_
Score:
00010.

Name:

QUIZ 5 - 04/24/03 Calculus I - V63.0121

Masmoudi-Schneiderman-Wendl

Instructions: This quiz should be taken in 20 minutes without text, notes or calculators.

- 1. (5pts.) State one of the two forms of the Fundamental Theorem of Calculus. ANSWERS: (FTC1) If f is continuous and $g(x) = \int_a^x f(t) dt$ then g'(x) = f(x). (FTC2) If f is continuous then $\int_a^b f(x) dx = F(b) F(a)$ where F is any antiderivative of f, that is F' = f.
- 2. (5pts.) Find f(t) such that $f''(t) = 3e^t + 5\sin(t)$, f(0) = 1, and f'(0) = 2.

 ANSWER: Anti-differentiating f'': $f'(t) = 3e^t 5\cos(t) + c$ and f'(0) = 2 = 3 5 + c imply that c = 4 so $f'(t) = 3e^t 5\cos(t) + 4$. Anti-differentiating f': $f(t) = 3e^t 5\sin(t) + 4t + d$ and f(0) = 1 = 3 + d imply that d = -2 so $f(t) = 3e^t 5\sin(t) + 4t 2$
- 3. (5pts.) Compute $\int_1^2 (x^{-2} + x) dx$. ANSWER:

$$\int_{1}^{2} (x^{-2} + x) \ dx = \left(-x^{-1} + \frac{x^{2}}{2} \right) \Big|_{1}^{2} = \left(-\frac{1}{2} + 2 \right) - \left(-1 + \frac{1}{2} \right) = 2.$$

4. (5pts.) Compute

$$\frac{d}{dx} \left[\int_0^{x^2} \sin(t) \ dt \right]$$

ANSWER: By FTC1 and chain rule, $\frac{d}{dx} \left[\int_0^{x^2} \sin(t) \ dt \right] = \sin(x^2) \cdot 2x$.