB;Gq is a relative n-cycle representing a homology class rcs P
HnpXzB,AzB;Gq with i˚rcs “ 0 P HnpX,A;Gq. Since i is just an inclusion map, i˚rcs “ 0 means
that after reinterpreting c as an n-chain in X instead of just in XzB, c is a boundary of some
pn` 1q-chain in X , modulo one that is contained in A, i.e. we have

c “ Bb` a for some b P Cn`1pX ;Gq and a P CnpA;Gq.
Applying B to both sides of this equation gives Bc “ Ba, which implies since c is a relative n-cycle
in pXzB,AzBq that Ba P CnpAzB;Gq, i.e. none of the singular simplices that make up the pn´ 1q-
cycle Ba intersect B. If we happened to know that the chains b P Cn`1pX ;Gq and a P CnpA;Gq also
have that property, i.e. that they are made up only of singular simplices that do not intersect B,
then we would be done: indeed, we could then interpret b as an pn ` 1q-chain in XzB and a as
an n-chain in AzB, so that the relation c “ Bb ` a also implies rcs “ 0 P HnpXzB,AzB;Gq. As
it stands, each of b and a might very well intersect B, but we can now use subdivision to replace
them with chains that do not. Indeed, the homology class rcs P HnpXzB,AzB;Gq does not change
if we replace c with Smc for any m ě 1, and since S is a chain map, the relation c “ Bb ` a

then implies Smc “ SmpBbq ` Sma “ BpSmbq ` Sma. Choosing m sufficiently large and replacing
each of a, b, c with their m-fold subdivisions, we can now assume without loss of generality that all
three are decomposable; for c P CnpXzB;Gq and a P CnpA;Gq this is not new information since
we already assumed them to be contained in XzB or A respectively, but for b P Cn`1pX ;Gq we
can now write

b “ bA ` bXzB for some bA P Cn`1pA;Gq, bXzB P Cn`1pXzB;Gq.
The relation c “ Bb` a thus becomes

c “ BbXzB ` pBbA ` aq ,
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and we observe that since c and BbXzB are both n-chains in XzB, the same must therefore be true
for BbA`a, meaning it is actually contained in AzB. This proves rcs “ 0 P HnpXzB,AzB;Gq. �

The remainder of this lecture should be considered optional for now, as it is not needed for
the purposes of this semester’s course. However, when we study cohomology next semester, we
will need a slightly better version of the excision result than Theorem 24.9. One thing you’ve
probably gathered by now is that a chain homotopy is always a useful thing to have, so when
one exists, we should take note of it. Theorem 24.9 can be seen as a consequence of the stronger
result that the inclusion i : pXzB,AzBq ãÑ pX,Aq induces a chain homotopy equivalence
(Kettenhomotopieäquivalenz)

i˚ : C˚pXzB,AzB;Gq Ñ C˚pX,A;Gq.
In case the meaning of this terminology is not obvious, this means there exists a chain map
ψ : C˚pX,A;Gq Ñ C˚pXzB,AzB;Gq such that ψ ˝ i˚ and i˚ ˝ ψ are each chain homotopic to the
identity; we call ψ a chain homotopy inverse of i˚.

The following statement turns our previous discussion of subdivision into an actual chain ho-
motopy equivalence that has several applications in the further development of the theory, e.g. we
will use it again next semester when we discuss the homology analogue of the Seifert-van Kampen
theorem, known as the Mayer-Vietoris exact sequence. To understand the statement, it is impor-
tant to be aware that for any subsets U ,V Ă X , the subgroup C˚pU ;Gq `C˚pV ;Gq Ă C˚pX ;Gq is
also a chain complex in a natural way. Indeed, the boundary operator on C˚pX ;Gq maps each of
C˚pU ;Gq and C˚pV ;Gq to themselves, thus it also preserves their sum.

Lemma 24.12. For any subsets U ,V Ă X with X “ Ů Y V̊, the inclusion map

j : C˚pU ;Gq ` C˚pV ;Gq ãÑ C˚pX ;Gq
admits a chain homotopy inverse

ρ : C˚pX ;Gq Ñ C˚pU ;Gq ` C˚pV ;Gq
such that ρ ˝ j “ 1, and moreover, there is a chain homotopy h : C˚pX ;Gq Ñ C˚`1pX ;Gq of j ˝ ρ
to the identity such that h vanishes on C˚pU ;Gq ` C˚pV ;Gq.

Proof. Let me first point out how one would intuitively wish to prove this, and why it will
not work. As observed above, any chain c P C˚pX ;Gq can be mapped into C˚pU ;Gq ` C˚pV ;Gq
via Sm if the integer m is sufficiently large, so Sm seems like a good candidate for the chain
homotopy inverse ρ. The problem however is that we don’t know in general how large m needs
to be, and in fact the answer depends on the chain c: for any fixed integer m, one can always
find a singular n-simplex σ : ∆n Ñ X whose boundary is close enough to the boundary of U or V
so that the m-fold subdivision Smpσq includes some simplex that is not fully contained in either
one. This means that regardless of how large we make m, Sm can never map all of C˚pX ;Gq into
C˚pU ;Gq ` C˚pV ;Gq, and it will require a bit more cleverness to come up with a candidate for
a map ρ that does this. Our approach will be somewhat indirect: instead of writing down ρ, we
will first write down a (somewhat naive) candidate for the chain homotopy h in terms of the chain
homotopies between Sm and 1 for varying values of m. We will then be able to verify that h really
is a chain homotopy between 1 and something; that so-called “something” will be defined to be ρ,
whose further properties we can then verify.

Let h1 : C˚pX ;Gq Ñ C˚`1pX ;Gq denote the chain homotopy provided by Lemma 24.11 for
the barycentric subdivision chain map S : C˚pX ;Gq Ñ C˚pX ;Gq, i.e. it satisfies S´1 “ Bh1`h1B.
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We claim that for all integers m ě 0, the map

hm :“ h1

m´1ÿ
k“0

Sk : C˚pX ;Gq Ñ C˚`1pX ;Gq

then satisfies

(24.2) Sm ´ 1 “ Bhm ` hmB,
so hm is a chain homotopy between Sm and the identity. Note that the casem “ 0 is included here,
with S0 “ 1 and h0 “ 0, so the claim is trivial in that case, and the definition of h1 establishes
it for m “ 1. If we now use induction and assume that the claim holds for powers of S up to
m´ 1 ě 1, then since S commutes with B,
Sm ´ 1 “ pSm´1 ´ 1qS ` pS ´ 1q “ pBhm´1 ` hm´1BqS ` Bh1 ` h1B

“
˜
Bh1

m´2ÿ
k“0

Sk ` h1

m´2ÿ
k“0

SkB
¸
S ` Bh1 ` h1B “ Bh1

m´1ÿ
k“1

Sk ` h1

m´1ÿ
k“1

SkB ` Bh1 ` h1B

“ Bh1
m´1ÿ
k“0

Sk ` h1

m´1ÿ
k“0

SkB “ Bhm ` hmB.

For any given σ : ∆n Ñ X , the iterated subdivision maps Sm can be assumed to satisfy

(24.3) Smpσq P C˚pU ;Gq ` C˚pV ;Gq
if m is large enough, so for each each n ě 0 and σ : ∆n Ñ X , let mσ ě 0 denote the smallest
integer for which (24.3) holds with m “ mσ. We can then define a homomorphism h : CnpX ;Gq Ñ
Cn`1pX ;Gq for each n ě 0 via

hpσq :“ hmσ
pσq.

Let us see whether this is a chain homotopy. We have

pBh` hBqpσq “ Bhmσ
pσq ` hmσ

pBσq ` ph´ hmσ
qpBσq

“ pSmσ ´ 1qpσq ` ph´ hmσ
qpBσq “ prSmσ ` ph´ hmσ

qBs ´ 1q pσq.
Use this to define ρ : C˚pX ;Gq Ñ C˚pX ;Gq by

ρpσq :“ Smσ pσq ` ph´ hmσ
qpBσq,

so the relation

(24.4) Bh` hB “ ρ´ 1

is satisfied. The latter implies that ρ is a chain map since applying B from either the left or right
on the left hand side of (24.4) gives BhB, thus on the right hand side we obtain pρ´1qB “ Bpρ´1q.
To understand ρ better, we need to observe that each boundary face τ appearing in Bσ satisfies
mτ ď mσ since mσ is clearly enough (but need not be the minimal number of) iterations of S
to put σ (and therefore also τ) in C˚pU ;Gq ` C˚pV ;Gq. Now if σ P C˚pU ;Gq ` C˚pV ;Gq, then
Smσpσq “ σ since mσ “ 0, and the above remarks imply hpBσq “ h0pBσq “ 0 as well, thus ρpσq “ σ

and we conclude
ρ ˝ j “ 1.

It remains to show that for all σ : ∆n Ñ X , ρpσq is a linear combination of simplices that are
each contained in either U or V . We have Smσpσq P C˚pU ;Gq `C˚pV ;Gq by the definition of mσ,



162 FIRST SEMESTER (TOPOLOGIE I)

so it suffices to inspect the other term ph´ hmσ
qpBσq. Here again we observe that Bσ is a sum of

singular pn´ 1q-simplices τ for which mτ ď mσ, and

ph´ hmσ
qτ “ phmτ

´ hmσ
qτ “ ´h1

mσ´1ÿ
k“mτ

Skpτq P CnpU ;Gq ` CnpV ;Gq.

This last conclusion requires you to recall how h1 was constructed in the proof of Lemma 24.11:
in particular, it maps any simplex that is contained in either U or V to a linear combination of
simplices that have this same property.

One last detail: the chain homotopy h : C˚pX ;Gq Ñ C˚`1pX ;Gq vanishes on C˚pU ;Gq `
C˚pV ;Gq since every singular n-simplex σ : ∆n Ñ X with image in either U or V satisfies mσ “ 0,
thus hpσq “ hmσ

pσq “ h0pσq “ 0. �

Now we can prove the “chain level” result that implies Theorem 24.9.

Lemma 24.13. If A,B Ă X are subsets with sB Ă Å, then the inclusion i : pXzB,AzBq ãÑ
pX,Aq induces a chain homotopy equivalence i˚ : C˚pXzB,AzB;Gq Ñ C˚pX,A;Gq.

Proof. Consider the quotient chain complex pC˚pXzB;Gq ` C˚pA;Gqq {C˚pA;Gq, which has
a natural identification with the group of all finite sums

ř
i aiσi with coefficients ai P G and

singular simplices σi : ∆n Ñ X that have image in XzB but not contained in A. The point here
is that while simplices with σp∆nq Ă A are also generators of C˚pXzB;Gq ` C˚pA;Gq, they are
all equivalent to zero in the quotient. As it happens, the quotient complex C˚pXzB,AzB;Gq “
C˚pXzB;Gq{C˚pAzB;Gq can be described in exactly the same way, with the same set of generators:
singular simplices that are contained in XzB but not contained in A. Since the obvious inclusion
C˚pXzB;Gq ãÑ C˚pXzB;Gq ` C˚pA;Gq sends C˚pAzB;Gq into C˚pA;Gq, it follows that this
inclusion descends to a chain map of quotient complexes

C˚pXzB,AzB;Gq Ñ pC˚pXzB;Gq ` C˚pA;Gqq LC˚pA;Gq
which is in fact an isomorphism of chain complexes, i.e. it has an inverse, which is also a chain
map. This is a trivial observation; we have not done anything interesting yet.

But in light of this identification of two quotient chain complexes, it will suffice to prove that
the chain map

(24.5) pC˚pXzB;Gq ` C˚pA;Gqq LC˚pA;Gq jÝÑ C˚pX ;Gq{C˚pA;Gq “ C˚pX,A;Gq
induced on these quotients by the obvious inclusion

C˚pXzB;Gq ` C˚pA;Gq jãÑ C˚pX ;Gq
is a chain homotopy equivalence. SinceXz sB and Å form an open cover ofX , Lemma 24.12 provides
a chain homotopy inverse for j, namely the map ρ : C˚pX ;Gq Ñ C˚pXzB;Gq `C˚pA;Gq, defined
in terms of subdivision. That map satisfies ρ˝j “ 1, thus ρ restricts to the identity on the subgroup
C˚pA;Gq Ă C˚pX ;Gq and therefore descends to a map on quotients going the opposite direction
to j in (24.5). It also satisfies j ˝ρ´1 “ Bh`hB for a chain homotopy h : C˚pX ;Gq Ñ C˚`1pX ;Gq
that vanishes on C˚pA;Gq, thus h also descends to the quotient C˚pX ;Gq{C˚pA;Gq as a chain
homotopy h : C˚pX,A;Gq Ñ C˚`1pX,A;Gq satisfying j ˝ ρ ´ 1 “ Bh ` hB on the quotient
complexes. �

Remark 24.14. We will not need it this semester, but since the notions of chain maps and
chain homotopies did not appear in our discussion of simplicial homology, you might wonder if they
nonetheless have some role to play in that context. Chain maps arise for instance from simplicial
maps : given two simplicial complexes K “ pV, Sq and K 1 “ pV 1, S1q, a map f : V Ñ V 1 is called a
simplicial map if for every simplex σ of K, the images under f of the vertices of σ form the vertices
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(possibly with repetition) of a simplex of K 1. A simplicial map naturally determines a continuous
map of the associated polyhedra |K| Ñ |K 1| which maps each n-simplex in |K| linearly to a k-
simplex in |K 1| for some k ď n. It is not hard to show that f also naturally induces a chain map
f˚ : C˚pK;Gq Ñ C˚pK 1;Gq, defined by sending each n-simplex σ in K to its image k-simplex in
K 1 if k “ n and otherwise sending σ to 0. In light of this, Proposition 22.5 implies (unsurprisingly)
that any bijective simplicial map from K to K 1 induces an isomorphism of the simplicial homology
groups H∆˚ pK;Gq Ñ H∆˚ pK 1;Gq. Chain homotopies play an important role when one considers
subdivisions of a simplicial complex, e.g. one can adapt the notion of barycentric subdivision so that
it naturally associates to any simplicial complex K a larger complex K 1 with a homeomorphism
of |K 1| to |K| such that the simplices in K 1 triangulate the individual simplices of K into smaller
pieces. This defines a chain map S : C˚pK;Gq Ñ C˚pK 1;Gq sending each simplex of K to the
linear combination of simplices of K 1 that triangulate it, and importantly, S turns out to be a
chain homotopy equivalence, so it follows from Proposition 24.4 that the induced homomorphism
S˚ : H∆˚ pK;Gq Ñ H∆˚ pK 1;Gq is an isomorphism. This was historically considered one of the major
motivations to believe that simplicial homology depends only on the underlying space |K| and not
on the simplicial complex itself (cf. Theorem 21.16). We saw a closely analogous phenomenon
in our proof of the excision property above, though in the simplicial context, one usually has to
consult some of the older textbooks (e.g. [Spa95] is quite nice) to find adequate discussions of such
topics.

25. The homology of the spheres, and applications

It is time to put the results of the last few lectures together and compute H˚pSn;Zq. The
computation proceeds by induction on the dimension n, making use of the convenient fact that
the suspension of Sn is homeomorphic to Sn`1. Suspensions, in fact, provide us with our first
interesting example of a homotopy equivalence of pairs.

Example 25.1. Recall from Lecture 11 that the suspension (Einhängung) SX of a space X
is defined by gluing together two copies of its cone,

(25.1) SX “ C`X YX C´X,

where C`X :“ pr0, 1sˆXq{pt1uˆXq, C´X :“ pr´1, 0sˆXq{pt´1uˆXq, and we identify X with
the subset t0u ˆX in each. Let p˘ P SX denote the points at the tips of the two cones, defined
by collapsing t˘1u ˆX . Then the inclusion

pC`X,Xq ãÑ pSXztp´u, C´Xztp´uq
is a homotopy equivalence of pairs. Indeed, one can define a deformation retraction H : I ˆ
pSXztp´uq Ñ SXztp´u by pushing points in C´Xztp´u continuously upward toward X while
leaving C`X fixed, so thatHp1, ¨q is the identity whileHp0, ¨q retracts SXztp´u to C`X andHps, ¨q
preserves C´Xztp´u for every s P I. The resulting retraction of pairs pSXztp´u, C´Xztp´uq Ñ
pC`X,Xq is a homotopy inverse for the inclusion. Let us spell this out more explicitly in the
special case where X “ Sn´1, so SX is then homeomorphic to Sn. The decomposition (25.1)
then becomes a splitting of Sn into two hemispheres Dn` – Dn – Dn´ glued along an “equator”
homeomorphic to Sn´1,

Sn – Dn` YSn´1 Dn´,
and our homotopy equivalence of pairs is now the resulting inclusion map

pDn`, Sn´1q ãÑ pSnztp´u,Dn´ztp´uq,
where p´ is now the “south pole,” i.e. the center of Dn´.
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The homotopy equivalence in Example 25.1 gives rise to an interesting relationship between
H˚pX ;Gq and H˚pSX ;Gq for any space X . Ponder the following diagram:

(25.2)
HkpX ;Gq Hk`1pSX ;Gq

Hk`1pC`X,X ;Gq Hk`1pSXztp´u, C´Xztp´u;Gq Hk`1pSX,C´X ;Gq
ϕ˚B˚

i˚ j˚

Here B˚ denotes the connecting homomorphism from the long exact sequence of the pair pC`X,Xq,
while the maps j˚ and ϕ˚ are induced by the obvious inclusions of pairs

pSXztp´u, C´Xztp´uq jãÑ pSX,C´Xq,
pSX,Hq ϕãÑ pSX,C´Xq.

Since tp´u Ă C´X is a closed subset in the interior of C´X , excision (Theorem 24.9) implies that
j˚ is an isomorphism. We claim that if k ě 1, then B˚ and ϕ˚ are both also isomorphisms. For
the first, consider the long exact sequence of the pair pC`X,Xq:

. . . ÝÑ Hk`1pC`X ;Gq ÝÑ Hk`1pC`X,X ;Gq B˚ÝÑ HkpX ;Gq ÝÑ HkpC`X ;Gq ÝÑ . . .

Since C`X is contractible, homotopy invariance implies that the first and last of these four terms
vanish, as Hnptptu;Gq “ 0 for all n ą 0. The sequence thus becomes

0 ÝÑ Hk`1pC`X,X ;Gq B˚ÝÑ HkpX ;Gq ÝÑ 0

for each k ě 1, so exactness implies that B˚ is an isomorphism. For ϕ˚, we instead take an exerpt
from the long exact sequence of pSX,C´Xq:

. . . ÝÑ Hk`1pC´X ;Gq ÝÑ Hk`1pSX ;Gq ϕ˚ÝÑ Hk`1pSX,C´X ;Gq ÝÑ HkpC´X ;Gq ÝÑ . . .

The contractibility of C´X again makes the first and last terms vanish if k ě 1, leaving

0 ÝÑ Hk`1pSX ;Gq ϕ˚ÝÑ Hk`1pSX,C´X ;Gq ÝÑ 0,

so that ϕ˚ is also an isomorphism. We have proved:

Theorem 25.2. For all spaces X, abelian groups G and integers k ě 1, the diagram (25.2)
defines an isomorphism

S˚ “ ϕ´1˚ ˝ j˚ ˝ i˚ ˝ B´1˚ : HkpX ;Gq Ñ Hk`1pSX ;Gq.
�

Exercise 25.3. Show that for any k-cycle b P CkpX ;Gq Ă CkpSX ;Gq, there exists a pair of
pk ` 1q-chains c˘ P Ck`1pC˘X ;Gq Ă Ck`1pSX ;Gq satisfying
(25.3) Bc` “ ´Bc´ “ b

and

(25.4) S˚rbs “ rc` ` c´s.
Note that c`` c´ P Cn`1pSX ;Gq is automatically a cycle since Bc` “ ´Bc´. Show moreover that
(25.4) is satisfied for any pair of chains c˘ satisfying (25.3).

For the spheres Sn with n ě 1, we already know H0pSn;Gq and H1pSn;Zq; the former is G
because Sn is path-connected (Proposition 22.8), and the latter is the abelianization of π1pSnq by
Theorem 22.10. Since SSn – Sn`1, we can now compute H˚pSn;Zq inductively for every n ě 1:
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Theorem 25.4. For every n P N,

HkpSn;Zq –
#
Z for k “ 0, n,

0 for all other k.

Proof. Proposition 22.8 gives H0pSn;Zq – Z. For k “ n, HnpSn;Zq – Z follows by an
inductive argument starting from H1pS1;Zq – π1pS1q – Z and applying Theorem 25.2. For any
k “ 1, . . . , n ´ 1, a similar inductive argument starting from H1pSn´k`1;Zq “ π1pSn´k`1q “ 0

gives HkpSn;Zq “ 0. For k ą n, repeatedly applying Theorem 25.2 identifies HkpSn;Zq with
Hk´npS0;Zq, where k ´ n ą 0 and S0 is a discrete space of two points. But one can easily adapt
Exercise 22.9 to prove by direct computation that HmpX ;Gq “ 0 for any m ą 0 whenever X is a
discrete space. �

We can now extend our proof of the Brouwer fixed point theorem to all dimensions. The basic
ingredients are the same as before: first, if a map f : Dn Ñ Dn has no fixed point, then we can
use it to define a retraction g : Dn Ñ Sn´1 “ BDn. In Lecture 10, we used the fundamental group
to prove that no such retraction exists when n “ 2. The argument for this did not require many
specific properties of the fundamental group: the key point was just the fact that continuous maps
X Ñ Y induce homomorphisms π1pXq Ñ π1pY q in a way that is compatible with composition of
maps, and the homology groups have this same property. In particular:

Exercise 25.5. Show that if f : X Ñ A is a retraction to a subset A Ă X with inclusion
i : A ãÑ X , then for all n P Z and abelian groups G, f˚ : HnpX ;Gq Ñ HnpA;Gq is surjective,
while i˚ : HnpA;Gq Ñ HnpX ;Gq is injective.

Proof of the Brouwer fixed point theorem. Arguing by contradiction, assume a map
f : Dn Ñ Dn without fixed points exists, and therefore also a retraction g : Dn Ñ Sn´1. We may
assume n ě 2 since the case n “ 1 follows already from the intermediate value theorem for
continuous functions on r´1, 1s. By Exercise 25.5, g induces a surjective homomorphism

g˚ : Hn´1pDn;Zq Ñ Hn´1pSn´1;Zq.
But this is impossible since Hn´1pDn;Zq – Hn´1ptptu;Zq “ 0 and Hn´1pSn´1;Zq – Z. �

Here is another easy application.

Theorem 25.6. A topological manifold of dimension n is not also a topological manifold of
dimension m ‰ n.

Proof. Let us assume m and n are both at least 2, as the result can otherwise be proved via
easier methods. (Hint: removing a point from Rmakes it disconnected.) We argue by contradiction
and assumeM is a manifold with an interior point admitting a neighborhood homeomorphic to Rn

and also a neighborhood homeomorphic to Rm for m ‰ n. By choosing a suitable pair of charts
and writing down their transition maps, we can produce from this a pair of open neighborhoods
of the origin Ωn Ă Rn and Ωm Ă Rm admitting a homeomorphism f : Ωn Ñ Ωm with fp0q “ 0.
Choose ǫ ą 0 small enough so that f maps the ǫ-ball Bnǫ p0q Ă Ωn about the origin into the δ-ball
Bmδ p0q Ă Rm for some δ ą 0, where the latter is also small enough so that Bmδ p0q Ă Ωm. Now pick
a generator

A P Hn´1pBnǫ p0qzt0u;Zq – Hn´1pSn´1;Zq – Z.

Since m ‰ n,
Hn´1pBmδ p0qzt0u;Zq – Hn´1pSm´1;Zq “ 0,
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so restricting f to a map Bnǫ p0qzt0u Ñ Bmδ p0qzt0u gives f˚A “ 0 P Hn´1pBmδ p0qzt0u;Zq. But f´1

is also defined on Bmδ p0q, and restricting both f and f´1 to maps on punctured neighborhoods
with the origin removed, we deduce

A “ pf´1 ˝ fq˚A “ f´1˚ f˚A “ 0,

which is a contradiction since A was assumed to generate Hn´1pBnǫ p0qzt0u;Zq ‰ 0. �

26. Axioms, cells, and the Euler characteristic

At this point, I believe I’ve proved everything that I promised to prove in earlier lectures, so
the course Topologie I is officially over. Since we nonetheless have a bit of time left, the present
lecture is included partly just for fun: none of what it contains should be considered examinable
in the current semester, though some of it may provide a useful wider perspective on the material
we’ve previously covered. All of it will also be treated in much more detail in next semester’s
Topologie II course.

The Eilenberg-Steenrod axioms. First a bit of good news: while the proofs of homotopy
invariance and excision in Lecture 24 may have seemed somewhat unpleasant, we will hardly ever
need to engage in such hands-on constructions via subdivision of simplices in the future. That is
because almost everything one actually needs to know in order to use homology in applications
follows from a small set of results that we’ve spent the last few lectures proving. These results form
an axiomatic description of general “homology theories,” which was first codified by Eilenberg-
Steenrod [ES52] and Milnor [Mil62] around the middle of the 20th century. An axiomatic
homology theory can be thought of as a function

pX,Aq ÞÑ h˚pX,Aq
that associates to each pair of spaces a sequence of abelian groups thnpX,AqunPZ, and has some
additional properties that make it computable for nice spaces and useful for applications in the
same way that singular homology is. Identifying each single space X with the pair pX,Hq as usual,
one abbreviates

hnpXq :“ hnpX,Hq.
Besides the actual groups hnpX,Aq, the theory h˚ comes with some additional data: first, it should
also associate to each map of pairs f : pX,Aq Ñ pY,Bq a sequence of homomorphisms

f˚ : hnpX,Aq Ñ hnpY,Bq, n P Z

with the properties that pf ˝gq˚ “ f˚˝g˚ whenever the composition of f and g makes sense, and the
identity map Id : pX,Aq Ñ pX,Aq gives rise to the identity homomorphism Id˚ “ 1 : hnpX,Aq Ñ
hnpX,Aq. Category theory has a technical term for things like this: we call h˚ a functor from the
category of pairs of topological spaces to the category of Z-graded abelian groups. There is one
additional piece of data: since the long exact sequences of pairs in singular homology were very
useful in the computation of H˚pSnq, we would like to have similar exact sequences for h˚, and
one of the ingredients required for this is a sequence of connecting homomorphisms

B˚ : hnpX,Aq Ñ hn´1pAq, n P Z.

Aside from fitting into an exact sequence as described below, we want these maps to be compatible
with the homomorphisms induced on h˚ by maps of pairs, in the following sense: any map of
pairs f : pX,Aq Ñ pY,Bq restricts to a continuous map A Ñ B, so it induces homomorphisms
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f˚ : hnpX,Aq Ñ hnpY,Bq and f˚ : hnpAq Ñ hnpBq, which we would like to fit together with B˚
into the following commutative diagram for each n:

hnpX,Aq hn´1pAq

hnpY,Bq hn´1pBq

B˚

f˚ f˚
B˚

The fancy category-theoretic term for this condition is “naturality“: more specifically, B˚ defines
for each n P Z a so-called natural transformation from the functor pX,Aq ÞÑ hnpX,Aq to the
functor pX,Aq ÞÑ hnpAq :“ hnpA,Hq. The precise meanings of these terms from category theory
will be discussed in the first lecture of next semester’s course.

The original list of axioms stated in [ES52] included the properties described above, but
they are usually not regarded as actual axioms in modern treatments, since they can instead
be summarized with category-theoretic terminology such as “h˚ is a functor and B˚ is a natural
transformation”. The further conditions we want these things to satisfy are then the following:

‚ (homotopy) f˚ : h˚pX,Aq Ñ h˚pY,Bq depends only on the homotopy class of f :

pX,Aq Ñ pY,Bq.
‚ (exactness) For the inclusions i : A ãÑ X and j : pX,Hq ãÑ pX,Aq, the sequence

. . . ÝÑ hn`1pX,Aq B˚ÝÑ hnpAq i˚ÝÑ hnpXq j˚ÝÑ hnpX,Aq B˚ÝÑ hn´1pAq ÝÑ . . .

is exact.
‚ (excision) If B Ă sB Ă Å Ă A Ă X , then the inclusion pXzB,AzBq ãÑ pX,Aq induces
an isomorphism h˚pXzB,AzBq Ñ h˚pX,Aq.

‚ (dimension) hnptptuq “ 0 for all n ‰ 0. The potentially nontrivial abelian group

G :“ h0ptptuq
is then called the coefficient group of h˚.

‚ (additivity) For any collection of spaces tXαuαPJ with inclusion maps iα : Xα ãÑš
βPJ Xβ , the homomorphisms iα˚ : h˚pXαq Ñ h˚pšβ Xβq determine an isomorphismà

αPJ
h˚pXαq Ñ h˚

´ž
αPJ

Xα

¯
.

Put together, these properties of an axiomatic homology theory h˚ are known as the Eilenberg-
Steenrod axioms, and they were first written down in [ES52] with the exception of the additivity
axiom, which was added later by Milnor [Mil62].41 We have already done most of the work of
proving that for any given abelian group G, the singular homology H˚p¨;Gq defines an axiomatic
homology theory with coefficient group G. The next two exercises fill the remaining gaps in proving
this.

Exercise 26.1. Assume G is any abelian group and abbreviate the singular homology of a
pair pX,Aq with coefficients in G by H˚pX,Aq :“ H˚pX,A;Gq.

(a) Show that the connecting homomorphisms B˚ : HnpX,Aq Ñ Hn´1pAq in singular ho-
mology satisfy naturality, i.e. for any map f : pX,Aq Ñ pY,Bq and every n P Z, the

41One can show that for finite disjoint unions, the additivity axiom follows from the others—it was thus
unnecessary from the perspective of Eilenberg and Steenrod because they were mainly interested in compact spaces,
in particular the polyhedra of finite simplicial complexes. The extra axiom becomes important however as soon as
the discussion is extended to include noncompact spaces with infinitely many connected components.



168 FIRST SEMESTER (TOPOLOGIE I)

diagram

HnpX,Aq Hn´1pAq

HnpY,Bq Hn´1pBq

B˚

f˚ f˚
B˚

commutes.
(b) Deduce that for any map f : pX,Aq Ñ pY,Bq, the long exact sequences of pX,Aq and

pY,Bq in singular homology form the rows of a commutative diagram

. . . HnpAq HnpXq HnpX,Aq Hn´1pAq . . .

. . . HnpBq HnpY q HnpY,Bq Hn´1pBq . . .

f˚ f˚ f˚ f˚

Exercise 26.2. Prove directly from the definition of singular homology H˚p¨;Gq with any
coefficient group G that it satisfies the additivity axiom.

If you look again at our computation of H˚pSn;Zq, you’ll see that it mostly only used the
axioms listed above—I say “mostly” because we did cheat slightly in using the isomorphism
H1pSn;Zq – π1pSnq, the proof of which is a fairly hands-on argument with singular simplices
and does not follow from the axioms. But actually, we could have gotten around this with a little
more effort, and it is even possible to compute H1pSn;Gq for arbitrary coefficient groups G without
knowing anything about the fundamental group. The reason we had to appeal to the fundamental
group was that Theorem 25.2 is not true for k “ 0, and it fails for a very specific reason: since H0

of a contractible space does not vanish, the exact sequences do not always give isomorphisms when
this term appears. But there is a formal trick to avoid this problem, called reduced homology:
it is a variant rH˚ of the usual singular homologyH˚ that fits into all the same exact sequences, but
is defined in a slightly more elaborate way so that rHnptptuq “ 0 for all n, not just for n ‰ 0. If we
had used this, we could have done an inductive argument reducing the homology of every sphere
Sn to the homology of S0, which is the disjoint union of two one-point spaces, so the dimension
and additivity axioms then provide the answer. This version of the argument eliminates any need
for specifying the coefficients G “ Z, and it also works for any axiomatic homology theory, thus
giving:

Theorem. For every n P N and any theory h˚ satisfying the Eilenberg-Steenrod axioms with
coefficient group G,

hkpSnq –
#
G for k “ 0, n,

0 for all other k.

Now a word of caution: in the last few lectures, we proved two things about singular homology
that cannot be deduced merely from the formal properties codified in the Eilenberg-Steenrod
axioms, and they are in fact not true for arbitrary axiomatic homology theories. One of these was
Proposition 22.8, which related H0 of an arbitrary space X to the set π0pXq of path-components
of X via the formula

(26.1) H0pX ;Gq – à
π0pXq

G.

This looks at first like it should be related to the additivity axiom: if X is homeomorphic to the
disjoint union of its path-components Xα Ă X , then additivity gives H0pX ;Gq –À

αH0pXα;Gq,
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but there is unfortunately nothing in the axioms to imply H0pXα;Gq – G for an arbitrary path-
connected space Xα, unless Xα happens to be contractible. There is also a more serious problem,
though you may have forgotten about it since we started focusing only on “nice” spaces after
Lecture 7: not every space is homeomorphic to the disjoint union of its path-components. Manifolds
have this property, and so do locally path-connected spaces in general—the latter follows from a
combination of Exercise 7.12, Proposition 7.18 and Theorem 7.19. But not every space is locally
path-connected, and no such assumption was imposed on X when we computed H0pX ;Gq.

Another important result that does not follow from the axioms is Theorem 22.10, on the
natural homomorphism

(26.2) π1pXq Ñ H1pX ;Zq
for any path-connected spaceX , and the isomorphism it induces betweenH1pX ;Zq and the abelian-
ization of π1pXq. Its proof (carried out in Exercise 22.12) similarly required a hands-on examination
of the chain complex C˚pX ;Zq that underlies the definition of H˚pX ;Zq. In this context, allow me
to point out an odd detail that you may or may not have noticed about the Eilenberg-Steenrod
axioms: they never mention any chain complex at all. Homology theories in the sense of Eilenberg-
Steenrod need not generally come from chain complexes—in practice, most of them do, though
often in less direct ways than singular homology, and one cannot derive from the axioms any direct
intuition about the geometric meaning of elements in the groups h0pXq and h1pXq. Part of the
point of the axioms is that for most of the interesting applications of homology, it should suffice to
know that a homology theory exists and satisfies the right formal properties, because if those prop-
erties hold, then one can typically carry out the applications one wants without even knowing how
the theory itself is defined. This “highbrow” perspective does not suffice however for computations
like (26.1) and (26.2), which are unique to singular homology and its underlying chain complex.

A sketch of Čech homology. Singular homology is not the only theory that satisfies the
Eilenberg-Steenrod axioms, though it has been the standard one that people use for over half a
century. While the alternatives have gone out of fashion, a few of them do still occasionally resurface
in research articles. I would like to give a quick sketch of one of them, if only to demonstrate how
two completely different ideas can sometimes lead to invariants that detect more-or-less the same
information.

While singular homology tries to understand spaces by viewing singular n-simplices as basic
building blocks of n-dimensional objects, the Čech homology theory studies them instead via the
combinatorial properties of their open coverings. Suppose in particular that O :“ tUα Ă XuαPJ
is an open covering of a space X . One can associate to any such covering an abstract simplicial
complex KO “ pV, Sq, called the nerve of the covering: its set of vertices V is the index set J , or
equivalently the set of open sets that belong to the covering, and a subset σ :“ tα0, . . . , αnu Ă V

is defined to be an n-simplex σ P S of the complex KO if and only if

Uα0
X . . .X Uαn

‰ H.
This easily satisfies the required conditions for a simplicial complex: each vertex α P V defines
a 0-simplex tαu P S since Uα ‰ H, and each face of σ “ tα0, . . . , αnu P S is also a simplex in
the complex since every nontrivial subcollection of the sets Uα0

, . . . ,Uαn
must still have nonempty

intersection. As with all simplicial complexes, KO gives rise to a topological space, its polyhe-
dron |KO|, but that space need not look at all similar to X : for example, if X is something as
simple as S1, then even if the open covering tUαuαPJ is finite, the simplicial complex KO may have
arbitrarily large dimension, namely the largest number n ě 0 such that n ` 1 of the sets in the
covering have a nonempty intersection.
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Figure 14. Three examples of open coverings of S1 and their nerves, with
vertices labeled k P t1, 2, 3, 4, 5u in correspondence with the open sets Uk Ă S1.
The rightmost example includes two 2-simplices in addition to vertices and 1-simplices.

The example X “ S1 is quite instructive, however, if one compares what KO looks like for a
few simple choices of open coverings. Figure 14 shows three such choices, two of which give rise to
1-dimensional simplicial complexes, and in the third case, the simplicial complex is 2-dimensional.
The polyhedra of these three simplicial complexes are all different spaces, none homeomorphic
to any of the others, but you may notice that the last two have something in common: they
are homotopy equivalent, and not just to each other, but also to the original space, X “ S1. The
polyhedron in the first example is not homotopy equivalent to S1, but the other two open coverings
also happen to have a nice property that this one does not: in the other two, the intersection sets
Uα0

X . . . X Uαn
are always contractible, whereas in the first covering, U1 X U2 is a disconnected

set. Open coverings in which the sets Uα0
X . . .XUαn

are always contractible have a special status:
they are called good covers, and for sufficiently nice spaces such as smooth manifolds, one can show
that every open covering has a refinement that is a good cover. Figure 14 hints at an intriguing
general phenomenon: for sufficiently nice open coverings of sufficiently nice spaces X , the nerve of
the cover can be viewed as a simplicial model for X itself, up to homotopy type. This suggests that
the simplicial homologyH∆˚ pKO;Gq of the nerve should encode interesting topological information
about X , and that is how Čech homology is defined: for sufficiently nice open coverings O of X ,
the Čech homology of X with coefficient group G isqH˚pX ;Gq :“ H∆˚ pKO;Gq.
I am being deliberately vague now, because making this definition more precise would require a
discussion of inverse limits and chain homotopy equivalences which we do not have time for right
now: in particular, some serious work would be required in order to show that H∆˚ pKO;Gq up to
isomorphism is independent of the choice of (sufficiently nice!) open covering O. The examples
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on the circle in Figure 14 are intended to convince you that this idea might not be completely
outlandish.

Since the definitions of H˚pX ;Gq and qH˚pX ;Gq seem very different, it is somewhat remarkable
that for a wide class of spaces that includes all compact manifolds, they are isomorphic. One way
to explain this is by ignoring the definitions of these two invariants and concentrating instead on
their formal properties: after extending Čech homology to an invariant of pairs pX,Aq rather than
just individual spaces X , one can show (under one or two extra assumptions) that it satisfies the
Eilenberg-Steenrod axioms, just like singular homology. As a consequence, any computation that
relies only on the formal properties of homology theories—homotopy invariance, excision, long
exact sequences and so forth—applies equally well to H˚pX ;Gq and qH˚pX ;Gq.

It is not true thatH˚pX ;Gq and qH˚pX ;Gq are always isomorphic, but one has to consider fairly
ugly spaces in order to see the difference. A hint of where to look comes from our computation
H0pX ;Gq – À

π0pXqG: as mentioned above, this result does not follow from the axioms. As

it turns out, qH0pX ;Gq does not care whether the space X is path-connected, but cares instead
whether it is connected:

Exercise 26.3. Show that if X is a connected space, then for any open cover O of X , the
polyhedron |KO| of its nerve is path-connected.

Way back in Lecture 7, we saw examples of spaces that are connected but not path-connected.
One can deduce from Exercise 26.3 that whenever X is such a space, qH0pX ;Gq – G, but according
to (26.1), H0pX ;Gq is larger. Using suspensions, one can also derive from this examples of path-
connected spaces X for which qH1pX ;Zq is not isomorphic to the abelianization of π1pXq. But
again: spaces like this are ugly, they are not the kinds of spaces that arise naturally in most
applications.

Remark 26.4. In the discussion above, I have swept an uncomfortable fact about qH˚pX ;Gq
under the rug: most versions of Čech homology satisfy most of the Eilenberg-Steenrod axioms,
but not quite all of them. For technical reasons having to do with the formal properties of inverse
limits in homological algebra, qH˚pX ;Gq does not generally satisfy the exactness axiom unless
one restricts to compact pairs pX,Aq and a restrictive class of coefficient groups G, e.g. any finite
abelian group or finite-dimensional vector space over a field will do. This shortcoming is one reason
why Čech homology has not been used very much in the past half-century. On the other hand,
another major topic for next semester’s course will be cohomology, which is a kind of dualization
of homology that has its own closely related set of axioms. The most popular cohomology theory
is singular cohomology, but there is also a Čech cohomology theory, which has strictly better
formal properties than its undualized counterpart, i.e. it satisfies all of the conditions required
for an axiomatic cohomology theory, and even has one or two desirable properties that singular
cohomology does not. The ability of Čech cohomology to relate local and global properties of
spaces via the combinatorics of their open coverings makes it an essential and frequently used tool
in certain branches of mathematics, especially in algebraic geometry.

Cell complexes. We’ve seen that all axiomatic homology theories are isomorphic on the
spaces Sn, though they need not be isomorphic in peculiar examples such as connected spaces that
are not path-connected. It is natural to wonder: how large is the class of spaces X for which the
Eilenberg-Steenrod axioms completely determine their homologies h˚pXq? The spaces with this
property happen to be the spaces for which most of the more advanced techniques of algebraic
topology have something interesting to say, so they play a starring role in the subject from this
point forward.
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A plausible first guess for the class of spaces we want to consider would be polyhedra: the
topological spaces associated to abstract simplicial complexes. But there is a larger class of spaces
called, cell complexes (or the fancier term “CW-complexes”), which are actually easier to work with
and much more general. It is known that all smooth manifolds or simplicial complexes are also
cell complexes, and all topological manifolds are at least homotopy equivalent to cell complexes.
We saw one concrete example in Lecture 14: when we proved that every finitely presented group
occurs as the fundamental group of some compact Hausdorff space (Theorem 14.20), the space we
constructed was a wedge of circles with a finite set of disks attached. The general idea of a cell
complex is to build up a space inductively as a nested sequence of “skeleta” of various dimensions,
where the n-skeleton is always constructed by attaching n-disks to the pn ´ 1q-skeleton. In this
language, the space constructed in the proof of Theorem 14.20 was a 2-dimensional cell complex,
because it had a 1-skeleton (the wedge of circles) and a 2-skeleton (the attached disks). Here is
the general definition in the case where there are only finitely many cells.

Definition 26.5. A space X is called a (finite) cell complex (Zellenkomplex) of dimension
n if it contains a nested sequence of subspaces X0 Ă X1 Ă . . . Ă Xn´1 Ă Xn “ X such that:

(1) X0 is a finite discrete set;
(2) For each m “ 1, . . . , n, Xm is homeomorphic to a space constructed by attaching finitely

many m-disks Dm to Xm´1 along maps BDm Ñ Xm´1.

In general, the collection of m-disks attached to Xm´1 at each step need not be nonempty; if it is
empty, then Xm “ Xm´1, but we implicitly assume Xn ‰ Xn´1 when we call X “n-dimensional”.

We call Xm Ă X the m-skeleton of X . The definition implies that for each m “ 1, . . . , n,
there is a finite set KmpXq and a so-called attaching map ϕα : Sm´1 Ñ Xm´1 associated to each
α P KmpXq such that

Xm –
¨̋ ž
αPKmpXq

Dm‚̨Yϕm
Xm´1,

where ϕm :
š
αPKmpXq BDm Ñ Xm´1 denotes the disjoint union of the maps ϕα : Sm´1 Ñ Xm´1,

each defined on the boundary of the disk indexed by α. As a set, Xm is the union of Xm´1 with
a disjoint union of open disks

emα – D̊m for each α P KmpXq,
called the m-cells of the complex. For m “ 0, we call the discrete points of the 0-skeleton X0 the
0-cells and denote this set by K0pXq.

Since ∆n – Dn, it is easy to see that polyhedra are also cell complexes: the n-cells are the
interiors of the n-simplices, while the n-skeleton is the union of all simplices of dimension at most
n and the attaching maps Sn´1 – B∆n Ñ Xn´1 are each homeomorphisms onto their images.
In general, the attaching maps in a cell complex do not need to be injective, they only must
be continuous, so while the m-cells emα look like open m-disks, their closures in X might not be
homeomorphic to closed disks. For instance, here is an example with an n-cell whose boundary is
collapsed to a point, so its closure is not a disk, but a sphere:

Example 26.6. Consider a cell complex that has one 0-cell and no cells of dimensions 1, . . . , n´
1, so its m-skeleton for every m ă n is a one-point space, but there is one n-cell enα attached via
the unique map ϕα : Sn´1 Ñ tptu. The resulting space X “ Xn is homeomorphic to Sn.
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The cellular homology of a cell complex X “ Ť
ně0X

n is now defined as follows. Given an
abelian coefficient group G, let

CCW
n pX ;Gq :“ à

αPKnpXq
G “

#
finite sums

ÿ
i

cie
n
αi

ˇ̌̌
ci P G, αi P KnpXq

+
denote the abelian group of finite linear combinations of generators enα corresponding to the n-
cells in the complex, with coefficients in G. A boundary map B : CCW

n pX ;Gq Ñ CCW
n´1pX ;Gq is

determined by the formula
Benα “

ÿ
βPKn´1pXq

ren´1
β : enαsen´1

β ,

where the incidence numbers ren´1
β : enαs P Z are determined as follows. For each α P KnpXq

and β P Kn´1pXq, let
Xβ :“ Xn´1

LpXn´1zen´1
β q,

i.e. it is a space obtained by collapsing everything in the pn´ 1q-skeleton except for the individual
cell en´1

β to a point. Since en´1
β is an open pn´ 1q-disk with a canonical homeomorphism to D̊n´1,

there is a canonical homeomorphism

Xβ “ Dn´1{BDn´1 – Sn´1.

There is also a quotient projection q : Xn´1 Ñ Xβ , so composing this with the attaching map
ϕα : Sn´1 Ñ Xn´1 gives a map between two pn´ 1q-dimensional spheres

q ˝ ϕα : Sn´1 Ñ Xβ – Sn´1.

This induces a homomorphism

Z – Hn´1pSn´1;Zq pq˝ϕαq˚ÝÑ Hn´1pXβ ;Zq – Z,

and all homomorphisms Z Ñ Z are of the form x ÞÑ dx for some d P Z. The integer d appearing
here is called the degree of q ˝ ϕα, and that is how we define the incidence number:

ren´1
β : enαs :“ degpq ˝ ϕαq.

Strictly speaking, this definition only makes sense for n ě 2 since our computation of the homology
of spheres does not apply to S0, but this is a minor headache that can easily be fixed with an extra
definition, as in simplicial homology.

It would take a lot more time than we have right now to explain why this definition of B is the
right one, and why it implies B2 “ 0 in particular. But if you are willing to accept that for now,
then we can define the cellular homology (zelluläre Homologie) groups

HCW
n pX ;Gq :“ Hn

`
CCW˚ pX ;Gq, B˘ ,

and we can almost immediately carry out a surprisingly easy computation:

Example 26.7. The cell decomposition of Sn in Example 26.6 gives

HCW
k pSn;Gq –

#
G for k “ 0, n,

0 for all other k.

Indeed, for n ě 2 we can see this without doing any work, because CCW
0 pSn;Gq – CCW

n pSn;Gq – G

are the only nontrivial chain groups, so B simply vanishes and the homology groups are the chain
groups. For n “ 1 you need a little bit more information that I haven’t given you, but one can
show also in this case that B “ 0, so the result is the same.
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In reality, cellular homology is not a new homology theory as such, it is just an extremely
efficient way of computing any axiomatic homology theory for spaces that are nice enough to have
cell decompositions. The following result has been the main tool used for computations of singular
homology for most of its history, and it implies in particular the fact that simplicial homology is a
topological invariant (cf. Theorem 21.16). We will work through a complete proof next semester,
and the first step in that proof will be the computation of h˚pSnq.

Theorem. For any cell complex X and any axiomatic homology theory h˚ with coefficient
group G, HCW˚ pX ;Gq – h˚pXq.

This theorem is the real reason why homology is considered one of the “easier” invariants to
work with in algebraic topology: for most of the spaces that arise in practice, and all compact
manifolds in particular, H˚pXq can be computed after replacing the unmageably large singular
chain complex with the cellular chain complex, which is finitely generated. Having only finitely
many generators means that in principle, one can always just feed all the information from the
chain complex into a computer program, then press a button and get an answer.

The Euler characteristic. Here is a remarkable application of cellular homology. To make
our lives algebraically a bit easier, let’s choose the coefficient group G to be a field K, e.g. Q or R
will do. This has the advantage of making our chain complexes naturally into vector spaces over K,
and the boundary maps are K-linear, so the homology groups are also K-vector spaces. Whenever
H˚pX ;Kq is finite dimensional, we then define the Euler characteristic of X as the integer

χpXq :“
8ÿ
n“0

p´1qn dimKHnpX ;Kq P Z.

Although each individual term dimKHnpX ;Kq may in general depend on the choice of field K, one
can show that their alternating sum does not.42 This fact admits a purely algebraic proof, but if X
is a finite cell complex, then it also follows from the following much more surprising observation.
It is not difficult to prove that whenever pC˚, Bq is a finite-dimensional chain complex of K-vector
spaces, the alternating sum of the dimensions of its homology groups can be computed without
computing the homology at all: in fact,

(26.3)
ÿ
nPZ

p´1qn dimKHnpC˚, Bq “
ÿ
nPZ

p´1qn dimK Cn.

This follows essentially from the fact that for each n P Z, writing Zn :“ ker Bn Ă Cn and Bn :“
im Bn`1 Ă Cn, the map Bn : Cn Ñ Cn´1 descends to an isomorphism Cn{Zn Ñ Bn´1, implying

dimK Cn ´ dimK Zn “ dimKBn´1.

Since HnpC˚, Bq “ Zn{Bn, we also have dimKHnpC˚, Bq “ dimK Zn´dimKBn, so combining these
two relations and adding things up with alternating signs produces lots of cancelations leading to
(26.3). Now apply this to the cellular chain complex, in which each CCW

n pX ;Kq is a K-vector space
whose dimension is the number of n-cells in the complex. What we learn is that we don’t need to
know anything about homology in order to compute χpXq—all we have to do is count cells and
add up the counts with signs. The isomorphism H˚pX ;Kq – HCW˚ pX ;Kq now implies that the
result of this counting game only depends on the space, and not on our choice of how to decompose
it into cells:

42One can also define χpXq using integer coefficients in terms of the ranks of the abelian groups HnpX;Zq.
This is one of the algebraic details I wanted to avoid by using field coefficients.
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Theorem. For any finite cell complex X,

χpXq “
8ÿ
n“0

p´1qn pthe number of n-cellsq .

In particular this applies to simplicial complexes, e.g. if you build a 2-sphere by gluing together
triangles along common edges, then no matter how you do it or how many triangles are involved,
the number of triangles minus the number of glued edges plus the number of glued vertices will
always be

χpS2q “ dimRH0pS2;Rq ´ dimRH1pS2;Rq ` dimRH2pS2;Rq “ 1´ 0` 1 “ 2.

It is not much harder to work out the result for Σg with any g ě 0: the answer is

χpΣgq “ 2´ 2g,

and off the top of my head, I can think of two completely different ways to prove this by decomposing
Σg into cells and counting them with signs: regardless of the choices in the decomposition, the
answer will always be the same. Go ahead. Try it.





Second semester (Topologie II)

27. Categories and functors

The general approach of algebraic topology is to associate to each topological space some
algebraic object that can be used to tell “different” spaces apart. One important example we saw
last semester was the fundamental group π1, which assigns to every pair pX, pq consisting of a
topological space X with a choice of base point p P X a group π1pX, pq. Another—which will play
a major role in this course from the next lecture onward—is singular homology H˚, which assigns
to each space X a whole sequence of abelian groups HnpXq indexed by the nonnegative integers
n ě 0. It is reasonable to think of these in some sense as “functions” with domains consisting of
the collection of all topological spaces (possibly with extra data such as a base point), and targets
consisting of the collection of all groups. The first semester of this course did not yet develop the
right language to make this notion of a “function” precise, so it is time to do so now.

27.1. Some remarks on set theory. One reason why π1 cannot actually be called a “func-
tion” is that its domain, strictly speaking, is not a set (Menge). I encourage you to skip the rest
of this paragraph if you are not interested in the finer points of axiomatic set theory or the classic
set-theoretic paradoxes. . . but for those who are still reading, let us agree that there is no such
thing as the “set of all topological spaces”. Indeed, every set can be made into a topological space
by assigning it the discrete topology, so if one can talk about the set of all topological spaces, then
one must also be able to talk about the set of all sets, and it is a short step from there to the “set
of all sets that do not contain themselves”—at which point we may find ourselves asking whether
that particular set contains itself, and promptly jumping off the nearest bridge. The architects of
abstract set theory dealt with this dilemma by coming up with a set of axioms that tell you how
to construct new sets from old ones, together with a short list of examples of sets (e.g. the empty
set) whose existence clearly needs to be assumed, and insisting that only collections of objects
that arise by applying the given axioms to the given examples should be called sets. Of course, we
do sometimes also need to discuss collections of objects that do not arise from the axioms of set
theory, and the collection of all topological spaces is an example. Such collections are generally
called (proper) classes (Klassen), but since I do not wish to go any further into the subtleties of
set theory in this course, I shall continue to refer to them via the informal word collections. You
should just keep in mind that while such things can be defined, they are not considered equivalent
to sets, and thus cannot be used for all the same purposes that sets can: in particular, an arbitrary
“collection” cannot serve as the domain of a function according to the standard definitions. This
doesn’t make it impossible to define something that intuitively resembles a function on the collec-
tion of all topological spaces—it only means that when we define such an object, we are not strictly
allowed to call it a “function”. This problem is easy to solve: we shall simply call it something else.

27.2. Categories. Leaving set theory aside, we now introduce some basic notions from cat-
egory theory. As the examples below should make clear, a category can often be thought of as an
answer to the question, “which field of mathematics are we working in?”

177
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Definition 27.1. A category (Kategorie) C consists of the following data:
‚ A collection (i.e. class) ObC , whose elements are called the objects (Objekte) of C ;
‚ For each X,Y P ObC a set HomC pX,Y q, which we shall often abbreviate as

HompX,Y q :“ HomC pX,Y q
when there is no danger of confusion, whose elements are called the morphisms from
X to Y (Morphismen von X nach Y ). For each X P ObC , there is a distinguished43

element IdX P HompX,Xq called the identity morphism of X ;
‚ For each X,Y, Z P ObC , a function

(27.1) HompX,Y q ˆHompY, Zq Ñ HompX,Zq : pf, gq ÞÑ g ˝ f
such that pf ˝ gq ˝ h “ f ˝ pg ˝ hq, and whenever two of the objects match and Id denotes
the corresponding distinguished morphism, f ˝ Id “ f “ Id ˝f .

Notation. For a category C , we will often abuse notation and use the symbol C to indicate
not only the category itself but also its collection of objects, hence

X P C actually means X P ObC .

A morphism f P HompX,Y q from X to Y will often be denoted with the same arrow notation that
is standard for maps between sets, so

f : X Ñ Y or X
fÝÑ Y actually means f P HompX,Y q.

The notation HompX,Y q for a set of morphisms is inspired by Example 27.5 below and similar
algebraic examples, in which morphisms are actually homomorphisms respecting given algebraic
structures. One also often sees this set denoted by MorpX,Y q or C pX,Y q, though we will not use
that notation here.

Example 27.2. The category Top has ObTop “ ttopological spacesu and HompX,Y q “ tf :

X Ñ Y | f a continuous mapu, with IdX defined for each space X as the identity map and
the function (27.1) defined as the usual composition of maps. This defines a category since the
identity map is always continuous and the composition of two continuous maps is also continuous.
In accordance with the notation convention described above, the statement

X P Top

thus means that X is a topological space.

Example 27.3. The category Set has ObSet “ tsetsu and HompX,Y q “ tf : X Ñ Y u, meaning
that morphisms are simply maps between sets, with no continuity requirement since there is no
topology.

Example 27.4. The objects of Diff are the smooth finite dimensional manifolds, and its mor-
phisms are smooth maps. (As in Example 27.2, the identity is always smooth and the composition
of two smooth maps is smooth.)

Example 27.5. The category Grp has ObGrp “ tgroupsu, with HompG,Hq defined as the set
of all group homorphisms GÑ H for each G,H P Grp.

43The word “distinguished” appears here because part of the structure of the category C is the knowledge of
which morphism should be called “IdX ” for each object X. If we simply required the existence of a morphism that
satisfies the conditions stated in the third bullet point, then there might be more than one such element and we
would not know which one to call IdX . But the structure of C requires each set HompX,Xq to contain a specific
element that carries that name; there might in theory exist additional morphisms that have the same properties,
but only one is called IdX .
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Example 27.6. There is a subcategory (Unterkategorie) Ab of Grp whose objects consist of
all abelian groups, with morphisms defined the same way as in Grp.

The examples above might give you the impression that in every category, a morphism is just
a map that may be required to satisfy some specific properties. But nothing in Definition 27.1 says
either that an object must be a kind of set or that a morphism is a map. Here is an example in
which the objects are still sets, but the morphisms are equivalence classes of maps.

Example 27.7. Let hTop denote the category whose objects are the same as in Top, but
with HompX,Y q defined as the set of homotopy classes of continuous maps X Ñ Y and IdX P
HompX,Xq as the homotopy class of the identity map. The function (27.1) is defined in terms of
the usual composition of continuous maps f : X Ñ Y and g : Y Ñ Z by

rgs ˝ rf s :“ rg ˝ f s.
(Exercise: check that this is well defined!) We call hTop the homotopy category of topological
spaces.

For some interesting examples in which objects are not sets and the function (27.1) has nothing
to do with composition of maps, see Exercises 27.3 and 27.4.

Definition 27.8. In any category, a morphism f P HompX,Y q is called an isomorphism
(Isomorphismus) if there exists a morphism f´1 P HompY,Xq such that f´1 ˝ f “ IdX and
f ˝ f´1 “ IdY . If an isomorphism exists in HompX,Y q, we say that the objects X and Y are
isomorphic (isomorph).

According to this definition, the word “isomorphism” no longer has a strictly algebraic meaning,
but will mean whatever is considered to be the notion of “equivalence” in whichever category we
are working with. Let’s run through the list: an isomorphism in Top is a homeomorphism, in Set

it is simply a bijection, in Diff a diffeomorphism, and in Grp or Ab it is the usual notion of group
isomorphism. The most interesting case so far is hTop: two objects in hTop are isomorphic if and
only if they are homotopy equivalent!

The proof of the following is an easy exercise in applying the axioms of a category:

Proposition 27.9. For any isomorphism f : X Ñ Y between two objects of a category, the
inverse morphism f´1 : Y Ñ X is unique. �

Remark 27.10. It is possible to relax Definition 27.1 by allowing HompX,Y q for eachX,Y P C

to be an arbitrary class rather than a set, in which case we are not strictly allowed to call the
composition map HompX,Y qˆHompY, Zq Ñ HompX,Zq a “function,” but the definition still makes
sense. In this more general framework, the notion described in Definition 27.1 with morphisms
forming sets instead of proper classes is called a locally small category. All of the categories we
deal with in this course will be locally small, and it takes some nontrivial effort to think up an
example of one that is not, so we will not worry about this level of generality any further.

27.3. Functors. The next definition gives us a way of relating two categories to each other.
As inspiration, you can think of π1, a “function” that associates groups to pointed topological
spaces, and in fact does so in a way that makes the groups into topological invariants. This
results mainly from the fact that continuous maps of spaces induce homomorphisms between the
corresponding fundamental groups, implying in particular that homeomorphisms induce group
isomorphisms. The notion of a functor is meant as a form of abstract packaging for this idea.

Definition 27.11. Given two categories C and D , a functor (Funktor) F : C Ñ D from C

to D assigns to each object X P C an object FpXq P D and to each morphism f P HompX,Y q
between any two objects X,Y P C a morphism Fpfq P HompFpXq,FpY qq such that:
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(1) FpIdXq “ IdFpXq for all X P C ;
(2) Fpf ˝ gq “ Fpfq ˝ Fpgq for all g P HompX,Y q and f P HompY, Zq, X,Y, Z P C .

Example 27.12. Denote by Top˚ the category whose objects are the pointed spaces pX, pq,
i.e. a topological space X together with a point p P X , with morphisms defined as continuous
pointed maps, also known as base point preserving maps,

HomppX, pq, pY, qqq :“  
f : X Ñ Y

ˇ̌
f continuous and fppq “ q

(
.

The fundamental group then defines a functor π1 : Top˚ Ñ Grp; indeed, it associates to each
pointed space pX, pq the group π1pX, pq and to each pointed map f : pX, pq Ñ pY, qq the group
homomorphism

π1pfq :“ f˚ : π1pX, pq Ñ π1pY, qq
such that Id˚ is the identity homomorphism and pf ˝ gq˚ “ f˚ ˝ g˚.

Example 27.13. There is an obvious functor TopÑ hTop that sends each object X P Top to
itself and sends each continuous map f : X Ñ Y to its homotopy class. This is sometimes called a
forgetful functor, since it is defined by forgetting some (but not all) of the information carried
by the morphisms in Top, i.e. it forgets the actual maps X Ñ Y , but remembers their homotopy
classes.

Example 27.14. The fundamental group also defines a functor π1 : hTop˚ Ñ Grp where
hTop˚ is defined to have the same objects as Top˚, but with HomppX, pq, pY, qqq defined as the set
of pointed homotopy classes of maps pX, pq Ñ pY, qq. (See Theorem 8.11 in Lecture 8 from last
semester.) A slightly fancier way to say this is that the functor π1 : Top˚ Ñ Grp in Example 27.12
is the composition of two functors

Top˚ hTop˚ Grp

π1

π1
,

in which the first is the pointed analogue of the forgetful functor described in Example 27.13.
We say in this situation that the functor π1 : Top˚ Ñ Grp descends to the (pointed) homotopy
category hTop˚.

We will later encounter several algebraic constructions and related topological invariants that
satisfy most of the conditions of a functor, but differ in one crucial respect: the morphisms they
induce go the other way. In practice, this phenomenon often arises from the algebraic notion of
dualization, and we’ll give an example of this kind immediately after the definition.

Definition 27.15. Given two categories C and D , a contravariant functor (kontravarianter
Funktor) F : C Ñ D from C to D assigns to each X P C some FpXq P D and to each f P
HompX,Y q for X,Y P C a morphism Fpfq P HompFpY q,FpXqq such that

(1) FpIdXq “ IdFpXq for all X P C ;
(2) Fpf ˝ gq “ Fpgq ˝ Fpfq for all g P HompX,Y q and f P HompY, Zq, X,Y, Z P C .

A functor that satisfies the original Definition 27.11 instead of Definition 27.15 can be called
covariant (kovariant) when we want to emphasize that it is not contravariant.

Example 27.16. Let K-Vect denote the category of vector spaces over a fixed field K, so
HompV,W q :“ HomKpV,W q is the space of K-linear maps V Ñ W . There is a contravariant
functor ∆ : K-Vect Ñ K-Vect which sends each vector space V to its dual space ∆pV q :“ V ˚ :“
HomKpV,Kq and sends each morphism A : V Ñ W to its transpose ∆pAq :“ A˚ : W˚ Ñ V ˚,
defined by A˚pλqv “ λpAvq for λ P W˚ and v P V . It satisfies the conditions of a functor since
pABq˚ “ B˚A˚ and the transpose of the identity V Ñ V is the identity V ˚ Ñ V ˚.
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Remark 27.17. It is possible to avoid Definition 27.15 by instead defining for each category
C the opposite category C op, which has the same collection of objects but reverses the arrows
for all morphisms, meaning HomC oppX,Y q :“ HomC pY,Xq. A contravariant functor C Ñ D is
then the same thing as a covariant functor C op Ñ D .

Example 27.18. One can speak of “functors of multiple variables” in much the same way as
with functions. It is not difficult to show for instance that on the category Ab of abelian groups
and homomorphisms,

Hom : Abˆ AbÑ Ab

defines a functor that is contravariant in the first variable and covariant in the second, assigning
to each pair of abelian groups pG,Hq the group HompG,Hq of homomorphisms GÑ H .

27.4. Natural transformations. We have one more piece of abstract language to add to
this story before we can get back to studying topology. You’ve often seen the words “natural” or
“naturally” appearing in statements of theorems, in order to emphasize that something does not
depend on any arbitrary choices. In category theory, these words can be given a precise definition.

Definition 27.19. Given two covariant functors F ,G : C Ñ D , a natural transforma-
tion (natürliche Transformation) T from F to G associates to each X P C a morphism TX P
HompFpXq,GpXqq such that for all X,Y P C and f P HompX,Y q, the following diagram com-
mutes:

(27.2)
FpXq GpXq

FpY q GpY q

TX

Fpfq Gpfq
TY

The statement that T is a natural transformation from F to G for two functors F ,G : C Ñ D is
sometimes written with the notation

T : F ñ G, or F
Tùñ G, or C D

F

G

T .

A natural transformation between two contravariant functors can be defined analogously.

Remark 27.20. The meaning of commutative diagrams such as (27.2) in an abstract category-
theoretical framework should hopefully be obvious: in the case at hand, the diagram means the
relation

Gpfq ˝ TX “ TY ˝ Fpfq,
i.e. it specifies that two specific compositions of morphisms give rise to the same morphism FpXq Ñ
GpY q. A very large portion of the important definitions and results in category theory can be
expressed in terms of commutative diagrams, which make sense due to the axioms of a category,
without needing to assume that objects are sets or that morphisms are maps between them.

We will see some nice topological examples of natural transformations in the context of bordism
theory in §27.7 below. Here is an algebraic example that you may have heard of before:

Example 27.21. Consider again the category K-Vect of vector spaces over a fixed field K as
in Example 27.16. There is a covariant functor

∆2 : K-VectÑ K-Vect,
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assigning to each V P K-Vect the dual of its dual space pV ˚q˚. Let Id : K-Vect Ñ K-Vect denote
the identity functor on K-Vect, which sends each object and morphism to itself. There is then a
natural transformation from Id to ∆2 that assigns to every V P K-Vect a vector space isomorphism
V Ñ pV ˚q˚; see Exercise 27.5.

Remark 27.22. Whenever a vector space V is finite dimensional, the map V Ñ pV ˚q˚ given
by the natural transformation in Example 27.21 is an isomorphism, and a large part of the reason
why it turns out to define a natural transformation is that the definition of this map does not
depend on any choices. By contrast, every finite-dimensional vector space is isomorphic to its
dual space V ˚, but there is no canonical way to define such isomorphisms for all vector spaces at
once. Notice that since Id : K-Vect Ñ K-Vect is a covariant functor while the dualization functor
∆ : K-Vect Ñ K-Vect from Example 27.16 is contravariant, there is no sensible notion of natural
transformations from Id to ∆.

27.5. Bordism groups. It would be too ambitious to attempt a serious discussion of bordism
theory in this course, but there are two good reasons to introduce the basic definitions now. First,
they give us some elegant new topological examples of functors besides π1, including some obviously
interesting examples of natural transformations. Second, the geometric idea behind bordism groups
will give us motivation for the somewhat less straightforward definition of homology groups in the
lectures to come.

Notation. This is a convenient moment to mention a notational convention that will be in
force throughout the semester: we abbreviate the compact unit interval by

I :“ r0, 1s.
This will be the meaning of the symbol I in any context that involves homotopies.

For some initial motivation, you can think of π1 in the following terms: first, elements of
π1pXq are represented by base-point preserving maps γ : S1 Ñ X defined on a specific closed
1-dimensional manifold, namely the circle S1. Two such maps γ, γ1 : S1 Ñ X represent the same
element if there exists a pointed homotopy

h : S1 ˆ I Ñ X,

between them, so in this situation, the disjoint union γ > γ1 : S1 >S1 Ñ X of the two maps admits
a continuous extension to a map S1 ˆ I Ñ X , whose domain is a specific compact 2-dimensional
manifold with boundary naturally homeomorphic to S1 > S1. This way of describing homotopies
ignores base points, but base points are not important for our present purposes: what’s important
rather is that we are talking about maps into X defined on compact 2-manifolds bounded by closed
1-manifolds. If you take this picture and ask what happens when you allow the domains to be
arbitrary compact manifolds of arbitrary dimension, bordism theory is what you get.

For the following definition, recall that an n-dimensional manifold M is called closed if it is
compact and the pn ´ 1q-dimensional manifold BM defined as the boundar of M is empty. We
will generally use the term “manifold” as a synonym for “manifold with boundary,” so all manifolds
M are allowed to have a nonempty boundary BM , but we shall make no overriding assumptions
about whether BM is nonempty unless extra words such as “closed” are included. It is useful to
note however that for any manifold M , the boundary BM is a manifold whose own boundary is
always empty:

BpBMq “ H.
Definition 27.23. For a space X P Top and an integer n ě 0, the nth unoriented bordism

group ΩO
n pXq of X consists of equivalence classes rpM,ϕqs of pairs pM,ϕq in which M is a closed

smooth n-manifold and ϕ :M Ñ X is a continuous map. We call two such pairs pM,ϕq and pN,ψq
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equivalent (or bordant) if there exists a bordism between them, meaning a pair pW,Φq in which
W is a compact smooth pn ` 1q-manifold, Φ : W Ñ X is a continuous map, and there exists a
diffeomorphism

BW –M >N
such that

Φ|BW “ ϕ > ψ.
We make ΩO

n pXq into an abelian group by using disjoint unions to define addition, thus

rpM,ϕqs ` rpN,ψqs :“ rpM >N,ϕ > ψqs,
with the additive identity element defined by

0 :“ rpH, ¨qs P ΩO
n pXq,

where the empty set H is understood as a smooth manifold of arbitrary dimension, and ¨ denotes
the unique map HÑ X .

A few observations are needed before this definition fully makes sense. First, we should check
that the bordism relation described above satisfies the conditions of an equivalence relation: for
instance, it is reflexive because for any closed n-manifold M and map ϕ : M Ñ X , the compact
pn` 1q-manifold M ˆ I and map

(27.3) M ˆ I Ñ X : px, tq ÞÑ ϕpxq
define a bordism between pM,ϕq and itself. The symmetry of the relation is obvious; the most
interesting detail is transitivity, which requires some rudimentary knowledge of smooth manifolds
and collar neighborhoods, so that two pn` 1q-manifolds with diffeomorphic boundary components
can be glued together along those components to form a new pn`1q-manifold. Since this discussion
is not intended as a comprehensive introduction to bordism theory, I will leave that detail to your
imagination for now. Once the bordism relation is understood, it is straightforward to check
that the addition operation defined via disjoint unions is well defined on equivalence classes. The
remaining question to answer is why ΩO

n pXq is a group, i.e. why every element has an additive
inverse. This also comes from the map (27.3), because there is another way to interpret it: the
boundary ofM ˆ I is naturally diffeomorphic to the disjoint union ofM >M with H, which makes
pM >M,ϕ > ϕq bordant to pH, ¨q and thus proves

rpM,ϕqs ` rpM,ϕqs “ 0 P ΩO
n pXq.

This not only makes ΩO
n pXq a group, but also gives it an especially simple algebraic structure:

all of its nontrivial elements have order 2, so the abelian group ΩO
n pXq can also be regarded as a

vector space over the field Z2.

Remark 27.24. The domains in Definition 27.23 were all assumed to be smooth manifolds
rather than just topological manifolds, but there is an equally sensible variation on this definition
that requires only topological manifolds and replaces the word “diffeomorphism” (in the definition
of the bordism relation) with “homeomorphism”. The main reason to include smoothness in the
definition is that methods from differential topology make ΩO

n pXq easier to compute than its purely
topological counterpart. But for our present purposes, this detail will make no difference at all
and can safely be ignored.

The following observation makes ΩO
n into a covariant functor

ΩO
n : TopÑ Ab,



184 SECOND SEMESTER (TOPOLOGIE II)

or equivalently (in light of the fact that all nontrivial elements have order two), a functor ΩO
n :

TopÑ Z2-Vect. Each continuous map f : X Ñ Y induces a map f˚ : ΩO
n pXq Ñ ΩO

n pY q defined by

f˚rpM,ϕqs :“ rpM, f ˝ ϕqs.
It is straightforward to check that this map is well defined and is a group homomorphism. It clearly
also sends the identity map X Ñ X to the identity homomorphism ΩO

n pXq Ñ ΩO
n pXq and satisfies

the relation pf ˝gq˚ “ f˚g˚ for any two continuous maps f, g that are composable. In other words:
ΩO
n : TopÑ Ab is a functor.

A less obvious but very useful observation is that ΩO
n : Top Ñ Ab descends (in the sense of

Example 27.14) to the corresponding homotopy category, and thus also defines a functor

ΩO
n : hTopÑ Ab.

This is an immediate consequence of the following result:

Proposition 27.25. For any two homotopic maps f, g : X Ñ Y , the induced homomorphisms
f˚, g˚ : ΩO

n pXq Ñ ΩO
n pY q are identical.

Proof. Assume H : X ˆ I Ñ Y is a homotopy with Hp¨, 0q “ f and Hp¨, 1q “ g. Given
rpM,ϕqs P ΩO

n pXq, the map
M ˆ I Ñ Y : px, tq ÞÑ Hpϕpxq, tq

then defines a bordism between pM, f ˝ ϕq and pM, g ˝ ϕq, proving f˚rpM,ϕqs “ g˚rpM,ϕqs P
ΩO
n pY q. �

27.6. Oriented bordism. In case you had hoped for a more interesting group in which not
all nontrivial elements have order 2, there is a remedy: one can add a bit of extra data to the
domain manifolds that are used to represent bordism classes, namely an orientation. If you know
already what it means to equip a smooth manifold with an orientation, then great—if not, then this
is not the place to discuss it, though we will give a detailed treatment of orientations for topological
manifolds later in this semester. For present purposes, it will suffice to take the following facts
about orientations on faith:

(1) Many familiar manifolds such as S1 and the compact surfaces Σg of genus g for each g ě 0

are orientable, but not all manifolds are, e.g. the projective plane RP2 and the Klein bottle
are not. More generally, no manifold that contains a Möbius band (or equivalently, that is
the connected sum of something with RP

2) can admit an orientation, because the Möbius
band contains a loop such that any choice of orientation at one point gets reversed by
moving it continuously along the loop.

(2) For every orientation of a manifold M , there is another orientation called the opposite
orientation, and if M is connected, then it admits exactly two orientations, which are
opposites of each other. For an oriented manifold M , we sometimes denote by ´M the
same manifold with the opposite orientation.44

(3) For every manifoldM with nonempty boundary, an orientation ofM naturally determines
an orientation of BM , called the boundary orientation. The opposite orientation ofM
then determines the opposite boundary orientation, or in symbols,

Bp´Mq “ ´pBMq.
44Another popular way of denoting the oriented manifold ´M is ĎM , especially in certain situations where M

comes with a canonical choice of orientation. This is true for instance if M is a complex manifold, e.g. the complex
projective space CPn, which inherits a canonical orientation from its complex structure, and ĎCPn then denotes the
same real manifold with an orientation opposite to the one determined by the complex structure.
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(4) For any two oriented manifolds M,N with dimM “ m and dimN “ n, the Cartesian
product M ˆ N is an pm ` nq-manifold that inherits a product orientation, which
depends in general on the order of the factors, though only if both m and n are odd. In
symbols,

N ˆM – p´1qmnpM ˆNq,
meaning that the obvious diffeomorphism M ˆN

–ÝÑ N ˆM is orientation reversing if
m and n are both odd, and is otherwise orientation preserving.

(5) For M a 0-manifold (also known as a discrete set with at most countably many points),
an orientation is simply a function M Ñ t1,´1u, and for any choice of orientation on the
unit interval I “ r0, 1s, the boundary orientation assigns opposite signs to the two points
of BI “ t0, 1u.

Definition 27.26. The nth oriented bordism group

ΩSO
n pXq

of a space X is defined by modifying Definition 27.23 as follows: the manifold M in each repre-
sentative pM,ϕq is equipped with an orientation, and the manifold W in an oriented bordism
pW,Φq between pM,ϕq and pN,ψq is also oriented and equipped with an orientation-preserving
diffeomorphism

BW – ´M >N,
where BW is assumed to carry the boundary orientation.

Let us clarify why reversing the orientation of eitherM or N in the oriented bordism relation is
the right thing to do. For any oriented manifoldM , assigning the product orientation toMˆI and
then the boundary orientation to BpM ˆ Iq gives a natural orientation-preserving diffeomorphism

BpM ˆ Iq – ´M >M.

The trivial homotopy (27.3) thus implies again that the bordism relation satisfies pM,ϕq „ pM,ϕq,
but in the oriented setting, it does not imply rpM,ϕqs ` rpM,ϕqs “ 0, so that elements of ΩSO

n pXq
do not need to have order two. Instead, the additive inverse of any given rpM,ϕqs P ΩSO

n pXq is
obtained by reversing the orientation of M ,

´rpM,ϕqs “ rp´M,ϕqs P ΩSO
n pXq.

Remark 27.27. The letters “O” and “SO” appearing in the notation ΩO
n pXq and ΩSO

n pXq
refer to the orthogonal group Opnq and special orthogonal group SOpnq respectively, which makes
some sense if you recall that SOpnq is precisely the subgroup of Opnq consisting of transformations
Rn Ñ Rn that preserve orientation. A fuller explanation of this notation would be too much
of a digression for now, but suffice it to say there also exist other versions of bordism groups
corresponding to other families of Lie groups that act linearly on Euclidean space, in which the
manifoldM in representatives pM,ϕq of bordism classes is equipped with extra structure respected
by those group actions.

The following easy computation (see Exercise 27.7) demonstrates that, indeed, elements of
ΩSO
n pXq need not have order 2 in general.

Proposition 27.28. For any space X, there are natural isomorphisms

ΩO
0 pXq –

à
π0pXq

Z2, and ΩSO
0 pXq – à

π0pXq
Z,

i.e. ΩO
0 pXq is a vector space over Z2 with a canonical basis in bijective correspondence with the set

π0pXq of path-components of X, and ΩSO
0 pXq is a free abelian group with the same basis. �
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Beyond the case n “ 0, computations of ΩO
n pXq and ΩSO

n pXq are generally doable, but too
difficult to attempt before learning about homology and cohomology, which will be the main
objectives of this semester’s course. One sees a revealing symptom of the difficulty when one tries
to compute either of these groups for the simplest possible nonempty topological space, namely a
one-point space.

Notation. We will frequently denote by

t˚u P Top

a topological space consisting of only one point, with the point in this space denoted by

˚ P t˚u.
The symbol ˚ P X is sometimes also used to denote the base point of a pointed space X P Top˚,
if it has not been given any other name.

Remark 27.29. We sometimes abuse terminology by speaking of “the” one-point space, but of
course one-point spaces are not unique, since the one element in the space can literally be anything,
e.g. the sets t1u and t2u are not identical since 1 ‰ 2, and they are also different from the set
whose only element is the banana you ate for breakfast this morning. In light of the fact that set
theory has no way of defining a “set of all things,” the collection of all possible one-point spaces
forms a proper class rather than a set. However, one does have a strong form of uniqueness up to
isomorphism in the category Top or Top˚: there exists a unique homeomorphism between any two
one-point spaces, and this is why referring to them all as “the” one-point space does not do any
harm.

For a one-point space t˚u and any given manifoldM , there is only one possible mapM Ñ t˚u,
so elements of the groups45

ΩO
n :“ ΩO

n pt˚uq, ΩSO
n :“ ΩSO

n pt˚uq
can be regarded simply as equivalence classes rM s of closed n-manifolds, and the information
encoded in these groups is therefore a coarse version of the classification of closed n-manifolds,
subject to an equivalence relation in which boundaries of compact manifolds are equated with the
empty set. The classification problem up to homeomorphism or diffeomorphism is well understood
for manifolds of dimension at most two, but already from dimension three upward, complete
classifications are not known, and the problem is not generally considered tractable. From this
perspective, it seems slightly surprising that ΩO

n and ΩSO
n can in fact be computed, and the answers

are often not difficult to write down, but proving them usually takes quite a bit of work. By the
end of this semester, we will at least be able to fill in all the gaps in the following special case:

Proposition 27.30. The group ΩO
2 “ ΩO

2 pt˚uq is isomorphic to Z2, and its unique nontrivial
element is the bordism class of the projective plane RP2.

Proof sketch. The nontriviality of rRP2s P ΩO
2 pt˚uq means that RP

2 is not diffeomorphic
to the boundary of any compact 3-manifold. If you take this on faith for a moment, the rest of the
computation follows easily from the classification of surfaces, as described in Lecture 19 from last
semester. Indeed, every closed and orientable surface can be presented as the smooth boundary
of a compact region in R3, and thus represents the trivial element in ΩO

2 . The closed, connected

45The symbols ΩSO
n and ΩO

n now each have two possible interpretations, either as functors Top Ñ Ab or as the
groups obtained by plugging a one-point space into these functors. It depends on the context.



27. CATEGORIES AND FUNCTORS 187

and non-orientable surfaces, in turn, are all homeomorphic (and in fact also diffeomorphic46) to
connected sums of N copies of RP2 for some N P N. A convenient fact to use in this situation is
that for any two closed manifolds M,N of the same dimension n, there exists a compact pn` 1q-
manifold whose boundary is diffeomorphic to the disjoint union of M , N and the connected sum
M#N . This can be proved with a picture, and I will leave it as an exercise, but if you need a
hint, try looking up some information on handle attachment in geometric topology—the key trick
is to “attach a 1-handle” to pM > Nq ˆ I. With this understood, one now sees that every closed
and connected surface is bordant to some disjoint union of copies of RP2, and therefore so is every
closed and disconnected surface.

So, why is RP2 not the boundary of any compact 3-manifold? This is harder to explain, but
it will follow easily from some computations of homological invariants carried out later in this
course. In particular, the Poincaré duality isomorphism implies that the Euler characteristic (an
integer-valued invariant that is defined for a wide class of topological spaces including all compact
manifolds) of every closed odd-dimensional manifold is zero. If RP2 were the boundary of some
compact 3-manifold Y , then by gluing Y to a copy of itself along the boundary, one would obtain
a closed 3-manifold

X :“ Y YRP2 Y

whose Euler characteristic χpXq satisfies χpXq “ 2χpY q´χpRP2q “ 2χpY q´1, and therefore could
not be zero. �

27.7. More examples of natural transformations. The bordism groups provide us with
some examples of natural transformations that are quite easy to write down. Proving the required
naturality property, i.e. that the required diagrams commute, is a straightforward exercise in each
case.

Example 27.31. For every space X and n ě 0, there is an obvious forgetful homomorphism

ΩSO
n Ñ ΩO

n : rpM,ϕqs ÞÑ rpM,ϕqs
defined by forgetting the orientation of the manifold M . Regarding both ΩSO

n and ΩO
n as covariant

functors TopÑ Ab, this defines a natural transformation from ΩSO
n to ΩO

n .

Example 27.32. Since S1 is a closed orientable 1-manifold, one can associate to any pointed
space pX, pq a map

(27.4) π1pX, pq hÝÑ ΩSO
1 pXq : rγs ÞÑ rpS1, γqs,

defined by regarding representatives of elements in π1pX, pq as maps γ : S1 Ñ X . This map
is well defined because a homotopy between two maps γ, γ1 : S1 Ñ X gives rise to a bordism
between pS1, γq and pS1, γ1q. The lemma below shows that h : π1pX, pq Ñ ΩSO

1 pXq is also a
group homomorphism; it is a variation on what is known in homology theory as the Hurewicz
homomorphism, and we will later see another version of it in that context.

Lemma 27.33. For any two base-point preserving loops α, β : S1 Ñ X and their concatenation
α ¨ β : S1 Ñ X, pS1, α ¨ βq is bordant to pS1 > S1, α > βq.

Proof. See Exercise 27.8. �

46It is a nontrivial fact that for n ď 3 (though emphatically not for n ě 4), every topological n-manifold
admits a smooth structure, and two smooth n-manifolds are homeomorphic if and only if they are diffeomorphic.
For closed surfaces, the easiest way to prove this is probably by reproving the standard classification of surfaces
in the smooth category. In fact, this is easier than working only with topological surfaces and continuous maps,
because Riemannian geometry makes the existence of triangulations on smooth manifolds easier to prove.
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Continuing with Example 27.32, the following “naturality” property of the map h : π1pX, pq Ñ
ΩSO

1 pXq is nearly immediate from the definitions: for any pointed map f : pX, pq Ñ pY, qq, the
diagram

π1pX, pq ΩSO
1 pXq

π1pY, qq ΩSO
1 pY q

h

f˚ f˚

h

commutes. This almost amounts to the statement that h defines a natural transformation from π1
to ΩSO

1 , though before we can say this in precise terms, we have a minor bookkeeping issue to deal
with, as π1 : Top˚ Ñ Grp and ΩSO

1 : TopÑ Ab are not functors between exactly the same pairs of
categories, strictly speaking. The distinction between Grp and Ab is easy to erase since the latter
is a subcategory of the former, i.e. we can equally well regard ΩSO

1 as a functor TopÑ Grp. For the
distinction between Top˚ and Top, the obvious thing to do is define ΩSO

1 as a functor Top˚ Ñ Grp

by composing the usual ΩSO
1 : TopÑ Grp with the obvious forgetful functor Top˚ Ñ Top, replacing

each pointed space pX, pq with the unpointed space X . With this understood, the commuting
diagram above shows that h defines a natural transformation from π1 to ΩSO

1 if both are regarded
as functors Top˚ Ñ Grp. For a slightly different variation, we could observe that since ΩSO

1 pXq is
abelian, the map h : π1pX, pq Ñ ΩSO

1 pXq always vanishes on the commutator subgroup

rπ1pX, pq, π1pX, pqs Ă π1pX, pq,
and thus descends to a well-defined homomorphism on the abelianization of the fundamental group,

π1pX, pqLrπ1pX, pq, π1pX, pqs hÝÑ ΩSO
1 pXq.

By now you should be unsurprised to learn that abelianization can also be regarded as a functor

Grp
abÝÑ Ab : G ÞÑ abpGq :“ G

M
rG,Gs,

and we can then also regard h as a natural transformation from ab ˝ π1 : Top˚ Ñ Ab to Ω1
SO :

Top˚ Ñ Ab.

Example 27.34. Let Ω‚
n : TopÑ Ab denote either the unoriented or oriented bordism functor.

For any two spaces X,Y and integers m,n ě 0, one can define a product operation

Ω‚
mpXq b Ω‚

npY q Ý̂Ñ Ω‚
m`npX ˆ Y q,

rpM,ϕqs b rpN,ψqs ÞÝÑ rpM,ϕqs ˆ rpN,ψqs :“ rpM ˆN,ϕˆ ψqs.
I will leave it as an exercise to convince yourself that this operation is well defined, and to clarify
precisely what it means to say that it is natural : in particular, for each fixed pair of integers
m,n ě 0, this product defines a natural transformation between two functors from the product
category Topˆ Top to Ab.

27.8. Exercises.

Exercise 27.1. Prove Proposition 27.9 (isomorphisms have unique inverses).

Exercise 27.2. Verify the claim in Example 27.18 that Hom : Ab ˆ Ab Ñ Ab defines a
contravariant functor in its first variable and a covariant functor in its second variable.

Exercise 27.3. Suppose A is a category whose objects form a set X , such that for each pair
x, y P X , the set of morphisms Hompx, yq contains either exactly one element or none. We can
turn this into a binary relation by writing x ’ y for every pair such that Hompx, yq ‰ H.
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(a) What properties does the relation ’ need to have in order for it to define a category in
the way indicated above?

(b) If B is another category whose objects form a set Y with morphisms determined by a
binary relation ’ as indicated above, what properties does a map f : X Ñ Y need to
have in order for it to define a functor from A to B?

Exercise 27.4. In any category C , each object X has an automorphism group (also called
isotropy group) AutpXq, consisting of all the isomorphisms in HompX,Xq. A groupoid is a
category in which all morphisms are also isomorphisms.

(a) Show that if G is a groupoid and Grp denotes the usual category of groups with ho-
momorphisms, there exists a contravariant functor from G to Grp that assigns to each
object X of G its automorphism group AutpXq. How does this functor act on morphisms
X Ñ Y ? Could you alternatively define it as a covariant functor? Conclude either way
that wheneverX and Y are isomorphic objects in G (meaning there exists an isomorphism
in HompX,Y q), the groups AutpXq and AutpY q are isomorphic.

(b) Given a topological spaceX and two points x, y, let Hompx, yq denote the set of homotopy
classes (with fixed end points) of paths r0, 1s Ñ X from x to y, and define a composition
function Hompx, yq ˆ Hompy, zq Ñ Hompx, zq : pα, βq ÞÑ α ¨ β by the usual notion of
concatenation of paths. Show that this notion of morphisms defines a groupoid whose
objects are the points in X .47 In this case, what are the automorphism groups Autpxq
and the isomorphisms Autpyq Ñ Autpxq given by the functor in part (a)?

Exercise 27.5. Consider the category K-Vect of vector spaces over a fixed field K.
(a) Show that there is a covariant functor ∆2 from K-Vect to itself, assigning to each V P

K-Vect the dual of its dual space pV ˚q˚. Describe how this functor acts on morphisms.
(b) Construct a natural transformation from the identity functor Id : K-VectÑ K-Vect to ∆2

that assigns to every V P K-Vect a linear injection V Ñ pV ˚q˚, which is an isomorphism
whenever V is finite dimensional.

Exercise 27.6. The conjugate sV of a complex vector space V is defined as the same setsV :“ V with the same notion of vector addition but with multiplication by scalars λ “ a` ib P C

defined as multiplication by the complex conjugate sλ “ a´ ib. In other words, if V Ñ sV : v ÞÑ sv
denotes the identity map, then scalar multiplication on sV is defined so as to make this map complex
antilinear, giving the formula

λv̄ :“ sλv P sV for λ P C, v P V.
(a) Show that there is a covariant functor κ : C-Vect Ñ C-Vect that sends each V P C-Vect

to its conjugate sV , and describe how this functor acts on morphisms.
(b) Show that if T is a natural transformation from Id : C-Vect Ñ C-Vect to κ : C-Vect Ñ

C-Vect, then T assigns to each V P C-Vect the zero map V Ñ sV .
Hint: What does the naturality of T imply about the specific morphism V Ñ V : v ÞÑ iv?

Comment: The map V Ñ sV : v ÞÑ sv is always a real-linear isomorphism, but it is not complex
linear and is thus not a morphism in C-Vect. Every finite-dimensional complex vector space is
of course complex-linearly isomorphic to its conjugate, simply because both spaces have the same
dimension, but the lack of any nontrivial natural transformation IdÑ κ is a symptom of the fact
that there is generally no canonical way to define such isomorphisms.

Exercise 27.7. Prove Proposition 27.28 on the computation of ΩO
0 pXq and ΩSO

0 pXq for any
space X .

47It is called the fundamental groupoid of X.
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Exercise 27.8. Prove Lemma 27.33, showing that the natural map h : π1pX, pq Ñ ΩSO
1 pXq is

a group homomorphism.
Hint: You are looking for an oriented bordism pΣ,Φq in which Σ is a compact surface with three
boundary components—the simplest surface of this kind is a so-called “pair of pants,” which has the
topology of a disk with two holes cut out. Assuming Σ is a pair of pants, try to define Φ : ΣÑ X

by first thinking about which subset of Σ should be mapped to the base point of X . If you know
anything about Morse theory, there is a relatively simple Morse-theoretic picture that will almost
immediately lead to the construction you need: it involves the gradient flow of a Morse function
f : Σ Ñ R that is constant on each boundary component and has exactly one critical point of
index 1 in the interior.

28. Axioms for homology theories

We will not yet define any specific homology theory in this lecture, but we shall introduce
the standard set of axioms satisfied by homology theories, and demonstrate their usefulness in
computations. Along the way, we encounter a fundamental tool from homological algebra: exact
sequences.

28.1. The category of R-modules. The bordism theories ΩO
n and ΩSO

n in the previous
lecture were defined as functors from Top to the category Ab of abelian groups, though we saw
that the groups ΩO

n pXq can also be regarded as vector spaces over Z2. For homology theory, it is
also possible to work entirely in the category Ab, but it is sometimes profitable to generalize this to
a category that includes both abelian groups and vector spaces as special cases. This generalization
does not require any extra effort, so we might as well work in the more general setting from the
beginning.

Notation. For the rest of this course, unless otherwise noted, the symbol

R

will always denote a fixed commutative ring with unit, the choice of which will often not matter.
We then denote by

R-Mod

the category of modules over R, whose morphisms are the R-module homomorphisms. For
two modules G,H P R-Mod, we will denote the set of R-module homomorphisms G Ñ H (which
is also an R-module) by

HomRpG,Hq :“ HomR-ModpG,Hq
whenever there is a need to specify R, but the abbreviated notation

HompG,Hq :“ HomRpG,Hq
can also be used when the context is clear. Similarly, we can denote the tensor product of two
R-modules by GbR H whenever R needs to be specified, but we will otherwise abbreviate it as

GbH :“ GbR H.
A trivial R-module48 is denoted by

0 P R-Mod.

For our purposes, abelian groups will be the most important special case of R-modules (see
Example 28.1 below), and for that reason, we will sometimes abuse terminology and use the word
“group” in places where the word “module” would be more appropriate.

48As with one-point spaces, there is not a unique trivial R-module, but there is a unique R-module isomorphism
between any two of them.
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Example 28.1. All abelian groups G P Ab can equivalently be regarded as modules over the
commutative ring Z, with scalar multiplication nx for n P Z and x P G determined in the obvious
way by the addition operation. Group homomorphisms are then automatically also Z-module
homomorphisms, and in this sense, the categories Ab and Z-Mod are completely equivalent.

Example 28.2. If R is a field K, then an R-module is the same thing as a vector space over K,
and R-Mod is in this case equivalent to the category K-Vect of vector spaces.

In this course, we will in practice almost exclusively be interested in the special cases where R
is either Z or a field (most often either Z2, Q, R or K), and the category of R-modules will thus
serve mainly as a single umbrella that encompasses both abelian groups and vector spaces.

One subtlety worth noting is that for any choice of the ring R, an R-module can always also
be regarded as an abelian group, just by forgetting its scalar multiplication while keeping the
addition operation, but doing this changes the definitions of tensor products GbH and the set of
homomorphisms HompG,Hq. For instance, if G,H P R-Vect are real vector spaces, then they are
also abelian groups and thus Z-modules G,H P Z-Mod, but their tensor product in the sense of
real vector spaces satisfies the relation

rg b h “ g b rh P GbR H for all g P G, h P H, r P R,

whereas the tensor product G bZ H in the sense of abelian groups only satisfies this when r P Z.
Similarly, every R-linear map GÑ H is also a homomorphism of abelian groups, but the converse
is quite false.

Definition 28.3. A basis of an R-module G is a subset B Ă G such that every element g P G
can be written in the form

g “ ÿ
bPB

gbb

for some coefficients gb P G that are uniquely determined by g, at most finitely-many of which are
nonzero. An R-module is called free if it admits a basis.

A choice of basis B Ă G for a free R-module is equivalent to a choice of R-module isomorphismà
bPB

R
–ÝÑ G,

so for instance, an abelian group (i.e. Z-module) is free if and only if it is isomorphic to a direct
sum of copies of Z. Obviously, not every abelian group G has this property, e.g. it is never true
if G is finite. On the other hand, a standard argument in linear algebra (using Zorn’s lemma for
the infinite-dimensional case) shows that every vector space admits a basis, so when R is a field,
all R-modules are free. This basic fact is one of the key advantages of having the freedom to work
with vector spaces instead of just abelian groups.

28.2. Exact sequences and splittings. In homological algebra, exact sequences play a role
comparable to that of Cauchy sequences in analysis; that is to say, the entire subject would be
impossible without them.

By a sequence (Sequenz) of R-modules, we mean a linearly ordered collection of modules An
for n P Z, together with R-modules homomorphisms αn : An Ñ An`1. Depending on the context
in which sequences arise, we can allow n to vary over any contiguous subset of the integers, which
may be unbounded, or bounded above and/or below, so the sequence itself may have finitely or
infinitely many terms, with or without a starting or end point. Let us call An an interior term of
the sequence if the sequence also includes both An´1 and An`1, thus giving rise to a three-term
subsequence

An´1
αn´1ÝÑ An

αnÝÑ An`1.
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In this situation, we say that the sequence is exact (exakt) at the term An if

imαn´1 “ kerαn.

We do not define exactness for non-interior terms, i.e. terms that are at the beginning or end of
the sequence. An exact sequence (exakte Sequenz) of R-modules is a sequence that is exact at
all of its interior terms.

Example 28.4. A sequence of the form 0 ÝÑ A
fÝÑ B ÝÑ 0 is exact if and only if f is an

isomorphism.

Example 28.5. An exact sequence with five terms that begins and ends with trivial modules

0 ÝÑ A
fÝÑ B

gÝÑ C ÝÑ 0

is called a short exact sequence (kurze exakte Sequenz). Exactness means in this case that f is
injective, g is surjective, and im f “ ker g. A popular class of examples is the sequence

0Ñ A ãÑ B
qÑ B

L
AÑ 0

for any submodule A Ă B, where q denotes the quotient projection. Another is

(28.1) 0Ñ A
iãÑ A‘ C

pÑ C Ñ 0

for any two modules A and C, with the obvious inclusion map ipaq :“ pa, 0q and projection map
ppa, cq :“ c.

Definition 28.6. A short exact sequence 0 Ñ AÑ B Ñ C Ñ 0 is said to split, and is then
called a split exact sequence, if there exists an isomorphism B – A‘ C identifying it with the
sequence in (28.1).

In the category of abelian groups, there are easy examples of short exact sequences that do
not split, e.g. writing q : ZÑ Z{2Z “: Z2 for the quotient projection,

0 ÝÑ Z
¨2ÝÑ Z

qÝÑ Z2 ÝÑ 0

is such an example, since Z is not isomorphic to Z ‘ Z2. The next result, whose proof is a
straightforward exercise, gives a useful practical criterion for short exact sequences to split, and
its corollary implies in particular that they always split if R is a field.

Theorem 28.7. The following conditions on a short exact sequence 0 Ñ A
fÑ B

gÑ C Ñ 0

are equivalent:
(i) The sequence splits;
(ii) The injective homomorphism f : AÑ B admits a left-inverse B Ñ A;
(iii) The surjective homomorphism g : B Ñ C admits a right-inverse C Ñ B.

�

Corollary 28.8. If C is a free R-module, then every short exact sequence 0 Ñ A Ñ B Ñ
C Ñ 0 splits.

Proof. Use a basis of C to define a right-inverse for the surjective map B Ñ C. �

Here is another popular application of exactness whose proof is an easy exercise.

Theorem 28.9. For an exact sequence of the form

. . . ÝÑ An
fnÝÑ Bn Ñ Cn Ñ An`1

fn`1ÝÑ Bn`1 ÝÑ Cn`1 ÝÑ . . . ,

the following conditions are equivalent:
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(i) The modules Cn are trivial for every n;
(ii) The maps fn : An Ñ Bn are isomorphisms for every n.

�

28.3. Relative bordism groups. For a first real-life example of an exact sequence that
arises naturally in topology, we can generalize the previous lecture’s discussion and define relative
bordism groups

ΩO
n pX,Aq

for every so-called pair of spaces pX,Aq, meaning a space X together with a choice of subset
A Ă X . Given two pairs of spaces pX,Aq and pY,Bq, a map of pairs

f : pX,Aq Ñ pY,Bq or pX,Aq fÝÑ pY,Bq
is a continuous map f : X Ñ Y such that fpAq Ă B, thus if we assign subspace topologies to A
and B, the restriction f |A becomes a continuous map AÑ B. Let us focus the discussion for now
on unoriented bordism theory; the oriented case is completely analogous. Elements of ΩO

n pX,Aq
are equivalence classes rpM,ϕqs in which M is a compact smooth n-manifold that is allowed to
have nonempty boundary, and ϕ is a map of pairs

pM, BMq ϕÝÑ pX,Aq.
Two such pairs pM,ϕq and pN,ψq are equivalent if there is a relative bordism between them:
this means a pair pW,Φq consisting of a compact smooth pn ` 1q-manifold W equipped with a
smooth embedding

M >N ãÑ BW,
and a map of pairs

pW, BW zpM >Nqq ΦÝÑ pX,Aq
such that Φ|M>N “ ϕ > ψ. Note that while the domain of ϕ : M Ñ X in this definition is allowed
to have nonempty boundary, it may also be closed, thus the definition still makes sense if A “ H
and just reproduces the so-called absolute bordism groups defined in the previous lecture,

ΩO
n pX,Hq “ ΩO

n pXq.
The group structure of ΩO

n pX,Aq is again defined via disjoint unions, and there is a straightforward
way of associating to each map of pairs f : pX,Aq Ñ pY,Bq a group homomorphism

ΩO
n pX,Aq f˚ÝÑ ΩO

n pY,Bq,
so that ΩO

n becomes a functor

Toprel
ΩO

nÝÑ Ab,

defined on the category Toprel of pairs of spaces, whose morphisms are maps of pairs. We can
identify Top with the subcategory of Toprel whose objects are pairs of the form pX,Hq, and then
interpret ΩO

n : Toprel Ñ Ab as an extension of the previously-defined functor ΩO
n : TopÑ Ab.

For any pair pX,Aq and n ě 1, there is also a group homomorphism

ΩO
n pX,Aq B˚ÝÑ ΩO

n´1pAq,
rpM,ϕqs ÞÝÑ rpBM,ϕ|BMqs,

which is well defined because if pW,Φq is a relative bordism between two representatives pM,ϕq
and pN,ψq, then restricting Φ to the compact n-manifold obtained by removing the interiors of
M and N from BW defines an absolute bordism between pBM,ϕ|BM q and pBN,ψ|BNq. One can
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interpret B˚ as a natural transformation between two functors Toprel Ñ Ab, the details of which I
will leave to the reader. What I really want to point out about B˚ is the following:

Theorem 28.10. Given a pair of spaces pX,Aq, let i : A ãÑ X and j : pX,Hq ãÑ pX,Aq
denote the obvious inclusions. Then the sequence of abelian groups

. . . ÝÑ ΩO
n pAq i˚ÝÑ ΩO

n pXq j˚ÝÑ ΩO
n pX,Aq B˚ÝÑ ΩO

n´1pAq i˚ÝÑ ΩO
n´1pXq ÝÑ . . .

. . . ÝÑ ΩO
1 pX,Aq B˚ÝÑ ΩO

0 pAq i˚ÝÑ ΩO
0 pXq j˚ÝÑ ΩO

0 pX,Aq ÝÑ 0

is exact.

Corollary 28.11 (via Theorem 28.9). For a pair of spaces pX,Aq, the map ΩO
n pAq Ñ ΩO

n pXq
induced by the inclusion A ãÑ X is an isomorphism for every n ě 0 if and only if ΩO

n pX,Aq “ 0

for every n ě 0. �

We will later see an analogue of Theorem 28.10 in singular homology that plays a major role
in that theory, and whose proof requires some elementary but non-obvious ideas from homological
algebra. It’s worth noting that the proof of Theorem 28.10, by comparison, is much more direct
and straightforward; see Exercise 28.2.

28.4. The Eilenberg-Steenrod axioms. In the early history of homology, multiple pack-
ages of invariants were proposed that were easier to compute than the bordism groups, while
seeming to measure similar topological information. The resulting theories differ in the details of
their definitions—some of them drastically—but turn out to be naturally isomorphic if one restricts
them to a “nice” class of spaces, which in practice includes all of the spaces that one is typically
interested in, such as manifolds. Eventually, singular homology settled into a special role as the
“standard” homology theory that everyone needs to learn, but in fact, one usually doesn’t need
to know its precise definition in order to use it. What’s much more important are the formal
properties that it satisfies, which are common to all homology theories, and were codified in the
middle of the 20th century as a set of axioms due to Eilenberg and Steenrod [ES52], with a bit of
extra input from Milnor [Mil62].

Definition 28.12. Fix as usual a commutative ring R with unit. An axiomatic homology
theory h˚ valued in the category of R-modules is a collection thnunPZ of covariant functors

Toprel
hnÝÑ R-Mod : pX,Aq ÞÑ hnpX,Aq

defined for each n P Z, which also determine functors hn : TopÑ R-Mod by defining

hnpXq :“ hnpX,Hq.
For a map of pairs f : pX,Aq Ñ pY,Bq, the R-module homomorphism induced by the functor hn
is denoted by

hnpX,Aq f˚ÝÑ hnpY,Bq.
The data of a homology theory also includes natural transformations B˚ from the functor Toprel Ñ
R-Mod : pX,Aq ÞÑ hnpX,Aq to the functor Toprel Ñ R-Mod : pX,Aq ÞÑ hn´1pAq for each n P Z,
and we require the following axioms:

‚ (Homotopy) For any two homotopic maps of pairs f, g : pX,Aq Ñ pY,Bq, the induced
morphisms f˚, g˚ : hnpX,Aq Ñ hnpY,Bq are identical. (See Remark 28.14 below for the
notion of a homotopy of maps of pairs.)
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‚ (Exactness) For all pairs pX,Aq with inclusion maps i : A ãÑ X and j : pX,Hq ãÑ
pX,Aq, the sequence
. . . ÝÑ hn`1pX,Aq B˚ÝÑ hnpAq i˚ÝÑ hnpXq j˚ÝÑ hnpX,Aq B˚ÝÑ hn´1pAq ÝÑ . . .

is exact.
‚ (Excision) For any pair pX,Aq and any subset B Ă A such that there exists a continuous
function u : X Ñ I equal to 0 on B and 1 on XzA, the map induced by the inclusion
pXzB,AzBq ãÑ pX,Aq is an isomorphism

hnpXzB,AzBq –ÝÑ hnpX,Aq.
‚ (Dimension) For any one-point space t˚u, hnpt˚uq “ 0 for all n ‰ 0. The group h0pt˚uq
is then called the coefficient group of the homology theory.49

‚ (Additivity) For any collection of spaces tXαuαPJ with inclusion maps iα : Xα ãÑš
βPJ Xβ , the map determined by the induced homomorphisms

iα˚ : hnpXαq Ñ hn

˜ž
βPJ

Xβ

¸
is an isomorphism à

αPJ
iα˚ :

à
αPJ

hnpXαq –ÝÑ hn

˜ž
βPJ

Xβ

¸
.

You should be able to convince yourself without much trouble that the bordism functors
ΩO
n : Toprel Ñ Ab “ Z-Mod and their oriented counterparts ΩSO

n each satisfy four out of the five
Eilenberg-Steenrod axioms; see in particular Exercises 28.2 and 28.3. They do not satisfy the
dimension axiom: this follows from Proposition 27.30 in the case of unoriented bordism theory,
and there is a similar result for the oriented theory involving complex (instead of real) projective
spaces. We call h˚ a generalized homology theory if it satisfies all of the Eilenberg-Steenrod
axioms except for dimension. In some contexts, the word “generalized” is removed, so that homology
theories are typically assumed to satisfy four axioms instead of five, and those which also satisfy the
dimension axiom are called ordinary homology theories. We will generally assume the dimension
axiom in this semester and will not make use of any theories that don’t satisfy it, but some of the
results we prove about homology theories will be equally valid for generalized theories, since they
do not depend on the dimension axiom.

A few further comments on the axioms are in order.

Remark 28.13. The original list in [ES52] included three additional axioms at the beginning
of the list, but the first two of these are equivalent to the statement that the hn are functors, and
the third simply requires B˚ to be a natural transformation.

Remark 28.14. The following definition is hopefully intuitive: a homotopy between two
maps of pairs f, g : pX,Aq Ñ pY,Bq is a homotopy H : X ˆ I Ñ Y between f and g such that
Hp¨, tq is also a map of pairs pX,Aq Ñ pY,Bq for every t P I, so in other words, H satisfies the
condition

HpAˆ Iq Ă B.

49There is a slightly awkward semantic issue in this definition: strictly speaking, what we are calling “t˚u”
is not a unique space, but simply any choice of space that happens to contain only one element. It follows that
the coefficient group h0pt˚uq is not a uniquely defined group, but is an isomorphism class of groups. Any two
choices of one-point spaces P0 and P1 are related by a unique homeomorphism P0 Ñ P1, which induces a canonical
isomorphism h0pP0q Ñ h0pP1q, and the coefficient group of a homology theory is unique in this sense.
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We could also have chosen to hide the homotopy axiom by calling the hn functors

hToprel
hnÝÑ AbZ

instead of Toprel Ñ AbZ, where hToprel denotes the homotopy category of pairs of spaces,
having the same objects as Toprel, but with homotopy classes of maps of pairs as morphisms. Note
that a homotopy of maps of pairs pX,Hq Ñ pY,Hq is just a homotopy of maps X Ñ Y , making
hTop naturally a subcategory of hToprel.

Remark 28.15. The additivity axiom did not appear in [ES52], but was added later by Milnor
[Mil62]. One can show in fact that for finite disjoint unions, additivity follows as a consequence
of the other axioms (see Exercise 28.4), thus Eilenberg and Steenrod did not need it, because they
were mainly concerned with computations for compact polyhedra—compactness precludes infinite
disjoint unions.

Remark 28.16. One often sees the excision axiom stated under a weaker hypothesis on the
sets B Ă A Ă X , namely that the closure of B is contained in the interior of A. You might find it a
challenge to think up an example in which that hypothesis is satisfied but the one we stated is not,
and I don’t encourage you to try, because within the class of spaces that are typically considered
interesting to study, the two are fully equivalent; moreover, in all interesting situations I’m aware
of, it is as easy to verify the stronger hypothesis as the weaker one. Singular homology does satisfy
excision under the weaker hypothesis, but the existence of a function u : X Ñ I separating B
from XzA is a more natural condition from other points of view, especially in homotopy-theoretic
reformulations of homology. The hypotheses originally stated in [ES52] also required B to be
open, which is another detail that makes no meaningful difference for the class of spaces typically
of interest.

Remark 28.17. The reason the dimension axiom has the name that it does is that if it were not
included in the list of axioms, then for every homology theory h˚, one could use arbitrary degree
shifts to define new homology theories such as k˚ with knpX,Aq :“ hn`1pX,Aq. The dimension
axiom prevents this, in the hope that the value of the subscript n in hnpX,Aq will then have some
geometric meaning. The reason for calling h0pt˚uq a “coefficient group” will become clearer when
we write down concrete examples of homology theories.

Remark 28.18. It is sometimes useful to expand the definition and allow an axiomatic ho-
mology theory to be a functor C Ñ R-Mod defined on a suitable subcategory C of Toprel, so
that we need not define h˚pX,Aq for all pairs pX,Aq, but only a subclass. One useful example is
the category of compact pairs, which are simply pairs of spaces pX,Aq such that X is compact
Hausdorff and A Ă X is closed. Others include the categories of polyhedra and CW-complexes,
which we’ll have more to say about in future lectures. When allowing restrictions of this type,
one must take care so that all of the maps needed for expressing the axioms—e.g. the inclusions
A ãÑ X and pX,Hq ãÑ pX,Aq—are actually morphisms in the category C . In [ES52], this concern
motivates the definition of the notion of an admissible category of pairs, though we have no need
to reproduce that definition here.

28.5. Reduced homology. Assume h˚ is a collection of functors as in Definition 28.12
satisfying at least the homotopy and exactness axioms. For technical reasons that will become
clearer in the next section, it is sometimes useful to replace the groups hnpXqwith certain subgroupsrhnpXq Ă hnpXq called reduced homology groups. To define them, we denote by

X
ǫÝÑ t˚u
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the unique map from any given space X to a one-point space. We then use the induced homomor-
phisms ǫ˚ : hnpXq Ñ hnpt˚uq to definerhnpXq :“ ker

´
hnpXq ǫ˚ÝÑ hnpt˚uq

¯
Ă hnpXq.

Observe that if h˚ satisfies the dimension axiom, then rhnpXq “ hnpXq for all n ‰ 0. If n “ 0 or the
dimension axiom is not satisfied, then we can typically expect rhnpXq and hnpXq to be different,
and the best way to relate them to each other is through a split exact sequence. Indeed, observe
that the map ǫ : X Ñ t˚u is not only trivially surjective, but also admits a right-inverse, defined
by choosing any embedding

t˚u iãÑ X.

It then follows from functoriality that the homomorphism ǫ˚ : hnpXq Ñ hnpt˚uq likewise is surjec-
tive and admits a right-inverse, thus by Theorem 28.7,

0Ñ rhnpXq ãÑ hnpXq ǫ˚Ñ hnpt˚uq Ñ 0

is a split exact sequence, implying the existence of an isomorphism

hnpXq – rhnpXq ‘ hnpt˚uq.
If h˚ satisfies the dimension axiom and has coefficient group G “ h0pt˚uq, this becomes

hnpXq –
#rhnpXq if n ‰ 0,rhnpXq ‘G if n “ 0.

One should keep in mind however that this isomorphism is not generally canonical: it depends on
the choice of inclusion i : t˚u ãÑ X , which determines the splitting of the exact sequence relatingrhnpXq and hnpXq.

Let us clarify why rhn for each n P Z is naturally also a functor TopÑ R-Mod.

Proposition 28.19. The homomorphisms f˚ : hnpXq Ñ hnpY q induced by any continuous
map f : X Ñ Y send rhnpXq into rhnpY q.

Proof. Denote ǫX : X Ñ t˚u and ǫY : Y Ñ t˚u for the unique maps, and notice that
ǫY ˝ f “ Id ˝ǫX , thus the following diagram commutes.

hnpXq hnpY q

hnpt˚uq hnpt˚uq

f˚

ǫX˚ ǫY˚
1

This implies that f˚pker ǫX˚ q Ă ker ǫY˚ . �

The next result reveals the main advantage of using rh˚ in place of h˚ for certain applications.

Proposition 28.20. If X is a contractible space, then rhnpXq “ 0 for every n.

Proof. Contractibility implies that the map ǫ : X Ñ t˚u is a homotopy equivalence, thus by
the homotopy axiom, ǫ˚ : hnpXq Ñ hnpt˚uq is an isomorphism, and its kernel rhnpXq is therefore
trivial. �

Remark 28.21. If h˚ also satisfies the dimension axiom, then we also have hnpXq “ 0 for
all n ‰ 0 whenever X is contractible, but h0pXq is typically nontrivial, as it is isomorphic to the
coefficient group. As a consequence, some of the standard applications of reduced homology can
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also be carried out with unreduced homology, but only if the degree 0 groups are excluded from
consideration.

The relative version of reduced homology is defined in a trivial way: we setrhnpX,Aq :“ hnpX,Aq whenever A ‰ H.
This seemingly naive definition is justified by the following considerations. Note first that the
functors rhn : TopÑ R-Mod now extend to pairs as functors Toprel Ñ R-Mod; here there is nothing
to check since the existence of a map of pairs pX,Aq Ñ pY,Bq with A ‰ H implies B ‰ H, so
that both reduced relative homology groups match the unreduced case. Next, observe that for any
space X , the relative homology groups hnpX,Xq all vanish; this follows from the exactness axiom
and Theorem 28.9, as we have an exact sequence

. . . ÝÑ hnpXq 1ÝÑ hnpXq ÝÑ hnpX,Xq B˚ÝÑ hn´1pXq 1ÝÑ hn´1pXq ÝÑ . . .

It follows that rhnpX,Aq for A ‰ H is in fact the kernel of the map

hnpX,Aq ǫ˚ÝÑ h˚pt˚u, t˚uq “ 0

induced by the unique map of pairs ǫ : pX,Aq Ñ pt˚u, t˚uq. Moreover, the naturality of the
connecting homomorphisms B˚ gives a commutative diagram

hn`1pX,Aq hnpAq

hn`1pt˚u, t˚uq hnpt˚uq

B˚

ǫ˚ ǫ˚
B˚

Since the term hn`1pt˚u, t˚uq is trivial, this diagram proves that the image of B˚ : hn`1pX,Aq Ñ
hnpAq is always in the subgroup rhnpAq. We can therefore write down a well-defined sequence of
homomorphisms

. . . ÝÑ rhn`1pX,Aq B˚ÝÑ rhnpAq i˚ÝÑ rhnpXq j˚ÝÑ rhnpX,Aq B˚ÝÑ rhn´1pAq ÝÑ . . .

using the usual inclusions i : A ãÑ X and j : pX,Hq ãÑ pX,Aq. It is not immediately obvious
whether this sequence is exact, but consider the commutative diagram

0 0 0 0

. . . rhnpAq rhnpXq rhnpX,Aq rhn´1pAq . . .

. . . hnpAq hnpXq hnpX,Aq hn´1pAq . . .

. . . hnpt˚uq hnpt˚uq 0 hn´1pt˚uq . . .

0 0 0 0

i˚ j˚ B˚

i˚

ǫ˚

j˚

ǫ˚

B˚

ǫ˚ ǫ˚

Here the bottom two nontrivial rows are exact due to the exactness axiom, and all columns in the
diagram are short exact sequences by construction. The rest is algebra:
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Proposition 28.22. Assume the following diagram of R-modules commutes, all its columns
are exact sequences, and the bottom two nontrivial rows are also exact sequences:

0 0 0 0 0

. . . An`2 An`1 An An´1 An´2 . . .

. . . Bn`2 Bn`1 Bn Bn´1 Bn´2 . . .

. . . Cn`2 Cn`1 Cn Cn´1 Cn´2 . . .

0 0 0 0 0

ιn`2 ιn`1 ιn ιn´1 ιn´2

gn`2

ǫn`2

gn`1

ǫn`1

gn

ǫn

gn´1

ǫn´1 ǫn´2

hn`2 hn`1 hn hn´1

Then the top nontrivial row can be endowed uniquely with maps fn : An Ñ An´1 such that the
diagram still commutes, and these make that row into an exact sequence.

Proof. The method behind this proof is commonly known as diagram chasing, and we will
later see several other examples of it. The basic idea is straightforward: at every step, we examine
a particular term in the diagram, consider what is already known about the maps going into and
out of that term, and then deduce whatever we can from given conditions such as exactness. In
typical situations, whatever can be deduced tells you which term to examine in the next step.

If fn : An Ñ An´1 can be defined so that the diagram commutes, then for a P An we need
fnpaq P ι´1

n´1pgnιnpaqq, and this condition will fully determine fnpaq P An´1 since ιn´1 is injective
due to the exactness of columns. To see that the condition can be achieved, notice

ǫn´1gnιn “ hnǫnιn “ 0,

thus gnιnpaq P ker ǫn´1 “ im ιn´1. This gives an element x P An´1 such that ιn´1pxq “ gnιnpaq,
so we can set fnpaq “ x.

The goal is now to show that . . . An`1
fn`1Ñ An

fnÑ An´1 Ñ . . . is an exact sequence. For each
n, commutativity of the diagram gives

ιn´2fn´1fn “ gn´1gnιn “ 0

since the middle row is exact, and the exactness of the columns implies in turn that ιn´2 is injective,
thus fn´1fn “ 0. To finish, we need to prove that every a P An satisfying fnpaq “ 0 also satisfies
a “ fn`1pxq for some x P An`1. Using commutativity, we have

0 “ ιn´1fnpaq “ gnιnpaq,
thus the exactness of the middle row gives an element b P Bn`1 such that gn`1pbq “ ιnpaq. If we
knew ǫn`1pbq “ 0, then we could at this point appeal to the exactness of the columns and write
b “ ιn`1pxq for some x P An`1, which would then satisfy ιnfn`1pxq “ gn`1ιn`1pxq “ gn`1pbq “
ιnpaq and therefore fn`1pxq “ a since ιn is injective. But ǫn`1pbq might not be 0, so to finish the
proof, we claim instead that b can be replaced by another element b1 P Bn`1 that satisfies both
gn`1pb1q “ ιnpaq and ǫn`1pb1q “ 0.

To find b1, observe that by commutativity and the exactness of the columns,

hn`1ǫn`1pbq “ ǫngn`1pbq “ ǫnιnpaq “ 0,
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thus by the exactness of the bottom row, ǫn`1pbq “ hn`2pcq for some c P Cn`2. Appealing again
to the exactness of the columns, ǫn`2 is surjective, so we have c “ ǫn`2pyq for some y P Bn`2. Set

b1 :“ b´ gn`2pyq.
This satisfies gn`1pb1q “ gn`1pbq ´ gn`1gn`2pyq “ gn`1pbq “ ιnpaq, and using commutativitiy
again,

ǫn`1pb1q “ ǫn`1pbq ´ ǫn`1gn`2pyq “ ǫn`1pbq ´ hn`2ǫn`2pyq “ ǫn`1pbq ´ hn`2pcq “ 0.

�

We have proved:

Theorem 28.23. For any pair of spaces pX,Aq and any homology theory h˚, there is an exact
sequence of reduced homology groups

. . . ÝÑ rhn`1pX,Aq B˚ÝÑ rhnpAq i˚ÝÑ rhnpXq j˚ÝÑ rhnpX,Aq B˚ÝÑ rhn´1pAq ÝÑ . . . ,

where i : A ãÑ X and j : pX,Hq ãÑ pX,Aq are the obvious inclusions and B˚ : rhnpX,Aq Ñ rhn´1pAq
is the same map as the usual connecting homomorphism hnpX,Aq Ñ hn´1pAq. �

28.6. Suspension isomorphisms. The following general construction leads easily to a com-
plete computation of h˚pSnq for any axiomatic homology theory. We assume in this section that
h˚ is a generalized homology theory, so it satisfies all the conditions in Definition 28.12 except
possibly the dimension axiom.50

Recall that for an arbitrary space X , the suspension (Einhängung) of X is a space ΣX

formed by gluing together two cones C`X :“ CX :“ pX ˆ r0, 1sqLpX ˆ t1uq and C´X :“ pX ˆ
r´1, 0sqLpX ˆ t´1uq along X “ X ˆ t0u Ă C˘X , in short,

ΣX :“ C`X YX C´X.

Theorem 28.24. For every space X, integer k P Z and generalized homology theory h˚, the
diagram (28.2) below gives rise to a natural isomorphism

Σ˚ :“ ϕ´1˚ ˝ j˚ ˝ i˚ ˝ B´1˚ : rhkpXq Ñ rhk`1pΣXq.
Proof. Let

p` P C`X Ă ΣX and p´ P C´X Ă ΣX

denote the summits of the two cones that are glued together to form the suspension, e.g. if we
write C`X “ pX ˆ r0, 1sqLpX ˆ t1uq, then p` P C`X is the point that results from collapsing
X ˆ t1u. We then consider the diagram

(28.2)

rhkpXq rhk`1pΣXq

rhk`1pC`X,Xq rhk`1pΣXztp´u, C´Xztp´uq rhk`1pΣX,C´Xq
ϕ˚B˚

i˚ j˚

in which three of the maps are determined by the obvious inclusions of pairs,

pC`X,Xq iãÑ pΣXztp´u, C´Xztp´uq,
pΣXztp´u, C´Xztp´uq jãÑ pΣX,C´Xq,

pΣX,Hq ϕãÑ pΣX,C´Xq.
50In fact, the additivity axiom is also not strictly necessary for this discussion, since by Exercise 28.4, it follows

from the other axioms in the case of finite disjoint unions.



28. AXIOMS FOR HOMOLOGY THEORIES 201

The first of these is a homotopy equivalence, as there exists a deformation retraction of the pair
pΣXztp´u, C´Xztp´uq to pC`X,Xq, thus i˚ is an isomorphism by the homotopy axiom. Since
one can easily define a function u : ΣX Ñ I that vanishes at p´ and equals 1 on C`X , the excision
axiom implies that j˚ is also an isomorphism. For the other two maps, we consider the exact
sequences provided by Theorem 28.23 for the pairs pΣX,C´Xq and pC`X,Xq, that is

. . . ÝÑ rhk`1pC´Xq ÝÑ rhk`1pΣXq ϕ˚ÝÑ rhk`1pΣX,C´Xq ÝÑ rhkpC´Xq ÝÑ . . .

and
. . . ÝÑ rhk`1pC`Xq ÝÑ rhk`1pC`X,Xq B˚ÝÑ rhkpXq ÝÑ rhkpC`Xq ÝÑ . . .

The contractibility of C˘X implies via Proposition 28.20 thatrhkpC˘Xq – rhkpt˚uq “ 0, and rhk`1pC˘Xq – rhk`1pt˚uq “ 0,

thus the exactness of these two sequences implies that ϕ˚ and B˚ are both isomorphisms.
The naturality of the map Σ˚ : rhkpXq Ñ rhk`1pΣXq has a precise meaning, because the

suspension operation can be understood as a functor Σ : Top Ñ Top, and the statement is then
that Σ˚ defines a natural transformation between two functors Top Ñ R-Mod, namely rhk andrhk`1 ˝ Σ. This follows in a straightforward way using the naturality of the homomorphisms B˚;
the details are an exercise. �

28.7. Homology groups of spheres. Recall that the suspension of a sphere is also a sphere,
but one dimension higher:

ΣpSnq – Sn`1.

This fact and Theorem 28.24 make possible an inductive computation of h˚pSnq for every axiomatic
homology theory and every n ě 0, using the fact that S0 is the disjoint union of two one-point
spaces. Here is the statement; the proof is Exercise 28.6.

Theorem 28.25. Assume h˚ is an axiomatic homology theory with coefficient group h0pt˚uq “
G. Then for each pair of integers k P Z and n ě 1,

hkpSnq –
#
G if k “ 0 or k “ n,

0 otherwise.

�

28.8. Exercises.

Exercise 28.1 (*). Prove Theorem 28.7 on split exact sequences, and Theorem 28.9 on long
exact sequences with every third term vanishing.

Exercise 28.2. Prove that the sequence of relative and absolute bordism groups in Theo-
rem 28.10 is exact. Here are a couple of hints:

‚ For exactness at ΩO
n pXq: j˚rpM,ϕqs “ 0 means ϕ : M Ñ X can be extended over a

compact pn`1q-manifoldW with M Ă BW such that the extension maps BW zM into A.
In this situation, M is a closed manifold—what does that imply about BW zM?

‚ For exactness at ΩO
n pX,Aq: B˚rpM,ϕqs “ 0 means that ϕ|BM : BM Ñ A extends to a map

V Ñ A on some compact n-manifold V whose boundary is identified with BM . Build a
closed n-manifold out of V and M .

Exercise 28.3. Prove that the bordism theories ΩO˚ and ΩSO˚ satisfy the homotopy, excision,
and additivity axioms.
Hint for excision: Suppose u : X Ñ I is a function as specified in the excision axiom, and
ϕ : pM, BMq Ñ pX,Aq is a map of pairs so that pM,ϕq represents a bordism class. By standard
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results about smooth manifolds, the function u ˝ ϕ : M Ñ I can be perturbed to a function
v : M Ñ I such that for some r P p0, 1q, both v´1prq Ă M and pv|BM q´1prq Ă BM are smooth
submanifolds.

Exercise 28.4. Assume h˚ is a collection of functors hn : Toprel Ñ R-Mod for n P Z satisfying
the exactness and excision axioms of Eilenberg-Steenrod. Given two spaces X,Y and the natural
inclusions iX : X ãÑ X > Y and iY : Y ãÑ X > Y , show that the map

iX˚ ‘ iY˚ : hnpXq ‘ hnpY q Ñ hnpX > Y q : px, yq ÞÑ iX˚ x` iY˚ y

is an isomorphism, and deduce that h˚ also satisfies the additivity axiom for all finite disjoint
unions.
Hint: Apply exactness and excision to the pairs pX > Y,Xq and pX > Y, Y q.

Exercise 28.5 (*). Assume h˚ is an axiomatic homology theory with coefficient group h0pt˚uq “
G. For any two spaces X and Y with maps ǫX : X Ñ t˚u and ǫY : Y Ñ t˚u, show that the
natural isomorphism hnpX > Y q – hnpXq ‘ hnpY q identifies rhnpX > Y q with kerpǫX˚ ‘ ǫY˚ q Ă
hnpX ;Gq ‘ hnpY ;Gq. Then apply this in the case X “ Y “ t˚u to identify rh0pt˚u > t˚uq with the
kernel of the map

1‘ 1 : G‘GÑ G : pg, hq ÞÑ g ` h,

which is isomorphic to G.

Exercise 28.6 (*). Given an axiomatic homology theory h˚ with coefficient group G, use
Theorem 28.24, Exercise 28.5 and an inductive argument to derive a general formula for rhkpSnq
for all k P Z and n ě 0, and then deduce from it Theorem 28.25.

Exercise 28.7. One of the most popular simple applications of homology is the Brouwer fixed
point theorem, which states that for the closed disk Dn Ă Rn of any dimension n P N, every
continuous map f : Dn Ñ Dn has a fixed point.

(a) Deduce the Brouwer fixed point theorem from the following statement: For each n P N,
the disk Dn does not admit any retraction to its boundary BDn “ Sn´1.
Hint: If f : Dn Ñ Dn has no fixed points, then there is a unique line through x and fpxq
for every x P Dn.

(b) Assuming the existence of an axiomatic homology theory h˚ with a nontrivial coefficient
group, deduce from the computation of h˚pSn´1q that retractions Dn Ñ Sn´1 cannot
exist.

Exercise 28.8 (*). The subject of this exercise is a standard tool in homological algebra
known as the five-lemma.

(a) Suppose the following diagram commutes and that both of its rows are exact, meaning
im f “ ker g, im g1 “ kerh1 and so forth:

A B C D E

A1 B1 C 1 D1 E1

f

α

g

β

h

γ

i

δ ε

f 1 g1 h1 i1

Prove that if α, β, δ and ε are all isomorphisms, then so is γ.
(b) Here is an application: given a homology theory h˚ and a map of pairs f : pX,Aq Ñ

pY,Bq, show that if any two of the induced maps f˚ : hnpXq Ñ hnpY q, f˚ : hnpAq Ñ
hnpBq and f˚ : hnpX,Aq Ñ hnpY,Bq are isomorphisms for every n, then so is the third.
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(c) Prove that every homology theory h˚ also satisfies a relative version of the additivity
axiom, involving disjoint unions of pairs of spacesž

βPJ
pXβ , Aβq :“

˜ž
βPJ

Xβ ,
ž
βPJ

Aβ

¸
.

29. Simplicial homology

As mental preparation for the definition of singular homology, it will be helpful to start with
a different theory that is similar but more restrictive. Simplicial homology requires strictly more
data for its definition than just a topological space, and thus can only be defined on spaces that
are “nice” enough to admit such data. What it lacks in generality, it makes up for in computability
and geometric transparency. One can think of simplicial homology as a combinatorial variant of
bordism theory, one that is based on simpler building blocks than manifolds, and can thus be
studied without any understanding of the (generally difficult) problem of classifying manifolds.

29.1. Simplicial complexes and polyhedra. The spaces on which simplicial homology
is defined are called polyhedra, and they are much more restrictive than arbitrary topological
spaces, but nonetheless include most of the typical examples of interest, e.g. all smooth manifolds.
Intuitively, a polyhedron is a space that can be constructed by gluing together “triangles” of various
dimensions, and the resulting decomposition of a polyhedron into “triangular” pieces is therefore
known as a triangulation. The first necessary step is to define the n-dimensional generalization of
a triangle.

Definition 29.1. For an integer n ě 0, the standard n-simplex is the topological space

∆n :“  pt0, . . . , tnq P In`1
ˇ̌
t0 ` . . .` tn “ 1

(
,

endowed with the subspace topology as a subset of Rn`1. The n`1 standard basis vectors of Rn`1

are called the vertices (Eckpunkte) of ∆n, and for arbitrary subsets J Ă t0, . . . , nu, the sets of
the form  pt0, . . . , tnq P ∆n

ˇ̌
tj “ 0 for all j P J(

are called the faces (Seiten or Facetten) of ∆n; these include in particular the n ` 1 boundary
faces (Seitenflächen)

Bpjq∆n :“  pt0, . . . , tnq P ∆n
ˇ̌
tj “ 0

(
, j “ 0, . . . , n.

This definition makes∆0 the one-point space t1u Ă R, while∆1 is a compact line segment in R2

homeomorphic to the interval I, ∆2 is the compact region in a plane bounded by a triangle,∆3 is the
compact region in a 3-dimensional vector space bounded by a tetrahedron, and so forth. Observe
that every face of ∆n is homeomorphic to ∆k for some k ď n, and since the coordinates of Rn`1

come with a canonical ordering, there is even a canonical choice of homeomorphism. For instance,
the boundary faces Bpjq∆n are all homeomorphic to ∆n´1, and the canonical homeomorphisms
take the form

(29.1) ∆n´1 –ÝÑ Bpjq∆n : pt0, . . . , tn´1q ÞÑ pt0, . . . , tj´1, 0, tj, . . . , tn´1q.
We will make frequent use of these canonical homeomorphisms to identify each face of a standard
simplex with another standard simplex.

In order to explain how copies of ∆n for various n ě 0 can be glued together to form a
polyhedron, we need to define simplicial complexes, which are fundamentally combinatorial objects.
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Definition 29.2. A simplicial complex (Simplizialkomplex) K “ pV, Sq consists of two sets
V and S, called the sets of vertices (Eckpunkte) and simplices (Simplizes) respectively, where
the elements of S are finite subsets of V , and σ P S is called an n-simplex of K if it has n ` 1

elements. We require the following conditions:
(1) Every vertex v P V gives rise to a 0-simplex in K, i.e. tvu P S;
(2) If σ P S then every subset σ1 Ă σ is also an element of S.

For any n-simplex σ P S, its subsets are called its faces (Seiten or Facetten), and in particular the
subsets that are pn ´ 1q-simplices are called boundary faces (Seitenflächen) of σ. The second
condition above thus says that for every simplex in the complex, all of its faces also belong to the
complex. With this condition in place, the first condition is then equivalent to the requirement
that every vertex in the set V belongs to at least one simplex.

The complex K is said to be finite if V (and therefore also S) is finite, and its dimension is

dimK :“ sup
σPS

dimσ P t0, 1, 2, . . . ,8u,
where we write dimσ “ n whenever σ is an n-simplex.

Definition 29.3. A subcomplex K 1 Ă K of a simplicial complex K “ pV, Sq is a simplicial
complex K 1 “ pV 1, S1q such that V 1 Ă V and S1 Ă S.

The polyhedron (Polyeder) of a simplicial complex K “ pV, Sq is a topological space |K|
defined as follows. We denote by IV the set of all functions V Ñ I, i.e. each element t P IV is
determined by a set of real numbers tv P r0, 1s associated to the vertices v P V , which we can think
of as the coordinates of t. For each n-simplex σ “ tv0, . . . , vnu in K, we define the set

|σ| :“
#
t P IV

ˇ̌̌̌
ˇ ÿ
vPσ

tv “ 1 and tv “ 0 for all v R σ
+
.

This set is a copy of the standard n-simplex living in the finite-dimensional vector space Rσ – Rn`1,
and we shall assign it the topology that it inherits naturally from this finite-dimensional vector
space. As a set, the polyhedron |K| is then defined by

|K| :“ ď
σPS

|σ| Ă IV .

If K is finite, then |K| lives inside the finite-dimensional vector space RV , and therefore has an
obvious topology for which the topology we already defined on each of the subsets |σ| Ă |K|
matches the subspace topology. A bit more thought is required at this step if K is infinite. One
possible choice would be to endow IV with the product topology (via its obvious identification
with

ś
vPV I) and then take the subspace topology on |K| Ă IV , but the product topology turns

out not to be the most useful choice here. We will instead let the topology of |K| be determined
by that of the individual simplices:

Definition 29.4. Given a simplicial complex K “ pV, Sq, the topology of its polyhedron
|K| Ă IV is defined such that a subset U Ă |K| is open if and only if U X |σ| is an open subset of
|σ| for every simplex σ P S.

In other words, |K| is equipped with the strongest51 topology for which the inclusions |σ| ãÑ |K|
are continuous for all σ. You should take a moment to convince yourself that this matches what

51For some unfathomable reason, the topology on |K| has traditionally been referred to in the literature as
the “weak” topology, and the same strange choice of nomenclature plagues the theory of CW-complexes, which we
will discuss in a few weeks. It is a question of perspective: since |K| has a lot of open sets, it is fairly difficult for
sequences in |K| to converge, or for maps into |K| to be continuous, but on the flip side, it is relatively easy for
functions defined on |K| to be continuous (see Exercise 29.1).
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was already said for the case where K is finite, and you should then prove the following proposition
as an exercise:

Proposition 29.5. For any simplicial complex K “ pV, Sq and any space X, a map f : |K| Ñ
X is continuous if and only if f ||σ| : |σ| Ñ X is continuous for every simplex σ P S. �

Definition 29.6. A topological space X is a polyhedron (Polyeder) if it is homeomorphic
to the polyhedron |K| of some simplicial complex K. A choice of such a homeomorphism X – |K|
is called a triangulation (Triangulierung) or simplicial decomposition of the space X .

Remark 29.7. The definition of the term triangulation given above is perhaps stricter than
some other sensible definitions of this term that one could imagine. What everyone can agree upon
is that a triangulation of X should decompose X as a union of compact subsets, each of which is
homeomorphic to a standard simplex, such that the intersection of any two of them is a common
face of both; this includes the case where one of them is a face of the other, but also cases in
which their interiors are disjoint. Definition 29.6 does decompose X in this way, but having a
specific choice of homeomorphism X – |K| is actually a lot more information, and it is debateable
whether this amount of information is truly necessary for most of the important applications of
triangulations. It will be useful for our purposes, however, when we want to write down precise
relations between the simplicial and singular homologies of a triangulated space.

Definition 29.8. For each integer n ě 0, the n-skeleton (n-Skelett or n-Gerüst) of a sim-
plicial complex K “ pV, Sq is the subcomplex Kn “ pV, Snq of K whose set of simplices Sn Ă S

consists of all σ P S with dim σ ď n. Similarly, the n-skeleton of a polyhedron X with tri-
angulation X – |K| is the subspace Xn Ă X formed by the polyhedron of the n-skeleton Kn

of K.

This definition presents a polyhedron X as the union of a nested sequence of subspaces, its
skeleta of various dimensions,

X0 Ă X1 Ă X2 Ă . . . Ă
8ď
n“0

Xn “ X,

each of which is also a polyhedron. In particular, a polyhedron is n-dimensional (i.e. corresponds
to an n-dimensional simplicial complex) if and only if it is equal to its n-skeleton. The 0-skeleton
of any polyhedron is just the union of all its vertices—one can show that this is always a discrete
set.

While |K| was defined above as a subset of a vector space whose dimension may in general be
quite large (or infinite), visualizing |K| in concrete examples is often easier than one might expect.

Example 29.9. Suppose V “ tv0, v1, v2, v3u and S contains the subsets A :“ tv0, v1, v2u and
B :“ tv1, v2, v3u, plus all of their respective subsets. Then |K| contains two copies of the triangle
∆2, and they intersect each other along a single common edge connecting the vertices labeled
v1 and v2. The complex is 2-dimensional, and its 1-skeleton is the union of all the edges of the
triangles.

Example 29.10. If V has n` 1 elements and S consists of all subsets of V except for V itself,
then |K| is homeomorphic to B∆n, i.e. the union of all the boundary faces of ∆n. In particular,
this is homeomorphic to Sn´1.

Example 29.11. Suppose V “ tv0, . . . , vnu for some n ě 2 and S is defined to consist of all
the one-element subsets tviu plus the 1-simplices tvi, vi`1u for i “ 0, . . . , n´ 1 and tvn, v0u. Then
|K| is a 1-dimensional polyhedron homeomorphic to S1.
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Example 29.12. Taking V “ Z with S as the set of all 0-simplices tnu plus 1-simplices of the
form tn, n`1u for n P Z gives an infinite (but 1-dimensional) simplicial complex whose polyhedron
is homeomorphic to R.

Example 29.13. If V “ N and S is the set of all finite subsets of N, then K is an infinite-
dimensional simplicial complex. Every simplex in this complex is a face of t1, . . . , nu for n suffi-
ciently large, thus you can try to picture |K| as the union of an infinite nested sequence of simplices
∆0 Ă ∆1 Ă ∆2 Ă . . ., where each ∆k is a boundary face of ∆k`1.

Definition 29.14. Given two simplicial complexes K1 “ pV1, S1q and K2 “ pV2, S2q, a sim-
plicial map (simpliziale Abbildung) from K1 to K2 is a function f : V1 Ñ V2 such that fpσq P S2

for every σ P S1.

Note that a simplicial map K1 Ñ K2 need not be injective on any given simplex, i.e. it can
send an n-simplex of K1 onto a k-simplex of K2 for any k ď n. There is a natural way to turn any
simplicial map into a continuous map of the polyhedra |K1| Ñ |K2|. Indeed, denote by tevuvPV the
natural basis vectors of RV so that every element t P RV can be written uniquely as a formal52 sumř
vPV tvev with coordinates tv P R. Then since every element t P |K1| is of the form

ř
vPV1

tvev
where only finitely many of the coordinates are nonzero and they all add up to 1, we can define

f : |K1| Ñ |K2| :
ÿ
vPV1

tvev ÞÑ
ÿ
vPV1

tvefpvq P IV2 .

In other words, for each simplex σ P S1, f maps |σ| onto |fpσq| via the restriction of the obvious
linear map Rσ Ñ Rfpσq that sends basis vectors ev to efpvq for v P σ. We have thus defined a
functor

SimpÑ Top : K ÞÑ |K|,
where Simp is the category of simplicial complexes with morphisms defined to be simplicial maps.
Notice that f : |K1| Ñ |K2| always maps the n-skeleton of |K1| into the n-skeleton of |K2| for
every n ě 0.

Since we will often be concerned mainly with compact manifolds, the following result enables
us to restrict attention to finite simplicial complexes:

Proposition 29.15. A simplicial complex K “ pV, Sq is finite if and only if its polyhedron
|K| is compact.

This will follow from a more general theorem about CW-complexes that we shall prove in a
few weeks, so for now, we’ll settle for proving a special case, which happens to cover most of the
interesting examples, and is quite easy:

Proof of Proposition 29.15 for finite-dimensional complexes. If K is finite, then
|K| is a closed and bounded subset of the finite-dimensional vector space RV , and is therefore
compact.

Conversely, ifK is infinite but dimK ă 8, there exists an infinite sequence of distinct simplices
σ1, σ2, . . . P S with the property that each σi is not a face of any other simplex in K. Now for
each i P N, pick a point xi P |σi| along with an open neighborhood Ui Ă |σi| of xi that is contained
in the interior of |σi|. Since σi is not a face of any other simplex, we have Ui X |σ| “ H for all
simplices σ ‰ σi, thus Ui defines an open subset of |K| that contains xi but none of the other
points in the sequence x1, x2, . . .. This proves that the infinite subset tx1, x2, . . .u Ă |K| is discrete,
hence |K| cannot be compact. �

52The word “formal” means in this context that we do not require the sum to converge in any sense, as it is a
purely algebraic object. In practice, we are only going to consider points t P RV that have finitely many nonzero
coordinates, thus the sums converge trivially.
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29.2. The category of chain complexes. In absolute bordism theory, crucial roles are
played by the words “closed” and “boundary”: elements are represented by maps defined on closed
manifolds rather than manifolds that are noncompact or have boundary, and the equivalence
relation arises from the fact that certain manifolds are the boundaries of others. One trivial and
yet important detail here is the fact that for a compact manifold M with boundary, its boundary
BM is always a closed manifold: the compactness of BM is automatic since BM Ă M is a closed
subset, but being a boundary also means that BM cannot have any boundary points of its own.

In the usual constructions of homology theories—which do not require any knowledge of
manifolds—there is an algebraic device that gives useful meaning to the words closed and boundary,
and the fact that boundaries have no boundary of their own is then encoded by a simple algebraic
equation, taking the form “B2 “ 0”.

Definition 29.16. A chain complex (Kettenkomplex) of R-modules is a sequence of R-
modules taking the form

. . . ÝÑ Cn`1
Bn`1ÝÑ Cn

BnÝÑ Cn´1 ÝÑ . . .

and satisfying the relation

(29.2) Bn ˝ Bn`1 “ 0

for every n P Z.

Let’s add some helpful terminology and notation to the definition above. The collection of
R-modules Cn forming a chain complex can be packaged together as a single R-module

C˚ :“à
nPZ

Cn,

and writing B : C˚ Ñ C˚ for the homomorphism determined uniquely by the maps Bn : Cn Ñ Cn´1

for all n, the defining relation (29.2) is then written succintly as

B2 “ 0.

The chain complex itself can then be denoted by pC˚, Bq, often abbreviated simply as C˚. We call B
the boundary map of boundary operator (Randoperator) of the complex. An element c P C˚
is said to be homogeneous (homogen) if it belongs to the specific submodule Cn Ă C˚ for some
n P Z, which is then called the degree (Grad) of c, sometimes written as

|c| :“ n for c P Cn,
and the homogeneous elements of degree n are also called the n-chains (n-Ketten) of the complex.
We say that c P C˚ is closed (geschlossen) if it satisfies

Bc “ 0,

and the closed n-chains are called the n-cycles (n-Zykel) of the complex. Further, c P C˚ is a
boundary (Rand) if it satisfies

c “ Ba for some a P C˚,
and the n-cycles that are also boundaries are called the n-boundaries. The relation B2 “ 0 is
equivalent to the condition that all boundaries are also cycles, in other words, im Bn`1 is always a
submodule of ker Bn.

Remark 29.17. For the boundary map B : C˚ Ñ C˚ of a chain complex, one sometimes abuses
notation and writes

B : C˚ Ñ C˚´1
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to emphasize the fact that B sends n-chains to pn ´ 1q-chains for each n. A fancier way to say
this is that C˚ is naturally a Z-graded R-module, and the boundary map is a homomorphism of
degree ´1.

Definition 29.18. The homology H˚pC˚q “ H˚pC˚, Bq of the chain complex C˚ is the
collection of quotient modules

HnpC˚q :“ kerpBnq
M
impBn`1q.

Their direct sum is denoted by

H˚pC˚q “
à
nPZ

HnpC˚q.

Given a chain complex C˚, elements rcs P HnpC˚q are called homology classes of degree n:
their representatives c P Cn are n-cycles, and two such n-cycles c, c1 represent the same homology
class if and only if c1 ´ c is a boundary, in which case we say that they are homologous.

Definition 29.19. Given two chain complexes pA˚, BAq and pB˚, BBq, a chain map (Ketten-
abbildung) from pA˚, BAq to pB˚, BBq is a collection of homomorphisms fn : An Ñ Bn for n P Z

such that the following diagram commutes:

(29.3)
. . . An`1 An An´1 . . .

. . . Bn`1 Bn Bn´1 . . .

BAn`1

fn`1

BAn

fn

BAn´1

fn´1

BBn`1 BBn BBn´1

In other words, a chain map is a homomorphism f : A˚ Ñ B˚ that maps n-chains to n-chains for
each n P Z and satisfies BB ˝ f “ f ˝ BA.

It is easy to check that the composition of two chain maps is also a chain map, and so is the
identity map on any chain complex, thus we can define a category

ChpR-Modq often abbreviated as Ch,

whose objects are chain complexes of R-modules, with chain maps as morphisms. The following
easy observation then produces a functor

ChpR-Modq HnÝÑ R-Mod

for each n P Z, sending each chain complex to its homology in degree n and each chain map to the
induced homomorphism between homologies.

Proposition 29.20. Any chain map f : pA˚, BAq Ñ pB˚, BBq determines homomorphisms
f˚ : HnpA˚, BAq Ñ HnpB˚, BBq for every n P Z via the formula

f˚ras :“ rfpaqs.
Proof. There are two things to prove: first, that whenever a P An is a cycle, so is fpaq P Bn.

This is clear since BAa “ 0 implies BBpfpaqq “ fpBAaq “ 0 by the chain map condition. Second,
we need to know that f maps boundaries to boundaries, so that it descends to a well-defined
homomorphism ker BAn { im BAn`1 Ñ ker BBn { im BBn`1. This is equally clear, since a “ BAx implies
fpaq “ fpBAxq “ BBfpxq. �



29. SIMPLICIAL HOMOLOGY 209

29.3. Ordered simplicial homology. We now describe the first of two versions of the
so-called simplicial chain complex (simplizialer Kettenkomplex) of a simplicial complex K “
pV, Sq, the homology of which will be the simplicial homology (simpliziale Homologie) of K. We
will see later that with a bit of care, simplicial homology can be defined as a collection of functors on
the subcategory of Top consisting of all polyhedra, without needing to specify how each polyhedron
is triangulated. For now, however, the definition of the simplicial homology groups will depend
explicitly on a simplicial complex, and thus gives us functors SimpÑ R-Mod.

The first version of the simplicial chain complex is algebraically simpler than the second, while
the second will be easier to interpret geometrically. In practice, we will eventually be able to
choose freely between them, because (for slightly nontrivial reasons) their homologies turn out to
be naturally isomorphic.

Remark 29.21. For readers who have seen the definition of simplicial homology in the first
semester of these notes (cf. Lecture 21): the complex defined in §29.4 below is cosmetically different
from the one that was defined there, but is easily seen to be isomorphic to it (see Remark 29.24).
The main difference is that our previous definition required fixing an arbitrary choice of orientation
for each simplex, and the definition below avoids making any such choices.

Convention. For the rest of this lecture, and in fact for most of the rest of this course, you
should assume that

G P R-Mod

is an arbitrary choice of R-module, which will typically play the role of the coefficient group in
whichever version of homology is under discussion. We will include G in the notation for homology
in situations where the choice of coefficient group matters, but omit it whenever this choice plays
no important role.

Given a simplicial complex K “ pV, Sq, define the set
KonpKq :“

!
pv0, . . . , vnq P V ˆpn`1q ˇ̌ there exists a σ P S with vi P σ for all i “ 0, . . . , n

)
for each n ě 0. The elements of KonpKq are thus ordered pn` 1q-tuples of vertices such that some
simplex of the complex contains all of them. Note that in this definition, we are not assuming
the v0, . . . , vn are all distinct, though if they are, then it means tv0, . . . , vnu P S is an n-simplex
of the complex K, and the ordered tuple pv0, . . . , vnq is then called an ordered n-simplex. The
ordered simplicial chain complex (with coefficients in G)

Co˚pKq “ Co˚pK;Gq “ à
nPZ

ConpK;Gq “ à
nPZ

ConpKq

is defined with
ConpKq “

à
σPKo

npKq
G

for each n ě 0, so that n-chains can be written uniquely as finite sums
ř
i aiσi with coefficients

ai P G attached to canonical generators σi P KonpKq. In particular, if the coefficient module G is
taken to be the ring R itself, then ConpKq is the free R-module over the set KonpKq; in the case
R “ Z, it is thus a free abelian group. Linearity and the formula

(29.4) Bpv0, . . . , vnq :“
nÿ
k“0

p´1qkpv0, . . . , vk´1, vk`1, . . . , vnq

uniquely determine a boundary map B : ConpKq Ñ Con´1pKq on this complex for each n ě 1, and
we define ConpKq to be trivial for each n ă 0, so that B : ConpKq Ñ Con´1pKq is necessarily trivial
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for each n ď 0. It is a straightforward exercise in sign cancellations to verify that B satisfies B2 “ 0.
The resulting homology groups

Ho˚pKq :“ Ho˚pK;Gq :“ H˚
`
Co˚pK;Gq, B˘

will be called the ordered simplicial homology of K with coefficients in G.
In order to view ordered simplicial homology as a functor, we associate to each simplicial map

f : K1 Ñ K2 and each n ě 0 the unique R-module homomorphism

f˚ : ConpK1q Ñ ConpK2q
determined by linearity and the formula

f˚pv0, . . . , vnq :“ pfpv0q, . . . , fpvnqq.
It is straightforward to check that this defines a chain map Co˚pK1q Ñ Co˚pK2q, and thus gives us
a functor

Co˚ : SimpÑ ChpR-Modq.
Composing this with the algebraic homology functors Hn : ChpR-Modq Ñ R-Mod gives us functors

Ho
n : SimpÑ R-Mod;

in particular, simplicial maps f : K1 Ñ K2 induce R-module homomorphisms f˚ : Ho
npK1q Ñ

Ho
npK2q for every n.
29.4. Oriented simplicial homology. The second version of the simplicial chain complex

has a similar but smaller set of generators, because it excludes tuples pv0, . . . , vnq that contain
repeats of the same vertex, and instead of keeping track of their orders, it keeps track of orientations.
The following combinatorial result makes this possible; its proof is an exercise.

Lemma 29.22. For each n ě 1, the boundary map B : ConpK;Zq Ñ Con´1pK;Zq defined via
(29.4) preserves the subgroup of Co˚pK;Zq generated by all elements of the form

(29.5)
`
v0, . . . , vn

˘ P ConpK;Zq with vi “ vj for some i ‰ j

or of the form

(29.6)
`
v0, . . . , vn

˘´ p´1q|τ |`vτp0q, . . . , vτpnq˘ P ConpK;Zq
for arbitrary pv0, . . . , vnq P KonpKq and permutations τ P Sn`1, where p´1q|τ | “ ˘1 denotes the
sign of the permutation. �

Definition 29.23. An orientation (Orientierung) of an n-simplex σ P S for n ě 1 in a
complex K “ pV, Sq is an equivalence class of orderings of the vertices of σ, where two orderings
are considered equivalent if they differ by an even permutation. The case n “ 0 is special: an
orientation of a 0-simplex is simply a choice of sign `1 or ´1, called the positive or negative
orientation respectively.

A simplex endowed with an orientation is called an oriented simplex (orientiertes Simplex),
and any oriented simplex with vertices v0, . . . , vn can be written with the notation

˘rv0, . . . , vns,
which is understood to mean the simplex tv0, . . . , vnu with orientation determined by the ordering
v0, . . . , vn if the sign in front is positive, and the opposite of that orientation if the sign is negative.
So for example, the symbols rv0, v1s and ´rv1, v0s represent the same oriented 1-simplex, while that
simplex with the opposite orientation can be written as either ´rv0, v1s or rv1, v0s. For an oriented
0-simplex ˘rv0s, there is only one possible ordering, and the orientation is thus determined entirely



29. SIMPLICIAL HOMOLOGY 211

by the initial sign. For a 2-simplex tv0, v1, v2u, the fact that cyclic permutations of three elements
are always even means

rv0, v1, v2s “ rv1, v2, v0s “ rv2, v0, v1s “ ´rv1, v0, v2s “ ´rv0, v2, v1s “ ´rv2, v1, v0s.
In pictures of 2-dimensional polyhedra, one can usefully employ arrows on 1-simplices to specify
orientations by ordering the two vertices, and circular arrows in 2-simplices to indicate the cyclic
orderings that determine their orientations (see Figure 15).

Thanks to Lemma 29.22, the oriented simplicial chain complex of K “ pV, Sq can be
defined as a quotient

C∆˚ pKq :“ Co˚pKq
L
Do˚pKq,

where we denote by Do˚pKq Ă Co˚pKq the submodule generated by products of arbitrary coefficients
g P G with elements of the form (29.5) or (29.6); this is sometimes called the group of degenerate
chains. For each generator pv0, . . . , vnq of ConpK;Zq, we shall denote the equivalence class that it
represents in the quotient complex by

rv0, . . . , vns P C∆
n pK;Zq.

This means
rv0, . . . , vns “ 0 if vi “ vj for some i ‰ j,

whereas if the vertices v0, . . . , vn are all distinct, then rv0, . . . , vns can be interpreted as an oriented
n-simplex, and the equivalence relation in the quotient complex then reproduces our previous
notational convention for oriented simplices, namely

rv0, . . . , vi, . . . , vj , . . . , vns “ ´rv0, . . . , vj , . . . , vi, . . . , vns
for each pair i ‰ j in t0, . . . , nu. The boundary map B : C∆

n pKq Ñ C∆
n´1pKq is thus determined

by the formula

(29.7) Brv0, . . . , vns “
nÿ
k“0

p´1qkrv0, . . . , vk´1, vk`1, . . . , vns,

and Lemma 29.22 guarantees that this formula is independent of the order in which the vertices
are written. We will denote the resulting oriented simplicial homology by

H∆˚ pKq :“ H˚
`
C∆˚ pKq

˘
.

One checks easily that the chain maps f˚ : Co˚pK1q Ñ Co˚pK2q induced by any simplicial map
f : K1 Ñ K2 descend to the quotient as chain maps

f˚ : C∆˚ pK1q Ñ C∆˚ pK2q,
thus giving a functor

C∆˚ : SimpÑ ChpR-Modq,
which composes with the algebraic homology functor to produce functors

H∆
n : SimpÑ R-Mod

for each n ě 0.
Notice moreover that since the chain complex C∆˚ pKq is defined as a quotient of Co˚pKq, the

quotient projection
Co˚pKq Ñ C∆˚ pKq : pv0, . . . , vnq ÞÑ rv0, . . . , vns

is also a chain map, and thus induces a natural sequence of homomorphisms

Ho
npKq Ñ H∆

n pKq, n ě 0.

The word “natural” is meant here in its technical sense, as the map from ordered to oriented
simplicial homology can be seen as a natural transformation between two functors SimpÑ R-Mod.
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We will later see in fact that on the homology level (though not on the level of chain complexes),
these maps are always isomorphisms. This fact, however, requires a lengthier discussion, and we
do not need it just yet.

Remark 29.24. While it is not so obvious from the definition above, C∆
n pKq “ C∆

n pK;Gq for
a simplicial complex K can be identified with a complex of the form

C∆
n pKq –

à
σPK∆

n pKq
G,

where the set K∆
n pKq of generators consists of all n-simplices σ “ tv0, . . . , vnu in the complex K.

This perspective gives C∆˚ pKq a similar formal structure to that of Co˚pKq, so that for instance
C∆
n pK;Zq is also a free abelian group, but with a smaller and more manageable set of generators

than ConpK;Zq. Indeed, each generator of ConpKq is an ordered tuple pv0, . . . , vnq of vertices in a
simplex, but the generators of C∆

n pKq are instead actual n-simplices tv0, . . . , vnu of the complexK,
meaning that the vertices v0, . . . , vn are required to be distinct, and the order in which they are
written does not matter. Some choices are required, however, before C∆

n pKq can be presented in
this way: if one makes an arbitrary choice of orientation for each simplex tv0, . . . , vnu of K and
writes its vertices in an order consistent with the chosen orientation, then the resulting oriented
n-simplex rv0, . . . , vns can be used as a generator of C∆

n pKq, and there is no need to consider
other permutations of the vertices v0, . . . , vn. Writing down B : C∆

n pKq Ñ C∆
n´1pKq then requires

taking some care with signs, to account for the fact that the arbitrarily chosen orientations of the
pn´1q-simplices of K may or may not agree with the orientations of the boundary faces appearing
in the usual formula for Brv0, . . . , vns. The result is essentially the definition of H∆˚ pKq that we
gave in Lecture 21 last semester, and it is also the description that typically seems most convenient
for actual computations of simplicial homology (see e.g. Figure 15). The alternative formulation
as a quotient complex shows why it does not actually depend on the choices of orientations.

Comparing the ordered and oriented simplicial chain complexes, the oriented complex has a
more obvious geometric interpretation, because its generators are in bijective correspondence with
actual simplices. By contrast, the ordered chain complex has a lot of redundant information, since
each simplex gives rise to several generators corresponding to the different possible orderings of
its vertices. But as we will see, the ordered complex is the one that admits a straightforward
relationship with the singular homology of a polyhedron.

29.5. Exercises.

Exercise 29.1 (*). Prove Proposition 29.5: For any simplicial complex K “ pV, Sq and any
space X , a map f : |K| Ñ X is continuous if and only if f ||σ| : |σ| Ñ X is continuous for every
simplex σ P S.

Exercise 29.2 (*). Prove Lemma 29.22, which establishes that the definition of B on the
oriented simplicial chain complex makes sense.
Hint: One does not really need to examine all possible tuples pv0, . . . , vnq and all of their permu-
tations. It suffices to check cases where vk “ vk`1 for some k, and permutations that interchange
two neighboring elements.

Exercise 29.3. Figure 16 shows a simplicial complex K “ pV, Sq whose associated polyhedron
|K| is homeomorphic to the Klein bottle. There are nine vertices labeled Pi, Qi, Ri for i “ 1, 2, 3,
twenty-seven 1-simplices labeled by letters ai, bi, ci, di, ei, fi for i “ 1, 2, 3 and gi for i “ 1, . . . , 9, and
eighteen 2-simplices labeled σi, τi for i “ 1, . . . , 9. The picture also shows a choice of orientation for
each of the 2-simplices (circular arrows represent a cyclic ordering of the vertices) and 1-simplices
(arrows point from the first vertex to the last). If we additionally endow each 0-simplex with the
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Figure 15. The picture shows a simplicial complex K with polyhedron |K| –
T2, and choices of orientations on each simplex indicated via arrows (defining cyclic
orderings of three vertices in the case of each 2-simplex). With these orientations
fixed, plugging in the definition of B : C∆

n pK;Zq Ñ C∆
n´1pK;Zq gives e.g. Bσ1 “

g1 ´ a1 ´ d3, Bτ1 “ b1 ` e3 ´ g1, Ba1 “ P2 ´ P1, Ba2 “ P3 ´ P2, Ba3 “ P1 ´ P3,
and so forth. The complete computation of H∆˚ pK;Zq was carried out near the
end of Lecture 21 last semester, with H∆

2 pK;Zq – Z generated by the sum of the
eighteen 2-simplices in the complex, H∆

1 pK;Zq – Z2 – π1pT2q – H1pT2;Zq, and
H∆

0 pK;Zq – Z – H0pT2;Zq.

positive orientation, every letter in the picture can be regarded as representing an oriented simplex,
and thus a generator of the oriented simplicial chain complex C∆˚ pK;Zq.

(a) Write down the 1-chains Bσi, Bτi P C∆
1 pK;Zq explicitly for each i “ 1, . . . , 9.

(b) Prove that H∆
2 pK;Z2q – Z2, and write down a specific cycle in C∆

2 pK;Z2q that generates
it.

(c) Prove that H∆
2 pK;Zq “ 0.
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Figure 16. The Klein bottle as a polyhedron.

(d) Show that the 1-cycle d1 ` d2 ` d3 represents a nontrivial homology class rd1 ` d2 ` d3s
in both H∆

1 pK;Zq and H∆
1 pK;Z2q, but satisfies 2rd1 ` d2 ` d3s “ 0 P H∆

1 pK;Zq and
rd1 ` d2 ` d3s “ 0 P H∆

1 pK;Qq.

Exercise 29.4 (*). The following computations may give you a hint as to why h0pt˚uq is
called the coefficient group of an axiomatic homology theory h˚. In the simplicial context, let t˚u
denote a simplicial complex that has exactly one vertex.

(a) Prove that H∆
0 pt˚u;Gq – G and H∆

n pt˚u;Gq “ 0 for all n ‰ 0.
Hint: This is nearly trivial.

(b) Prove that Ho
0 pt˚u;Gq – G and Ho

npt˚u;Gq “ 0 for all n ‰ 0.
Remark: This is slightly less trivial than part (a), but not difficult.
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30. Triangulated manifolds and subdivision

I claimed in the previous lecture that simplicial homology can be viewed as a combinatorial
variant of bordism theory. To see what I mean by this, we need to talk about manifolds with
triangulations.

30.1. Triangulated manifolds. In this lecture, we will not need any knowledge of smooth-
ness, so the word “manifold” means topological manifold, i.e. a second countable Hausdorff space
that is locally homeomorphic to a finite-dimensional vector space or half-space. It should be
assumed that all manifolds M may have nonempty boundary BM unless stated otherwise.

Definition 30.1. An n-dimensional triangulated manifold is a topological n-manifold M
equipped with a triangulation M – |K| that identifies BM with the polyhedron of a subcomplex
K 1 Ă K.

The following is a consequence of the local Euclidean structure of manifolds:

Proposition 30.2. If M – |K| is a triangulated n-dimensional manifold, then the associated
simplicial complex K is n-dimensional, and every pn ´ 1q-simplex σ in K is a boundary face of
either one or two n-simplices, where the former is the case if and only if σ belongs to the subcomplex
triangulating BM . �

In general, it is a subtle question whether a given manifold admits a triangulation. It is known
to be true for all smooth manifolds, and also for topological manifolds of dimension at most three
(see [Moi77]), but not in general for dimensions four and above (see [Man14]). We will not
concern ourselves with such questions here, as for our purposes, it is already helpful to consider
explicit examples of manifolds with triangulations, such as the picture of T2 in Figure 15. Our
immediate motivation for doing so is to give explicit constructions of some important homology
classes. The idea is to turn a triangulation M – |K| of a compact n-manifold into an n-chain in
the simplicial chain complex of K.

It is easiest to explain how this works in H∆pK;Z2q. Using Z2 as a coefficient group has the
advantage that for any n-simplex σ “ tv0, . . . , vnu of K, we have

rv0, . . . , vns “ ´rv0, . . . , vns P C∆
n pK;Z2q,

so that all choices of ordering for the vertices v0, . . . , vn produce the same element, and there is
thus no need to worry about orientations. Given a compact triangulated n-manifold M – |K|, we
can define an oriented simplicial n-chain by

(30.1) cM :“ÿ
σ

vσ P C∆
n pK;Z2q,

where the sum ranges over the set of all n-simplices σ of K, and vσ “ rv0, . . . , vns denotes the
vertices of σ “ tv0, . . . , vnu, arranged in an arbitrary order. Note that this definition would not
make sense if M were not compact, but according to Proposition 29.15, compactness implies that
K is a finite simplicial complex, so that the sum in the definition of cM is finite. If BM ‰ H, then
the subcomplex K 1 Ă K triangulating BM similarly defines a simplicial pn´ 1q-chain

cBM P C∆
n´1pK 1;Z2q Ă C∆

n´1pK;Z2q,
where we are regarding C∆

n´1pK 1;Z2q as a submodule of C∆
n´1pK;Z2q, which makes sense because

the canonical generators of C∆
n´1pK 1;Z2q (i.e. the pn´1q-simplices of K 1) are also pn´1q-simplices

of K and thus generators of C∆
n´1pK;Z2q. If BM “ H, then the recipe above defines the trivial

pn´ 1q-chain, and we can therefore sensibly write

cBM “ 0 P C∆
n´1pK;Z2q if BM “ H.
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Proposition 30.3. The chains cM P C∆
n pK;Z2q and cBM P C∆

n´1pK 1;Z2q Ă C∆
n´1pK;Z2q in

the situation above satisfy
BcM “ cBM .

Proof. By Proposition 30.2, applying B to the right hand side of (30.1) produces exactly two
copies of each pn ´ 1q-simplex of K that is not in K 1, so with Z2 coefficients, they cancel each
other. What remains is a single term for each pn ´ 1q-simplex in the triangulation of BM , which
produces cBM . �

The proposition implies in particular that whenever M is a closed triangulated n-manifold,
the n-chain cM is a cycle, and thus represents a homology class

rM s :“ rcM s P H∆
n pK;Z2q.

We call this the (simplicial) fundamental class of M , and refer to cM as a fundamental cycle.
In the case BM ‰ H, we will see when we discuss relative simplicial homology that cM still
represents a relative homology class for the triangulated pair of spaces pM, BMq, thus the terms
fundamental cycle and fundamental class remain appropriate.

Fundamental cycles and classes can also be defined in ordered simplicial homology, but this
requires some choices.

Definition 30.4. An admissible ordering on a simplicial complex K “ pV, Sq assigns to
each simplex σ P S a total order on its set of vertices such that the inclusion τ ãÑ σ of each of its
faces τ Ă σ is an order-preserving map.

It is easy to see that every simplicial complex admits an admissible ordering, e.g. one can
simply choose a total order on the entire set of vertices V , and define the total orders on every
simplex σ Ă V so that the inclusion σ ãÑ V is order preserving. Since we are only talking about
compact manifolds in this lecture, our simplicial complexes are always finite, so you don’t even
need to appeal to any abstract set-theoretic machinery (e.g. the axiom of choice) before choosing
a total order on V . There are also situations where establishing a rule to determine total orders
on every simplex σ P S is more convenient than choosing a total order on V itself.

Suppose again that M – |K| is a compact triangulated n-manifold, and let K 1 Ă K denote
the subcomplex whose polyhedron is identified with BM . Working with Z2 coefficients, any choice
of admissible ordering for K determines an ordered simplicial n-chain of the form

cM :“ÿ
σ

vσ P ConpK;Z2q,

in which the sum ranges again over the set of all n-simplices σ of K, and vσ “ pv0, . . . , vnq denotes
the vertices of σ “ tv0, . . . , vnu arranged in increasing order. If BM ‰ H, the admissible ordering
on K restricts to an admissible ordering on K 1, and thus similarly determines an ordered simplicial
pn´ 1q-chain

cBM P Con´1pK 1;Z2q Ă Con´1pK;Z2q,
and we take cBM to be 0 P Con´1pK;Z2q if BM “ H. It is easy to verify that the analogue of
Proposition 30.3 also holds in this situation, and we thus have

BcM “ cBM P Con´1pK;Z2q.
It is clear from the construction that the natural chain map Co˚pK;Z2q Ñ C∆˚ pK;Z2q sends each

ordered fundamental cycle to the oriented fundamental cycle, so whenM is closed, it therefore sends
an ordered simplicial fundamental class rM s P Ho

npK;Z2q to the oriented simplicial fundamental
class rM s P H∆

n pK;Z2q. Once we’ve proved that the natural map Ho
npK;Z2q Ñ H∆

n pK;Z2q is an
isomorphism, we will be able to deduce from this that the class rM s P Ho

npK;Z2q is independent
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of choices, even though the fundamental cycle cM P ConpK;Z2q that represents it does depend on
the choice of admissible ordering for the complex.

The following result is a worthwhile exercise in the computation of simplicial homology.

Theorem 30.5. For any closed and connected triangulated n-manifold M – |K|, H∆
n pK;Z2q

is isomorphic to Z2, and its unique nontrivial element is the fundamental class rM s. �

30.2. Oriented triangulations. In order to extend the construction of fundamental cycles
from Z2 to integer coefficients, we need triangulations with a bit of extra structure.

Definition 30.6. Suppose n ě 1 and ˘rv0, . . . , vns is an oriented n-simplex in a simplicial
complex. The induced boundary orientation on the boundary face tv1, . . . , vnu is then given by
the oriented pn´ 1q-simplex ˘rv1, . . . , vns.

Note that the oriented simplex ˘rv0, . . . , vns can typically be written in multiple distinct ways
with the vertex v0 appearing first and the other vertices permuted, but the same permutation
then applies to the oriented boundary face ˘rv1, . . . , vns and causes the same sign change, so
that Definition 30.6 does not depend on any choices. Moreover, the definition determines an
orientation on every boundary face of σ “ tv0, . . . , vnu, because for any k “ 0, . . . , n, one can
always apply a permutation to rewrite ˘rv0, . . . , vns with vk in front; in particular, rv0, . . . , vns “
p´1qkrvk, v0, . . . , vk´1, vk`1, . . . , vns, so that endowing the face tv0, . . . , vk´1, vk`1, . . . , vnu with the
boundary orientation determined by rv0, . . . , vns produces the oriented simplex

p´1qkrv0, . . . , vk´1, vk`1, . . . , vns.
The formula (29.7) for Brv0, . . . , vns in the oriented simplicial chain complex can thus be interpreted
as the sum of the n` 1 boundary faces of rv0, . . . , vns endowed with their boundary orientations.

Remark 30.7. In addition to being consistent with our usual formulas for boundary operators
on chain complexes, there is some geometric motivation behind Definition 30.6. In differential
geometry, an oriented n-manifoldM induces a natural boundary orientation on BM , and if M has
a triangulation, the orientation ofM also induces orientations of the n-simplices in its triangulation.
One can check that if the polyhedron |σ| of an oriented n-simplex σ in a complex K is viewed as an
oriented n-manifold, then the geometric notion of boundary orientation on B|σ| – Sn´1 matches
the induced orientations (according to Definition 30.6) of the boundary faces of σ, which form a
triangulation of B|σ|.

Definition 30.8. For an n-dimensional manifoldM , an oriented triangulation (orientierte
Triangulierung) of M is a triangulation in which every n-simplex is endowed with an orientation
such that for every pn´1q-simplex σ not contained in BM , the two boundary orientations it inherits
as a boundary face of two distinct oriented n-simplices (cf. Prop. 30.2) are opposite.

I recommend now taking another look at Figure 15 to verify that the orientations of 2-simplices
depicted in this picture define an oriented triangulation of T2. Then, contrast it with Figure 16,
which shows a triangulation of the Klein bottle in which orientations of the 2-simplices have been
chosen but they fail to satisfy the conditions of Definition 30.8. (The trouble is with the 1-simplices
labeled d1, d2, d3.) The problem with the Klein bottle is of course that it is a non-orientable
manifold, and it turns out that only orientable manifolds can admit oriented triangulations—we
sketched a proof of this for surfaces last semester in Lecture 20, and we will be able to prove it for
all manifolds later in this course using homology.

Example 30.9. The triangulation of Sn´1 described in Example 29.10 can be oriented by
choosing an ordering of the vertex set V , regarding this as an oriented n-simplex σ and then
endowing each of its boundary faces with the boundary orientation. The cancelation condition
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on pn ´ 2q-simplices in this case is roughly equivalent to the fact that B2 “ 0 in the singular and
simplicial chain complexes; see Proposition 30.10 below.

We now consider whether a version of the fundamental cycle cM P C∆
n pK;Z2q for a compact

triangulated n-manifold M – |K| with boundary BM – |K 1| can also be defined with integer
coefficients. Indeed, suppose that an orientation has been chosen for each of the n-simplices σ
of K, and consider an n-chain of the form

(30.2) cM :“ÿ
σ

vσ P C∆
n pK;Zq,

where as usual the sum ranges over the set of all n-simplices σ “ tv0, . . . , vnu in K, and vσ “
rv0, . . . , vns is defined by ordering the vertices in accordance with the chosen orientation. Since
each pn´ 1q-simplex of the subcomplex K 1 Ă K triangulating BM is a boundary face of a unique
n-simplex, the chosen orientations of the n-simplices determine boundary orientations of the pn´1q-
simplices of K 1, which we can use to define an pn´ 1q-chain

cBM P C∆
n´1pK 1;Zq Ă C∆

n´1pK;Zq.
The formula

BcM “ cBM
is then satisfied if and only if the chosen orientations of the n-simplices satisfy the condition in
Definition 30.8: indeed, this condition means that all contributions to BcM from pn´ 1q-simplices
not in BM appear in cancelling pairs, while each pn´ 1q-simplex in BM appears exactly once with
the correct sign. In the case BM “ H, cM P C∆

n pK;Zq is then a cycle and thus represents an
integral fundamental class

rM s :“ rcM s P H∆
n pK;Zq.

We summarize:

Proposition 30.10. For any compact triangulated n-manifold M – |K| with an oriented
triangulation, the induced triangulation of the boundary BM – |K 1| admits a unique orientation
for which each pn´1q-simplex of K 1 is oriented as the boundary of an oriented n-simplex of K. The
resulting fundamental cycles in C∆˚ pK;Zq as constructed above then satisfy the relation BcM “ cBM .

Proof. The discussion preceding the statement showed that if the triangulation of M is
oriented and the orientations of its n-simplices are used in defining cM P C∆

n pK;Zq and (via
boundary orientations) cBM P C∆

n´1pK 1;Zq Ă C∆
n´1pK;Zq, then BcM “ cBM . One detail not yet

addressed is that the boundary orientations on the pn ´ 1q-simplices of K 1 really do define an
oriented triangulation of BM : this follows from the relation

BcBM “ BpBcM q “ 0,

which means that the two contributions to BcBM from each pn ´ 2q-simplex in BM cancel each
other. �

Here is another worthwhile computational exercise:

Theorem 30.11. For any closed and connected n-manifold M – |K| with an oriented trian-
gulation, H∆

n pK;Zq is isomorphic to Z, and its fundamental class rM s is a generator. �

For an analogue in ordered simplicial homology with integer coefficients, we can again choose
an admissible ordering for K, but we need to be aware that the resulting ordering of the vertices
pv0, . . . , vnq of each simplex σ might not be consistent with the chosen orientation of σ. We can
account for this by including appropriate signs in the formula: we define

cM :“ÿ
σ

ǫσvσ P ConpK;Zq,
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where for each n-simplex σ “ tv0, . . . , vnu of our oriented triangulation, with vertices arranged in
increasing order, we set ǫσ “ ˘1 so that ǫσrv0, . . . , vns defines the chosen orientation. Defining

cBM P Con´1pK 1;Zq Ă Con´1pK;Zq
in the same manner via the admissible ordering and boundary orientation, the same arguments as
before prove BcM “ cBM .

30.3. Triangulated bordism. With triangulated manifolds in hand, the similarity between
homology and bordism theory can be made more explicit. Suppose

X – |K|
is a space (but not necessarily a manifold) triangulated by a simplicial complex K, and suppose

M – |L|
is a closed triangulated n-manifold with an oriented triangulation. Any simplicial map ϕ : LÑ K

induces a continuous map ϕ :M Ñ X , so that the pair pM,ϕq represents an element of the oriented
bordism group ΩSO

n pXq. A corresponding simplicial homology class can be defined by

ϕ˚rM s P H∆
n pK;Zq,

using the integral fundamental class rM s “ rcM s P H∆
n pL;Zq defined via the oriented triangulation

of M . Further, suppose there is an oriented bordism pW,Φq between pM,ϕq and another such pair
pN,ψq, equipped with the additional data of an oriented triangulation: more precisely, W – |L1|
is a compact pn ` 1q-manifold with an oriented triangulation, Φ : L1 Ñ K is a simplicial map
inducing the continuous map Φ : W Ñ X , and there is a homeomorphism BW – M > p´Nq that
identifies the subcomplex triangulating M with K and Φ|M with ϕ. The minus sign in front of N
means that we consider N Ă BW to be equipped with an oriented triangulation whose n-simplices
carry the opposite of the boundary orientations they inherit from the oriented pn ` 1q-simplices
triangulating W . With this understood, we can write ψ :“ Φ|N : N Ñ X and obtain a simplicial
homology class

ψ˚rN s P H∆
n pK;Zq

in the same manner as ϕ˚rM s, but the triangulated bordism pW,Φq tells us more: the orientation
reversal on N gives the relation

BcW “ cBW “ cM ´ cN P C∆
n pL1;Zq,

and plugging this into the chain map Φ˚ : C∆˚ pL1;Zq Ñ C∆˚ pK;Zq, we have
BpΦ˚cW q “ Φ˚pcM ´ cN q “ ϕ˚cM ´ ψ˚cN P C∆

n pK;Zq,
implying

ϕ˚rM s “ ψ˚rN s P H∆
n pK,Zq.

This matches what happens in bordism theory: two simplicial homology classes represented by
closed triangulated manifolds with simplicial maps are the same whenever there is a triangulated
bordism between them. We will see when we study fundamental classes in singular homology that
the entire discussion makes sense in that context as well, but without any need for triangulations.

Remark 30.12. Orientations were needed for all the triangulations in the discussion above
because we were working with integer coefficients. If we did not have orientations, the entire
discussion would still make sense after uniformly replacing the coefficient group Z by Z2, and
H∆
n pX ;Z2q thus becomes the combinatorial variant of the unoriented bordism group ΩO

n pXq.
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30.4. Barycentric subdivision. I would now like to describe a specific triangulation of the
standard n-simplex ∆n. One can reasonably ask why it is worth bothering to triangulate a simplex:
after all, ∆n is already a polyhedron in a trivial way. But the point of the following construction
is to decompose ∆n into n-simplices that are strictly smaller, and iterating the process will then
produce triangulations whose individual n-simplices are as small as we like. This will come in
handy when we need to prove the formal properties of singular homology, and it also has some
important theoretical consequences for simplicial homology, including one ingredient in the proof
that Ho˚pKq and H∆˚ pKq really are invariants of the polyhedron |K|, and not just of the particular
simplicial complex K that is used for triangulating it.

For each n ě 0, the point

bn :“
ˆ

1

n` 1
, . . . ,

1

n` 1

˙
P ∆n Ă Rn`1

is called the barycenter of the standard n-simplex; you should imagine it as the center of mass
of ∆n. The following inductive procedure uniquely determines a decomposition of ∆n for each
n ě 0 into smaller pieces δn Ă ∆n that are homeomorphic to ∆n:

(1) For n “ 0, the one-point space ∆0 cannot be decomposed any further, so its triangulation
consists only of a single 0-simplex.

(2) If the triangulation of ∆n´1 has already been defined, then using the canonical identifi-
cation of the boundary face Bpkq∆n for each k “ 0, . . . , n with ∆n´1, each pn´1q-simplex
δn´1 Ă Bpkq∆n in its triangulation determines an n-simplex δn Ă ∆n as the convex hull
of δn´1 and the barycenter bn.

For a more precise description of barycentric subdivision, we should specify an abstract sim-
plicial complex K along with a homeomorphism |K| – ∆n defining the triangulation of ∆n. It
is most natural to define K so that its vertices are points in ∆n, and since ∆n is a subset of the
vector space Rn`1, the following condition becomes relevant:

Definition 30.13. Given a vector space V of dimension at least n, a set of n points in V is
said to be in general position if they are not contained in any pn´ 2q-dimensional plane.

For example, three points in a vector space of dimension at least 2 are in general position if
they are not colinear. In general, for a given set of points v0, . . . , vn P V with dimV ě n` 1, the
unique linear map Rn`1 Ñ V sending the standard basis of Rn`1 to the vectors v0, . . . , vn restricts
to ∆n Ă Rn`1 as an embedding ∆n ãÑ V if and only if the points v0, . . . , vn are in general position.

The abstract simplicial complex K arising from the barycentric subdivision of ∆n can now
be described as follows. One first triangulates the standard 0-simplex with the simplicial complex
whose only vertex is the one point in∆0 Ă R. Then inductively, having defined triangulations of the
boundary faces Bpkq∆n – ∆n´1 via complexes whose vertices are all identified with points in Bpkq∆n,
each n-simplex of K is defined to have vertices bn, v1, . . . , vn, where v1, . . . , vn P Bpkq∆n are the
vertices of an pn´ 1q-simplex in the complex triangulating Bpkq∆n – ∆n´1 for some k “ 0, . . . , n.
The homeomorphism identifying |K| with ∆n sends each simplex |σ| Ă |K| into ∆n via the
restriction of the unique linear map that sends each vertex to itself. That this actually defines a
homeomorphism |K| – ∆n follows from the following proposition, whose proof is Exercise 30.2:

Proposition 30.14. For the abstract simplicial complex K described above, whose vertices are
points in ∆n:

(a) The vertices of each n-simplex are in general position.
(b) Every point p P ∆n lies in the convex hull of the points v0, . . . , vk P ∆n for some simplex

tv0, . . . , vku of K.
�
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It is worth pausing a moment now to draw pictures of the barycentric subdivisions of ∆n for
n “ 1, 2: the subdivision of ∆1 will have only two 1-simplices, and since ∆2 has three boundary
faces, its subdivision has six 2-simplices. In general, the number of n-simplices in the subdivision
of ∆n will be pn ` 1q!. You’ll find a picture of the subdivision of ∆3 in [Hat02], among other
places; if you ever find a convincing picture of the case n “ 4, let me know.

The triangulation defined above can be turned into an integral fundamental cycle

c∆n P C∆
n pK;Zq or c∆n P ConpK;Zq

after making some additional choices, namely of orientations and/or admissible orderings. There
is surely more than one possible recipe for this, but here is one that works. Inductively, assume an
admissible ordering and an orientation have already been chosen for the barycentric subdivision
of ∆n´1; for the case n “ 0, there is no choice of ordering to be made, and we can fix the positive
orientation on the unique 0-simplex. Now if v1, . . . , vn are the vertices of an pn´1q-simplex on one
of the boundary faces Bpkq∆n “ ∆n´1 arranged in increasing order, and ˘rv1, . . . , vns is its chosen
orientation, define the ordering and orientation of the n-simplex tbn, v1, . . . , vnu in ∆n to be given
by

pbn, v1, . . . , vnq and ˘ p´1qkrbn, v1, . . . , vns
respectively. Following our usual prescriptions to define fundamental cycles as simplicial n-chains
in ConpK;Zq or C∆

n pK;Zq, the barycentric subdivisions of ∆n and its boundary faces are then
related via the formula

Bc∆n “
nÿ
k“0

p´1qkcBpkq∆n in Con´1pK;Zq or C∆
n´1pK;Zq,

where as usual, cBpkq∆n is defined by identifying Bpkq∆n with ∆n´1 and is then regarded as an
element of C∆

n´1pK;Zq since the vertices of the subdivision of Bpkq∆n are also vertices of the
subdivision of ∆n.

Since we can now subdivide a standard simplex into smaller simplices of the same dimension,
we can also subdivide any polyhedron. Indeed, assuming K “ pV, Sq is an arbitrary simplicial
complex, for each simplex σ P S of K, the corresponding subset |σ| Ă |K| has a well-defined
barycenter bσ P |σ|. We can then construct a new simplicial complex K 1 “ pV 1, S1q whose vertices
are points in the polyhedron |K|, including all the vertices of K plus all the barycenters of its
simplices, and such that the simplices of K 1 correspond to simplices in the barycentric subdivisions
of the individual simplices of K. The unique linear map RV

1 Ñ RV that sends the basis vector
ev P RV

1
corresponding to each vertex v P V 1 to the location of that vertex in |K| Ă RV now

restricts to a homeomorphism
|K 1| –ÝÑ |K|,

and we can therefore sensibly call K 1 the barycentric subdivision of the simplicial complex K.
A natural question now arises: what relation is there between the simplicial homologies of

K and K 1? Their simplicial chain complexes are obviously not the same; in general, the chain
complex for the subdivision K 1 has many more generators than that of K. But the polyhedra of
these two complexes are the same, and it turns out that simplicial homology recognizes this fact.
The result is best stated in terms of a concrete chain map

C∆˚ pKq SÝÑ C∆˚ pK 1q,
which can be defined by associating to each oriented n-simplex of K the n-chain of K 1 determined
by its fundamental cycle. In the next lecture we will prove:

Theorem 30.15. The map S˚ : H∆˚ pKq Ñ H∆˚ pK 1q induced by the chain map described above
is an isomorphism.
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30.5. Exercises.

Exercise 30.1. Prove Theorems 30.5 and 30.11 on the computation ofH∆
n pK;Z2q andH∆

n pK;Zq
for a closed and connected triangulated n-manifold M – |K|, in the second case with an ori-
ented triangulation. Show moreover that if the triangulation does not admit any orientation, then
H∆
n pK;Zq “ 0.

Exercise 30.2. Prove Proposition 30.14, showing that the simplicial complex K with vertices
in ∆n defined via the barycentric subdivision algorithm actually defines a triangulation of ∆n.
Hint: Argue inductively on n. Given any point p P ∆n distinct from the barycenter bn, draw a
straight line from bn through p. What can you say about the point where this line exits ∆n?

31. Chain homotopy and simplicial approximation

I owe you an explanation of why Theorem 30.15 is true, but in this lecture I also want to sketch
a deep application of this theorem, showing that the isomorphism class of the oriented simplicial
homology H∆˚ pKq of a finite simplicial complex K depends only on its polyhedron |K|. In other
words, simplicial homology is a topological invariant, not just an invariant of abstract simplicial
complexes. For concreteness, we shall work with the oriented rather than the ordered simplicial
chain complex, which is not a loss of generality since we will also show in the next lecture that
Ho˚pKq – H∆˚ pKq. A few tricky details will be omitted, and we will make up for this later in the
semester by deriving a second proof of the topological invariance of H∆˚ pKq from cellular homology.
But several of the ideas discussed in this lecture will also be useful for other purposes, when we
develop singular homology and study its applications.

In the early history of homology theory, it was widely believed that the topological invariance
of simplicial homology should be deduced from Theorem 30.15 in combination with a result called
the Hauptvermutung, which conjectured that any two triangulations of the same polyhedron could
be made identical up to homeomorphism after sufficiently many iterations of the barycentric subdi-
vision algorithm. At some point, the invariance of simplicial homology was proven by other means,
and the Hauptvermutung remained an open question until it was, ironically, shown to be false in
the 1960’s. Theorem 30.15 can be viewed nonetheless as an important ingredient in a proof that
H∆˚ pKq depends only on |K|.

To state the main result properly, let

Cpct∆ Ă Top

denote the subcategory whose objects consist of all compact polyhedra, with arbitrary continuous
maps as morphisms. We should clarify: a compact topological space X is an object of Cpct∆ if
and only if it is homeomorphic to the polyhedron |K| of some finite simplicial complex, but the
actual complex K and homeomorphism X – |K| are not considered to be part of the data defining
an object of Cpct∆. In general, a polyhedron has infinitely many distinct choices of possible
triangulations, and without choosing specific triangulations, there is no canonical way to define
what it means for a map between two polyhedra to be simplicial. This is one of a few reasons why
we allow all continuous maps as morphisms in Cpct∆, rather than just simplicial maps.

Theorem 31.1. There exists for each integer n ě 0 and each R-module G a functor

H∆
n “ H∆

n p¨;Gq : Cpct∆ Ñ R-Mod

that assigns to each compact polyhedron X the simplicial homology H∆
n pK;Gq of some finite sim-

plicial complex K whose polyhedron |K| is homeomorphic to X.

Since homeomorphisms are isomorphisms in the category Cpct∆, this result implies:
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Corollary 31.2. If K and K 1 are two finite simplicial complexes with homeomorphic poly-
hedra |K| – |K 1|, then their simplicial homologies H∆

n pKq and H∆
n pK 1q are isomorphic. �

Notice what Theorem 31.1 does not say: we are not claiming that the functor H∆
n : Cpct∆ Ñ

R-Mod is unique or canonical, and in fact, some arbitrary choices will need to be made in order to
define it at the end of this lecture. The need for choices, however, does not detract from the power
of the theorem: the mere fact that H∆

n is a functor on the category Cpct∆, whose morphisms are
arbitrary continuous maps, is enough to deduce useful consequences such as Corollary 31.2.

31.1. The homotopy question. In preparation for proving Theorem 30.15, let us consider
a slightly different question about the functoriality of simplicial homology. Suppose f, g : K Ñ L

are two simplicial maps between simplicial complexes such that the induced continuous maps of
polyhedra |K| Ñ |L| are homotopic. Does it follow that the induced homomorphisms

f˚, g˚ : H∆˚ pKq Ñ H∆˚ pLq
are identical? We’ve seen that bordism theory has a homotopy invariance property of this type, and
a similar property is also incorporated into the Eilenberg-Steenrod axioms for homology theories.

The assumption in the present context is that there exists a continuous map

I ˆ |K| hÝÑ |L|
with hp0, ¨q “ f and hp1, ¨q “ g. In order to make something useful out of this in simplicial
homology, it would seem natural to impose an extra condition and require h to be a simplicial map,
but here we encounter an obstacle: it is not obvious whether I ˆ |K| has a natural triangulation,
which would be needed in order for the notion of a simplicial map to make sense. The polyhedron
|K| is a union of simplices |σ| – ∆n of various dimensions n ě 0, and this decomposes I ˆ|K| into
“prism-shaped” subsets of the form

I ˆ∆n – ∆1 ˆ∆n.

If we can find a sufficiently natural way of triangulating ∆1 ˆ ∆n, we will obtain from this a
triangulation of I ˆ |K| and thus be able to speak of simplicial homotopies h : I ˆ |K| Ñ |L|
between f and g.

31.2. Triangulating products of simplices. Let us frame the question a bit more gener-
ally: Is there a natural way to triangulate ∆m ˆ ∆n for every pair of integers m,n ě 0? This
product of simplices is a manifold of dimension m` n with boundary

Bp∆m ˆ∆nq “ pB∆m ˆ∆nq Y p∆m ˆ B∆nq

“
˜

mď
k“0

Bpkq∆m ˆ∆n

¸
Y
˜

nď
k“0

∆m ˆ Bpkq∆n

¸
.

Notice that each term in the union on the second line is canonically homeomorphic to a product of
the form ∆kˆ∆ℓ for k ď m and ℓ ď n with k`ℓ “ m`n´1. This suggests an inductive condition
that would be natural to require on our triangulations: if we assume that suitable triangulations of
∆k ˆ∆ℓ have already been constructed for all k` ℓ ă m`n, then we would like our triangulation
of ∆m ˆ∆n to reproduce these triangulations when restricted to its smooth boundary faces. We
shall now describe a direct construction that produces this result.

Denote the standard basis of Rm`n`2 “ Rm`1 ˆ Rn`1 by

pe0, 0q, . . . , pem, 0q, p0, f0q, . . . , p0, fnq P Rm`1 ˆ Rn`1,
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so we can regard e0, . . . , em as the vertices of ∆m and f0, . . . , fn as the vertices of ∆n. The
triangulation of ∆m ˆ∆n we construct has vertex set

V :“  pei, fjq P ∆m ˆ∆n
ˇ̌
i P t0, . . . ,mu and j P t0, . . . , nu( ,

and its k-simplices for k “ 0, . . . ,m` n will be the convex hulls of certain pk ` 1q-tuples of these
vertices; in this way, the triangulation ∆m ˆ∆n – |K| will be uniquely determined once we have
specified a suitable abstract simplicial complex K “ pV, Sq. To specify which subsets should be
the vertices of a simplex in K, endow the set t0, . . . ,muˆt0, . . . , nu with the total order such that
pi, jq ď pi1, j1q if and only if i ď i1 and j ď j1, so strict inequality pi, jq ă pi1, j1q means additionally
that i ă i1 or j ă j1. For k “ 0, . . . ,m` n, the k-simplices σ of K are then defined as

σ “ tpei0 , fj0q, . . . , peik , fjkqu Ă ∆m ˆ∆n,

for all possible strictly increasing sequences

pi0, j0q ă . . . ă pik, jkq P t0, . . . ,mu ˆ t0, . . . , nu.
By this definition, we observe that the pm`nq-simplices all correspond to sequences pi0, j0q ă . . . ă
pim`n, jm`nq that begin with pi0, j0q “ p0, 0q and end with pim`n, jm`nq “ pm,nq, thus all of them
contain the two specific vertices pe0, f0q and pem, fnq. Boundary faces σ of these pm`nq-simplices
come in three types, corresponding to sequences pi0, j0q ă . . . ă pim`n´1, jm`n´1q that satisfy the
following conditions:

(1) The sequence j0, . . . , jm`n´1 takes every value in t0, . . . , nu but i0, . . . , im`n´1 misses
exactly one value i P t0, . . . ,mu.

(2) The sequence i0, . . . , im`n´1 takes every value in t0, . . . ,mu but j0, . . . , jm`n´1 misses
exactly one value j P t0, . . . , nu.

(3) There are two consecutive terms of the form pi, jq, pi` 1, j ` 1q.
In the first two cases, the m` n vertices of σ all lie in one of the convex sets

Bpiq∆m ˆ∆n or ∆m ˆ Bpjq∆n.

As observed above, the union of these sets for all i “ 0, . . . ,m and j “ 0, . . . , n is Bp∆mˆ∆nq, and
these boundary faces thus determine an pm ` n ´ 1q-dimensional subcomplex K 1 Ă K in which
the convex hull of the vertices of each simplex is contained in Bp∆m ˆ ∆nq. It is easy to check
that all simplices of K with convex hull contained in Bp∆mˆ∆nq are of this form, because for any
two points p, q P Bp∆m ˆ∆nq that do not both belong to the same one of the m ` n ` 2 convex
subsets mentioned above, the line segment from p to q passes through the interior of ∆mˆ∆n. In
particular, boundary faces of the third type in the list above do not belong to the subcomplex K 1.

Since the vertices pei, fjq P V are all points in ∆m ˆ∆n Ă Rm`n`2 and the latter is a convex
set, the unique linear map RV Ñ Rm`n`2 sending ev ÞÑ v for each v P V restricts to the polyhedron
|K| Ă RV as a map

(31.1) |K| Ñ ∆m ˆ∆n.

Exercise 31.1 shows that this map is a homeomorphism, and thus defines a triangulation of∆mˆ∆n;
moreover, restricting it to the subcomplex K 1 formed by vertices contained in Bp∆m ˆ∆nq gives
a homeomorphism |K 1| – Bp∆m ˆ∆nq.

In order to define fundamental cycles c∆mˆ∆n in Ho
m`npK;Zq and H∆

m`npK;Zq from our
triangulation, we need to endow it with an orientation and choose an admissible ordering for the
simplicial complex K. The latter is easy, as the total order on t0, . . . , ku ˆ t0, . . . , ℓu determines
a total order on the set of all vertices of K. In order to define a suitable orientation, let Spm,nq
denote the set of all strictly increasing sequences pi0, j0q ă . . . ă pim`n, jm`nq of m ` n ` 1
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elements in t0, . . . ,muˆt0, . . . , nu, and write σs for the pm`nq-simplex of K determined by each
s P Spm,nq. Denote by s0 P Spm,nq the specific sequence

p0, 0q ă p1, 0q ă . . . ă pm, 0q ă pm, 1q ă . . . ă pm,nq,
and define the parity |s| P Z2 of any element s P Spm,nq to be the number of steps (modulo 2)
required in order to transform s0 into s via operations that modify three consecutive terms of a
sequence like so:

pi´ 1, jq ă pi, jq ă pi, j ` 1q  pi´ 1, jq ă pi´ 1, j ` 1q ă pi, j ` 1q.
Lemma 31.3. The parity |s| P Z2 of elements s P Spm,nq is independent of choices.
Proof sketch. We can interpret p´1q|s| P t1,´1u as the sign of a permutation of m ` n

elements, which include m copies of the letter R (for “right”) and n copies of the letter U (for
“up”). �

The chosen orientation and admissible ordering for K determine a fundamental cycle

c∆mˆ∆n P C∆
m`npK;Zq or Com`npK;Zq.

For each m,n ě 1, the relation Bc∆mˆ∆n “ cBp∆mˆ∆nq then becomes the following formula under
the usual identification between boundary faces and simplices of one dimension lower:

(31.2) Bc∆mˆ∆n “
mÿ
i“0

p´1qicBpiq∆mˆ∆n ` p´1qm
nÿ
j“0

p´1qjc∆mˆBpjq∆n .

Remark 31.4. If we regard B∆m ˆ ∆n and ∆m ˆ B∆n as compact topological pm ` n ´
1q-manifolds with matching boundary B∆m ˆ B∆n and endow both with the obvious oriented
triangulations and admissible orderings that they inherit from ∆m ˆ ∆n, the formula in (31.2)
takes the slightly prettier form

Bc∆mˆ∆n “ cB∆mˆ∆n ` p´1qmc∆mˆB∆n .

When we introduce the homological cross product later in this course, the singular homology
version of this relation will take the form

Bpc∆m ˆ c∆nq “ Bc∆m ˆ c∆n ` p´1qmc∆m ˆ Bc∆n ,

which is written in terms of the obvious fundamental cycle c∆k P Ckp∆k;Zq for the standard
simplex of each dimension with its trivial triangulation, and a bilinear product operation

C˚pXq b C˚pY q Ñ C˚pX ˆ Y q : AbB ÞÑ AˆB

that relates the singular chain complexes of any two spaces X,Y and sends CmpXq b CnpY q in
general to Cm`npX ˆ Y q. We will have plenty to say about this product later, but the detail I
want to comment on right now is the sign p´1qm appearing on the right hand side of the formula.
This is an instance of a general pattern known as the Koszul sign convention, which we will
see many more examples of in this course. In a nutshell, the rule is that whenever objects carry
natural gradings in either Z or Z2, exchanging the order of two objects with odd degree causes a
sign change. In the present context, the “objects” to which this rule applies are not only the chains
of certain degrees in ∆m and ∆n but also the operator B, which we regard as having degree ´1
since it maps k-chains to pk ´ 1q-chains for every k. This means that no sign change is necesary
when writing Bc∆m ˆ c∆n , since the three objects B, c∆m and c∆n appear here in the same order
as on the left hand side, but writing c∆m ˆ Bc∆n exchanges the order of B and c∆m , and since B
has odd degree, a sign change must then result if and only if c∆m also has odd degree, meaning m
is odd. One could presumably state some general theorem in category-theoretic terms to explain
why and in what contexts this particular way of dealing with signs gives the results we want, but
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I personally would consider writing down that theorem to be more trouble than it is worth. If
you haven’t seen the Koszul convention before in one of the many other contexts (e.g. the exterior
algebra of differential forms on smooth manifolds) where it naturally arises, then I think that you
will in any case learn through experience during the remainder of this course why it is good and
useful.

31.3. From simplicial homotopies to chain homotopies. Let us identify the unit interval
I with the standard 1-simplex via the homeomorphism

I
–ÝÑ ∆1 Ă R2 : t ÞÑ p1´ t, tq.

The oriented triangulation of ∆1 ˆ ∆n constructed in the previous section for each n ě 0 yields
an oriented triangulation of I ˆ∆n whose restriction to the smooth faces of

BpI ˆ∆nq “ pt1u ˆ∆nq Y pt0u ˆ∆nq Y
˜

nď
k“0

I ˆ Bpkq∆n

¸
matches the trivial triangulation of ∆n and the constructed trivialization of I ˆ∆n´1.

Now consider again the polyhedron |K| discussed in §31.1 above, and choose an admissible
ordering for the underlying simplicial complexK. The ordering determines an identification of each
n-simplex of |K| for n “ 0, 1, 2, . . . with the standard n-simplex, and applying the triangulation
algorithm then gives a triangulation of Iˆ|K|, whose underlying simplicial complex we shall denote
in the following by KI . For this triangulation, the two inclusions

|K| ιjãÑ I ˆ |K| : p ÞÑ pj, pq for j “ 0, 1

are both simplicial maps. Now suppose σ “ rv0, . . . , vns is an n-simplex of K, equipped with the
orientation it inherits from the admissible ordering, and let |σ| Ă |K| denote the corresponding
subset homeomorphic to ∆n in the polyhedron. Our triangulation determines an oriented trian-
gulation of the pn ` 1q-dimensional manifold I ˆ ∆n – I ˆ |σ| Ă I ˆ |K|, thus a fundamental
cycle

cIˆ|σ| P C∆
n`1pKI ;Zq,

for which the formula (31.2) specializes to this situation as

BcIˆ|σ| “ pι1q˚σ ´ pι0q˚σ ´ cIˆB|σ|.
Here cIˆB|σ| is an abbreviation for the signed sum of fundamental cycles of the induced triangulation
of I ˆ∆n´1 for each boundary face ∆n´1 – Bpkq∆n of |σ| – ∆n.

Since Iˆ|K| is now a polyhedron, we can sensibly impose an extra condition on the homotopy
h : I ˆ |K| Ñ |L|, and require it to be a simplicial map, i.e. a simplicial homotopy between f
and g. With this assumption in place, there is a unique homomorphism

C∆
n pKq h#ÝÑ C∆

n`1pLq
defined for each n ě 0 via linearity and the formula

h#pσq :“ h˚cIˆ|σ|.
for oriented n-simplices σ P rv0, . . . , vns of K. Since h˚ : C˚pKIq Ñ C˚pLq is a chain map, the
formula above for BcIˆ|σ| implies

Bh#pσq “ g˚σ ´ f˚σ ´ h#pBσq,
so that h# satisfies the so-called chain homotopy relation

Bh# ` h#B “ g˚ ´ f˚.
A brief algebraic digression is now in order.
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Definition 31.5. Given two chain maps f, g : pA˚, BAq Ñ pB˚, BBq, a chain homotopy
(Kettenhomotopie) from f to g is a homomorphism h : A˚ Ñ B˚ that satisfies hpAnq Ă Bn`1 for
each n P Z and the chain homotopy relation

BBh` hBA “ g ´ f.

We say that f and g are chain homotopic if there exists a chain homotopy from f to g.

One easily checks that the notion of chain homotopy defines an equivalence relation between
chain maps, and moreover, if f0 and f1 are chain homotopic and have well-defined compositions of
chain maps fj ˝ g, then f0 ˝ g and f1 ˝ g are also chain homotopic; a similar statement applies to
compositions of the form g ˝ fj. The upshot is that there is a well-defined homotopy category
of chain complexes

hChpR-Modq abbreviated as hCh,

in which the objects are chain complexes of R-modules and the morphisms are chain homotopy
classes of chain maps. An isomorphism in the category hCh is called a chain homotopy equiva-
lence (Kettenhomotopieäquivalenz), so a chain map f : A˚ Ñ B˚ is a chain homotopy equivalence
if and only if it admits a chain homotopy inverse g : B˚ Ñ A˚, meaning a chain map such that
the compositions g ˝ f and f ˝ g are each chain homotopic to identity maps.

There are two convincing reasons why the category hCh is important to define: the first is that
simplicial homotopies between simplicial maps give rise to chain homotopies between the induced
chain maps, as shown above—and we will see later that chain homotopies in the singular chain
complex similarly arise from arbitrary homotopies between continuous maps. The second reason
is the following easy result, which tells us that the algebraic homology functors Hn : ChÑ R-Mod

descend to the homotopy category as functors hChÑ R-Mod.

Proposition 31.6. If f, g : A˚ Ñ B˚ are chain homotopic chain maps, then for each n P Z,
the homomorphisms f˚, g˚ : HnpA˚q Ñ HnpB˚q they induce on homology are identical.

Proof. Given ras P HnpA˚q, the representative a P An is a cycle, so the chain homotopy
relation gives gpaq ´ fpaq “ BBhpaq ` hBAa “ BBhpaq, implying rfpaqs “ rgpaqs P HnpB˚q. �

Putting all of this together implies:

Corollary 31.7. If f, g : |K| Ñ |L| are simplicial maps related by a simplicial homotopy,
then for each n P Z, the induced maps f˚, g˚ : H∆

n pKq Ñ H∆
n pLq are identical. �

We have used oriented simplicial homology in this discussion for the sake of concreteness, but
the discussion also makes sense for ordered simplicial homology.

31.4. Subdivision defines a chain homotopy equivalence. Now that the notion of a
chain homotopy equivalence has been defined, we can explain the real reason behind Theorem 30.15.
AssumeK is a simplicial complex andK 1 is the complex defined fromK by barycentric subdivision,
giving rise to the chain map

S : C∆˚ pKq Ñ C∆˚ pK 1q
described in the previous lecture. A special class of chain maps in the other direction can be defined
as follows. By definition, every vertex v in the complex K 1 is the barycenter of a particular simplex
σv in the polyhedron |K|; note that this includes the vertices of K 1 that are also vertices of K,
since the latter are also 0-simplices of K. For each vertex v of K 1, let wpvq denote an arbitrary
choice of a vertex of the simplex σv in K that has v as its barycenter. One can check that this
defines a simplicial map

K 1 πÝÑ K : v ÞÑ wv,
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and we call it a projection since it necessarily sends each vertex of K 1 that is also a vertex of K
to itself. The following result now implies Theorem 30.15:

Theorem 31.8. For any choice of projection π : K 1 Ñ K, the induced chain map π˚ :

C∆˚ pK 1q Ñ C∆˚ pKq is a chain homotopy inverse of S : C∆˚ pKq Ñ C∆˚ pK 1q, implying in particular
that the latter is a chain homotopy equivalence.

A complete proof of this theorem can be found e.g. in [ES52, Theorem VI.7.1]; here we shall
content ourselves with a brief sketch. One can verify directly that π˚S : C∆˚ pKq Ñ C∆˚ pKq is the
identity map. It then remains to show that

Sπ˚ : C∆˚ pK 1q Ñ C∆˚ pK 1q
is chain homotopic to the identity. The details of this chain homotopy would require too much of a
digression, but there is a geometric construction in the background that is worth understanding: in
a different context, the same construction will later give us a relatively straightforward construction
of a chain homotopy for the natural subdivision operator on singular homology.

The construction is yet another triangulation of the prism Iˆ∆n, one that interpolates between
the trivial triangulation of t0u ˆ∆n and the barycentric subdivision of t1u ˆ∆n. Like the other
explicit triangulations we’ve discussed, it decomposes I ˆ ∆n into convex regions determined by
sets of vertices in general position, and it admits an inductive description: for n “ 0, one takes the
obvious triangulation of Iˆ∆0 – I with a single 1-simplex. Assuming that a suitable triangulation
of the n-manifold I ˆ∆n´1 for some n ě 1 has already been constructed, the pn` 1q-simplices of
our triangulation of I ˆ∆n then come in two types:

‚ One whose vertices are p0, e0q, . . . , p0, enq and p1, bnq, where e0, . . . , en are the standard
basis vectors of Rn`1 (i.e. the vertices of ∆n) and bn P ∆n is the barycenter.

‚ For each k “ 0, . . . , n and each n-simplex tv0, . . . , vnu in the triangulation of IˆBpkq∆n –
I ˆ∆n´1, one with vertices v0, . . . , vn and p1, bnq.

Exercise 31.2 implies that this defines an oriented triangulation of I ˆ∆n.
Intuitively, the three pieces of the boundary

BpI ˆ∆nq “ pt1u ˆ∆nq Y pt0u ˆ∆nq Y pI ˆ B∆nq
with their induced triangulations now correspond to the three terms on the right hand side of a
chain homotopy relation

Bh# “ Sπ˚ ´ 1´ h#B
for some chain homotopy h# : C∆

n pK 1q Ñ C∆
n`1pK 1q. In the simplicial context, it is not so

straightforward to make this intuition precise, but we will return to this subject in the near future
in the context of singular homology, where the definition of the corresponding chain homotopy is
more straightforward.

31.5. Simplicial approximation. The last major ingredient needed for a proof of Theo-
rem 31.1 is a result that relates the categories Cpct∆ and Simp:

Theorem 31.9 (simplicial approximation). If X – |K| and Y – |L| are compact polyhedra
and f : X Ñ Y is a continuous map, then after finitely-many iterations of barycentric subdivision
to replace the triangulation of X with a finer triangulation X – |K 1|, f is homotopic to a map
g : X Ñ Y that arises from a simplicial map K 1 Ñ L. Moreover, for every x P X, gpxq is contained
in the smallest simplex of Y containing fpxq.

We might have naively hoped for the theorem to state that every continuous map between
polyhedra with fixed choices of triangulations is homotopic to a simplicial map—but there are
easy counterexamples to that statement. For instance, every non-surjective map S1 Ñ S1 has its
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image in a contractible space S1zt˚u – R and is thus homotopic to a constant, implying that every
map S1 Ñ S1 homotopic to the identity is surjective. But if we choose two triangulations S1 – |K|
and S1 – |L| such that L has strictly more vertices than K, then no simplicial map K Ñ L can
be surjective, and the identity S1 Ñ S1 therefore cannot be homotopic to any simplicial map with
respect to these particular triangulations. Of course, this problem goes away if we are also allowed
to replace K with a triangulation that has arbitrarily many vertices, e.g. by iterated barycentric
subdivision.

We refer to [Hat02, §2.C] for a detailed proof of Theorem 31.9, but the following explains the
basic idea.

Sketch of the proof of Theorem 31.9. For each vertex v P X , define the so-called open
star of v as the open neighborhood

st v Ă X

of v formed by the union of the interiors of all simplices in X that have v as a vertex. Figure 17
shows the open stars of two neighboring vertices in a 2-dimensional polyhedron; notice that their
intersection contains the interior of the 1-simplex bounded by these two vertices (cf. Exercise 31.3).
The collection of all open stars of vertices defines an open covering of any polyhedron. Now given
f : X Ñ Y continuous, after subdividing the triangulation of X enough times, we can assume that
for every vertex v P X there exists a vertex wv P Y such that (see Figure 17 again)

st v Ă f´1pstwvq.
Having associated to each v P X some wv P Y with this property, there is a unique simplicial map
g : X Ñ Y that satisfies gpvq “ wv: indeed, for every simplex tv0, . . . , vnu of X , Exercise 31.3
implies that the set twv0 , . . . , wvnu is also a simplex of Y . One can now check that g is indeed an
“approximation” of f in the sense that gpxq is contained in the smallest simplex of Y containing
fpxq for every x P X . In light of this, a homotopy h : I ˆX Ñ Y from f to g can be defined by
choosing hp¨, xq : I Ñ Y for every x P X to be the linear path from fpxq to gpxq in the smallest
simplex containing fpxq. �

31.6. Simplicial homology as a topological invariant. Here is a sketch of a proof of
Theorem 31.1.

By the axiom of choice, we can associate to every compact polyhedron X P Cpct∆ a specific
choice of finite simplicial complex KX and triangulation X – |KX|; having done this, define

H∆
n pXq :“ H∆

n pKXq.
For each continuous map f : X Ñ Y between compact polyhedra, we can apply the simplicial
approximation theorem to find a sufficiently fine subdivision K 1

X of KX and a simplicial map
g : K 1

X Ñ KY for which the associated continuous map g : X Ñ Y is homotopic to f . Writing
S˚ : H∆

n pKXq Ñ H∆
n pK 1

Xq for the isomorphism defined via iterated barycentric subdivision, the
homomorphism f˚ : H∆

n pXq Ñ H∆
n pY q induced by f can then be defined by

H∆
n pXq “ H∆

n pKXq H∆
n pK 1

Xq H∆
n pKY q “ H∆

n pY q

f˚

S˚
–

g˚
.

The result of §31.3 on simplicial homotopies can be used in showing that the map f˚ : H∆
n pXq Ñ

H∆
n pY q defined in this way is independent of choices. Putting all this together produces a functor

H∆
n : Cpct∆ Ñ R-Mod.
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Figure 17. A map f : X Ñ Y between two polyhedra, with vertices v0, v1 P X
and wv0 , wv1 P Y chosen such that f maps the open star of vi into the open star of
wvi for i “ 0, 1. The prescription in the proof of Theorem 31.9 will then produce
a simplicial map g : X Ñ Y sending vi ÞÑ wvi for i “ 0, 1, so the 1-simplex in X
bounded by v0 and v1 is sent to the 1-simplex in Y bounded by wv0 and wv1 .

31.7. Exercises.

Exercise 31.1. Prove that the map |K| Ñ ∆mˆ∆n described in (31.1) is a homeomorphism.
Hint: This is probably not the only possible approach, but here an inductive argument as in
Exercise 30.2 is also possible. Use the fact that certain points are contained in all the n-simplices.
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Exercise 31.2. Let L denote the pn` 1q-dimensional abstract simplicial complex formed by
the sets of vertices in I ˆ ∆n described in §31.4, and define L1 Ă L to be the subcomplex of
simplices whose vertices have convex hulls lying in BpI ˆ∆nq.

(a) Carry out the analogue of Exercise 30.2 to show that L defines a triangulation of I ˆ∆n

for which the subcomplex L1 triangulates BpI ˆ∆nq.
Hint: To show that every point p P I ˆ∆n lies in one of the pn` 1q-simplices described,
draw a line from p1, bnq through p and see where it exits through BpI ˆ∆nq.

(b) Describe an inductive algorithm to produce suitable admissible orderings and orientations
for this triangulation of I ˆ∆n for each n ě 0.

Exercise 31.3. Given vertices v0, . . . , vk in a polyhedron X , show that
Şk
i“0 st vi ‰ H if and

only if X contains a simplex whose vertices are v0, . . . , vk.

32. Acyclic models and relative homology

I want to tie up a few loose ends regarding simplicial homology before we move on to singular
homology in the next lecture. One important topic is the reason why the ordered simplicial
homology Ho˚pKq and its oriented counterpart H∆˚ pKq are isomorphic: we will prove this using
the method of acyclic models, which will also be quite useful in our later discussion of products in
singular homology and cohomology. We also take this opportunity to introduce relative simplicial
homology, and explain the general algebraic mechanism that leads to long exact sequences of
homology groups.

Several results in this lecture will apply equally well to the ordered and oriented versions of
simplicial homology, and the following notational convention will allow us to talk about both at
the same time:

H ‚̊ :“ Ho˚ or H∆˚ ,
C ‚̊ :“ Co˚ or C∆˚ .

32.1. Reduced simplicial homology. We discussed the reduced version rh˚ of an axiomatic
homology theory h˚ in Lecture 28. A reduced version of simplicial homology can be defined anal-
ogously, after observing that the one-point space t˚u is a polyhedron, whose underlying simplicial
complex consists only of a single vertex. We shall also denote this one-point simplicial complex
by t˚u, and let

K
ǫÝÑ t˚u

denote the unique simplicial map from any given simplicial complex K to the one-point complex.
The reduced (ordered or oriented) simplicial homology is then defined byrH‚

npKq “ rH‚
npK;Gq :“ ker

´
H‚
npK;Gq ǫ˚ÝÑ H‚

npt˚u;Gq
¯
.

As with axiomatic homology, we can always choose a right-inverse of ǫ : K Ñ t˚u, which in
this context must be a simplicial map t˚u ãÑ K, and the induced homomorphism on homology
gives rise to a splitting of the short exact sequence

0Ñ rH‚
npKq ãÑ H‚

npKq ǫ˚Ñ H‚
npt˚uq Ñ 0,

and thus an isomorphismH‚
npKq – rH‚

npKq‘H‚
npt˚uq. We recall from Exercise 29.4 thatH‚

npt˚u;Gq
is trivial for n ‰ 0 and is naturally isomorphic to the coefficient group G for n “ 0, so the result is

H‚
npK;Gq –

# rH‚
npK;Gq ‘G for n “ 0,rH‚
npK;Gq for n ‰ 0.
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Working through Exercise 29.4 also leads to the following observation: In both versions of the
simplicial chain complex for t˚u, the boundary map B1 : C‚

1 pt˚uq Ñ C‚
0 pt˚uq at degree 1 is trivial.

Indeed, this is immediate in the oriented chain complex because C∆
1 pt˚uq is trivial due to the

lack of 1-simplices, while in the ordered chain complex, Co1 pt˚uq has only a single generator p˚, ˚q
determined by the unique vertex ˚ P t˚u, which satisfies

Bp˚, ˚q “ p˚q ´ p˚q “ 0.

Since ǫ˚ : C ‚̊pKq Ñ C ‚̊pt˚uq is a chain map, the relation ǫ˚B “ Bǫ˚ then implies that the compo-
sition of B1 : C‚

1 pKq Ñ C‚
0 pKq with the so-called augmentation ǫ˚ : C‚

0 pKq Ñ C‚
0 pt˚uq “ G is

trivial, leading to the so-called augmented chain complex

. . . ÝÑ C‚
2 pK;Gq B2ÝÑ C‚

1 pK;Gq B1ÝÑ C‚
0 pK;Gq ǫ˚ÝÑ G ÝÑ 0 ÝÑ 0 ÝÑ . . . ,

in which we use the natural isomorphism C‚
0 pt˚u;Gq – G to replace C‚

0 pt˚u;Gq by the coefficient
group G, and the map ǫ˚ : C‚

0 pK;Gq Ñ G can then be expressed via the direct formula

ǫ˚

˜ÿ
i

aiσi

¸
“ÿ

i

ai

for any finite linear combination of generators σi with coefficients ai P G. We shall denote the
augmented chain complex by rC ‚̊pKq “ rC ‚̊pK;Gq, with chain groups

rC‚
npK;Gq :“

#
C‚
npK;Gq for n ‰ ´1,

G for n “ ´1,
and boundary map B : rC ‚̊pKq Ñ rC ‚̊pKq matching that of the usual chain complex C ‚̊pKq except
at degree 0, where it is defined to be the augmentation ǫ˚ : C‚

0 pK;Gq Ñ G. The following result
is a near immediate consequence of the definitions.

Proposition 32.1. There is a natural isomorphism

H˚
` rC ‚̊pK;Gq˘ –ÝÑ rH ‚̊pK;Gq

that takes the form rcs ÞÑ rcs for cycles c P rC‚
npK;Gq of degree n ě 0. �

32.2. The cone of a simplicial complex. The point of defining reduced simplicial homology
is to have a version of simplicial homology that vanishes in all degrees for certain contractible
polyhedra that arise in applications. Here is a popular class of examples.

Definition 32.2. The cone of a simplicial complex K “ pV, Sq is the simplicial complex
CK “ pCV,CSq with vertices

CV :“ V Y t˚u
and simplices

CS :“ S Y  tv0, . . . , vn, ˚u ˇ̌ tv0, . . . , vnu P S( ,
where ˚ denotes an extra vertex that is assumed to be not an element of the original vertex set V .

The polyhedron |CK| of a cone complex CK has an obvious identification with the topological
cone C|K| of the original polyhedron |K|, in which the summit of the cone corresponds to the
extra vertex ˚ P CV .

Definition 32.3. A chain complex A˚ is called chain contractible if the identity map
1 : A˚ Ñ A˚ is chain homotopic to the trivial chain map 0 : A˚ Ñ A˚.
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If A˚ is chain contractible, then looking at induced maps H˚pA˚q Ñ H˚pA˚q, we find that the
identity map and the zero map on H˚pA˚q must be identical, which is only possible if H˚pA˚q “
0. A chain complex with the latter property is said to be acyclic, in other words, A˚ has no
cycles other than those which are trivial in the sense of being boundaries. Chain contractible
complexes are thus acyclic; one can view this as an algebraic counterpart to the topological fact
that contractible spaces have trivial reduced homology according to the axioms.

Lemma 32.4. For any simplicial complex K, the augmented simplicial chain complex rC ‚̊pCK;Zq
of its cone is chain contractible.

Proof. Let us write down a proof for the ordered chain complex, from which a proof for the
oriented complex can be obtained just be changing round brackets into square brackets. For each
n ě 0, we can specify a homomorphism h# : rConpCK;Zq Ñ rCon`1pCK;Zq by saying how it is
defined on an arbitrary generator pv0, . . . , vnq P ConpCK;Zq “ rConpCK;Zq, so we definerConpCK;Zq h#ÝÑ rCon`1pCK;Zq : pv0, . . . , vnq ÞÑ p˚, v0, . . . , vnq,
and we extend it to n “ ´1 by specifying its value on the generator 1 P Z “ rCo´1pCK;Zq, namely

rCo´1pCK;Zq h#ÝÑ rCo0 pCK;Zq : 1 ÞÑ p˚q.
We then have

Bh#pv0, . . . , vnq “ pv0, . . . , vnq ´ h#Bpv0, . . . , vnq and Bh#p1q “ ǫ˚p˚q “ 1 “ 1´ h#Bp1q
since rCo´2pCK;Zq is trivial by definition and thus Bp1q “ 0. This establishes the chain homotopy
relation Bh# ` h#B “ 1 “ 1´ 0. �

Example 32.5. For some n ě 1, suppose K is a simplicial complex containing only a single
n-simplex and all its faces, so |K| – ∆n. Then K can be identified with the cone of a complex K 1
with |K 1| – ∆n´1, and the lemma above therefore implies that rC˚pK;Zq is chain contractible.

32.3. Natural chain homotopy equivalences. Recall that for any simplicial complex K
and any choice of coefficients, the quotient projection pv0, . . . , vnq ÞÑ rv0, . . . , vns determines a
natural chain map

Co˚pKq ΨKÝÑ C∆˚ pKq.
Here the word natural carries a precise meaning that will be important to clarify: it means that
for any other simplicial complex L with a simplicial map f : LÑ K, the diagram

Co˚pLq C∆˚ pLq

Co˚pKq C∆˚ pKq

ΨK

f˚ f˚
ΨL

commutes. As a special case, suppose L Ă K is a subcomplex and f : L ãÑ K is the inclusion map:
the chain maps f˚ : Co˚pLq Ñ Co˚pKq and f˚ : C∆˚ pLq Ñ C∆˚ pKq are then likewise inclusions of
subcomplexes, and naturality then implies firstly that ΨK sends the subcomplex Co˚pLq Ă Co˚pKq
into the subcomplex C∆˚ pLq Ă C∆˚ pKq, and secondly that ΨL is simply the restriction of ΨK
to Co˚pLq.

With this observation as motivation, let us say more generally that for a specific simplicial
complex K, a chain map Ψ : Co˚pKq Ñ C∆˚ pKq is natural if for every subcomplex L Ă K, Ψ
sends Co˚pLq into C∆˚ pLq. In the same manner, one can define the notion of a natural chain map in
the other direction C∆˚ pKq Ñ Co˚pKq, or between each of C∆˚ pKq or Co˚pKq and itself. Such chain



234 SECOND SEMESTER (TOPOLOGIE II)

maps can always be interpreted as natural transformations between two functors to the category
of chain complexes, defined on a category that has subcomplexes of K as objects and inclusion
maps as morphisms.

The following result explains why the natural homomorphism Ho˚pKq Ñ H∆˚ pKq induced by
the chain map ΨK is always an isomorphism, thus making the ordered and oriented versions of
simplicial homology interchangeable in practice.

Theorem 32.6. For every simplicial complex K, the natural chain map ΨK : Co˚pKq Ñ C∆˚ pKq
is a chain homotopy equivalence.

The theorem will follow from three lemmas, each of which should be understood to hold for
an arbitrary simplicial complex K:

Lemma 32.7. There exists a natural chain map Φ : C∆˚ pK;Zq Ñ Co˚pK;Zq that is determined
in degree 0 by the formula

Φprvsq :“ pvq for all vertices v of K,

and moreover, natural chain maps with this property are unique up to chain homotopy.

Lemma 32.8. Natural chain maps Co˚pK;Zq Ñ Co˚pK;Zq matching the identity map in degree 0
are unique up to chain homotopy.

Lemma 32.9. Natural chain maps C∆˚ pK;Zq Ñ C∆˚ pK;Zq matching the identity map in de-
gree 0 are unique up to chain homotopy.

Notice that the statements of the last two lemmas only involve uniqueness, not existence; the
existence is clear in both cases because the identity map is a chain map that satisfies the required
properties. This trivial observation is used in the following proof.

Proof of Theorem 32.6. Writing Ψ :“ ΨK , the uniqueness up to chain homotopy in Lem-
mas 32.8 and 32.9 implies that if we are working with integer coefficients, Φ ˝ Ψ and Ψ ˝ Φ are
both chain homotopic to the identity, so that the chain map Φ from Lemma 32.7 is a chain homo-
topy inverse for Ψ. The validity of this result extends to arbitrary coefficients for relatively trivial
algebraic reasons explained in Remark 32.10 below. �

Remark 32.10. Here is why in the proof of Theorem 32.6, it suffices to consider chain com-
plexes with integer coefficients. The three lemmas above provide chain maps between chain com-
plexes with integer coefficients, but the resulting formulas for these maps on the canonical genera-
tors of Co˚pK;Zq and C∆˚ pK;Zq determine via linearity chain maps on Co˚pK;Gq and C∆˚ pK;Gq for
any coefficient group G. The same applies to chain homotopies, e.g. if h : Co˚pK;Zq Ñ Co˚`1pK;Zq
is a chain homotopy between Φ˝ΨK : Co˚pK;Zq Ñ Co˚pK;Zq and the identity, then it determines via
linearity a chain homotopy h : Co˚pK;Gq Ñ Co˚`1pK;Gq between Φ ˝ΨK : Co˚pK;Gq Ñ Co˚pK;Gq
and the identity for any choice of coefficients G.

The proofs of Lemmas 32.7, 32.8 and 32.9 are very similar, and are based on an idea known
as the method of acyclic models. We shall carry out the details only for Lemma 32.7.

Proof of Lemma 32.7. For the entirety of this proof, we assume

G :“ Z

and omit the coefficient group from the notation. We shall prove by induction on the degree n ě 0

that it is possible to construct homomorphisms ΦL : C∆
n pLq Ñ ConpLq for every subcomplex L Ă K

such that ΦL is the restriction of ΦK to C∆
n pLq Ă C∆

n pKq and the chain map relation ΦLB “ BΦL
is satisfied. It would of course suffice to construct ΦK such that it sends C∆

n pLq Ñ ConpLq for every
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subcomplex L Ă K and then define ΦL as the restriction, but in practice, we shall do things the
other way around, and define ΦL first for a special class of subcomplexes such that the definition
of ΦK is then uniquely determined.

The beginning of the induction is to define ΦK : C∆
0 pLq Ñ Co0 pLq : rvs ÞÑ pvq as specified in

the statement of the lemma.
For a given n ě 1, we then assume that ΦK : C∆

k pKq Ñ CokpKq has already been defined for
every k ď n ´ 1 such that it sends C∆

k pLq to CokpLq for every subcomplex L Ă K and satisfies
ΦKB “ BΦK . The idea for the inductive step is now to first define ΦL : C∆

n pLq Ñ ConpLq for
a specific class of “model” subcomplexex L Ă K, which will determine ΦK : C∆

n pKq Ñ ConpKq
via the naturality condition. The model complexes are defined as follows: For any n-simplex
σ “ tv0, . . . , vnu of K, let Lσ Ă K denote the subcomplex that contains only σ and all its faces.
Note that since n ě 1, Lσ can be identified with the cone of an pn ´ 1q-dimensional complex
as in Example 32.5, so Lemma 32.4 implies that both versions of the augmented simplicial chain
complex for Lσ are acyclic; this is why Lσ is called an “acyclic model”. Now, there is only one
generator σ “ rv0, . . . , vns P C∆

n pLσq, so ΦLσ
: C∆

n pLσq Ñ ConpLσq will be determined as soon as
we choose a value for τ :“ ΦLσ

pσq P ConpLσq, which must be required to satisfy

Bτ “ BΦLσ
pσq “ ΦLσ

pBσq P Con´1pLσq.
The right hand side of this expression has already been defined due to the inductive hypothesis.
Moreover, it is a cycle in the augmented chain complex rCo˚pLσq, since

BΦLσ
pBσq “ ΦLσ

pB2σq “ 0 P rCon´2pLσq,
where we should clarify that in the case n “ 1, the operator B acting on 0-chains is actually the
augmentation ǫ˚ : Co0 pLσ;Zq Ñ Z. Since rCo˚pLσq is acyclic, it follows that ΦLσ

pBσq is also a
boundary, and we can therefore define ΦLσ

pσq to be any choice of element τ P ConpLσq such that
Bτ “ ΦLσ

pBσq.
Having made such choices and defined ΦLσ

: C∆
n pLσq Ñ ConpLσq for the model subcomplex

Lσ Ă K corresponding to each n-simplex σ of K, we observe now that there is a unique definition
of ΦK : C∆

n pKq Ñ ConpKq that has the correct restriction to all of these subcomplexes, and it
automatically satisfies both the chain map relation and the naturality condition.

The construction of ΦK beyond degree zero involved some arbitrary choices, so it remains to
show that any other natural chain map Φ1

K that matches ΦK in degree zero is chain homotopic
to it. We shall use a similar inductive argument to construct homomorphisms hK : C∆

k pKq Ñ
Cok`1pKq that satisfy the chain homotopy relation BhK ` hKB “ Φ1

K ´ ΦK , and here as well it
will be convenient to impose a naturality condition, namely that hK has a well-defined restriction
hL : C∆

k pLq Ñ Cok`1pLq for every subcomplex L Ă K. To start the induction, it suffices to define
hK : C∆

0 pKq Ñ Co1 pKq as the trivial homomorphism since ΦK “ Φ1
K on C∆

0 pKq. Now assume
that hK and its restrictions hL satisfying the chain homotopy relation have already been defined
on chains of degree k ď n´ 1 for some n ě 1. For each n-simplex σ “ tv0, . . . , vnu of K, we again
consider the corresponding model subcomplex Lσ Ă K, and define hLσ

: C∆
n pLσq Ñ Con`1pLσq

so that it sends the unique generator σ “ rv0, . . . , vns P C∆
n pLσq to some element τ :“ hLσ

pσq P
Con`1pLσq satisfying

Bτ “ BhLσ
pσq “ ´hLσ

pBσq ` Φ1
Lσ
pσq ´ ΦLσ

pσq P ConpLΣq.
This is possible due to acyclicity, since the inductive hypothesis implies that the right hand side is
a cycle:

B `´hLσ
pBσq ` Φ1

Lσ
pσq ´ ΦLσ

pσq˘ “ `´BhLσ
` Φ1

Lσ
´ ΦLσ

˘ pBσq
“ hLσ

pBBσq “ 0.
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Having extended hLσ
to degree n for each of the model subcomplexes Lσ Ă K, there is again

a unique definition of hK : C∆
n pKq Ñ Con`1pKq that has the correct restriction to each of these

subcomplexes, and it automatically satisfies the chain homotopy relation. �

The proofs of Lemmas 32.8 and 32.9 are similar, but shorter since one only needs to construct
chain homotopies, the existence of suitable chain maps being obvious. Lemma 32.8 also requires
the knowledge that rCo˚pLσq is an acyclic chain complex for each of the model complexes Lσ Ă K,
while for Lemma 32.9, one must instead use the fact that rC∆˚ pLσq is acyclic.

32.4. Relative homology. In §28.3 we saw that there is a relative version of bordism theory
defined for pairs of spaces pX,Aq P Toprel, with long exact sequences that relate the relative
bordism groups of pX,Aq to the absolute bordism groups of X and A. Something similar is true
in all versions of homology theory; let’s discuss briefly how it works in simplicial homology.

A simplicial pair pK,Lq is a simplicial complex K together with a subcomplex L Ă K, and
a map of simplicial pairs f : pK,Lq Ñ pK 1, L1q is a simplicial map f : K Ñ K 1 that sends L
into L1 and thus also defines a simplicial map LÑ L1. Let us denote by Simprel the category whose
objects are simplicial pairs and whose morphisms are maps of simplicial pairs. We can identify the
category Simp of simplicial complexes with the subcategory

Simp Ă Simprel

consisting of pairs of the form pK,Hq. The following definition makes sense because for any
subcomplex L Ă K, the generators of C ‚̊pLq are also generators of C ‚̊pKq, thus making the chain
complex C ‚̊pLq into a subcomplex of C ‚̊pKq.

Definition 32.11. The (ordered or oriented) relative simplicial homology of a simplicial
pair pK,Lq with coefficients in G is defined in each degree n P Z as the homology of the quotient
chain complex C ‚̊pK;Gq{C ‚̊pL;Gq, thus

H‚
npK,Lq “ H‚

npK,L;Gq :“ Hn

`
C ‚̊pK,L;Gq˘, where

C ‚̊pK,Lq “ C ‚̊pK,L;Gq :“ C ‚̊pK;Gq
M
C ‚̊pL;Gq.

Relative simplicial homology defines functors

H‚
n : Simprel Ñ R-Mod

in a straightforward way: any map of simplicial pairs f : pK,Lq Ñ pK 1, L1q induces a chain map
f˚ : C ‚̊pKq Ñ C ‚̊pK 1q that also sends C ‚̊pLq to C ‚̊pL1q and thus descends to the quotients as a
chain map f˚ : C ‚̊pK,Lq Ñ C ‚̊pK,Lq, inducing maps

H‚
npK,Lq f˚ÝÑ H‚

npK 1, L1q
for each n. In keeping with the identification of Simp with a subcomplex of Simprel, we observe
that HnpK,Hq is the same thing as HnpKq.

Elements rcs P H‚
npK,Lq can be represented by relative n-cycles

c P C‚
npKq such that Bc P C‚

n´1pLq.
Here, the condition Bc P C‚

n´1pLqmeans that the image of c under the quotient projection C‚
npKq Ñ

C‚
npK,Lq is a cycle, and we understand rcs P H‚

npK,Lq to mean the homology class represented by
that cycle. Two relative n-cycles a, b P C‚

npKq then represent the same relative homology class in
H‚
npK,Lq if and only if a ´ b “ Bc` d for some c P C‚

n`1pKq and d P C‚
npLq. There is a natural

homomorphism defined for each n ě 1 by

H‚
npK,Lq B˚ÝÑ H‚

n´1pLq : rcs ÞÑ rBcs.
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Note that, in spite of appearances, the class rBcs P H‚
n´1pLq in this expression need not be trivial,

because c is an n-chain in K, but might not be an n-chain in L.

Theorem 32.12. Given a simplicial pair pK,Lq, let i : L ãÑ K and j : pK,Hq ãÑ pK,Lq
denote the obvious inclusion maps. Then the sequence

. . . ÝÑ H‚
n`1pK,Lq B˚ÝÑ H‚

npLq i˚ÝÑ H‚
npKq j˚ÝÑ H‚

npK,Lq B˚ÝÑ H‚
n´1pLq i˚ÝÑ H‚

n´1pKq ÝÑ . . .

ÝÑ H‚
0 pLq i˚ÝÑ H‚

0 pKq j˚ÝÑ H‚
0 pK,Lq ÝÑ 0

is exact.

It is not hard to verify the exactness of the sequence in this theorem explicitly, but there is also
an underlying algebraic phenomenon that deserves more attention. Since C ‚̊pK,Lq is a quotient,
every simplicial pair pK,Lq gives rise to an obvious short exact sequence

0Ñ C ‚̊pLq i˚ãÑ C ‚̊pKq j˚Ñ C ‚̊pK,Lq Ñ 0,

in which each term is a chain complex and the maps between them are chain maps. The inclusion
C ‚̊pLq ãÑ C ‚̊pKq of chain complexes is in fact the chain map i˚ induced by the inclusion i : L ãÑ K

of simplicial complexes, and since j : pK,Hq ãÑ pK,Lq is actually the identity map, the quotient
projection C ‚̊pKq Ñ C ‚̊pKq{C ‚̊pLq can similarly be understood as the chain map j˚ : C ‚̊pKq Ñ
C ‚̊pK,Lq induced by j. Algebraically, it turns out that short exact sequences of chain complexes
and chain maps always give rise to long exact sequences relating their homology groups:

Proposition 32.13. Suppose 0 Ñ A˚
fÑ B˚

gÑ C˚ Ñ 0 is a short exact sequence of chain
complexes and chain maps. Then for each n P Z there exists a so-called connecting homomor-
phism B˚ : HnpC˚q Ñ Hn´1pA˚q such that the sequence

. . .
B˚ÝÑ Hn`1pA˚q f˚ÝÑ Hn`1pB˚q g˚ÝÑ Hn`1pC˚q

B˚ÝÑ HnpA˚q f˚ÝÑ HnpB˚q g˚ÝÑ HnpC˚q
B˚ÝÑ Hn´1pA˚q f˚ÝÑ Hn´1pB˚q g˚ÝÑ Hn´1pC˚q B˚ÝÑ . . .

is exact. Moreover, this result is functorial in the following sense: suppose we are given another
triple of chain complexes A1̊ , B 1̊ and C 1̊ , with a commuting diagram

0 A˚ B˚ C˚ 0

0 A1̊ B 1̊ C 1̊ 0

f

α

g

β γ

f 1 g1

in which all maps are chain maps and the bottom row is also exact, and we denote the resulting
connecting homomorphisms by B 1̊ : HnpC 1̊ q Ñ Hn´1pA1̊ q. Then the diagram

. . . Hn`1pC˚q HnpA˚q HnpB˚q HnpC˚q Hn´1pA˚q . . .

. . . Hn`1pC 1̊ q HnpA1̊ q HnpB 1̊ q HnpC 1̊ q Hn´1pA1̊ q . . .

B˚

γ˚

f˚

α˚

g˚

β˚

B˚

γ˚ α˚
B1̊ f 1̊ g1̊ B1̊

also commutes.

The proof of this result is by “diagram chasing,” which we already saw examples of in Propo-
sition 28.22 and Exercise 28.8 (the five-lemma). Let’s do the first step, which is to write down a
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reasonable candidate for the map B˚ : HnpC˚q Ñ Hn´1pA˚q. We are given a commuting diagram
of the form

...
...

...

0 An Bn Cn 0

0 An´1 Bn´1 Cn´1 0

0 An´2 Bn´2 Cn´2 0

...
...

...

f

B

g

B B
f

B

g

B B
f

B

g

B B

in which every column is a chain complex and every row is exact. Given rcs P HnpC˚q, choose
a representative c P Cn, which necessarily satisfies Bc “ 0. We would like to find some element
a P An´1 that satisfies Ba “ 0 so that we can set B˚rcs :“ ras. The idea is to use whatever
information the diagram gives us to forge a path from Cn to An´1. To start with, the exactness
of the top row implies that g is surjective, so choose b P Bn with gpbq “ c. Since Bc “ 0 and the
diagram commutes, we also know Bgpbq “ gpBbq “ 0, and exactness of the middle row then implies
Bb “ fpaq for some a P An´1. To see that a is a cycle, we use commutativity again and observe
fpBaq “ Bfpaq “ BBb “ 0, and since the bottom row is exact, f is injective, so this implies Ba “ 0.
We can therefore sensibly set B˚rcs “ ras, and step 1 of the proof is complete.

There are still several things to check: steps 2 through 4000 consist of first verifying that the
definition of B˚ : HnpC˚q Ñ Hn´1pA˚q we just proposed does not depend on any of the choices we
made (e.g. of the representative c P Cn and the element b P g´1pcq), and after that, we still need to
show that the sequence of homology groups really is exact. All of this follows by the same style of
diagram chasing—it becomes a bit tedious at some point, but it is not fundamentally difficult. If
you haven’t done it before, I recommend finding a quiet evening to do so once, so that you never
have to do it again.

Similarly, it is not hard to see why the “functoriality” aspect of the statement is true once you
have understood the basic idea of diagram chasing. Functoriality in this situation amounts to the
statement that there exist natural definitions of categories whose objects are short exact sequences
of chain complexes or long exact sequences of R-modules, with morphisms defined in each case via
commutative diagrams, such that Proposition 32.13 produces a functor from the former category to
the latter. See Exercise 32.3 for a precise formulation in these terms. Exercise 32.2 shows moreover
that applying Proposition 32.13 to the short exact sequence 0Ñ C ‚̊pLq Ñ C ‚̊pKq Ñ C ‚̊pK,Lq Ñ 0

for a simplicial pair pK,Lq produces the same connecting homomorphism as in the statement of
Theorem 32.12.

32.5. Exercises.

Exercise 32.1. Carry out the rest of the details of the diagram chase to prove the exactness
of the sequence in Proposition 32.13.

Exercise 32.2. Show that for any simplicial pair pK,Lq, the connecting homomorphisms
B˚ : H‚

npK,Lq Ñ H‚
n´1pLq that arise by plugging the short exact sequence of simplicial chain
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complexes 0Ñ C ‚̊pLq ãÑ C ‚̊pKq Ñ C ‚̊pK,Lq Ñ 0 into Proposition 32.13 are given by the formula
B˚rcs “ Bc for any relative n-cycle c P C‚

npKq in pK,Lq.
Exercise 32.3. Consider the categories Short and Long, defined as follows. Objects in Short

are short exact sequences of chain complexes 0 Ñ A˚
fÑ B˚

gÑ C˚ Ñ 0 of R-modules, with a

morphism from this object to another object 0Ñ A1̊ f 1Ñ B 1̊ g1Ñ C 1̊ Ñ 0 defined as a triple of chain

maps A˚ αÑ A1̊ , B˚
βÑ B 1̊ and C˚

γÑ C 1̊ such that the following diagram commutes:

0 A˚ B˚ C˚ 0

0 A1̊ B 1̊ C˚ 0

f

α

g

β γ

f 1 g1

The objects in Long are long exact sequences of Z-graded R-modules . . .Ñ Cn`1
δÑ An

FÑ Bn
GÑ

Cn
δÑ An´1 Ñ . . ., with morphisms from this to another object . . .Ñ C 1

n`1
δ1Ñ A1

n
F 1Ñ B1

n
G1Ñ C 1

n
δ1Ñ

A1
n´1 Ñ . . . defined as triples of homomorphisms A˚ αÑ A1̊ , B˚

βÑ B 1̊ and C˚
γÑ C 1̊ that preserve

the Z-gradings and make the following diagram commute:

. . . Cn`1 An Bn Cn An´1 . . .

. . . C 1
n`1 A1

n B1
n C 1

n A1
n´1 . . .

δ

γ

F

α

G

β

δ

γ α

δ1 F 1 G1 δ1

(a) Show that there is a covariant functor Simprel Ñ Short assigning to each simplicial pair
pK,Lq its short exact sequence of (ordered or oriented) simplicial chain complexes.

(b) Show that there is also a covariant functor Short Ñ Long assigning to each short exact
sequence of chain complexes the corresponding long exact sequence of their homology
groups. (Note that this can be composed with the functor in part (a) to define a functor
Simprel Ñ Long.)

33. Singular homology

33.1. Definitions. The immediate disadvantage of simplicial homology is that its definition
requires strictly more data than just a topological space: we need to have a triangulation of that
space, and it takes considerable effort to see why different triangulations of the same space produce
isomorphic homologies. The definition of singular homology resembles that of simplicial homology,
but it explicitly removes the need for a triangulation. The price to be paid for this is that the
resulting chain complex seems absurdly large: so large, in fact, that one might find it surprising
at first that it is ever possible to explicitly compute the singular homology of a space. I advise
you not to think too much about this when you first read the definition, as we will subsequently
discuss some properties that make computations of singular homology quite a reasonable task.

Definition 33.1. A singular n-simplex (singulärer n-Simplex) in a topological space X is
defined to be a continuous map σ : ∆n Ñ X . Let

KnpXq :“  
σ : ∆n Ñ X

ˇ̌
σ is continuous

(
denote the set of all singular n-simplices in X . The singular chain complex (singulärer Ket-
tenkomplex) C˚pXq “ C˚pX ;Gq of X with coefficients in the R-module G is defined such that
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CnpXq “ 0 for all n ă 0, and for n ě 0,

CnpXq :“
à

σPKnpXq
G.

The boundary map B : CnpXq Ñ Cn´1pXq for n ě 1 is uniquely determined by linearity and the
formula

Bσ “
nÿ
k“0

p´1qk `σ|Bpkq∆n

˘
,

where the identification (29.1) is used in order to view each term in the summation as a singular
pn ´ 1q-simplex σ|Bpkq∆n : ∆n´1 Ñ X , making the linear combination an element of Cn´1pX ;Zq.
The homology groups of this chain complex form the singular homology of X with coefficients
in G,

HnpXq “ HnpX ;Gq :“ Hn

`
C˚pX ;Gq˘.

There is a fairly obvious way to make

C˚ : TopÑ ChpR-Modq
into a functor: any continuous map f : X Ñ Y between spaces induces a unique chain map

f˚ : C˚pXq Ñ C˚pY q
determined by linearity and the formula

f˚pσq :“ f ˝ σ
for singular simplices σ : ∆n Ñ X . Composing this functor with Hn : ChpR-Modq Ñ R-Mod makes
singular homology itself into a collection of functors

Hn : TopÑ R-Mod,

meaning in particular that continuous maps f : X Ñ Y induce homomorphisms f˚ : HnpXq Ñ
HnpY q for every n ě 0.

For a pair of spaces pX,Aq P Toprel, there is a similarly straightforward extension of the
definitions above to the notion of relative singular homology

HnpX,Aq “ HnpX,A;Gq :“ Hn

`
C˚pX,A;Gq˘, where

C˚pX,Aq “ C˚pX,A;Gq :“ C˚pX ;Gq
M
C˚pA;Gq,

which makes sense because singular simplices in A are also singular simplicies in X , making C˚pAq
naturally a subcomplex of C˚pXq. We have HnpX,Hq “ HnpXq for all spaces X , and relative
singular homology can thus be regarded as an extension of the functor Hn : Top Ñ R-Mod

over the larger category Toprel, in which maps of pairs f : pX,Aq Ñ pY,Bq induce chain maps
f˚ : C˚pXq Ñ C˚pY q that descend to the quotients as chain maps f˚ : C˚pX,Aq Ñ C˚pY,Bq
and thus induce homomorphisms f˚ : HnpX,Aq Ñ HnpY,Bq for all n. As with relative simplicial
homology, we can represent relative singular homology classes rcs P HnpX,Aq via relative cycles
c P CnpXq, which are assumed to satisfy Bc P Cn´1pAq, and writing them in this way gives rise to
an obvious connecting homomorphism

HnpX,Aq B˚ÝÑ Hn´1pAq : rcs ÞÑ rBcs.
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33.2. Non-axiomatic properties. Before we get to the purely “formal” (i.e. axiomatic)
properties of singular homology, let us discuss a few features it has that other axiomatic homology
theories do not.

Theorem 33.2. For any space X and any coefficient group G, there is a canonical isomorphism

H0pX ;Gq “ à
π0pXq

G,

where π0pXq is an abbreviation for the set of path-components of X.

The isomorphism in this theorem arises from a pair of convenient coincidences: first, since the
standard 0-simplex ∆0 contains only one point, there is a natural bijection between the set K0pXq
of singular 0-simplices in X and the set X itself, allowing us to write singular 0-chains as finite
linear combinations ÿ

i

aixi P C0pXq
of generators xi P X with coefficients ai P G. The second coincidence is that the unit interval
I “ r0, 1s, which we normally use for parametrizing paths in X , is homeomorphic to the standard
1-simplex ∆1 Ă I2, e.g. via the map

(33.1) I
–ÝÑ ∆1 : t ÞÑ p1´ t, tq.

This is of course not the only possible choice of such a homeomorphism, but we will use it consis-
tently in this course, for the following reason. The map (33.1) matches boundary points via the
correspondence

BI Q 0 ÞÑ Bp1q∆1 Ă B∆1, BI Q 1 ÞÑ Bp0q∆1 Ă B∆1,

which may seem backwards when you see it for the first time, but if you recall the way in which signs
were associated to the various boundary faces of ∆n in our definition of the boundary operator
B : CnpXq Ñ Cn´1pXq, you might recognize that this particular correspondence is consistent
with certain orientation conventions in differential geometry, where the standard orientation of
the 1-manifold I Ă R induces a positive boundary orientation on 1 P BI and a negative boundary
orientation on 0 P BI. This detail is unimportant for our present purposes, but what matters is that
if we use (33.1) to identify singular 1-simplices in X with paths γ : I Ñ X and likewise identify
singular 0-simplices with points x P X in the canonical way, then the operator B : C1pXq Ñ C0pXq
is now determined by the formula

(33.2) Bγ “ γp1q ´ γp0q.
This tells you why two 0-cycles of the form mx,my P C0pXq for m P G and x, y P X will always be
homologous if x and y lie in the same path-component, and from there it is not a difficult exercise
to find an explicit isomorphism H0pXq –À

π0pXqG.
For any choice of base point p P X , the identification (33.1) between I and ∆1 also gives rise

to a natural homomorphism

(33.3) h : π1pX, pq Ñ H1pX ;Zq
sending the homotopy class of the loop γ : I Ñ X to the homology class that it represents
when regarded as a singular 1-chain with integer coefficients; note that by (33.2), this 1-chain
is a cycle because γ : I Ñ X has the same start and end point. The map (33.3) is called the
Hurewicz homomorphism, and the proof that it is well defined (see e.g. Exercise 22.12 from
last semester’s Topologie I course) relies on several straightforward lemmas, showing for instance
that any two homotopic loops based at p give rise to homologous 1-cycles, and the 1-cycle arising
from a concatenation of two loops is homologous to the sum of the two corresponding 1-cycles.
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Since H1pX ;Zq is abelian, the Hurewicz map automatically vanishes on the commutator subgroup
of π1pX, pq, so it descends to a map of the abelianization of π1pX, pq to H1pX ;Zq.

Theorem 33.3. If X is path-connected, then the Hurewicz map (33.3) descends to the abelian-
ization of π1pXq :“ π1pX, pq as an isomorphism

π1pXq
M
rπ1pXq, π1pXqs –ÝÑ H1pX ;Zq.

One can prove Theorem 33.3 by writing down an inverse map that transforms any singular
1-cycle (viewed as a formal sum of paths whose end points must satisfy some matching conditions
in order to produce a cycle) into a loop based at p by concatenating the associated paths. There are
typically many ways that this can be done, but the ambiguity turns out to lie in the commutator
subgroup rπ1pX, pq, π1pX, pqs; see last semester’s Exercise 22.12 for further hints.

The third property I want to mention is a relationship between simplicial and singular homol-
ogy. Suppose K “ pV, Sq is a simplicial complex, with polyhedron |K|. There is then a natural
chain map

Co˚pKq Ñ C˚p|K|q
defined by associating to each generator pv0, . . . , vnq in degree n of the ordered simplicial chain
complex the unique singular n-simplex σ : ∆n Ñ |K| that extends to a linear map Rn`1 Ñ
RV sending the standard basis of Rn`1 to the vectors ev0 , . . . , evn P RV . As usual, the word
“natural” has a precise meaning here, and the map Co˚pKq Ñ C˚p|K|q can be described as a
natural transformation between two functors SimpÑ ChpR-Modq. Letting chain maps descend to
maps between homology groups, we obtain natural homomorphisms

Ho
npKq Ñ Hnp|K|q.

In light of the natural isomorphisms Ho
npKq –ÝÑ H∆

n pKq, we also obtain from this natural homo-
morphisms H∆

n pKq Ñ Hnp|K|q, and we will see when we study cellular homology that the latter
is also an isomorphism.

One useful application of this relationship is a construction of fundamental cycles in singular
homology: If M – |K| is a compact triangulated n-manifold, with a choice of admissible ordering
for the underlying simplicial complex, then feeding the resulting fundamental cycle cM P ConpK;Z2q
into the natural chain map ConpK;Z2q Ñ CnpM ;Z2q produces a singular fundamental cycle

cM P CnpM ;Z2q such that BcM “ cBM P Cn´1pBM ;Z2q Ă Cn´1pM ;Z2q.
If the triangulation is also oriented, then this can all also be done with integer coefficients, producing
an integral fundamental cycle

cM P CnpM ;Zq such that BcM “ cBM P Cn´1pBM ;Zq Ă Cn´1pM ;Zq.
33.3. The axioms. Here is the main result of this lecture.

Theorem 33.4. For any R-module G, the functors Hnp¨;Gq : Toprel Ñ R-Mod and connecting
homomorphisms B˚ : HnpX,A;Gq Ñ Hn´1pA;Gq defined for all pX,Aq P Toprel and n P Z satisfy
the axioms of a homology theory (in the sense of Eilenberg-Steenrod) with coefficient group G.

Let’s first dispense with the axioms that are easy exercises. Since a one-point space t˚u admits
only one singular n-simplex σ : ∆n Ñ t˚u for each n ě 0, a computation completely analogous to
Exercise 29.4 shows that

Hnpt˚u;Gq –
#
0 if n ‰ 0,

G if n “ 0.
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This shows that H˚ :“ H˚p¨;Gq satisfies the dimension axiom, and moreover, the isomorphism
H0pt˚u;Gq – G is canonical. The additivity axiom is a similarly straightforward consequence of
the definitions.

Now for the interesting part.

Proposition 33.5 (the homotopy axiom). For any two homotopic maps of pairs f, g : pX,Aq Ñ
pY,Bq, the induced homomorphisms f˚, g˚ : HnpX,Aq Ñ HnpY,Bq on singular homology are iden-
tical.

Proof. We consider first the case of absolute homology, so assume h : I ˆ X Ñ Y is a
homotopy between f :“ hp0, ¨q and g :“ hp1, ¨q. For each n ě 0, there is a unique homomorphism
h# : CnpXq Ñ Cn`1pY q determined by linearity and the following formula for h#pσq P Cn`1pY ;Zq
on an arbitrary singular n-simplex σ : ∆n Ñ X : we use the maps

I ˆ∆n IdˆσÝÑ I ˆX
hÝÑ Y,

together with the integral fundamental cycle cIˆ∆n P Cn`1pI ˆ ∆n;Zq arising from the oriented
triangulation of I ˆ∆n – ∆1 ˆ∆n described in §31.2, to define

h#pσq :“ h˚pIdˆσq˚cIˆ∆n P Cn`1pY ;Zq.
One now deduces from the formula for BcIˆ∆n that h# : C˚pXq Ñ C˚`1pY q is a chain homotopy
between f˚ and g˚.

Extending this result to the setting of a homotopy h : pI ˆX, I ˆ Aq Ñ pY,Bq between two
maps of pairs f, g : pX,Aq Ñ pY,Bq requires only the extra observation that since hpIˆAq Ă B, the
chain homotopy h# constructed above descends to the quotient as a chain homotopy C˚pX,Aq Ñ
C˚`1pY,Bq between the two chain maps f˚, g˚ : C˚pX,Aq Ñ C˚pY,Bq. �

Proposition 33.6 (the exactness axiom). For any pair of spaces pX,Aq P Toprel with inclusion
maps i : A ãÑ X and j : pX,Hq ãÑ pX,Aq, the sequence

. . . ÝÑ HnpAq i˚ÝÑ HnpXq j˚ÝÑ HnpX,Aq B˚ÝÑ Hn´1pAq ÝÑ . . . ÝÑ H0pX,Aq ÝÑ 0

is exact.

Proof. This is a straightforward consequence of Proposition 32.13 and the obvious short
exact sequence of chain complexes

0 ÝÑ C˚pAq i˚ÝÑ C˚pXq j˚ÝÑ C˚pX,Aq ÝÑ 0,

one only needs to check that the connecting homomorphism produced by the diagram chase in the
proof of Proposition 32.13 is the specific map HnpX,Aq Ñ Hn´1pAq : rcs ÞÑ rBcs. �

Recall that for the excision axiom formulated in Lecture 28, the hypothesis was that B Ă A Ă
X and there exists a continuous function u : X Ñ I that “separates” B from XzA in the sense that
u|B ” 0 and u|XzA ” 1. In singular homology, it suffices to work with a slightly weaker variant of
this hypothesis.

Proposition 33.7 (the excision axiom). Assume B Ă A Ă X such that the closure of B is
contained in the interior of A. Then the inclusion of pairs i : pXzB,AzBq ãÑ pX,Aq induces an
isomorphism i˚ : HnpXzB,AzBq –ÝÑ HnpX,Aq for every n.

The proof requires a bit of preparation. For each n ě 0, there is a unique homomorphism

S : CnpXq Ñ CnpXq
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that is determined by linearity and the formula

Spσq :“ σ˚c∆n P CnpX ;Zq,
where σ : ∆n Ñ X is an arbitrary singular n-simplex and c∆n P Cnp∆n;Zq is the integral funda-
mental cycle defined via barycentric subdivision of ∆n. We will refer to this as the subdivision
operator on the singular chain complex.

Lemma 33.8. For each m P N, the mth iterate Sm : C˚pXq Ñ C˚pXq of the subdivision
operator is a chain map, and there exists a chain homotopy hm : C˚pXq Ñ C˚`1pXq between Sm
and the identity map. Moreover, for any subspace A Ă X, both Sm and hm preserve the subcomplex
C˚pAq Ă C˚pXq.

Proof. We prove the statement first for m “ 1. For a given singular n-simplex σ : ∆n Ñ X ,
the chain map relation BSpσq “ σ˚Bc∆n “ σ˚cB∆n “ SpBσq follows from the inductive nature of the
barycentric subdivision algorithm described in §30.4. To see why S is then chain homotopic to the
identity, one uses the oriented triangulation of Iˆ∆n described in §31.4 and its integral fundamental
cycle cIˆ∆n P Cn`1pIˆ∆n;Zq to define, for each n ě 0, a homomorphism h1 : CnpXq Ñ Cn`1pXq
that is given on each generator σ : ∆n Ñ X by

h1pσq “ ppr2q˚pIdˆσq˚cIˆ∆n P Cn`1pX ;Zq,
with pr2 : I ˆ X Ñ X denoting the projection to the second factor. Since the triangulation of
I ˆ∆n restricts to BpI ˆ∆nq as the trivial triangulation of t0u ˆ∆n, the barycentric subdivision
of t1u ˆ∆n, and the pn´ 1q-dimensional case of the same triangulation on each face of I ˆ B∆n,
we have

Bh1pσq “ ppr2q˚pIdˆσq˚BcIˆ∆n “ Spσq ´ σ ´ h1pBσq,
and thus the chain homotopy relation Bh1 ` h1B “ S ´ 1. It is clear from the construction that
both S and h1 preserve C˚pAq Ă C˚pXq for any A Ă X .

For arbitrary m P N, it is now obvious that Sm is also a chain map and is chain homotopic
to 1

m “ 1, but we need to check that there is a chain homotopy hm that preserves subcomplexes
C˚pAq Ă C˚pXq. One can see this by writing down an inductive definition of hm, for which various
choices are possible, e.g. hm :“ hm´1S ` h1 does the job. �

Taking m large enough, the operator Sm can be applied in principle to replace any singular
chain c P CnpXq with a chain Smc P CnpXq whose constituent singular simplices are as “small” we
we like: in particular, if X is covered by the interiors of two subsets

X “ Ů Y V̊, U ,V Ă X,

then for any given chain c P CnpXq, takingm P N sufficiently large makes the n-chain Smc P CnpXq
decomposable with respect to this covering, meaning

Smc “ u` v for some u P CnpUq, v P CnpVq,
because every singular n-simplex in the finite linear combination forming Smc can be assumed to
have its image entirely inside either U or V . Moreover, if c P CnpXq is a cycle, then Smc P CnpXq
is also a cycle, and the chain homotopy relation

Smc´ c “ Bhmc` hmBc “ Bhmc
shows that c and Smc represent the same singular homology class. A relative version of this
observation will be used in the proof below, and we can now see the significance of the conditionsB Ă Å: it means that the interiors of A and XzB form an open covering of X .
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Proof of Proposition 33.7. Given any class rcs P HnpX,Aq represented by a relative n-
cycle c P CnpXq, we observe that for each m P N, the chain Smc P CnpXq satisfies

BpSmcq “ SmpBcq P Cn´1pAq,
since the subdivision operator S : C˚pXq Ñ C˚pXq preserves the subcomplex C˚pAq Ă C˚pXq,
hence Smc is also a relative n-cycle. Moreover, the chain homotopy relation Smc´c “ Bhmc`hmBc
implies rSmcs “ rcs P HnpX,Aq, since Bc P Cn´1pAq implies hmBc P CnpAq. With this in mind,
since the interiors of A and XzB cover X , we can assume without loss of generality after replacing
c by Smc for some m P N sufficiently large that the chain c can be decomposed as

c “ cA ` cXzB for some cA P CnpAq, cXzB P CnpXzBq.
Having made this assumption, the fact that c P CnpX,Aq is a relative n-cycle means Bc P Cn´1pAq
and therefore also BcXzB P CnpAq, so that cXzB is a relative n-cycle in pXzB,AzBq, thus repre-
senting a class rcXzBs P HnpXzB,AzBq that satisfies

i˚rcXzBs “ rcs.
This proves that i˚ : HnpXzB,AzBq Ñ HnpX,Aq is surjective.

To show that i˚ : HnpXzB,AzBq Ñ HnpX,Aq is injective, suppose c P CnpXzBq is a relative
n-cycle in pXzB,AzBq representing a class rcs P HnpXzB,AzBq with i˚rcs “ 0 P HnpX,Aq, which
means that if c is viewed as an n-chain in X , we have

c “ Bb` a for some b P Cn`1pXq and a P CnpAq.
By applying Sm to both sides for m sufficiently large, we can assume without loss of generality
that b decomposes as

b “ bA ` bXzB for some bA P CnpAq, bXzB P CnpXzBq.
We then have c ´ BbXzB “ BbA ` a, in which the left hand side is a chain in XzB and the right
hand side is a chain in A, implying that the right hand side is also a chain in AzB, and the relation
c “ BbXzB ` pBbA ` aq therefore implies rcs “ 0 P HnpXzB,AzBq. �

The proof of Theorem 33.4 is now complete, and now that we have established the existence of
at least one axiomatic homology theory with any given choice of coefficient group, there are many
immediate corollaries, e.g. the Brouwer fixed point theorem (cf. Exercise 28.7). In particular, the
computation of h˚pSnq carried out in Lecture 28 can now be considered a valid computation of
singular homology, giving

HkpSn;Gq –
#
G if k “ 0 or k “ n,

0 otherwise.

33.4. Chain-level excision. When we study singular cohomology later in this semester, it
will be useful to have a stronger variant of the excision property, one that applies to the singular
chain complex rather than just to its homology:

Theorem 33.9. Assume B Ă A Ă X such that the closure of B is contained in the interior
of A. Then the inclusion of pairs i : pXzB,AzBq ãÑ pX,Aq induces a chain homotopy equivalence
i˚ : C˚pXzB,AzBq Ñ C˚pX,Aq.

This obviously implies Proposition 33.7, and we will see in the following that it also more-or-
less follows from it, for somewhat nontrivial reasons. The usefulness of Theorem 33.9 will be that it
almost immediately implies that similar statements hold after applying certain standard algebraic
operations to chain complexes, such as the one that turns homology into cohomology. One gets a
hint of this from the following easy observation, which is based on the same trick as Remark 32.10:
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Lemma 33.10. If Theorem 33.9 holds for singular chain complexes with coefficients in Z, then
it also holds for arbitrary choices of coefficients.

Proof. Under the stated hypotheses on B Ă A Ă X , assume it is known that the map
i˚ : C˚pXzB,AzB;Zq Ñ C˚pX,A;Zq is a chain homotopy equivalence, which means there exists a
chain map g : C˚pX,A;Zq Ñ C˚pXzB,AzB;Zq, a chain homotopy h1 between i˚g : C˚pX,A;Zq Ñ
C˚pX,A;Zq and the identity, and a chain homotopy h2 between gi˚ : C˚pXzB,AzB;Zq Ñ
C˚pXzB,AzB;Zq and the identity. For any coefficient module G, linearity and the definitions
of these maps on the generators of the singular chain complex (i.e. on singular simplices) uniquely
determine similar chain maps and chain homotopies that relate C˚pXzB,AzB;Gq and C˚pX,A;Gq
in the same manner. �

With the lemma in mind, our goal is now to prove that Theorem 33.9 holds in the special
case G “ Z. We will deduce this from some general results about chain complexes in the next
subsection.

33.5. Chain contractions and mapping cones. Recall that a chain complex C˚ is called
chain contractible if there exists a chain homotopy of the identity map C˚ Ñ C˚ to the trivial
chain map 0 : C˚ Ñ C˚.

Lemma 33.11. A chain complex of R-modules C˚ is chain contractible if and only if there is
a splitting of Cn for each n P Z into submodules Cn “ An ‘ Bn such that Cn

BÝÑ Cn´1 vanishes
on An and maps Bn isomorphically to An´1.

Proof. Assume h : C˚ Ñ C˚ satisfies hpCnq Ă Cn`1 for every n P Z and Bh ` hB “ 1.
We observe that the homomorphisms Bh and hB in this case are complementary projections, since
B2 “ 0 implies

pBhq2 “ BphBqh “ Bp1´ Bhqh “ Bh, and phBq2 “ hpBhqB “ hp1´ hBqB “ hB.
We therefore obtain a splitting C˚ “ A˚ ‘ B˚ with A˚ :“ impBhq and B˚ :“ imphBq, and setting
An :“ A˚XCn and Bn :“ B˚XCn for each n P Z gives Cn “ An‘Bn. Since BpBhq “ 0, B vanishes
on A˚; moreover, the definitions of the projections imply that Bh is the identity map on A˚ while
hB is the identity map on B˚, showing that for each n P Z, one obtains an inverse of Bn

BÝÑ An´1

by composing An´1
hÝÑ Cn with the projection Cn

hBÝÑ Bn.
Conversely, if splittings Cn “ An ‘ Bn with the stated properties are given, then defining

h : Cn Ñ Cn`1 for each n P Z to be trivial on Bn and an inverse of Bn`1
BÝÑ An on An gives a

chain contraction. �

We can now clarify the advantage of focusing on the case G “ Z in the proof of Theorem 33.9:
it is the fact that chain complexes over Z are free abelian groups, thus making the following result
applicable.

Lemma 33.12. A chain complex C˚ of free abelian groups is acyclic if and only if it is chain
contractible.

Proof. Assume the chain complex C˚ is acyclic and Cn Ă C˚ is a free abelian group for each
n P Z. By a basic result in algebra (see e.g. [Lan02, §III.7]), subgroups of free abelian groups are
also free, and this applies in particular to the subgroups

Zn :“ ker
´
Cn

BnÝÑ Cn´1

¯
.

Acyclicity means that the map
Cn

BnÝÑ Zn´1
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is surjective for every n, and we therefore have a short exact sequence

0Ñ Zn ãÑ Cn
BÑ Zn´1 Ñ 0,

which splits since Zn´1 is free. This splitting identifies Cn with Zn ‘ Zn´1 so that B becomes the
projection Zn ‘ Zn´1 Ñ Zn´1, and chain contractibility now follows from Lemma 33.11. �

Remark 33.13. Lemma 33.12 also holds under the hypothesis that each Cn Ă C˚ is a free
R-module if the underlying ring R is a principal ideal domain: the key detail is that under this
assumption, submodules of free R-modules are also free, thus providing the splitting of short exact
sequences used in the proof. This fact about principal ideal domains depends in general on Zorn’s
lemma, so it may seem a bit abstract, but one can also avoid using it if one is willing to assume
the chain complex is bounded above or below, which also suffices for our present purposes; see
Exercise 33.2.

What we need next is a way to deduce that something is a chain homotopy equivalence from
the fact that some other complex is chain contractible. The right tool for this is the mapping cone.

A quick digression on simplicial complexes will provide some useful motivation. For a simplicial
pair pK,Lq, the cone CL of L also contains L itself as a subcomplex, so we can define the cone of
the pair pK,Lq as the simplicial complex

conepK,Lq :“ CL YL K,
in which the subcomplexes L Ă CL and L Ă K are identified with each other. The vertices of
conepK,Lq thus consist of the vertices of K plus one extra vertex labelled ˚, while its simplices
consist of the simplices of K plus, for each n ě 0 and each n-simplex tv0, . . . , vnu of L, the
pn` 1q-simplex t˚, v0, . . . , vnu. Topologically, the polyhedron | conepK,Lq| is a space obtained by
attaching |K| to the cone C|L| along |L|, thus making the inclusion |L| ãÑ | conepK,Lq| homotopic
to a constant map.

The augmented chain complex rC∆˚ pconepK,Lq;Zq contains two types of generators. First,
since K Ă conepK,Lq is a subcomplex, there are the generators corresponding to simplices of K,
in addition to 1 P Z “ rC∆´1pK;Zq, making rC∆˚ pK;Zq a subcomplex of rC∆˚ pconepK,Lq;Zq. Secondly,
each oriented simplex rv0, . . . , vns of L gives rise to a generator r˚, v0, . . . , vns of rC∆˚ pconepK,Lqq,
defining for each n ě ´1 a homomorphismrC∆

n pL;Zq jÝÑ rC∆
n`1pconepK,Lq;Zq

such that jrv0, . . . , vns :“ r˚, v0, . . . , vns and, for the case n “ ´1, jp1q :“ r˚s. The map j identifies
every n-chain in rC∆˚ pL;Zq with an pn ` 1q-chain in rC∆˚ pconepK,Lq;Zq, but j is not a chain map
and its image is not a subcomplex: instead, we have

Bjrv0, . . . , vns “ Br˚, v0, . . . , vns “ rv0, . . . , vns ´ jpBrv0, . . . , vnsq
and, using B “ ǫ˚ for the degree 0 part of the augmented chain complex, Bjp1q “ ǫ˚r˚s “ 1 “
1´ jpBp1qq. The result is a direct sum decompositionrC∆

n pconepK,Lq;Zq – rC∆
n´1pL;Zq ‘ rC∆

n pK;Zq
for each n ě ´1 such that the boundary map on rC∆˚ pconepK,Lq;Zq decomposes in block form as

B “
ˆ´BL 0

i˚ BK
˙
,

where BL and BK denote the boundary maps on the augmented simplicial chain complexes of L
and K respectively, and i : L ãÑ K is the inclusion. One can take this as topological motivation
for the following algebraic definition.
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Definition 33.14. The mapping cone of a chain map f : pA˚, BAq Ñ pB˚, BBq is the chain
complex pconepfq˚, Bq with

conepfqn :“ An´1 ‘Bn and B :“
ˆ´BA 0

f BB
˙
.

Remark 33.15. The literature contains a variety of alternative versions of Definition 33.14
with slightly different sign conventions.

It is straightforward to check that for any chain map f : A˚ Ñ B˚, one obtains a short exact
sequence of chain complexes

0 ÝÑ B˚ iÝÑ conepfq˚ πÝÑ A˚r´1s ÝÑ 0,

where we denote by A˚r´1s the chain complex A˚ with its grading shifted so that A˚r´1sn :“
An´1, and the maps i and π are the obvious inclusion and projection respectively,

Bn
iÝÑ An´1 ‘Bn, An´1 ‘Bn

πÝÑ An´1.

Plugging this into Proposition 32.13 thus gives a long exact sequence that relates the homology
groups of A˚, B˚ and the cone, and by inspection of the usual diagram chase, one finds that the
connecting homomorphism HnpA˚r´1sq “ Hn´1pA˚q B˚ÝÑ Hn´1pB˚q in this case is simply the map
induced on homology by the chain map f : A˚ Ñ B˚, so the long exact sequence takes the form

(33.4) . . . ÝÑ HnpA˚q f˚ÝÑ HnpB˚q i˚ÝÑ Hnpconepfq˚q π˚ÝÑ Hn´1pA˚q f˚ÝÑ Hn´1pB˚q ÝÑ . . . .

The exactness of this sequence implies:

Proposition 33.16. A chain map f : A˚ Ñ B˚ induces isomorphisms HnpA˚q Ñ HnpB˚q
for all n P Z if and only if its mapping cone conepfq˚ is acyclic. �

The following is a chain-level analogue of Proposition 33.16.

Theorem 33.17. A chain map f : A˚ Ñ B˚ is a chain homotopy equivalence if and only if
its mapping cone conepfq˚ is chain contractible.

Proof. Suppose conepfq˚ admits a chain contraction, so for each n P Z, there is a homomor-
phism

h “
ˆ
α β

γ δ

˙
: An´1 ‘Bn “ conepfqn Ñ conepfqn`1 “ An ‘Bn`1

satisfying hB ` Bh “ 1, which amounts to the four equations

´BAα´ αBA ` βf “ 1,

fα` BBγ ´ γBA ` δf “ 0,

´BAβ ` βBB “ 0,

fβ ` BBδ ` δBB “ 1

for the maps α : An´1 Ñ An, β : Bn Ñ An, γ : An´1 Ñ Bn`1 and δ : Bn Ñ Bn`1. The third
equation makes β a chain map B˚ Ñ A˚, the first makes ´α a chain homotopy between β ˝ f and
the identity A˚ Ñ A˚, and the fourth makes δ a chain homotopy between f ˝ β and the identity
B˚ Ñ B˚, proving that β is a chain homotopy inverse of f .

We will not need the converse in the application below, so we include here only a sketch of its
proof, adapted from an argument in [Bro94, Prop. 0.7].

As a preparatory observation, note that for any two chain complexes pA˚, BAq and pB˚, BBq,
there is a chain complex pHompA˚, B˚q, Bq whose degree n part consists of the homomorphisms
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ϕ : A˚ Ñ B˚ that satisfy ϕpAkq Ă Bk`n for all k P Z, with the boundary operator B given on
homomogeneous elements ϕ P HompA˚, B˚q of degree |ϕ| by

Bϕ :“ BB ˝ ϕ´ p´1q|ϕ|ϕ ˝ BA.
The choice of sign convention used here is motivated by a convention that we will later use for
defining tensor products of chain complexes, and it ensures for instance that the obvious evaluation
map

HompA˚, B˚q bA˚ Ñ B˚ : ϕb a ÞÑ ϕpaq
is a chain map. This detail is unimportant for now; one can easily check in any case that
pHompA˚, B˚q, Bq as defined above is a chain complex. Moreover, the 0-cycles in HompA˚, B˚q
are precisely the chain maps from A˚ to B˚, and two such cycles are homologous if and only if
they are chain homotopic.

Next, we have two claims whose proofs are both straightforward exercises:
Claim 1 : For any fixed chain complex C˚, there exists a covariant functor ChÑ Ch that sends

each chain complex A˚ to the chain complex HompC˚, A˚q and sends each chain map f : A˚ Ñ B˚
to the chain map

HompC˚, fq : HompC˚, A˚q Ñ HompC˚, B˚q : ϕ ÞÑ f ˝ ϕ,
and moreover, the chain homotopy class of HompC˚, fq depends only on the chain homotopy class
of f .

Claim 2 : For any chain map f : A˚ Ñ B˚ and any third chain complex C˚, there is a natural
isomorphism between the chain complexes HompC˚, conepfq˚q and conepHompC˚, fqq˚.

With these ingredients in place, suppose f : A˚ Ñ B˚ is a chain homotopy equivalence, and
abbreviate C˚ :“ conepfq˚. Claim 1 implies that HompC˚, fq : HompC˚, A˚q Ñ HompC˚, B˚q is
then also a chain homotopy equivalence, and by claim 2, its mapping cone is naturally isomorphic
to HompC˚, C˚q, implying via Proposition 33.16 that HompC˚, C˚q is acyclic. The vanishing of
H0pHompC˚, C˚qq means that every chain map C˚ Ñ C˚ is chain homotopic to zero: since this
applies in particular to the identity map C˚ Ñ C˚, it follows that C˚ is chain contractible. �

Theorem 33.9 in the case G “ Z is an immediate consequence of the following:

Corollary 33.18. For two chain complexes A˚, B˚ of free abelian groups, a chain map f :

A˚ Ñ B˚ is a chain homotopy equivalence if and only if the induced maps f˚ : HnpA˚q Ñ HnpB˚q
are isomorphisms for all n P Z.

Proof. If f˚ : HnpA˚q Ñ HnpB˚q is an isomorphism for every n, then by Proposition 33.16,
conepfq˚ is acyclic. Since the chain groups An´1 and Bn are free abelian groups, the same holds
for conepfqn “ An´1 ‘ Bn, and it then follows via Lemma 33.12 that conepfq˚ is also chain
contractible. The result now follows from Theorem 33.17. �

33.6. Exercises.

Exercise 33.1. Let Top˚ denote the category of pointed spaces with base-point preserving
continuous maps, so that we can regard both π1 and H1p¨;Zq as functors from Top˚ to the category
Grp of groups with homomorphisms. (Note that the base point is irrelevant for the definition of
H1p¨,Zq, which actually takes values in the smaller subcategory of abelian groups, but these details
are unimportant for now.) In this context, show that the Hurewicz homomorphism (33.3) defines
a natural transformation from π1 to H1p¨;Zq.

Exercise 33.2. A chain complex C˚ is said to be bounded below or bounded above
if Cn “ 0 for all n P Z sufficiently small or sufficiently large respectively, e.g. all of the chain
complexes that we have used for defining topological invariants so far have been bounded below,
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since they satisfy Cn “ 0 for n ă 0. Show that if C˚ is an acyclic chain complex of R-modules that
is bounded above or below and the modules Cn Ă C˚ are all free, then C˚ is chain contractible.
Hint: Construct a chain contraction inductively by degree, as in the method of acyclic models.
The assumption that C˚ is bounded above or below gives you a place to start the induction.

Exercise 33.3. Prove that for any two subsets U ,V Ă X with X “ Ů Y V̊, the obvious
inclusion

C˚pUq ` C˚pVq ãÑ C˚pXq
is a chain homotopy equivalence.
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