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We have developed a rich theory of Stein and Weinstein manifolds. We
have also introduced some simple examples of Stein and Weinstein manifolds,
like R2n, Kähler manifolds or punctured Riemann surfaces. However, it would
be useful, if we had even more examples. Since stable discs in Weinstein
manifolds are isotropic, the critical points must have index ≤ n. The best
we could hope for is a statement that upgrades any such Morse manifold
into a Weinstein manifold. In this talk I present a theorem that does exactly
that. My second big theorem then upgrades a Weinstein manifold to a Stein
manifold, thereby also proving the existence of many Stein manifolds.

1



1 Background

Definition 1.1. A Weinstein manifold is a tuple (V, ψ, ω,X) where:

• ψ is an exhausting Morse function

• ω is an exact symplectic form ω = dσ

• X is a gradient-like Liouville vector field

Definition 1.2. A Weinstein cobordism (W,ψ, ω,X) is a Weinstein mani-
fold that is also a cobordism, and

• ψ is constant on the two boundaries

• X points inward on ∂−W and outward on ∂+W .

We can weaken certain parts of the definitions, to obtain different objects.
We repeat the statements that will be required for this talk.

Weinstein cobordism

Liouville cobordism Smale cobordism

Symplectic cobordism Morse cobordism

Smooth cobordism

No morse function No symplectic form

No Liouville field, no exactness No Liouville field

No symplectic form No Morse function

2 Weinstein existence theorem

Theorem 2.1 (Weinstein existence theorem). For n > 2, let (V, ψ) be a
2n-dimensional smooth manifold with an exhausting Morse function ψ whose
critical points are of index ≤ n. Let ω be a non-degenerate (not necessarily
closed) 2-form on V . Then ω can be isotoped into a Weinstein structure
(ω,X, ψ) on V with fixed ϕ. Moreover, we can arrange that (ω,X, ϕ) is
flexible.

Flexible means that a Lagrangian n-dimensional stable disc is loose in V ,
i.e. that it fulfils some h-principle. In this talk we will not go into flexibility.
We will also not describe the 4-dimensional case in details as this requires
extra care. Remember that any Weinstein manifold is a Weinstein domain
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with cylinders attached. Therefore, the Weinstein existence theorem is a
direct consequence of:

Theorem 2.2 (Weinstein existence theorem for cobordisms). For n > 2,
let (W,ϕ) be a 2n-dimensional Morse cobordism whose critical points are of
index ≤ n. Let ω be a non-degenerate (not-necessarily closed) 2-form and
let X be any gradient-like vector field on W such that (W,ω,X, ψ)|Op∂−W

is Weinstein. Then there exists an isotopy of (ω,X) outside Op∂−W s.t.
(W,ω,X, ϕ) becomes Weinstein.

If n = 2, then we also require the contact structure defined by the Liouville
form λ = ıY ω on ∂−W to be overtwisted. Moreover, we can arrange that
(ω,X, ϕ) is flexible.

The last theorem allows us to choose any Weinstein structure on the lower
boundary and extend this to a Weinstein structure on the entire cobordism.
Note that because every cobordism is composed of elementary cobordisms,
we only need to show the statement for the elementary case. For simplicity,
we assume that the cobordism has only one critical point p of index ≤ n.
The proof outlines as follows:

1. Homotope (ω,X) thereby upgrading the stable disc ∆ of p to be η-
isotropic.

2. Homotope (ω,X) thereby upgrading W to be Liouville around ∆ and
∂−W .

3. Homotope (ω,X) thereby upgrading W to be Liouville everywhere.

4. The resulting cobordism will also be Weinstein.

At the end of each paragraph, I will include the necessary statements
from previous chapters. We start with the following theorem. It states that
we can find an isotopy that moves any disc that is transversely attached to
the boundary ∂−W into a totally real subspace and J-orthogonal position.
Note that this theorem is the reason for the overtwistedness assumption.

Proof. Step 1. Let ∆ : Dk ↪→ W be the stable manifold of p. Since
∆ runs along X and X points inward at ∂−W , the stable disc is attached
transversely to ∂−W . Now we choose an auxiliary almost complex structure
J onW . Theorem 7.34 gives us an isotopy ft : D

k ↪→ W of ∆, so that f0 = ∆
and f1(D

k) is totally real in W and J-orthogonally attached to ∂−W . Write
∆′ = f1 going forward. We extend ft to an ambient isotopy ft : W → W .
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Theorem 2.3 (Theorem 7.34, h-principle). For n > 2 suppose that
(W,J) is an almost complex manifold of real dimension 2n and U ⊆ W
is a domain with smooth J-convex boundary. Suppose that an embed-
ding f0 : Dk ↪→ W,k ̸= n transversely attaches Dk to U along ∂Dk.
Then there exists an isotopy ft : Dk ↪→ W, t ∈ [0, 1], through embed-
dings transversely attaching Dk to U , such that and f1 is totally real and
J-orthogonal to ∂U .

If k = n = 2, we assume in addition, that the induced contact struc-
ture on ∂U is overtwisted.

In the case k = n > 2 we can arrange that the Legendrian embedding
f1|Dk : ∂Dk ↪→ ∂W is loose, while for k = n = 2 we can arrange that the
complement ∂U\ft(∂D2) is overtwisted for all t ∈ [0, 1].

Making ∆′ totally real is the first step in making it an isotropic subspace.
However, notice that due to the isotopy ∆′ might now be disconnected from
its critical point p. So instead of moving ∆ forward along the isotopy, we
move J backward along the ambient isotopy. By symmetry, ∆ is now f ∗

1J-
totally real and f ∗

1J-orthogonally attached to ∂−W . (Note that in the book
the homotopies are still illustrated by how they act on ∆, even though we’re
not really interested in moving ∆). However, now we face a new problem:
f ∗
1J is no longer compatible with ω. The solution to this is to also move ω,
but we need to be careful since we’re not allowed to touch ω on Op∂−W .
So, we define a new homotopy gt from modification of f to remedy this fact.
Take some regular value c + ε > c = ϕ−1(∂−W ), define U = {f(x) < c + ε}
and identify the level sets of [c, c + ε] via J . We define gt as the homotopy,
that is the identity for the level sets [c, c + ε

2
], gt = f(t) for the level set

c+ ε and smoothly interpolates between the other level sets by stopping the
homotopy early. Then kt = f−1

t ◦ gt has the following properties:

• kt equals the identity on W\U and f−1
t on Op∂−W

• Preserves ϕ everywhere

• Xt = k∗tX = X onW\U and Op(∂−W ) and Xt is everywhere gradient-
like for ϕt = k∗tϕ.

• ωt = g∗tω is compatible with Jt.

• k−1
1 (∆) is J1-orthogonally real and J1-orthogonally attached to ∂−W

Therefore, ∆ is isotropic with respect to ω1.
Step 2. Apply Lemma 12.16. Now (W,ϕ, ω,X) is a Liouville manifold

in a neighbourhood of ∆ ∪ ∂−(W )
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Lemma 2.4 (Lemma 12.16). Let (W,X0, ϕ) be an elementary Smale
cobordism and ω0 a nondegenerate 2-form on W . Let ∆ be the stable disc
of ϕ. Suppose that ∆ is ω0-isotropic and the pair (ω0, X0) is Liouville
on Op(∂−W ). Then for any neighbourhood U of ∂−W ∪∆ there exists a
homotopy (ωt, Xt) with the following properties:

1. Xt is a gradient-like vector field for ϕ and ωt is a nondegenerate
2-form on W for all t ∈ [0, 1]

2. (ωt, Xt) = (ω0, X0) outside U and on ∆ ∪ Op(∂−W )

3. (ω1, X1) is a Liouville structure on Op(∂−W ∪∆).

Next we extend the Liouville structure in a neighbourhood of ∆∪∂−(W )
to the entire cobordism. The trick is to follow the vector field X.

Step 3. We apply Proposition 9.19. This gives us a diffeotopy ht :
W → W that flows the W into the Op(∆∪ ∂−W ). The pullback (h∗tω, h

∗
tX)

gives a Liouville structure on all of W . The proposition ensures that ψ stays
gradient-like. Therefore (W,h∗tω, h

∗
tX,ϕ) is Weinstein.

Proposition 2.5 (Proposition 9.19). Let (W,X, ϕ,∆) be as above. Let
a− = ϕ−1(∂−W ). Fix an open neighbourhood U of ∂−W and a regular
value c > a−. Then there exists a diffeotopy ht : W → W with the
following properties:

• h0 = Id and ht = Id on Op(∂W ∪∆)

• ht preserves trajectories of X

• h1({ϕ ≤ c}) ⊆ U

In particular, the map ϕt := ϕ ◦ h−1
t stays gradient-like w.r.t. X.

3 Existence of Stein manifolds

In this part we show how to upgrade a Weinstein structure to a Stein struc-
ture. We start similarly to the last section with the existence theorem for
manifolds.
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Theorem 3.1 (Stein existence theorem). Let W = (V, ω,X, ϕ) be a Wein-
stein manifold. Then there exists a Stein structure (J, ϕ) on W such that the
Weinstein structures W and W(J, ϕ) are homotopic with fixed function ϕ.

This follows non-trivially from the Stein existence theorem for cobor-
disms. The proof uses induction over sublevel sets.

Theorem 3.2 (Stein existence theorem for cobordisms). Let W = (W,ω,X, ψ)
be a Weinstein cobordism which is Stein on Op∂−W . Then after target
reparametrising, the Stein structure extends to a Stein structure (J, ϕ) on
W such that the Weinstein structures W and W(J, ϕ) are homotopic with
fixed ϕ.

To finish in time, I will present the next two results before starting the
proof.

Theorem 3.3 (Parametric Stein existence theorem for cobordisms). Let
Wu = (W,ωu, Xu, ϕ), u ∈ Dk, k ≥ 0, be a family of Weinstein cobordism
structures which share the same Morse function ϕ. Suppose all Wu are Stein
near ∂−W and for all u ∈ ∂Dk, Wu are Stein on W . Then after target
reparametrizing ϕ, there exists a family of Stein structures (Ju, ϕ) for all
u ∈ Dk and a family of Weinstein homotopies Wt,u such that

• W0,u = W(Ju, ϕ) and W1,u = Wu for all u ∈ Dk

• Wt,u = Wu near ∂−W

• Wt,u = Wu for u ∈ ∂Dk

Corollary 3.3.1. The map W : Stein(W,ϕ) → Weinstein(W,ϕ) is a weak
homotopy equivalence.

The proof of the Stein existence theorem requires the existence of inte-
grable complex structures.

Theorem 3.4 (Theorem 8.11, Existence of complex structures, Gromov,
Landweber). Let (W,J, ϕ) be a 2n-dimensional almost complex Morse cobor-
dism, where ϕ has no critical points of index > n. Let ∆ be the skeleton of
ϕ with respect to some gradient-like X. Then J can be C0-approximated by
an almost complex structure which coincides with J outside a neighbourhood
of L and is integrable on Op(∆∪ ∂−W ). In particular, J is homotopic to an
integrable complex structure via a homotopy fixed on Op∂−W .
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The proof of the Stein existence theorem is a consequence of the following
proposition. It states that there is a homotopy fixing a neighbourhood of the
lower boundary that extends the Stein structure to the handle. Note that
this does change the Morse function ϕ but in a way that can be remedied
later on:

Proposition 3.5. Let W0 = W = (W,ω,X, ψ) be a Weinstein cobordism and
J an integrable complex structure on W . Suppose that on Op∂−W the func-
tion ϕ = ϕ0 is J-convex and W coincides with W(J, ϕ). Suppose moreover
that J is homotopic rel ∂−W to an almost complex structure compatible with
ω. Then there exists a homotopy of Weinstein structures Wt = (ωt, Xt, ϕt)
on W , and a regular value c of the function ϕ1 with the following properties:

1. Wt agrees with W0 on Op∂−W and up to scaling on Op∂+W .

2. on W ′ = {ϕ1 ≤ c} the function ϕ1 is J-convex and W1|W ′ = W(J, ϕ1)

3. on {ϕ1 ≥ c} the function ϕ1 has no critical points.

4. ϕt = ϕ ◦ ft for a diffeotopy ft : W → W fixed on Op∂W with f0 = Id.

Just as in the Weinstein existence theorem, we only need to show this
for elementary cobordisms. We will further assume that they have only one
critical point. The proof is again divided into four steps:

1. Homotope (W,ω,X, ϕ) thereby upgrading ϕ to be J-convex around p.
(We will not tough the neighbourhood of p again)

2. Homotope J thereby making it compatible with ω and the stable disc
∆ totally real and J-orthogonally attached to ∂−W .

3. Homotope the Weinstein structure (including ϕ) thereby making ϕ at
the handle J-convex and the handle Stein

4. Homotope ϕ to give it the required properties 1.-3. Make sure that the
cobordism is still Weinstein. Apply Lemma 9.38 for property 4.

Proof. Step 1. Using Corollary 12.13 we deform W so that ϕ is J-convex
and W = W(J, ϕ) around p. (We won’t change the neighbourhood of p ever
again)

Corollary 3.5.1 (Corollary 12.13). A Weinstein structure with hyper-
bolic an embryonic critical points is homotopic to one which is Stein for
a given complex structure near the critical points.
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Step 2. Just like before, choose a homotopy Jt rel Op(∂W− ∪ p) of
almost complex structures such that J1 = J and J0 is compatible with ω. By
Corollary 7.31 there is a isotopy of discs ∆0 that are Jt-totally real and fixed
on ∆∩Op(∂−W ∪p). We extend this isotopy to a global diffeotopy gt : W →
W rel Op(∂−W ∪ p). As this would again pull the stable disc away from p,
instead of moving back the disc, we move forward the Weinstein structure,
i.e. we replace W by (g1)∗W. ∆ is now totally real and J-orthogonally
attached.

Corollary 3.5.2 (Corollary 7.31, h-principle). Let (W,J0) be an almost
complex manifold and f0 : ∆ ↪→ W be a totally real embedding. Let Jt
be a homotopy of almost complex structures. Let ft|OpB be an isotopy
of Jt-totally real embeddings into the neighbourhood of a closed B ⊆ ∆.
Then ft can be extended to a Jt-totally real embedding ft : ∆ → W .

Step 3. Remember that J is actually complex (not just almost). So
we can apply Lemma 8.7. This gives us a J-convex function ϕ̃ s.t. ∆ is J-
orthogonal to the level sets of ϕ̃. This Weinstein structure W(J, ϕ̃)|Op(∂−W∪∆)

is Stein on the handle (and ϕ̃ is undefined outside of the handle). Note
however, that Lemma 8.7 does not give an isotopy andW(J, ϕ̃) is only defined
on the handle. So next, we apply Proposition 12.14. We obtain a homotopy
of the original Weinstrein structure to a Weinstein structure defined on W
that is Stein on the handle.

Lemma 3.6 (Lemma 8.7). Let (W,J) be a complex manifold, ∆ ⊆ W a
compact totally real submanifold, ϕ : W → R a smooth function, and X
a nowhere vanishing vector field which is tangent to ∆ and gradient-like
for ϕ. Let K ⊆ ∆ be a compact subset such that on OpK ⊆ W the
function ϕ is J-convex, ∇ϕϕ = X, and ∆ ∩ OpK is J-orthogonal to the
level sets of ϕ. Then there exists a J-convex function ϕ̃ on Op∆ which
agrees with ϕ on ∆ ∪ OpK such that ∆ is J-orthogonal to the level sets
of ϕ̃, and ∇ϕ̃ϕ̃ = X along ∆.

Proposition 3.7 (Proposition 12.14). Given a Weinstein manifold (W,ω0, X0, ϕ0)
with a non-degenerate critical point p of index k and an embedded k-disc
∆ ⊆ W−

p containing p. Let (ωloc, Xloc, ϕloc) be a Weinstein structure on a
neighbourhood Wloc of ∆ which coincides with (ω0, X0, ϕ0) on ∆∪Op∂∆.
Then there exists a homotopy of Weinstein structures (ωt, Xt, ϕt) on W
such that (ωt, Xt, ϕt) = (ω,X, ϕ) outside Wloc and on ∆ ∪ Op∂∆. The
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homotopy ends with (ω1, X1, ϕ1) = (ωloc, Xloc, ϕloc) on Op∆.

Step 4. Now, we apply the homotopy to get the properties 1.-4. We use
Theorem 8.5 and get a deformation as described in the theorem. Cieliebak
and Eliashberg get a slightly different deformation than described in the
Lemma, but the proof that this deformation exists should be the same:

• ϕ0 = ϕ|U

• ϕt = gtϕ0 for some target equivalence gt near ∂U and equal to ϕ near
∂−W ∪∆

• ϕt has no critical points besides p

• some level set {ϕ1 = c} surrounds ∂−W ∪∆ in U

The difference between these two, is that in one case the level sets have been
pulled up and in the other case they have been pulled down by a target
equivalence gt. We’ll assume that gt is nicely behaved (s.t. the contact
structure on ∂+W is preserved later on). Remember that the Liouville form
of the Stein manifold is defined as λt = −dϕt ◦ J = (g′t ◦ ϕ)(dϕ ◦ J) = ft with
ft := g′t ◦ ϕ, so this satisfies

ft + dft(X) = g′t ◦ ϕ+ (g′′t ◦ ϕ)(dϕ(X)) > 0

so according to Lemma 12.1 the Weinstein structure on U extends to a We-
instein structure Wt on W .

Theorem 3.8 (Theorem 8.5). Let (W,J) be a complex manifold with
a compact J-concave boundary ∂−W . Let ϕ0 : W → R be a J-convex
Morse function which is constant on ∂−W and has no critical points on
∂−W . Let p be a critical point of ϕ0 and denote by ∆ ⊆ W the stable disc
of p. Then for any neighbourhood U ⊇ ∂−W ∪∆ there exists a homotopy
of J-lc functions ϕt : W → R with the following properties:

1. ϕt is equal to ϕ0 near ∂−W and near ∂U , and target equivalent to
ϕ0 near ∆.

2. ϕt|N has the unique critical point p with stable disc ∆

3. some level set {ϕ1 = c} surrounds ∂−W ∪∆ in U .
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Lemma 3.9 (Lemma 12.1). Let (W,ω,X, ϕ) be a Weinstein cobordism
with Liouville form λ. Then for a function f : W → R the following
holds: The 1-form fλ defines a Weinstein structure iff f > 0 and k :=
f + df(X) > 0.

Proof of Stein existence theorem. In the previous proposition applied a ho-
motopy to ϕ which shouldn’t have been allowed. To fix this, we apply the
homotopy to the complex structure J instead.

Let Wt = (W,ωt, Xt, ϕt = ϕt ◦ ft) and W ′ be as in the proposition. Let
gt : W ↪→ W be the isotopy that flows W along the trajectories of X such
that g1(W ) = W ′. Set ht = gt ◦ f−1

t . Then (ht)∗ϕ stays fixed (up to target
equivalence) andW((ht)∗J, (ht)∗ϕ) is a Weinstein homotopy with fixed ϕ.

Theorem 3.10 (Stein existence theorem). Let W = (W,ω,X, ψ) be a Wein-
stein cobordism and J an integrable complex structure onW . Suppose that on
Op∂−W the function ϕ is J-convex and W coincides with W(J, ϕ). Suppose
moreover that J is homotopic rel ∂−W to an almost complex structure com-
patible with ω. Then (up to target reparametrisation) there exists an isotopy
ht : W ↪→ W rel Op∂−W with h0 = Id such that the function h1∗ψ is J-
convex and the Weinstein structures W(h∗1J, ϕ) and W on W are homotopic
rel Op∂−W with fixed function ϕ.
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