

Problem Set 13

To be discussed: Thursday, 12.02.2026

Problems marked with (*) should be considered essential, but it is highly recommended that you think through *all* of the problems before the next Thursday lecture.

Problem 1

Show that the following conditions on an unbounded operator $X \supset \mathcal{D} \xrightarrow{T} Y$ are equivalent:

- (i) T is closable;
- (ii) The closure $\bar{\Gamma}_T$ of $\Gamma_T \subset X \oplus Y$ is also the graph of an operator;
- (iii) The conditions $(x, y) \in \bar{\Gamma}_T$ and $(x, y') \in \bar{\Gamma}_T$ imply $y = y'$;
- (iv) For every $x \in \bar{\mathcal{D}} \subset X$, there exists at most one element $y \in Y$ arising as a limit of sequences Tx_n with $x_n \in \mathcal{D}$ converging to x .

Problem 2

Assume $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are Banach spaces, $\mathcal{D} \subset X$ is a subspace, and $X \supset \mathcal{D} \xrightarrow{T} Y$ is a linear operator, possibly unbounded, and not necessarily closed. Prove:

- (a) If T is closed, then so is the operator $\mathcal{D} \rightarrow Y : x \mapsto Tx + Ax$ for every bounded operator $A \in \mathcal{L}(X, Y)$.
- (b) T is closed if and only if the so-called *graph norm* $\|x\|_T := \|x\|_X + \|Tx\|_Y$ on \mathcal{D} is complete.
- (c) (*) Assuming T is closed, it is injective with closed image if and only if there exists a constant $c > 0$ such that $\|Tx\|_Y \geq c\|x\|_X$ for all $x \in \mathcal{D}$.

Now assume $X = Y$ is a complex Banach space.

- (d) Show that for every $\lambda \in \mathbb{C}$ such that $\lambda - T : \mathcal{D} \rightarrow X$ is bijective, T is closed if and only if the resolvent operator $R_\lambda(T) : X \rightarrow X : x \mapsto (\lambda - T)^{-1}x$ is bounded.

Next, assume additionally that T is closed. Let us call $\lambda \in \mathbb{C}$ an *approximate eigenvalue* of T if there exists a sequence $x_n \in \mathcal{D}$ such that $\|x_n\|_X = 1$ and $(\lambda - T)x_n \rightarrow 0$, and say that λ belongs to the *residual spectrum* of T if the image of $\lambda - T : \mathcal{D} \rightarrow X$ is not dense. Prove:

- (d) (*) If $\lambda \in \sigma(T)$ is not in the residual spectrum of T , then it is an approximate eigenvalue.
- (e) (*) Every approximate eigenvalue of T is in $\sigma(T)$.

Problem 3

Let $\text{AC}^2([0, 1])$ denote the space of absolutely continuous complex-valued functions $f(t)$ on $[0, 1]$ whose derivatives (defined almost everywhere) are in $L^2([0, 1])$. Given the domains

$$\begin{aligned}\mathcal{D}_0 &:= \text{AC}^2([0, 1]), \\ \mathcal{D}_1 &:= \{f \in \text{AC}^2([0, 1]) \mid f(0) = 0\}, \\ \mathcal{D}_2 &:= \{f \in \text{AC}^2([0, 1]) \mid f(0) = f(1) = 0\},\end{aligned}$$

consider for $j = 0, 1, 2$ the unbounded operators $L^2([0, 1]) \supset \mathcal{D}_j \xrightarrow{T_j} L^2([0, 1])$ defined by $T_j := i\partial_t = i\frac{d}{dt}$. Prove:

- (a) (*) All three domains are dense in $L^2([0, 1])$, and all three operators are closed.
- (b) Every $\lambda \in \mathbb{C}$ is an eigenvalue of T_0 , thus $\sigma(T_0) = \mathbb{C}$.
- (c) Every $\lambda \in \mathbb{C}$ is in the resolvent set of T_1 , and $(\lambda - T_1)^{-1} : L^2([0, 1]) \rightarrow \mathcal{D}_1$ sends $g \in L^2([0, 1])$ to the function $f(t) := i \int_0^t e^{-i\lambda(t-s)} g(s) ds$. In particular, $\sigma(T_1) = \emptyset$.¹
- (d) T_2 is symmetric, but not self-adjoint.
- (e) Every $\lambda \in \mathbb{C}$ is in the residual spectrum of T_2 , hence $\sigma(T_2) = \mathbb{C}$.

Problem 4 (*)

Fix an L^2 -function $P : [0, 1] \rightarrow \mathbb{R}$ and define \mathcal{D} to be the vector space of C^1 -functions $x : [0, 1] \rightarrow \mathbb{C}$ such that $x(0) = x(1) = 0$ and the derivative \dot{x} belongs to the space $AC^2([0, 1])$ from Problem 3, so every $x \in \mathcal{D}$ has an almost everywhere defined second derivative $\ddot{x} \in L^2([0, 1])$. Setting $Tx := \ddot{x} + Px$, show that $L^2([0, 1]) \supset \mathcal{D} \xrightarrow{T} L^2([0, 1])$ is an unbounded self-adjoint operator.

Hint: Interpret the condition defining the domain of T^ in terms of weak derivatives, and then look at Problem Set 9 #4.²*

Problem 5

Suppose $\mathcal{H} \supset \mathcal{D} \xrightarrow{A} \mathcal{H}$ is a closed unbounded operator such that $\langle x, Ax \rangle \geq 0$ for all $x \in \mathcal{D}$. Prove that if A has no residual spectrum, then $\sigma(A)$ contains no negative real numbers.

Problem 6

On a semifinite measure space (X, μ) with a measurable function $F : X \rightarrow \mathbb{C}$, we consider the unbounded multiplication operator

$$L^2(X, \mu) \supset \mathcal{D}_F \xrightarrow{T_F} L^2(X, \mu) : u \mapsto Fu,$$

with domain $\mathcal{D}_F := \{u \in L^2(X, \mu) \mid Fu \in L^2(X, \mu)\}$.

- (a) Show that $\mathcal{D}_F \subset L^2(X, \mu)$ is dense and T_F is a closed operator.
- (b) Show that the spectrum $\sigma(T_F)$ is the essential range of $F : X \rightarrow \mathbb{C}$ (cf. Problem Set 11 #4), and F can therefore be modified on a set of measure zero so that $F(X) \subset \sigma(T_F)$ without loss of generality.
- (c) Assuming $F(X) \subset \sigma(T_F)$, we can define a functional calculus

$$\mathcal{B}(\sigma(T_F)) \rightarrow \mathcal{L}(L^2(X, \mu)) : f \mapsto f(T_F) := T_{f \circ F},$$

where $\mathcal{B}(\sigma(T_F))$ is the space of bounded Borel-measurable functions $\sigma(T_F) \rightarrow \mathbb{C}$. Show that if $f_n \in \mathcal{B}(\sigma(T_F))$ is a sequence converging pointwise to $f(\lambda) := \lambda$ and satisfying the bound $|f_n| \leq |f|$ for all n , then $f_n(T_F)u \xrightarrow{L^2} T_Fu$ for all $u \in \mathcal{D}_F$.

¹The invertibility of $\lambda - T_1$ can also be deduced from general principles without writing down an explicit formula. The essential question is: given $g \in L^2([0, 1])$ and $\lambda \in \mathbb{C}$, how many absolutely continuous functions $f : [0, 1] \rightarrow \mathbb{C}$ satisfy the initial value problem $f'(t) = H(t, f(t)) := -i[\lambda f(t) - g(t)]$ with $f(0) = 0$? Intuitively, the Picard-Lindelöf theorem suggests that the answer must be exactly one, though strictly speaking, the theorem does not apply here since g cannot be assumed continuous. But since $H(t, x) = -i(\lambda x - g(t))$ is Lipschitz continuous with respect to x , the usual proof can be adapted for this case.

²One can also extract from this hint most of a proof that the space $AC^2([0, 1])$ in Problem 3 is equivalent to the Sobolev space $W^{1,2}((0, 1))$, and the domain in Problem 4 can similarly be related to the Sobolev space $W^{2,2}((0, 1))$. See Remark 19.16 in the lecture notes.