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We have developed a rich theory of Stein and Weinstein manifolds. We
have also introduced some simple examples of Stein and Weinstein manifolds,
like R?", Kiahler manifolds or punctured Riemann surfaces. However, it would
be useful, if we had even more examples. Since stable discs in Weinstein
manifolds are isotropic, the critical points must have index < n. The best
we could hope for is a statement that upgrades any such Morse manifold
into a Weinstein manifold. In this talk I present a theorem that does exactly
that. My second big theorem then upgrades a Weinstein manifold to a Stein
manifold, thereby also proving the existence of many Stein manifolds.



1 Background

Definition 1.1. A Weinstein manifold is a tuple (V,1,w, X) where:

e v is an exhausting Morse function
e w is an exact symplectic form w = do

e X is a gradient-like Liouville vector field

Definition 1.2. A Weinstein cobordism (W1, w, X) is a Weinstein mani-
fold that is also a cobordism, and

e v is constant on the two boundaries
e X points inward on O_W and outward on 0, W .

We can weaken certain parts of the definitions, to obtain different objects.
We repeat the statements that will be required for this talk.

Weinstein cobordism

— ——
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Liouville cobordism Smale cobordism
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No Liouville field, no exactness No Liouwille field
v v
Symplectic cobordism Morse cobordism
— _—
No symplectic form No Morse function
—~ /

Smooth cobordism

2 Weinstein existence theorem

Theorem 2.1 (Weinstein existence theorem). For n > 2, let (V,¢) be a
2n-dimensional smooth manifold with an exhausting Morse function 1 whose
critical points are of index < n. Let w be a non-degenerate (not necessarily
closed) 2-form on V. Then w can be isotoped into a Weinstein structure
(w, X,¥) on V with fixed ¢. Moreover, we can arrange that (w, X, @) is
flexible.

Flexible means that a Lagrangian n-dimensional stable disc is loose in V',
i.e. that it fulfils some A-principle. In this talk we will not go into flexibility.
We will also not describe the 4-dimensional case in details as this requires
extra care. Remember that any Weinstein manifold is a Weinstein domain



with cylinders attached. Therefore, the Weinstein existence theorem is a
direct consequence of:

Theorem 2.2 (Weinstein existence theorem for cobordisms). For n > 2,
let (W, ) be a 2n-dimensional Morse cobordism whose critical points are of
index < n. Let w be a non-degenerate (not-necessarily closed) 2-form and
let X be any gradient-like vector field on W such that (W,w, X, v¥)|ops_w
is Weinstein. Then there exists an isotopy of (w, X) outside Opd_W s.t.
(W,w, X, @) becomes Weinstein.

Ifn = 2, then we also require the contact structure defined by the Liouville
form X = 1yw on O_W to be overtwisted. Moreover, we can arrange that

(w, X, @) is flexible.

The last theorem allows us to choose any Weinstein structure on the lower
boundary and extend this to a Weinstein structure on the entire cobordism.
Note that because every cobordism is composed of elementary cobordisms,
we only need to show the statement for the elementary case. For simplicity,
we assume that the cobordism has only one critical point p of index < n.
The proof outlines as follows:

1. Homotope (w, X) thereby upgrading the stable disc A of p to be n-
isotropic.

2. Homotope (w, X) thereby upgrading W to be Liouville around A and
o_W.

3. Homotope (w, X) thereby upgrading W to be Liouville everywhere.
4. The resulting cobordism will also be Weinstein.

At the end of each paragraph, I will include the necessary statements
from previous chapters. We start with the following theorem. It states that
we can find an isotopy that moves any disc that is transversely attached to
the boundary 0_W into a totally real subspace and J-orthogonal position.
Note that this theorem is the reason for the overtwistedness assumption.

Proof. Step 1. Let A : D¥ — W be the stable manifold of p. Since
A runs along X and X points inward at d_W, the stable disc is attached
transversely to 0_W. Now we choose an auxiliary almost complex structure
J on W. Theorem 7.34 gives us an isotopy f; : D¥ < W of A, so that fo = A
and f(D¥) is totally real in W and J-orthogonally attached to 0_W. Write
A" = f; going forward. We extend f; to an ambient isotopy f; : W — W.



Theorem 2.3 (Theorem 7.34, h-principle). For n > 2 suppose that
(W, J) is an almost complex manifold of real dimension 2n and U C W
1s a domain with smooth J-convex boundary. Suppose that an embed-
ding fo : D¥ — W,k # n transversely attaches D* to U along ODF.
Then there exists an isotopy f; : D¥ — W,t € [0,1], through embed-
dings transversely attaching D* to U, such that and f, is totally real and
J-orthogonal to OU .

If k =n =2, we assume in addition, that the induced contact struc-
ture on OU 1is overtwisted.

In the case k =n > 2 we can arrange that the Legendrian embedding
filps : ODF — OW s loose, while for k = n = 2 we can arrange that the
complement OU\ f(0D?) is overtwisted for all t € [0,1].

Making A’ totally real is the first step in making it an isotropic subspace.
However, notice that due to the isotopy A’ might now be disconnected from
its critical point p. So instead of moving A forward along the isotopy, we
move J backward along the ambient isotopy. By symmetry, A is now f;J-
totally real and f;J-orthogonally attached to O_W. (Note that in the book
the homotopies are still illustrated by how they act on A, even though we’re
not really interested in moving A). However, now we face a new problem:
f1J is no longer compatible with w. The solution to this is to also move w,
but we need to be careful since we're not allowed to touch w on Opd_W.
So, we define a new homotopy ¢; from modification of f to remedy this fact.
Take some regular value ¢ +¢ > ¢ = ¢~ H(O_W), define U = {f(x) < c + &}
and identify the level sets of [¢,c + €] via J. We define g; as the homotopy,
that is the identity for the level sets [c,c + 5], g = f(t) for the level set
¢+ ¢ and smoothly interpolates between the other level sets by stopping the
homotopy early. Then k; = f; ' o g, has the following properties:

e k; equals the identity on W\U and f;* on Opd_W

Preserves ¢ everywhere

X =kfX =X on W\U and Op(0_-W) and X, is everywhere gradient-
like for ¢y = kj ¢.

® w; = g;w is compatible with J;.
e k'(A) is Jy-orthogonally real and .J;-orthogonally attached to 0_W

Therefore, A is isotropic with respect to wy.
Step 2. Apply Lemma 12.16. Now (W, ¢, w, X) is a Liouville manifold
in a neighbourhood of A U 0_ (W)



Lemma 2.4 (Lemma 12.16). Let (W, Xy, ¢) be an elementary Smale
cobordism and wy a nondegenerate 2-form on W. Let A be the stable disc
of ¢. Suppose that A is wy-isotropic and the pair (wg, Xo) is Liouville
on Op(0_W). Then for any neighbourhood U of O-W U A there ezists a
homotopy (wy, X;) with the following properties:

1. X, is a gradient-like vector field for ¢ and w; is a nondegenerate
2-form on W for all t € [0, 1]

2. (wi, Xy) = (wo, Xo) outside U and on AU Op(0_W)

3. (w1, X1) is a Liouville structure on Op(0-W U A).

Next we extend the Liouville structure in a neighbourhood of AUO_ (W)
to the entire cobordism. The trick is to follow the vector field X.

Step 3. We apply Proposition 9.19. This gives us a diffeotopy h; :
W — W that flows the W into the Op(A UO_W). The pullback (h;w, h;X)
gives a Liouville structure on all of W. The proposition ensures that i stays
gradient-like. Therefore (W, hjw, hi X, ¢) is Weinstein.

Proposition 2.5 (Proposition 9.19). Let (W, X, ¢, A) be as above. Let
a_ = ¢~ (O_W). Fiz an open neighbourhood U of W and a regqular
value ¢ > a_. Then there exists a diffeotopy hy - W — W with the
following properties:

e ho=1d and hy = Id on Op(OW U A)
e h; preserves trajectories of X
e i({p<c}) CU

In particular, the map ¢, == ¢ o hy* stays gradient-like w.r.t. X.

3 Existence of Stein manifolds

In this part we show how to upgrade a Weinstein structure to a Stein struc-
ture. We start similarly to the last section with the existence theorem for
manifolds.



Theorem 3.1 (Stein existence theorem). Let 20 = (V,w, X, ¢) be a Wein-
stein manifold. Then there exists a Stein structure (J,¢) on W such that the
Weinstein structures 20 and 20(J, @) are homotopic with fized function ¢.

This follows non-trivially from the Stein existence theorem for cobor-
disms. The proof uses induction over sublevel sets.

Theorem 3.2 (Stein existence theorem for cobordisms). Let 20 = (W, w, X, )
be a Weinstein cobordism which is Stein on Opd_W. Then after target

reparametrising, the Stein structure extends to a Stein structure (J,¢) on
W such that the Weinstein structures 20 and 20(J, ¢) are homotopic with

fixed ¢.

To finish in time, I will present the next two results before starting the
proof.

Theorem 3.3 (Parametric Stein existence theorem for cobordisms). Let
W, = W, wy, Xu, @), u € D¥ k >0, be a family of Weinstein cobordism
structures which share the same Morse function ¢. Suppose all 20, are Stein
near O_W and for all w € OD*, 20, are Stein on W. Then after target
reparametrizing ¢, there exists a family of Stein structures (J,,¢) for all
u € D* and a family of Weinstein homotopies 0, ., such that

o Wy, = W(Jy,,¢) and W, =W, for all u € D*
o 2,, =20, near O_W
o 2,, =20, forue dD*

Corollary 3.3.1. The map 20 : Stein(W, ¢) — Weinstein(W, ¢) is a weak
homotopy equivalence.

The proof of the Stein existence theorem requires the existence of inte-
grable complex structures.

Theorem 3.4 (Theorem 8.11, Existence of complex structures, Gromov,
Landweber). Let (W, J, ¢) be a 2n-dimensional almost complex Morse cobor-
dism, where ¢ has no critical points of index > n. Let A be the skeleton of
¢ with respect to some gradient-like X. Then J can be C°-approzimated by
an almost complex structure which coincides with J outside a neighbourhood
of L and is integrable on Op(AUO_W). In particular, J is homotopic to an
integrable complex structure via a homotopy fixred on Opo_W .



The proof of the Stein existence theorem is a consequence of the following
proposition. It states that there is a homotopy fixing a neighbourhood of the
lower boundary that extends the Stein structure to the handle. Note that
this does change the Morse function ¢ but in a way that can be remedied
later on:

Proposition 3.5. Let Wy =W = (W, w, X, ) be a Weinstein cobordism and
J an integrable complex structure on W. Suppose that on OpO_W the func-
tion ¢ = ¢ is J-convex and W coincides with W(J, ¢). Suppose moreover
that J is homotopic rel O_W to an almost complex structure compatible with
w. Then there exists a homotopy of Weinstein structures 20, = (wy, Xy, ¢y)
on W, and a regular value c of the function ¢1 with the following properties:

1. 0, agrees with Wy on Opd_W and up to scaling on Opo, W .

2. on W' = {¢1 < ¢} the function ¢y is J-conver and W |w = W(J, ¢1)
3. on {¢1 > ¢} the function ¢1 has no critical points.

4. ¢y = ¢ o f; for a diffeotopy fr : W — W fized on OpOW with f, = Id.

Just as in the Weinstein existence theorem, we only need to show this
for elementary cobordisms. We will further assume that they have only one
critical point. The proof is again divided into four steps:

1. Homotope (W, w, X, ¢) thereby upgrading ¢ to be J-convex around p.
(We will not tough the neighbourhood of p again)

2. Homotope J thereby making it compatible with w and the stable disc
A totally real and J-orthogonally attached to 0_W'.

3. Homotope the Weinstein structure (including ¢) thereby making ¢ at
the handle J-convex and the handle Stein

4. Homotope ¢ to give it the required properties 1.-3. Make sure that the
cobordism is still Weinstein. Apply Lemma 9.38 for property 4.

Proof. Step 1. Using Corollary 12.13 we deform 2 so that ¢ is J-convex
and 0 = W(J, ¢) around p. (We won’t change the neighbourhood of p ever
again)

Corollary 3.5.1 (Corollary 12.13). A Weinstein structure with hyper-
bolic an embryonic critical points is homotopic to one which is Stein for
a given complex structure near the critical points.



| |

Step 2. Just like before, choose a homotopy J; rel Op(OW_ U p) of
almost complex structures such that J; = J and Jy is compatible with w. By
Corollary 7.31 there is a isotopy of discs A that are J;-totally real and fixed
on ANOp(0_-W Up). We extend this isotopy to a global diffeotopy g; : W —
W rel Op(0_W U p). As this would again pull the stable disc away from p,
instead of moving back the disc, we move forward the Weinstein structure,
i.e. we replace 2 by (¢1).20. A is now totally real and J-orthogonally
attached.

Corollary 3.5.2 (Corollary 7.31, h-principle). Let (W, Jy) be an almost
complex manifold and fo : A — W be a totally real embedding. Let J;
be a homotopy of almost complex structures. Let filopp be an isotopy
of Ji-totally real embeddings into the neighbourhood of a closed B C A.
Then f; can be extended to a Jy-totally real embedding f; : A — W.

Step 3. Remember that J is actually complex (not just almost). So
we can apply Lemma 8.7. This gives us a J-convex function g% s.t. Ais J-
orthogonal to the level sets of ¢. This Weinstein structure 05(J, &) lop(o_wua)
is Stein on the handle (and ¢ is undefined outside of the handle). Note
however, that Lemma 8.7 does not give an isotopy and 20( ./, qg) is only defined
on the handle. So next, we apply Proposition 12.14. We obtain a homotopy
of the original Weinstrein structure to a Weinstein structure defined on W
that is Stein on the handle.

Lemma 3.6 (Lemma 8.7). Let (W, J) be a complex manifold, A CW a
compact totally real submanifold, ¢ : W — R a smooth function, and X
a nowhere vanishing vector field which is tangent to A and gradient-like
for ¢. Let K C A be a compact subset such that on OpK C W the
function ¢ is J-convex, Voo = X, and AN OpK is J-orthogonal to the
level sets of ¢. Then there ezists a J-convex function ¢ on OpA which
agrees with ¢ on AU OpK such that A is J-orthogonal to the level sets
of &, and Vdggz; = X along A.

Proposition 3.7 (Proposition 12.14). Given a Weinstein manifold (W, wo,|Xo, ¢o)
with a non-degenerate critical point p of index k and an embedded k-disc
A C Wp_ containing p. Let (Wioe, Xioe, Proc) be a Weinstein structure on a
neighbourhood Wi,. of A which coincides with (wo, Xo, ¢o) on AUOPIA.
Then there exists a homotopy of Weinstein structures (wy, Xy, ¢¢) on W

such that (wi, Xi, &) = (w, X, @) outside Wi, and on AU OpdA. The




homotopy ends with (w1, X1, 01) = (Wioes Xioes Proc) 0n OpA.

Step 4. Now, we apply the homotopy to get the properties 1.-4. We use
Theorem 8.5 and get a deformation as described in the theorem. Cieliebak
and Eliashberg get a slightly different deformation than described in the
Lemma, but the proof that this deformation exists should be the same:

* o =olu
o ¢, = g;¢p for some target equivalence g; near AU and equal to ¢ near
0-WUA

e ¢, has no critical points besides p
e some level set {¢; = ¢} surrounds _W U A in U

The difference between these two, is that in one case the level sets have been
pulled up and in the other case they have been pulled down by a target
equivalence g;. We'll assume that g¢; is nicely behaved (s.t. the contact
structure on 0, W is preserved later on). Remember that the Liouville form
of the Stein manifold is defined as Ay = —d¢, 0 J = (g, 0 ¢)(dpo J) = f; with
fi := g} o ¢, so this satisfies

fe+dfu(X) = g0 ¢+ (g/ ° d)(dp(X)) > 0

so according to Lemma 12.1 the Weinstein structure on U extends to a We-
instein structure 2U; on W.

Theorem 3.8 (Theorem 8.5). Let (W, J) be a complex manifold with
a compact J-concave boundary O_W. Let ¢g : W — R be a J-convex
Morse function which is constant on O_W and has no critical points on
O_W. Letp be a critical point of ¢pg and denote by A C W the stable disc
of p. Then for any neighbourhood U 2O 0_W UA there exists a homotopy
of J-lc functions ¢y : W — R with the following properties:

1. ¢4 is equal to ¢g near O_W and near OU, and target equivalent to
¢o near A.

2. ¢ n has the unique critical point p with stable disc A

3. some level set {¢1 = ¢} surrounds O-W U A in U.




Lemma 3.9 (Lemma 12.1). Let (W,w, X, ¢) be a Weinstein cobordism
with Liouville form X\. Then for a function f : W — R the following
holds: The 1-form fA defines a Weinstein structure iff f > 0 and k =
f+df(X)>0.

]

Proof of Stein existence theorem. In the previous proposition applied a ho-
motopy to ¢ which shouldn’t have been allowed. To fix this, we apply the
homotopy to the complex structure J instead.

Let ; = (W, wy, Xy, ¢ = ¢y o f;) and W’ be as in the proposition. Let
gt : W — W be the isotopy that flows W along the trajectories of X such
that g,(W) = W'. Set hy = g, o f;*. Then (h;),¢ stays fixed (up to target
equivalence) and Q0((hy)«J, (he)+¢) is a Weinstein homotopy with fixed ¢. [

Theorem 3.10 (Stein existence theorem). Let 20 = (W, w, X, ¥) be a Wein-
stein cobordism and J an integrable complex structure on W. Suppose that on
OpO_W the function ¢ is J-conver and 20 coincides with W(J, ¢). Suppose
moreover that J is homotopic rel O_W to an almost complex structure com-
patible with w. Then (up to target reparametrisation) there exists an isotopy
he - W — W rel Opo_W with hg = Id such that the function hqy,¢ is J-
convezr and the Weinstein structures 0(hiJ, ¢) and 20 on W are homotopic
rel Opo_W with fized function ¢.



