



## Problem Set 12

To be discussed: Thursday, 5.02.2026

Problems marked with  $(*)$  should be considered essential, but it is highly recommended that you think through *all* of the problems before the next Thursday lecture.

### Problem 1 $(*)$

For a normal operator  $A \in \mathcal{L}(\mathcal{H})$  on a complex Hilbert space, prove the following without assuming the existence of a continuous functional calculus or spectral representation:

- (a)  $A$  has no residual spectrum, and  $\lambda \in \sigma(A)$  if and only if there exists a sequence  $x_n \in \mathcal{H}$  with  $\|x_n\| = 1$  for all  $n$  and  $(\lambda - A)x_n \rightarrow 0$ .
- (b) If  $P(A) \in \mathcal{L}(\mathcal{H})$  is defined by  $P(A) := \sum_{j,k} a_{j,k} A^j (A^*)^k$  for polynomial functions  $P : \mathbb{C} \rightarrow \mathbb{C}$  of the form  $P(z) = \sum_{j,k} a_{j,k} z^j \bar{z}^k$ , then  $P(\sigma(A)) \subset \sigma(P(A))$ .

### Problem 2

For a normal operator  $A \in \mathcal{L}(\mathcal{H})$  and a bounded Borel-measurable function  $f : \sigma(A) \rightarrow \mathbb{C}$ , prove that  $\sigma(f(A))$  is contained in the closure of  $f(\sigma(A))$ .

*Hint: If  $\mu \notin \overline{f(\sigma(A))}$ , then  $g(z) := \frac{1}{f(z) - \mu}$  is a bounded Borel-measurable function.*

### Problem 3

For a fixed constant  $x_0 \in \mathbb{T}^n$ , let  $T : L^2(\mathbb{T}^n) \rightarrow L^2(\mathbb{T}^n)$  denote the translation operator

$$(Tf)(x) := f(x + x_0).$$

This operator is unitary, and therefore cannot be compact.<sup>1</sup>

- (a) Find an explicit spectral representation for  $T$ , i.e. a  $\sigma$ -finite measure space  $(X, \mu)$ , unitary isomorphism  $U : L^2(\mathbb{T}^n) \rightarrow L^2(X)$  and bounded measurable function  $F : X \rightarrow \mathbb{C}$  such that  $UTU^{-1}$  is the multiplication operator  $u \mapsto Fu$ .

*Hint: Use Fourier series.*

- (b)  $(*)$  Show that depending on the value of  $x_0 \in \mathbb{T}^n$ , one of the following must happen:
  - (i)  $\sigma(T)$  is a finite set consisting of eigenvalues that each have infinite multiplicity;
  - (ii)  $\sigma(T)$  is the entire unit circle in  $\mathbb{C}$  and consists of a countably infinite set of eigenvalues, plus an uncountable set of points that are not eigenvalues.

*Hint: The spectrum is the essential range of the function  $F : X \rightarrow \mathbb{C}$  mentioned in part (a).*

- (c) Carry out the analogues of parts (a) and (b) for a similar translation operator on  $L^2(\mathbb{R}^n)$ , and show that if the shift  $x_0 \in \mathbb{R}^n$  is nonzero, then the spectrum in this case is always the entire unit circle in  $\mathbb{C}$  but contains no eigenvalues.

### Problem 4

A bounded linear operator  $A \in \mathcal{L}(\mathcal{H})$  on a complex Hilbert space is called *positive* (written “ $A \geq 0$ ”) if  $\langle x, Ax \rangle \geq 0$  for all  $x \in \mathcal{H}$ . Prove:

<sup>1</sup>A Banach space isomorphism is never compact unless the space is finite dimensional. (Why not?)

(a) Positive operators are always self-adjoint.

*Hint: If  $\langle x, Ax \rangle$  is real then  $\langle x, Ax \rangle = \langle Ax, x \rangle$ . Compute  $\langle x + y, A(x + y) \rangle$  and  $\langle x + iy, A(x + iy) \rangle$  for arbitrary  $x, y \in \mathcal{H}$ .*

(b) A normal operator  $A \in \mathcal{L}(\mathcal{H})$  is unitary if and only if  $\sigma(A) \subset S^1 := \{z \in \mathbb{C} \mid |z| = 1\}$ , self-adjoint if and only if  $\sigma(A) \subset \mathbb{R}$ , and positive if and only if  $\sigma(A) \subset [0, \infty)$ .  
 (c) If  $\langle x, Ax \rangle > 0$  for all  $x \neq 0 \in \mathcal{H}$ , it does not follow that  $0 \notin \sigma(A)$ .

If  $A \geq 0$ , then part (b) implies that the function  $f(x) := \sqrt{x} \geq 0$  is well defined and continuous on  $\sigma(A)$ , so we can use the Borel functional calculus to define  $\sqrt{A} := f(A) \in \mathcal{L}(\mathcal{H})$ . Prove:

(d)  $\sqrt{A} \geq 0$ .  
 (e)  $\ker \sqrt{A} = \ker A$ .

Finally, we establish a special case of the polar decomposition: the following can be deduced from Theorem 18.67 in the lecture notes, but try to give a direct proof without using that theorem.

(f) Show that every invertible operator  $A \in \mathcal{L}(\mathcal{H})$  factors in the form  $A = UP$  where  $P := \sqrt{A^* A} \geq 0$  and  $U \in \mathcal{L}(\mathcal{H})$  is unitary.

### Problem 5

Prove that a bounded linear operator  $U \in \mathcal{L}(\mathcal{H})$  on a complex Hilbert space is unitary if and only if  $U = e^{iA}$  for some self-adjoint operator  $A \in \mathcal{L}(\mathcal{H})$ .

### Problem 6

The *spectral measure*  $\mu_x$  corresponding to a normal operator  $A \in \mathcal{L}(\mathcal{H})$  and  $x \in \mathcal{H}$  is by definition the unique finite regular measure on the Borel sets in  $\sigma(A) \subset \mathbb{C}$  such that

$$\langle x, f(A)x \rangle = \int_{\sigma(A)} f d\mu_x \quad \text{for all } f \in C^0(\sigma(A)).$$

(a) Describe  $\mu_x$  explicitly in the case where  $x \in \mathcal{H}$  is an eigenvector of  $A$ .  
 (b) Describe  $\mu_x$  explicitly in the case where  $A$  is compact and  $x \in \mathcal{H}$  is arbitrary.  
 (c) Recall that  $v \in \mathcal{H}$  is called *cyclic* for  $A$  if the span of all elements of the form  $A^m(A^*)^n v$  for nonnegative integers  $m, n \geq 0$  is dense in  $\mathcal{H}$ . Show that if  $A$  has an eigenvalue of multiplicity greater than 1, then  $\mathcal{H}$  does not contain any cyclic elements for  $A$ .

*Hint: Decompose  $v \in \mathcal{H}$  with respect to the splitting  $\mathcal{H} = E_\lambda \oplus E_\lambda^\perp$  for  $E_\lambda := \ker(\lambda - A)$ , and remember that eigenvectors of  $A$  are also eigenvectors of  $A^*$ .*

(d) (\*) Show that in the case  $\mathcal{H} = \mathbb{C}^n$ , the converse of part (c) also holds: if  $\sigma(A)$  contains  $n$  distinct eigenvalues, then a cyclic element  $v \in \mathcal{H}$  for  $A$  exists. Give an explicit example of  $v$  in the case where  $A : \mathbb{C}^n \rightarrow \mathbb{C}^n$  is diagonal.

*Hint: The proof of the spectral theorem will tell you where to look for an example.*