Problem Set 8

To be discussed: Thursday, 11.12.2025

Problems marked with (*) should be considered essential, but it is highly recommended that you think through *all* of the problems before the next Thursday lecture.

Problem 1

Fix $s \ge 0$ and a multi-index α of order $m := |\alpha| \in \mathbb{N}$.

- (a) Use the Fourier transform and Fourier inverse operators $\mathscr{F}, \mathscr{F}^* : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ to write down an explicit formula for the unique extension of $\partial^{\alpha} : \mathscr{S}(\mathbb{R}^n) \to \mathscr{S}(\mathbb{R}^n)$ to a bounded linear operator $\partial^{\alpha} : H^{s+m}(\mathbb{R}^n) \to H^s(\mathbb{R}^n)$.
- (b) (*) Show that a sequence $f_j \in H^m(\mathbb{R}^n)$ converges in the H^m -norm to $f \in H^m(\mathbb{R}^n)$ if and only if $\partial^{\beta} f_j \to \partial^{\beta} f$ in the L^2 -norm for all multi-indices β of order $|\beta| \leq m$.
- (c) (*) Show that for any scalar-valued function $f \in L^1(\mathbb{R}^n)$, the convolution with f defines a bounded linear operator $H^s(\mathbb{R}^n) \to H^s(\mathbb{R}^n)$: $g \mapsto f * g$, and if $g \in H^{s+m}(\mathbb{R}^n)$, then $\partial^{\alpha}(f * g) = f * \partial^{\alpha}g$. Hint: Problem Set 7 #6 proves the formula $\widehat{f * g} = \widehat{f}\widehat{g}$ for $f, g \in L^1(\mathbb{R}^n)$. For the present problem, you may assume this formula also holds when $f \in L^1(\mathbb{R}^n)$ and $g \in L^2(\mathbb{R}^n)$; this case was omitted from the lecture due to lack of time, but is proved via an easy density argument as Theorem 11.18 in the lecture notes.
- (d) Show that for any $f \in H^m(\mathbb{R}^n)$ and any approximate identity $\rho_j : \mathbb{R}^n \to [0, \infty)$ with shrinking support, the functions $f_j := \rho_j * f$ are in $H^m(\mathbb{R}^n) \cap C^\infty(\mathbb{R}^n)$ and converge in the H^m -norm to f as $j \to \infty$.

Problem 2

Prove that for every $m \in \mathbb{N}$, functions $f \in C^m(\mathbb{T}^n)$ are also in $H^m(\mathbb{T}^n)$ and the inclusion $C^m(\mathbb{T}^n) \hookrightarrow H^m(\mathbb{T}^n)$ is continuous.

Problem 3

Suppose $\rho \in \mathscr{S}(\mathbb{R}^n)$ satisfies $\rho \geqslant 0$ and $\int_{\mathbb{R}^n} \rho(x) dx = 1$, and define $\rho_j(x) := j^n \rho(jx)$ for $j \in \mathbb{N}$.

(a) (*) Show that for any $s \ge 0$ and $f \in H^s(\mathbb{R}^n)$, the sequence $\rho_j * f \in C^{\infty}(\mathbb{R}^n)$ satisfies $\|\rho_j * f\|_{H^s} \le \|f\|_{H^s}$ and $\rho_j * f \xrightarrow{H^s} f$ as $j \to \infty$.

Note that the convergence does not follow from Problem 1(d) since we are not assuming $s \in \mathbb{N}$.

(b) Show that the same result holds if $\rho_j \in \mathscr{S}(\mathbb{R}^n)$ is instead defined as $\mathscr{F}^*\psi_j$ for a sequence of smooth functions $\psi_j : \mathbb{R}^n \to [0,1]$ with compact support in the increasingly large ball $B_{j+1}(0) \subset \mathbb{R}^n$ and $\psi_j|_{B_j(0)} \equiv 1$.

Problem 4

Prove that for s > t, the natural inclusion $H^s(\mathbb{R}^n) \hookrightarrow H^t(\mathbb{R}^n)$ is not a compact operator.

Problem 5

Fix constants a, b > 1 with $b \in \mathbb{N}$ and consider the periodic function $f(x) := \sum_{k=0}^{\infty} \frac{1}{a^k} e^{2\pi i b^k x}$ which is continuous since the series converges absolutely and uniformly. Prove:

- (a) (*) $f \in H^s(S^1)$ if and only if $s < \log_b a$.
- (b) $f \in C^{0,\alpha}(S^1)$ for every $\alpha \in (0,1)$ with $\alpha \leq \log_b a$. Hint: Use Lemma 12.36 from the lecture notes. Note that the partial sums are continuously differentiable: estimate their $C^{0,1}$ -norms.

Remark: f is a variant of the function famously introduced by Weierstrass in 1872, which is of class C^1 if b < a, but nowhere differentiable if $b \ge a$. Part (a) establishes a weak version of the latter statement by proving $f \notin H^1(S^1)$, which implies $f \notin C^1(S^1)$ via Problem 2. Notice that while the Sobolev embedding theorem provides a continuous inclusion $H^s(S^1) \hookrightarrow C^{0,\alpha}(S^1)$ whenever $\alpha \le s - 1/2$, f turns out to be in a wider range of Hölder spaces than is guaranteed by that theorem. (That is just a coincidence—there is no interesting phenomenon behind it that I am aware of.)

Problem 6

Assume Ω is a compact subset of either \mathbb{R}^n or \mathbb{T}^n , and $0 < \alpha < \beta \leq 1$.

- (a) Prove via the Arzelà-Ascoli theorem that the inclusion $C^{0,\beta}(\Omega) \hookrightarrow C^0(\Omega)$ is compact.
- (b) Show that if $f_k \in C^{0,\beta}(\Omega)$ is a uniformly $C^{0,\beta}$ -bounded sequence that is C^0 -convergent to $f \in C^0(\Omega)$, then f is also in $C^{0,\beta}(\Omega)$.

 Caution: Do not try to prove that f_k is also $C^{0,\beta}$ -convergent to f—that is not generally true.
- (c) Show that the inclusion $C^{0,\beta}(\Omega) \hookrightarrow C^{0,\alpha}(\Omega)$ is also compact. Hint: Given $f_k \to f$ as in part (b), use the relation

$$\frac{|g(x)-g(y)|}{|x-y|^{\alpha}} = \left(\frac{|g(x)-g(y)|}{|x-y|^{\beta}}\right)^{\alpha/\beta} \cdot |g(x)-g(y)|^{1-\frac{\alpha}{\beta}}.$$

for the functions $g := f - f_k$.