Problem Set 1

To be discussed: Thursday, 23.10.2025

Problems marked with (*) should be considered essential, but it is highly recommended that you think through *all* of the problems before the next Thursday lecture.

Problem 1

A Banach algebra is a Banach space X that is equipped with the additional structure of a product $X \times X \to X : (x,y) \mapsto xy$ satisfying $||xy|| \le ||x|| \cdot ||y||$ for all $x,y \in X$.

- (a) (*) Suppose X is a Banach space and $\mathcal{L}(X)$ denotes the Banach space of bounded linear operators $X \to X$, endowed with the operator norm. Show that $\mathcal{L}(X)$ with a product structure defined by composition $AB := A \circ B$ is a Banach algebra.
- (b) (*) Assume X is a Banach algebra containing an element $1 \in X$ that satisfies 1 = x = x = x for all $x \in X$. Show that for any $x \in X$ with ||x|| < 1, the series $\sum_{n=0}^{\infty} (-1)^n x^n$ converges absolutely to an element $y \in X$ satisfying y(1 + x) = (1 + x)y = 1.
- (c) Assume X and Y are Banach spaces and $A_0 \in \mathcal{L}(X,Y)$ is a continuous linear map that admits a continuous inverse $A_0^{-1} \in \mathcal{L}(Y,X)$. Find a constant c > 0 such that for every $A \in \mathcal{L}(X,Y)$ with $||A A_0|| < c$, A also has an inverse $A^{-1} \in \mathcal{L}(Y,X)$.

Problem 2

For any integer $m \ge 0$, let $C^m([0,1])$ denote the vector space of m times continuously differentiable functions $x:[0,1] \to \mathbb{R}$, with the C^m -norm

$$||x||_{C^m} := \sum_{k=0}^m \max_{t \in [0,1]} |x^{(k)}(t)|,$$

where $x^{(k)}$ denotes the kth derivative of x. Prove:

- (a) $C^m([0,1])$ is a Banach space.
- (b) For each $m \ge 1$, the subset

$$X := \left\{ x \in C^m([0,1]) \mid x(0) = x'(0) = \dots = x^{(m-1)}(0) = 0 \right\}$$

is a vector space, and endowing it with the C^m -norm makes it a Banach space. Hint: Closed linear subspaces of Banach spaces are also Banach spaces. (Why?)

(c) (*) The map $X \to C^0([0,1]): x \mapsto x^{(m)}$ is a bijective bounded linear operator with a bounded inverse.

Problem 3

Determine which (if any) of the following are closed linear subspaces of the Banach space of bounded continuous functions $f:(0,1)\to\mathbb{R}$ with the C^0 -norm:

- (a) The bounded continuously differentiable functions on (0, 1)
- (b) (*) The uniformly continuous functions on (0,1)

Problem 4

For an arbitrary topological vector space X and a seminorm $\|\cdot\|$ on X, consider the following conditions:

- (i) $\|\cdot\|: X \to [0,\infty)$ is a continuous function;
- (ii) The set $B_1(0) := \{x \in X \mid ||x|| < 1\} \subset X$ is open;
- (iii) For every $x_0 \in X$ and $\epsilon > 0$, the set $B_{\epsilon}(x_0) := \{x \in X \mid ||x x_0|| < \epsilon\} \subset X$ is open.
- (a) Prove that conditions (i), (ii) and (iii) are all equivalent. Hint: Topological vector spaces have the feature that the affine map $x \mapsto x_0 + \epsilon x$ defines a homeomorphism $X \to X$ for any $x_0 \in X$ and $\epsilon > 0$ (why?). In particular, it maps open sets to open sets.
- (b) If additionally X is a locally convex space whose topology is determined by the family of seminorms $\{\|\cdot\|_{\alpha}\}_{{\alpha}\in I}$, prove that conditions (i)–(iii) are equivalent to the following: (iv) There exists a nonempty finite subset $I_0 \subset I$ and a constant C > 0 such that $\|x\| \leq C \sum_{{\alpha} \in I_0} \|x\|_{\alpha}$ for all $x \in X$.
- (c) Prove that two norms $\|\cdot\|_0$ and $\|\cdot\|_1$ on a vector space V are equivalent if and only if they define the same topology.

Problem 5

Assume X is a locally convex space. Prove:

- (a) A set $\mathcal{U} \subset X$ is open if and only if for every $x_0 \in \mathcal{U}$, there exists a continuous seminorm $\|\cdot\|: X \to [0, \infty)$ such that $B_1(x_0) := \{x \in X \mid \|x x_0\| < 1\} \subset \mathcal{U}$. Hint: Every finite positive linear combination of continuous seminorms is a continuous seminorm.
- (b) X is also a topological vector space.

Problem 6 (*)

Prove: For two locally convex spaces X and Y, a linear map $A: X \to Y$ is continuous if and only if for every continuous seminorm $\|\cdot\|_Y$ on Y, there exists a continuous seminorm $\|\cdot\|_X$ on X such that $\|Ax\|_Y \leq \|x\|_X$ holds for all $x \in X$.

Problem 7

Here is an example of a topological vector space whose topology cannot be defined via a metric. Let $C_c^0(\mathbb{R}^n)$ denote the space of continuous functions $f: \mathbb{R}^n \to \mathbb{R}$ that vanish outside of compact subsets.¹ We endow $C_c^0(\mathbb{R}^n)$ with a locally convex topology defined via the family of seminorms $\{\|f\|_{\varphi}\}_{\varphi\in I}$ where I denotes the set of all continuous functions $\varphi: \mathbb{R}^n \to [0, \infty)$ and $\|f\|_{\varphi}:=\|\varphi f\|_{C^0}$.

- (a) (*) Show that a sequence f_j converges to f in $C_c^0(\mathbb{R}^n)$ if and only if there exists a compact set $K \subset \mathbb{R}^n$ such that $f_j|_{\mathbb{R}^n\setminus K} \equiv 0$ for every $j \in \mathbb{N} \cup \{\infty\}$ and $f_j \to f$ uniformly on K.
- (b) To show that $C_c^0(\mathbb{R}^n)$ is not metrizable, one can argue by contradiction and suppose there exists a metric d such that every neighborhood $\mathcal{U} \subset C_c^0(\mathbb{R}^n)$ of 0 contains an open set of the form $B_n := \{f \in C_c^0(\mathbb{R}^n) \mid d(0,f) < 1/n\}$ for $n \in \mathbb{N}$ sufficiently large. Show that in this situation, there must exist functions $\varphi_n \in I$ such that $A_n := \{f \in C_c^0(\mathbb{R}^n) \mid ||f||_{\varphi_n} < 1\} \subset B_n$ for every n, then derive a contradiction by constructing a neighborhood \mathcal{U} of 0 that does not contain A_n for any $n \in \mathbb{N}$.

¹We say in this case that the functions $f \in C_c^0(\mathbb{R}^n)$ have compact support in \mathbb{R}^n .