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The symplectic mapping class group is defined as the space of symplec-
tomorphisms up to symplectic isotopies. In the smooth case, for surfaces,
the mapping class group is generated by Dehn twists making them pretty
important objects to study. So it is natural to ask whether a symplectic
Dehn twist exists and how it would look like. In this talk I present three
illustrations of the Dehn symplectic twist to obtain some intuition on the
Dehn twist. Then I show that Dehn twist is infinite order in its local model
T*S?. The talk is based on [Seidel, 1998] and [McDuff & Dusa, 2017].



1 Introduction

Last time we looked at the mapping class group of a surface. Remember
that the Mapping class group is defined as the connected isotopy compo-
nents of the orientation-preserving diffeomorphisms of a surface MCG(S) =
mo(Diff7(S)). We talked about the Thurston-Nielsen-classification which
states that every diffeomorphism can be "niceified” by isotopies to a dif-
feomorphism which is periodic (in the usual sense), reducible or pseudo-
Anosov. In particular, we looked at the mapping class group of the torus.
If we identify the torus as T? = R?/Z? with the standard flat metric, then
the "niceified” diffeomorphisms are linear maps on the torus and I presented
three prototypical examples for the three Thurston-Nielsen classes:

Example 1.1. 1. (’01 _01) is called the Hyperbolic involution and is a pro-
totypical periodic diffeomorphism

2. (1) is called the Dehn twist and is a prototypical reducible example.
It preserves the horizontal curve (})

3. (11) is called Arnold’s cat map and is a prototypical pseudo-Anosov.
Iterate the linear map on some simple closed curve and it approaches
a foliation whose slope is given by the eigenvector of the linear map

The matrices describe the "nicefied” linear diffeomorphisms. But there
is a second way to interpret the matrices (which I used implicitly in the
prototypical examples when I called a vector a curve).

The mapping class group acts on the isotopy classes of curves m(7%?), so
it also acts on the Abelianisation Ab(m(T?)) = H,(T?) = 7,(T?). Note that
the last isomorphism holds because the fundamental group of the torus is
already Abelian. From this we get a canonical action of the mapping class
group on the first homology MCG(T?) © H;(T?) by linear maps. And these
agree with the description above! Because isotopies by definition preserve
isotopy classes of curves this shows the following:

Lemma 1.2. The hyperbolic involution, the Dehn twist and Arnold’s cat map
are not isotopic to the identity.

Before we start, we give a formal definition of the Dehn twist.

Definition 1.3 (Dehn twist on a cylinder). Let R x S* C R x C be the
cylinder. Then the Dehn twist is the map

T:RxC—-RxC (1)
(t,2) — Vi (2)



It has the properties: T(—o0) = 17(c0) = 1,7(0) = —1.

Definition 1.4 (Dehn twist on a surface). Let S be a surface and v be
a simple, closed curve. There is a smooth embedding of a cylinder into a
tubular neighbourhood of ~:

R x St — N(v)

We can define a map v, : S — S that applies a Dehn twist inside N'(v) and
is the identity outside.

2 The symplectic mapping class group in di-
mension 2

Mapping class groups are extremely fun to study. This begs the question,
is—sympleetiegeometryfun? does symplectic geometry have a richer theory
of mapping class group? i.e., are there space where the symplectic mapping
class group is bigger than the smooth mapping class group? i.e., are there
elements that are non-isotopic to the identity via symplectomorphisms but
isotopic via diffeomorphisms? We start in dimension 2. This is easy and
start by we introducing the following tool:

Theorem 2.1 (Orbit-Stabiliser-theorem). Let G O X be a transitive action.
Let x € X. Then the following holds:

X = Orbitg(x) = G/ Stabg(x)
as homeomorphisms.

Theorem 2.2. The symplectic, volume-preserving and smooth mapping class
group agree for connected oriented surfaces.

SMCG(S) = VMCG(S) = MCG(S)

Proof. We will first show that the smooth MCG agrees with the MCG of
volume-preserving diffeos. For A > 0 let €2, be the space of volume-forms with
/. gw = A for w € (2. The space of orientation preserving diffeomorphisms
Diffeo™ (S) acts on Q. Note that all forms in 2y belong to the same cohomol-
ogy class. The stabiliser is given by Vol(S), the space of volume-preserving
diffeomorphisms. The space 2 is convex, so given any two volume-forms
wo, w1 € £, we also have w; = twy+ (1 —t)w; € Q. Then %wt =wyg—wy =do
for some form o because [wy] — [w1] = [0]. By Moser’s trick there is smooth



isotopy of diffeomorphisms 1} with w; = ¥*w and in particular w; = ¥;wy.
This shows that the action of Diffeo™ (S) on €, is transitive. By the Orbit-
Stabiliser theorem we get Q2 = Diffeo(S)/ Vol(S). As , is convex, it is con-
tractible and so is Diffeo(.S)/ Vol(S), so in particular the MCGs of smooth
maps and volume-preserving smooth maps agree. On surfaces volume forms
are exactly the symplectic forms, and the volume preserving diffeos are ex-
actly the symplectomorphisms so their MCGs also agree. O

3 Three illustrations of the symplectic Dehn
twist

What about higher dimensions? Can we construct a symplectomorphism
which is not isotopic to the identity via symplectomorphisms? We might try
to generalize the Dehn twist to the symplectic setting. But first we have to
properly define the Dehn twist.

Definition 3.1 (Symplectic Dehn twist). Ezamine T*S™™' with the identi-
fication
18" ={q+ip|llgll =1,{(g.p) =0} c C"

The synplectic Dehn twist for a (qo, po) € T*S™ ! is the function T(qo+ipy) =
(qo + ipo) defined by the equation

i |pol
(ql —l—Zﬂ) — Flpol (C_Io—l-ip—o) — [ —e VtIRo? (QO‘Fi&)
Py ol o

and by |p1| = |po|. So to calculate the value T(qo+ipo) first scale the imaginary

part pg to size @—gv then plug the complex number in to the formula and finally

scale the imaginary part of the result back to |pol:

Re(7(q + ip)) = Re (ﬂpo' (q + i%))

This definition agrees with the definition of the Dehn twist inn = 2. Also,
it behaves similarly in that

e as |po| goes to infinity T(qy + ipo) goes to qo + ipo

e 7(q0 +0) = —qo.



. . T .
e Furthermore, there is some “time” T = |po| where —e Vi+? = 4.

IMustration 3.2. For some |q| = 1, the image of the family {q + itp €
T;S’“1 | t € R} under the symplectic Dehn twist therefore looks something
like in Figure 1

Note the time t = 7. The multiplication by i exchanges the real/complex

or position/momentum components of the T*S™~'. This makes the symplectic
Dehn twist symplectic.

Figure 1: The image of ¢ 4 utp € Tq*S”_1 does a twist. (Please replace the 7
in the image by %)

Ilustration 3.3. The projection of {7(q + itp) € T;S" " | t € R} to S
follows a geodesic. See Figure 2

Proof. Since we are in C", we can identify the cotangent bundle with the
tangent bundle T*S" ! = T'S"1. Then every point g + ip € T'S™ ! can be
visualised as a point p € S"~! with a perpendicular vector attached. Let



-

Figure 2: The projection of 7(q 4 itp) € T;S"~! to S* follows a geodesic

lp| = 1. Then
Re((q + itp)) = Re(7"(q + ip))
~ Re (e“m(q + ip))

= Re(e™*W(q +ip)) for s(t) € (=1,1)
= Re((cos(ms)q — sin(ms)p) + i(sin(7s)q + cos(ws)p))
= cos(ms)q — sin(mws)p
Im(7 (g + itp)) = [t|Tm(r (g + ip))
= |t|(sin(7s)q + cos(ms)p)

INlustration 3.4. Ezamine the symplectic singular fibration
T:C" = C,(21,...,20) > 2i+ -+ 22
It has the fibre
F=a"(1)={a+iy € C" | |a]* — [y] = 1, {z,y) = 0}

This is symplectically isomorphic to T*S™ *. Because 7 is a symplectic fi-
bration, the monodromy of the path t — €™ is a symplectomorphism on F.
This induces the Dehn twist on T*S™ 1.

Corollary 3.4.1. The symplectic Dehn twist is a symplectomorphism.

We can use the Dehn twist as follows: Given an arbitrary symplectic
manifold M with an embedded Lagrangian sphere L, we can find a symplec-
tic embedding 7*S™ < M such that S™ maps to L. We can then modify 7
to be the identity outside a small neighbourhood of L and obtain a symplec-
tomorphism 77, : M — M, the Dehn twist around L.
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Figure 3: The Dehn twist is obtained from monodromy of the quadratic map.
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4 The Dehn twist has infinite order

Theorem 4.1 (Seidel, 1998). We examine the model space T*S? and its
compactly supported symplectomorphisms Symp,(T*S?). Then the Dehn twist
T has the following properties:

1. [t1] has infinite order in Symp(T*S?) (= the group of compactly sup-
ported maps).

2. 11, has order 2 in Diffeo® (T*S?).
Furthermore, SMCG(T*5?%) 2 7.

We note that T*5? is not a closed manifold. It would be better if it were
closed. Then we could apply the theory of holomorphic curves to obtain some
results. Therefore, we start by compactifying. We embed T*S5? «— S? x S?
such that the zero section goes to the anti-diagonal A := {(z, —x) € S?x 5?}.
Then T*S? can be identified as a neighbourhood N(A) and

(5% x SPN\U(T*S?) = (S2 x S2)\N(A) =2 N(A)

where A = {(z,z) € S? x §?}. The compactly supported symplectomor-
phisms now agree with the symplectomorphisms that restrict to the identity
on a neighbourhood of A, i.e., Symp,(7*5?%) = Symp(S? x S%, NA). Re-
member, that we are interested in SMCG(T*S?) = mo(Symp,(T*S?)) =
7o(Symp(S? x S2, NA)).

By forgetting the fact that a map mo(Symp(S? x S?, N'A)) is the identity
in the neighbourhood of A (as opposed to being the identity on just A) we
get the short exact sequence:

1 — Symp(S? x S%2, NA) < Symp(S? x S, A) — Aut(vA) — 1

where Aut(vA) are the fibre-preserving automorphisms of the normal bundle
and they describe in a sense the ”difference” of the previous two groups.
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This concludes the setup for the proof of theorem 1. Let’s import two
useful lemmas before we do the actual proof.

Lemma 4.2. Let i € Symp(S? x S%, A) be the involution that exchanges the
two spheres. This acts non-trivially on homology. Furthermore, {id,i} and
Symp(S? x S% A) are weakly homotopy equivalent.

Remark: The previous lemma is a black box that uses the theory of
holomorphic curves.

Lemma 4.3. Aut(vA), SLy(Z) and S* are weakly homotopy equivalent.

Proof of theorem 1. The short exact sequence above induces a long exact
sequence of homotopy groups:

.. > m(Aut(rA))
— mo(Symp(S? x S, NA)) — mo(Symp(S? x 5%, A)) — mo(Aut(vA)) — 1

]

By the previous two lemmas we have m,(Aut(rA)) = 7 (Symp(S? x
S?2 A)) = 0 for k > 1. This implies that m(Symp(S? x S*, N'A)) = 0 for
k > 1. The following short sequence remains:

1 — m(Aut(rA)) &y To(Symp(S? x S*, N'A)) — mo(Symp(S? x %, A)) — 1
— ¥ ) o7 ’

Let r; € Aut(rA) be the map that rotates each plane of A the the angle
s. Then the path r = (rg)o<s<2r generates m (Aut(rA)). The monodromy of
r induces a diffeomorphism 9(r) in Symp(S? x S?, N'A) and one can show
that this is [7]? (a map that is isotopic to the squared Dehn twist).

Because of the inclusion i), the mapping class [7]? has infinite order in
7o(Symp(S? x S?2, NA)). As for the isomorphism type of the middle group,
because of the s.e.s. it can only be Z or Z/2. In the first case, r maps
to 2 € Z. In the second case, it maps to (1,0) € Z x Z/2. But since we
now that the Dehn twist [r] (i.e. the square root of [7]?) exists we must
have [7]?> = 2 € Z, as (1,0) does not have a square root. In total, we have
SMCG(T*S?) =7

To prove the second claim we compare the s.e.s above with the following
short sequence.

71 (Diffeo(S? x S%, A)) —
m(Aut(vA)) 2 mo(Diffeo(S? x 52, NA)) — mo(Diffeo(S? x S2,A)) — 1

——— ~~
Z 7)2




Two pairs of the terms are isomorphic. To show that [r]> = 0 Seidel con-
structs an isomorphism m; (Diffeo(S? x S?, A)) = 7, (Aut(rA)).



