TOPOLOGY II C. WENDL

PROBLEM SET 7

- 1. Recall that \mathbb{RP}^n has a cell decomposition with one k-cell for every k = 0, ..., n, derived by starting from the cell decomposition of S^n with two cells in each dimension and dividing the whole thing by a \mathbb{Z}_2 -action. Use this to compute $H^{CW}_*(\mathbb{RP}^n;\mathbb{Z})$, $H^{CW}_*(\mathbb{RP}^n;\mathbb{Z}_2)$ and $H^{CW}_*(\mathbb{RP}^n;\mathbb{Q})$.
- 2. The picture at the right shows two spaces that you may recall from *Topologie I* are both homeomorphic to the Klein bottle. Each also defines a cell complex $X = X^0 \cup X^1 \cup X^2$ consisting of one 0-cell, two 1-cells (labeled *a* and *b*) and one 2-cell.
 - (a) Compute $H^{CW}_*(X;\mathbb{Z})$, $H^{CW}_*(X;\mathbb{Z}_2)$ and $H^{CW}_*(X;\mathbb{Q})$ for both complexes. (You'll know you've done something wrong if the answers you get from the two complexes are not isomorphic!)
 - (b) Recall that the **rank** (*Rang*) of a finitely generated abelian group G is the unique integer $k \ge 0$ such that $G \cong \mathbb{Z}^k \oplus T$ for some finite group T. Verify for both cell decompositions of the Klein bottle above that

$$\sum_{k} (-1)^{k} \operatorname{rank} H_{k}^{CW}(X; \mathbb{Z}) = \sum_{k} (-1)^{k} \dim_{\mathbb{Z}_{2}} H_{k}^{CW}(X; \mathbb{Z}_{2}) = \sum_{k} (-1)^{k} \dim_{\mathbb{Q}} H_{k}^{CW}(X; \mathbb{Q}) = 0.$$

(Congratulations, you've just computed the **Euler characteristic** of the Klein bottle!)

- 3. Compute the cellular homology with coefficients in \mathbb{Z} , \mathbb{Z}_2 and \mathbb{Q} for the following infinite-dimensional CW-complexes:
 - (a) $S^{\infty} = \bigcup_{n=0}^{\infty} S^n$, whose *n*-skeleton for each $n \in \mathbb{N}$ is an *n*-sphere formed by attaching two *n*-cells to S^{n-1} ;
 - (b) $\mathbb{RP}^{\infty} = \bigcup_{n=0}^{\infty} \mathbb{RP}^n = S^{\infty}/\mathbb{Z}_2$, whose *n*-skeleton for each *n* is the *n*-skeleton of S^{∞} divided by a \mathbb{Z}_2 -action;
 - (c) $\mathbb{CP}^{\infty} = \bigcup_{n=0}^{\infty} \mathbb{CP}^n$, whose 2*n*-skeleton for each $n \in \mathbb{N}$ is \mathbb{CP}^n , formed by attaching a single 2*n*-cell to \mathbb{CP}^{n-1} .
- 4. Adapt the proof of $H^{CW}_*(X;G) \cong h_*(X)$ we saw in lecture to prove the relative version of this statement: for any axiomatic homology theory h_* with coefficient group $h_0(\{\text{pt}\}) \cong G$ and any finite-dimensional¹ CW-pair (X, A), i.e. any CW-complex X with a subcomplex $A \subset X$,

$$H^{\mathrm{CW}}_*(X,A;G) \cong h_*(X,A).$$

Hint: Start by showing that $C_n^{\text{CW}}(X, A; G)$ is canonically isomorphic to $h_n(X^n \cup A, X^{n-1} \cup A)$, and instead of the long exact sequence of the pair (X^n, X^{n-1}) , consider the long exact sequence of the triple $(X^n \cup A, X^{n-1} \cup A, A)$.

Comment: This exercise is a bit lengthy, but it is not fundamentally difficult—every step is simply a minor generalization of something that we discussed in lecture. Working through it is one of the best ways to achieve a deeper understanding of the isomorphism $H^{CW}_*(X;G) \cong h_*(X)$.

1

¹The assumption that (X, A) is finite dimensional is not actually necessary. The ideas needed in order to lift this assumption in the case where h_* is singular homology will be discussed next week.