Problem Set 2

To be discussed: Thursday, 30.10.2025

Problems marked with (*) should be considered essential, but it is highly recommended that you think through *all* of the problems before the next Thursday lecture.

Problem 1

Assume X is a vector space over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ and $V \subset X$ is a subspace. One says that V has *codimension* k if the quotient vector space X/V has dimension k. (Note that k may be finite even if X and V are both infinite dimensional.)

- (a) Show that the following conditions are equivalent:
 - (i) $\operatorname{codim} V = 1$;
 - (ii) There exists a vector $w \in X \setminus V$ such that every $x \in X$ can be written as $x = v + \lambda w$ for unique elements $v \in V$ and $\lambda \in \mathbb{K}$;
 - (iii) $V = \ker \Lambda$ for some nontrivial linear map $\Lambda : X \to \mathbb{K}^{1}$
- (b) Show that if $V = \ker \Lambda = \ker \Lambda'$ for two linear functionals $\Lambda, \Lambda' : X \to \mathbb{K}$, then $\Lambda' = c\Lambda$ for some nonzero scalar $c \in \mathbb{K}$.
- (c) (*) Assuming X is a normed vector space and $V = \ker \Lambda$ for a nontrivial linear functional $\Lambda: X \to \mathbb{K}$, show that the following conditions are equivalent:
 - (a) $V \subset X$ is closed;
 - (b) $V \subset X$ is not dense;
 - (c) $\Lambda: X \to \mathbb{K}$ is continuous.

Hint: Show that the closure of any subspace is also a subspace. If $\Lambda: X \to \mathbb{K}$ is not bounded, there exists a bounded sequence $x_n = v_n + \lambda_n w \in X$ with $v_n \in V$, $w \in X \setminus V$ and $\lambda_n \in \mathbb{K}$ such that $|\Lambda(x_n)| \to \infty$. What can you say about $\frac{v_n}{\lambda}$?

Problem 2

Here is an example of a topological vector space that is not locally convex and has a trivial dual space. Define $L^p([0,1])$ as usual to be the space of equivalence classes (up to equality almost everywhere) of measurable functions $f:[0,1] \to \mathbb{R}$ with $||f||_{L^p}:=\left(\int_0^1 |f(x)|^p dx\right)^{1/p} < \infty$, but instead of $p \ge 1$, assume $0 . In this case, Minkowski's inequality does not hold, so <math>||\cdot||_{L^p}$ is not a norm, but we shall regard $L^p([0,1])$ as a metric space with the metric defined by $d(f,g):=||f-g||_{L^p}^p$.

(a) Show that d is a metric on $L^p([0,1])$. Hint: Show first that $(x+y)^p \leq x^p + y^p$ holds for all $x,y \geq 0$. The latter can be deduced from the relation $a^q + b^q \leq (a+b)^q$ for $a,b \geq 0$ and q := 1/p > 1, which follows in turn from $(1+x)^q \geq 1+x^q$ for $x \geq 0$, which you can prove by differentiating with respect to x.

¹Linear maps $X \to \mathbb{K}$ are also called *linear functionals*, and subspaces $V \subset X$ of codimension 1 are also called *hyperplanes*.

- (b) Prove that $L^p([0,1])$ with the topology defined via d is a topological vector space.
- (c) Prove that the space of bounded measurable real-valued functions is dense in $L^p([0,1])$. Hint: Given $f \in L^p([0,1])$, define functions f_n that match f wherever $|f| \leq n$.
- (d) Prove by induction on $N \in \mathbb{N}$ that if K is any convex subset of a vector space, then for any finite collections $x_1, \ldots, x_N \in K$ and $\tau_1, \ldots, \tau_N \in [0,1]$ with $\sum_{i=1}^N \tau_i = 1$, $\sum_{i=1}^N \tau_i x_i \in K$. (This is known as a *convex combination* of x_1, \ldots, x_N .)
- (e) Prove that for any given $\epsilon > 0$, every bounded measurable function $f : [0,1] \to \mathbb{R}$ can be written as $f = \frac{1}{N} \sum_{i=1}^{N} f_i$ for some finite collection of functions $f_i \in L^p([0,1])$ satisfying $d(f_i,0) < \epsilon$ for all i = 1, ..., N. Conclude that the only closed convex subset of $L^p([0,1])$ containing a neighborhood of 0 is $L^p([0,1])$ itself. Hint: Define each f_i to have support in an interval of length 1/N, then make N large.
- (f) Prove that all continuous linear functionals $\Lambda: L^p([0,1]) \to \mathbb{R}$ are trivial. Hint: What kind of subset is $\{f \in L^p([0,1]) \mid |\Lambda(f)| \leq 1\}$?

Problem 3

Let \mathbb{R}^{∞} denote the vector space of infinite tuples $x = (x_1, x_2, ...)$ of real numbers such that at most finitely many of the coordinates $x_n \in \mathbb{R}$ are nonzero. This becomes an inner product space if we define on \mathbb{R}^{∞} the obvious generalization of the Euclidean inner product,

$$\langle x, y \rangle := \sum_{n=1}^{\infty} x_n y_n \in \mathbb{R},$$
 (1)

where the sum always converges since only finitely many of its terms are nonzero. Define a subspace $V \subset \mathbb{R}^{\infty}$ by $V := \{x \in \mathbb{R}^{\infty} \mid \sum_{n=1}^{\infty} \frac{x_n}{n} = 0\}$.

- (a) Prove that $V \subset \mathbb{R}^{\infty}$ is a closed subspace of codimension 1.
- (b) (*) Prove that the orthogonal complement $V^{\perp} = \{x \in \mathbb{R}^{\infty} \mid \langle x, v \rangle = 0 \text{ for all } v \in V\}$ is the trivial subspace of \mathbb{R}^{∞} .
- (c) In lecture we proved that for any closed subspace V in a Hilbert space \mathcal{H} , $\mathcal{H} = V \oplus V^{\perp}$. Where does the proof of this theorem go wrong if you try to carry it out with the Hilbert space \mathcal{H} replaced by the *incomplete* inner product space \mathbb{R}^{∞} ?

Hint: \mathbb{R}^{∞} is a dense subspace of the Hilbert space ℓ^2 consisting of tuples $x=(x_1,x_2,\ldots)$ that are allowed to have infinitely many nonzero coordinates but must also satisfy $\sum_{n=1}^{\infty} x_n^2 < \infty$. Equivalently, ℓ^2 is $L^2(\mathbb{N},\nu)$, the space of square-integrable functions $\mathbb{N} \to \mathbb{R} : n \mapsto x_n$ with the counting measure ν . Notice that $V = \mathbb{R}^{\infty} \cap z^{\perp}$ for an element $z \in \ell^2 \setminus \mathbb{R}^{\infty}$.

Problem 4

For vectors $x = (x_1, \ldots, x_n)$ in \mathbb{R}^n , consider the norms

$$|x|_p := \left(\sum_{j=1}^n x_j^p\right)^{1/p}$$
 for $1 \le p < \infty$, $|x|_\infty := \max\{|x_1|, \dots, |x_n|\}$.

- (a) Show (by drawing pictures of the unit ball) that the normed vector spaces $(\mathbb{R}^n, |\cdot|_1)$ and $(\mathbb{R}^n, |\cdot|_{\infty})$ are not strictly convex.
- (b) (*) Show that the spaces of real-valued functions of class L^1 or L^{∞} on [0, 1] are not strictly convex.