PROBLEM SET 6

- 1. Viewing S^1 as the unit circle in C, fix a generator $[S^1] \in H_1(S^1; \mathbb{Z}) \cong \mathbb{Z}$ and use it to determine local orientations $\mathbb{C}|z \in H_n(\mathbb{C}, \mathbb{C}\setminus\{z\}; \mathbb{Z})$ for every point $z \in \mathbb{C}$ via the natural isomorphisms $H_2(\mathbb{C}, \mathbb{C}\backslash\{z\}; \mathbb{Z}) \cong H_2(\mathbb{D}_z, \partial \mathbb{D}_z; \mathbb{Z}) \cong H_1(\partial \mathbb{D}_z; \mathbb{Z})$, where $\mathbb{D}_z \subset \mathbb{C}$ denotes the closed unit disk centered at z, whose boundary is canonically identified with S^1 . This choice will be used in the following for the definition of local degrees of maps $f: U \to \mathbb{C}$ defined on open subsets $U \subset \mathbb{C}$; note that changing the generator $[S^1] \in H_1(S^1; \mathbb{Z})$ does not change the definition of $\deg(f; z)$ since it changes both $[\mathbb{C}]_z$ and $\mathbb{C}|_{f(z)}$ by a sign.
	- (a) Show that if $f: \mathbb{C} \to \mathbb{C}$ is of the form $f(z) = (z z_0)^k g(z)$ for some $z_0 \in \mathbb{C}$, $k \in \mathbb{N}$ and g a continuous map with $g(z_0) \neq 0$, then deg $(f; z_0) = k$.
	- (b) Can you modify the example in part (a) to produce one with deg(f ; z_0) = -k for $k \in \mathbb{N}$?
	- (c) Suppose $\mathcal{U} \subset \mathbb{C}$ is open and $f : \mathcal{U} \to \mathbb{C}$ is continuous with $f(z_0) = w_0$ and $\deg(f; z_0) \neq 0$ for some $z_0 \in \mathcal{U}, w_0 \in \mathbb{C}$. Prove that for any neighborhood $\mathcal{V} \subset \mathcal{U}$ of z_0 , there exists an $\epsilon > 0$ such that every continuous map $\hat{f}: U \to \mathbb{C}$ satisfying $|\hat{f} - f| < \epsilon$ maps some point in V to w_0 . Remark: I have stated this problem for maps on $\mathbb C$ just for convenience, but one can do something similar with maps on open subsets of \mathbb{R}^n for any $n \in \mathbb{N}$.
	- (d) Find an example of a continuous map $f: \mathbb{C} \to \mathbb{C}$ that has an isolated zero at the origin with $\deg(f; 0) = 0$ and admits arbitrarily small continuous perturbations that are nowhere zero. Hint: You should probably not think in complex terms, but instead identify $\mathbb C$ with $\mathbb R^2$.
	- (e) Let $f: S^2 \to S^2$ denote the natural continuous extension to $S^2 := \mathbb{C} \cup \{\infty\}$ of a complex polynomial $\mathbb{C} \to \mathbb{C}$ of degree *n*. What is deg(*f*)?
	- (f) Pick a constant $t_0 \in S^1$ and let $A \cong S^1 \vee S^1$ denote the subset $\{(x, y) | x = t_0 \text{ or } y = t_0\}$ $S^1 \times S^1 = \mathbb{T}^2$. Show that $\mathbb{T}^2/A \cong S^2$, and that the quotient map $\mathbb{T}^2 \to \mathbb{T}^2/A$ has degree ± 1 (depending on choices of generators for $H_2(\mathbb{T}^2; \mathbb{Z})$ and $H_2(S^2; \mathbb{Z})$).
- 2. Suppose $f: S^n \to S^n$ is any continuous map, and $p_+ \in \Sigma S^n = C_+ S^n \cup_{S^n} C_- S^n$ is the vertex of the top cone in the suspension $\Sigma S^n \cong S^{n+1}$. What is deg $(\Sigma f; p_+)$? Use this to give a new proof (different from the one we saw in lecture) that $\deg(\Sigma f) = \deg(f)$.
- 3. (a) Show that every map $S^n \to \mathbb{T}^n$ has degree 0 if $n \geq 2$. Hint: Lift $S^n \to \mathbb{T}^n$ to the universal cover of \mathbb{T}^n .
	- (b) Show that for every $d \in \mathbb{Z}$ and every Z-admissible *n*-dimensional manifold M with $n \geq 1$, there exists a map $M \to S^n$ of degree d. Hint: Try a map that is interesting only on some n -ball in M and constant everywhere else.
- 4. For these problems you need to use the mod 2 degree, since \mathbb{RP}^2 and the Klein bottle are \mathbb{Z}_2 -admissible but not Z-admissible. (This is because they are closed and connected but not orientable).
	- (a) Find an example of a map $\mathbb{RP}^2 \to S^2$ that cannot be homotopic to a constant.
	- (b) Same problem but with \mathbb{RP}^2 replaced by the Klein bottle. Hint: Problem 1(f) might provide some useful inspiration.
- 5. The following exercise involves point-set topological issues that are related to the reason why compact subsets of CW-complexes are always contained in finite subcomplexes. The set $\mathbb{R}^{\infty} := \bigoplus_{j \in \mathbb{N}} \mathbb{R}$ consists of all sequences of real numbers $(x_1, x_2, x_3, ...)$ such that at most finitely many terms are nonzero. Identifying \mathbb{R}^n for each $n \in \mathbb{N}$ with the subset

$$
\{(x_1, x_2, x_3, \ldots) \in \mathbb{R}^\infty \mid x_j = 0 \text{ for all } j > n \},\
$$

we can define a topology on \mathbb{R}^{∞} such that a set $\mathcal{U} \subset \mathbb{R}^{\infty}$ is open if and only if $\mathcal{U} \cap \mathbb{R}^{n}$ is an open subset of \mathbb{R}^n (with its standard topology) for all $n \in \mathbb{N}$. Notice that every element $\mathbf{x} \in \mathbb{R}^\infty$ belongs to \mathbb{R}^n for sufficiently large $n \in \mathbb{N}$. Prove that for any convergent sequence $\mathbf{x}^k \to \mathbf{x} \in \mathbb{R}^\infty$, there exists a (possibly larger) number $N \in \mathbb{N}$ such that $x^k \in \mathbb{R}^N$ for all k. Deduce from this that every compact subset $K \subset \mathbb{R}^{\infty}$ is contained in \mathbb{R}^N for some N sufficiently large (depending on K).

- 6. For integers $g \ge 0$ and $m \ge 1$, let $\Sigma_{g,m}$ denote the compact surface with boundary obtained by deleting m open disks from the closed oriented surface Σ_g of genus g. Assuming the isomorphism between singular and cellular homology, compute $H_*(\Sigma_{q,m}; G)$ with G an arbitrary coefficient group. Hint: Since singular homology is homotopy invariant, you are free to replace $\Sigma_{q,m}$ by a CW-complex that is homotopy equivalent to it.
- 7. The complex projective *n*-space \mathbb{CP}^n is a compact 2*n*-manifold defined as the set of all complex lines through the origin in \mathbb{C}^{n+1} , or equivalently,

$$
\mathbb{CP}^n = (\mathbb{C}^{n+1} \setminus \{0\}) / \sim
$$

where two points $z, z' \in \mathbb{C}^{n+1} \setminus \{0\}$ are equivalent if and only if $z' = \lambda z$ for some $\lambda \in \mathbb{C}$. It is conventional to write elements of \mathbb{CP}^n in so-called *homogeneous coordinates*, meaning the equivalence class represented by $(z_0, \ldots, z_n) \in \mathbb{C}^{n+1}$ is written as $[z_0 : \ldots : z_n]$. Notice that \mathbb{CP}^n can be partitioned into two disjoint subsets

$$
\mathbb{C}^n \cong \{ [1:z_1:\ldots:z_n] \in \mathbb{CP}^n \} \text{ and } \mathbb{CP}^{n-1} \cong \{ [0:z_1:\ldots:z_n] \in \mathbb{CP}^n \}.
$$

- (a) Show that the partition $\mathbb{CP}^n = \mathbb{C}^n \cup \mathbb{CP}^{n-1}$ gives rise to a cell decomposition of \mathbb{CP}^n with one 2k-cell for every $k = 0, \ldots, n$.
- (b) Using the isomorphism between singular and cellular homology, compute $H_*(\mathbb{CP}^n;G)$ for an arbitrary coefficient group G. Hint: This is easy.

¹This is the right topology so that the subspace topology on the set of unit vectors $S^{\infty} \subset \mathbb{R}^{\infty}$ matches the topology defined on S^{∞} via the infinite-dimensional cell decomposition we discussed in lecture.