Problem Set 6

To be discussed: Thursday, 27.11.2025

Problems marked with (*) should be considered essential, but it is highly recommended that you think through *all* of the problems before the next Thursday lecture.

Convention: You can assume unless stated otherwise that all functions take values in a fixed finite-dimensional inner product space (V, \langle , \rangle) over a field \mathbb{K} which is either \mathbb{R} or \mathbb{C} . The Lebesgue measure on \mathbb{R}^n is denoted by m.

Problem 1

Assume $f: I \to V$ is a function defined on an interval $I \subset \mathbb{R}$.

- (a) (*) Show that f is Lipschitz-continuous with Lipschitz constant $C > 0^1$ if and only if there exist constants $a \in I$ and $v_0 \in V$ and a function $g \in L^{\infty}(I)$ with $\|g\|_{L^{\infty}} \leq C$ such that $f(x) = v_0 + \int_a^x g(t) dt$ for all $x \in I$.
 - Hint: Start by proving directly that Lipschitz-continuity implies absolute continuity.
- (b) Find an explicit example of a function $f:[0,1]\to\mathbb{R}$ that is absolutely but not Lipschitz-continuous.
- (c) (*) One says that $f: I \to V$ has a jump discontinuity at $x_0 \in I$ if $\lim_{x \to x_0^-} f(x)$ and $\lim_{x \to x_0^+} f(x)$ both exist but are not equal. Assume $f \in L^1_{loc}(I)$ and set $F(x) := \int_a^x f(t) dt$ for some constant $a \in I$. Show that if f has a jump discontinuity at x_0 , then F is not differentiable at x_0 .
- (d) Let $\varphi = \chi_{[0,\infty)} : \mathbb{R} \to \mathbb{R}$ denote the characteristic function of $[0,\infty)$. Given an enumeration of the rational numbers $q_1,q_2,q_3,\ldots\in\mathbb{Q}$, show that $f(x):=\sum_{n=1}^\infty\frac{1}{2^n}\varphi(x-q_n)$ defines a real-valued function $f\in L^\infty(\mathbb{R})$ such that for every $n\in\mathbb{N}$, $\lim_{x\to q_n^+}f(x)=f(q_n)$ and $\lim_{x\to q_n^-}f(x)=f(q_n)-\frac{1}{2^n}$. Hint: For any $n,N\in\mathbb{N}$, there exists a neighborhood $J\subset I$ of q_n such that the function $\varphi_m(x):=\frac{1}{2^m}\varphi(x-q_m)$ is constant on J for all $m\leqslant N$ with the exception of m=n. (Why?)
- (e) Write down an example of a Lipschitz-continuous function $F : \mathbb{R} \to \mathbb{R}$ that fails to be differentiable on a dense subset of \mathbb{R} . (By part (a) and the Lebesgue differentiation theorem, it will still be differentiable almost everywhere.)

Problem 2

Determine the set of Lebesgue points for each of the following functions $f \in L^1_{loc}(\mathbb{R}^n)$:

- (a) (*) The characteristic function of $\mathbb{Q}^n \subset \mathbb{R}^n$
- (b) The characteristic function of $\mathbb{R}^n \backslash \mathbb{Q}^n \subset \mathbb{R}^n$

Problem 3

Let $\mathbb{D}^n \subset \mathbb{R}^n$ denote the unit ball, and consider a function of the form $f(x) := \frac{1}{|x|^{\alpha}}$ on $\mathbb{R}^n \setminus \{0\}$ for some constant $\alpha > 0$.

¹Recall: C > 0 is a Lipschitz constant for $f: I \to V$ if $|f(x) - f(y)| \le C|x - y|$ holds for all $x, y \in I$.

- (a) For which values of $\alpha > 0$ does f belong to $L^1_{\text{weak}}(\mathbb{D}^n)$, and for which of these is it also in $L^1(\mathbb{D}^n)$?
- (b) For which values of $\alpha > 0$ does f belong to $L^1_{\text{weak}}(\mathbb{R}^n \backslash \mathbb{D}^n)$, and for which of these is it also in $L^1(\mathbb{R}^n \backslash \mathbb{D}^n)$?

Problem 4 (*)

Assume (X, μ) is a measure space and λ is another measure that is finite and absolutely continuous with respect to μ . Give a direct proof (without citing the Radon-Nikodým theorem) of the following result: for every $\epsilon > 0$, there exists $\delta > 0$ such that every measurable set $A \subset X$ satisfying $\mu(A) < \delta$ also satisfies $\lambda(A) < \epsilon$.

Problem 5

Our proof of the Radon-Nikodým theorem in lecture established the following slightly stronger result. Assume λ and μ are two σ -finite measures defined on the same σ -algebra on a set X, and consider the space $L^1(X, \lambda + \mu)$ of measurable functions $g: X \to \mathbb{R}$ that satisfy $\int_X |g| \, d(\lambda + \mu) = \int_X |g| \, d\lambda + \int_X |g| \, d\mu < \infty$. The map $g \mapsto \int_X g \, d\lambda$ then defines a bounded linear functional $L^1(X, \lambda + \mu) \to \mathbb{R}$, so by the Riesz representation theorem, there exists a unique $h \in L^\infty(X, \lambda + \mu)$ such that

$$\int_X g\,d\lambda = \int_X hg\,d(\lambda+\mu) \quad \text{ for all } \quad g\in L^1(X,\lambda+\mu).$$

Theorem (proved in lecture): $h: X \to \mathbb{R}$ satisfies $0 \le h < 1$ outside of a subset $E \subset X$ with $\mu(E) = 0$, and the resulting function $f := \frac{h}{1-h} : X \setminus E \to [0, \infty)$ satisfies

$$\int_{A} f \, d\mu \leqslant \lambda(A) \quad \text{for all measurable sets } A \subset X, \tag{1}$$

with equality for all mesurable sets $A \subset X$ whenever $\lambda \leqslant \mu$.

In the following, we consider pairs of measures λ and μ on certain σ -algebras on sets $X \subset \mathbb{R}^n$, where each of λ and μ is either the Lebesgue measure m, the counting measure ν , or the Dirac measure δ .² In each case, find the function $f: X \setminus E \to [0, \infty)$ explicitly, determine the collection of measurable subsets $A \subset X$ on which (1) becomes an equality, and determine whether $\lambda \leqslant \mu$.

- (a) (*) $X = \mathbb{R}^n$, $\mu = m$ and $\lambda = \delta$ on the σ -algebra of Lebesgue-measurable sets
- (b) $X = \mathbb{R}^n$, $\mu = \delta$ and $\lambda = m$ on the σ -algebra of Lebesgue-measurable sets
- (c) (*) $X = \mathbb{Z}^n$, $\mu = \nu$ and $\lambda = \delta$ on the σ -algebra of all subsets
- (d) $X = \mathbb{Z}^n$, $\mu = \delta$ and $\lambda = \nu$ on the σ -algebra of all subsets

One last brainteaser:

(e) For $X = \mathbb{R}^n$ with $\mu = \nu$ and $\lambda = m$ defined on the σ -algebra of Lebesgue-measurable sets, show that $\lambda \leqslant \mu$ but the function f is identically zero, so (1) cannot typically be an equality. What went wrong?

²Recall: $\nu(A)$ is the number of elements in A, while $\delta(A)$ is defined to be 1 if $0 \in A$ and 0 otherwise.