
Calculus II

Spring 2004

Chris Wendl

Integration Review Problems

If you need to review integration techniques from Calculus I, the following problems (and accompanying
solutions) should help. The majority can be solved by an intelligent choice of substitution; you will not need
integration by parts or partial fractions. At least one problem can be done by trigonometric substitution,
but it can also be solved geometrically.

1.

∫ 3

1

4

x2
dx

2.

∫ 3

1

dx

(x + 2)2

3.

∫ 3

1

dx

(x − 2)2

4.

∫

6x2 − 4

x3 − 2x + 4
dx

5.

∫ π/4

0

sin θ

cos2 θ
dθ

6.

∫ π

0

sin θ

cos2 θ
dθ

7.

∫ 1

0

sin(πt) cos(cos πt) dt

8.

∫ x

1/2

sin(πt) cos(cosπt) dt

9.
d

dx

(

∫ x

1/2

sin(πt) cos(cosπt) dt

)

10. Let f(x) =

∫ 0

x2/π

sin(πθ) cos(cosπθ) dθ. Find f ′(x).

11.
d

dx

(
∫ 1

0

sin(πx) cos(cos πx) dx

)

12.
d

dt

(
∫ 0

sin t

arcsinxdx

)

13.

∫

√
2/2

0

d

dy
(arcsin y) dy

14.

∫ arcsin t

0

d

dx
esin x dx

15.

∫ 2

0

−
√

4 − (x − 2)2 dx

16.

∫

e3x dx
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17.

∫ 2

1

e2 ln x dx

18.

∫ e2

e

(ln x)2

x
dx

19.

∫ 1

−1

x2ex3

dx

20.

∫ 2

−2

xdx

21.

∫ 2

−2

x2 dx

22.

∫ 1/2

1/2

cos(ex) dx

23. Let F (x) =
1

2

∫ 0

x2−1

(t2 − 1)(t + 2)

cosπt
dt + eπt.

Find an equation for the tangent line to the curve y = F (x) at x = −1.

24. Let g(x) = x2 −
∫ 2x

0

t√
t2 + 5

dt.

Find an equation for the tangent line to the curve y = g(x) at x = 1.

25. Let

F (x) =











x + 3 x ≤ −2,

1 +
√

1 − (x + 1)2 −2 ≤ x ≤ 0,

1 −√
x x ≥ 0.

Find
∫ 0

−2 F (x) dx,
∫ 0

−3 F (x) dx and
∫ 1

−3 F (x) dx.

26.

∫ π/4

0

(cos3 x − 1)2

cos2 x
sin xdx

27. Prove that

∫ 2

0

e
√

x2−2x+5 dx ≥ 2e2.

(Hint: what is the minimum of x2 − 2x + 5 on the given interval?)

28.
d

dx

√

ln(1 − x2)

29. Let

f(x) =

{

(x − 2)2 x ≤ 2√
x − 2 x ≥ 2

Find f ′(0), f ′(6) and
∫ 4

0
f(x) dx.

30.

∣

∣

∣

∣

∫ 4

0

(x2 − 5x + 6) dx

∣

∣

∣

∣

31.

∫ 4

0

|x2 − 5x + 6| dx

(Hint: find out when x2 − 5x + 6 is positive and when it’s negative. Then you can define the function
“piecewise” as in problem 29.)

32.

∫ 2

−2

|x2 − 1| dx.
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Solutions

1.

∫ 3

1

4

x2
dx = 4

∫ 3

1

x−2 dx = 4

(

x−1

−1

) ∣

∣

∣

∣

3

1

= − 4

x

∣

∣

∣

∣

3

1

= −4

3
−
(

−4

1

)

=
8

3
.

2.

∫ 3

1

dx

(x + 2)2
. Substitute u = x + 2, du

dx = 1:

∫ 3

1

1

(x + 2)2
dx =

∫ 3

1

1

u2

du

dx
dx =

∫ u(3)

u(1)

1

u2
du =

∫ 5

3

u−2 du = −u−1
∣

∣

∣

5

3
= − 1

u

∣

∣

∣

5

3
= −1

5
−
(

−1

3

)

=
2

15
.

3.

∫ 3

1

dx

(x − 2)2
. The correct answer is undefined, because 1

(x−2)2 is not continuous on the interval from

1 to 3 (it’s undefined at x = 2). If you didn’t notice that, you might have tried to solve this by
substituting u = x − 2 and computing the integral with the fundamental theorem the same as in
problem 2. The answer you get by this method is -8, but we can tell by looking at the function, whose
value is always positive, that its integral over any interval should never be negative. So in this case
the fundamental theorem gives an obviously wrong answer, because the function is not continuous
everywhere between 1 and 3. Pay attention!

4.

∫

6x2 − 4

x3 − 2x + 4
dx. What we’re asked for here is an antiderivative, not an integral, so there’s no need

to worry about whether the function is continuous on any particular interval; we simply need to find

a function whose derivative is 6x2−4
x3−2x+4 . Try the substitution u = x3 − 2x + 4, with du

dx = 3x2 − 2, and

notice that 2 du
dx = 6x2 − 4 is the numerator in the integrand. So,

∫

6x2 − 4

x3 − 2x + 4
dx =

∫

2 du/dx

u
dx = 2

∫

1

u

du

dx
dx = 2

∫

1

u
du = 2 ln |u| = 2 ln |x3 − 2x + 4|.

5.

∫ π/4

0

sin θ

cos2 θ
dθ. We first must check that the function in the integrand is continuous on the interval

from 0 to π
4 : clearly sin θ

cos2 θ is continuous as long as cos θ 6= 0, and this is true when 0 ≤ θ ≤ π
4 .

Thus the integral is defined and we can solve it using the fundamental theorem. Try the substitution
u = cos θ, du

dθ = − sin θ:

∫ π/4

0

sin θ

cos2 θ
dθ =

∫ π/4

0

−du/dθ

u2
dθ = −

∫ π/4

0

1

u2

du

dθ
dθ = −

∫ u(π/4)

u(0)

u−2 du =
1

u

∣

∣

∣

∣

√
2/2

1

=
√

2 − 1.

6.

∫ π

0

sin θ

cos2 θ
dθ. Again the first step is to check that the function is continuous: notice that cos(π/2) = 0,

thus sin θ
cos2 θ is not defined at θ = π/2, and it cannot be continuous there. So the answer is undefined.

This was not the case in problem 5 because π/2 was not part of the interval from 0 to π/4. Blindly
applying the fundamental theorem in this case would lead to the answer -2, which we can see must be
wrong because sin θ

cos2 θ ≥ 0 when 0 ≤ θ ≤ π.

7.

∫ 1

0

sin(πt) cos(cos πt) dt. Substitute u = cosπt, du
dx = −π sin πt:

∫ 1

0

sin(πt) cos(cos πt) dt =

∫ 1

0

(

− 1

π

du

dx

)

cosu dt = − 1

π

∫ 1

0

cosu
du

dt
dt = − 1

π

∫ u(1)

u(0)

cosu du

= − 1

π
sin u

∣

∣

∣

∣

−1

1

= − 1

π
[sin(−1) − sin(1)] = − 1

π
[− sin(1) − sin(1)] =

2

π
sin(1) ≈ 0.536.
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8.

∫ x

1/2

sin(πt) cos(cosπt) dt. Using the same substitution as in problem 7, u = cosπt,

∫ x

1/2

sin(πt) cos(cosπt) dt = − 1

π
sin u

∣

∣

∣

∣

u(x)

u(1/2)

= − 1

π
sin u

∣

∣

∣

∣

cos πx

0

= − 1

π
sin(cos πx).

9.
d

dx

(

∫ x

1/2

sin(πt) cos(cosπt) dt

)

= sin πx cos(cosπx). This follows immediately from part 1 of the fun-

damental theorem of calculus, and you’ll find you get the same result if you differentiate the answer to
problem 8 with respect to x (try it if you’re skepticle).

10. Let f(x) =

∫ 0

x2/π

sin(πθ) cos(cosπθ) dθ. Find f ′(x). The first thing to do is invert the limits so that

the term with x in it is the upper limit of integration:

f ′(x) =
d

dx

∫ 0

x2/π

sin(πθ) cos(cosπθ) dθ

=
d

dx

(

−
∫ x2/π

0

sin(πθ) cos(cos πθ) dθ

)

= − d

dx

∫ x2/π

0

sin(πθ) cos(cos πθ) dθ.

To compute any derivative of an integral in this form we use part 1 of the fundamental theorem,
together with the chain rule: set u = x2/π, then

d

dx

∫ x2/π

0

sin(πθ) cos(cosπθ) dθ =
d

dx

∫ u

0

sin(πθ) cos(cosπθ) dθ

=

(

d

du

∫ u

0

sin(πθ) cos(cosπθ) dθ

)

· du

dx
= [sin(πu) cos(cosπu)]

(

2x

π

)

=
2x

π
sin
(

x2
)

cos
[

cos
(

x2
)]

.

Thus f ′(x) = − 2x
π sin

(

x2
)

cos
[

cos
(

x2
)]

.

11.
d

dx

(
∫ 1

0

sin(πx) cos(cos πx) dx

)

= 0 because any integral with constant limits, once evaluated, has no

dependence on x, i.e. it’s a constant, and the derivative of a constant is 0. (Compare with problems 9
and 10, in which the limits of integration are dependent on x.)

12.
d

dt

(
∫ 0

sin t

arcsinxdx

)

= − d

dt

(

∫ sin t

0

arcsinxdx

)

= − arcsin(sin t) · d

dt
sin t = −t cos t.

In the last step we’ve used the fact that arcsin(sin t) = t.

13.

∫

√
2/2

0

d

dy
(arcsin y) dy = arcsiny

∣

∣

∣

∣

√
2/2

0

=
π

4
. This is a direct application of the fundamental theorem,

part 2: arcsin y is the antiderivative of d
dy (arcsin y).

14.

∫ arcsin t

0

d

dx
esin x dx = esinx

∣

∣

∣

∣

arcsin t

0

= esin(arcsin t) − esin(0) = et − 1.

15.

∫ 2

0

−
√

4 − (x − 2)2 dx. This integral must be computed geometrically: if y = −
√

4 − (x − 2)2 then

y2 = 4− (x− 2)2, and thus (x− 2)2 + y2 = 4. This is the equation of a circle with radius 2, centered at
(2, 0). The function −

√

4 − (x − 2)2 represents only the bottom half of this circle (it cannot be both
halves, since then the function would have two values at most x), and the interval from 0 to 2 contains
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the left half of the circle. Thus the integral is equal to negative the area of the bottom-left quarter of
the circle:

∫ 2

0

−
√

4 − (x − 2)2 dx = −1

4
π(22) = −π.

16.

∫

e3x dx. Substitute u = 3x, du
dx = 3:

∫

e3x dx =

∫

eu

(

1

3

du

dx

)

dx =
1

3

∫

eu du

dx
dx =

1

3

∫

eu du =
1

3
eu =

1

3
e3x.

17.

∫ 2

1

e2 ln x dx =

∫ 2

1

(

eln x
)2

dx =

∫ 2

1

x2 dx =
x3

3

∣

∣

∣

∣

2

1

=
7

3
. This is why it’s useful to keep in mind some

basic identities involving exponentials: elnx = x and (ex)
y

= exy.

18.

∫ e2

e

(ln x)2

x
dx. Don’t forget to confirm first that the function is defined and continuous on the given

interval: in this case there’s no problem when e ≤ x ≤ e2, since the denominator is nonzero and lnx
is defined and continuous for all positive x. Now substitute u = lnx, du

dx = 1
x :

∫ e2

e

(lnx)2

x
dx =

∫ e2

e

u2 du

dx
dx =

∫ ln(e2)

ln e

u2 du =

∫ 2

1

u2 du =
u3

3

∣

∣

∣

∣

2

1

=
7

3
.

19.

∫ 1

−1

x2ex3

dx. Substitute u = x3, du
dx = 3x2:

∫ 1

−1

x2ex3

dx =

∫ 1

−1

(

1

3

du

dx

)

eu dx =
1

3

∫ 13

−13

eu du =
1

3
eu

∣

∣

∣

∣

1

−1

=
1

3

(

e − 1

e

)

≈ 0.784.

20.

∫ 2

−2

xdx =
x2

2

∣

∣

∣

∣

2

−2

= 2− 2 = 0. This answer can also be deduced without computation: since f(x) = x

is an odd function (i.e. f(−x) = −f(x)), the integral from -2 to 0 cancels out the integral from 0 to 2.

21.

∫ 2

−2

x2 dx =
x3

3

∣

∣

∣

∣

2

−2

=
8

3
+

8

3
=

16

3
. CAREFUL! In case you were tempted to use the argument of

problem 20 and say that this is 0, The argument of problem 20 does not apply here because f(x) = x2

is not an odd function, in fact the integral from -2 to 0 has the same value and sign as the integral
from 0 to 2. They do not cancel each other out.

22.

∫ 1/2

1/2

cos(ex) dx = 0, because the upper and lower limits of integration are the same.

23. Let F (x) =
1

2

∫ 0

x2−1

(t2 − 1)(t + 2)

cosπt
dt + eπx.

Find an equation for the tangent line to the curve y = F (x) at x = −1. As in any tangent line problem,
the answer will be an equation of the form

y − y0 = m(x − x0),

where (x0, y0) is any point on the line, and m is its slope. Here it is appropriate to choose x0 = −1, in
which case y0 = F (−1) and m = F ′(−1), and the problem is now to compute these two numbers:

F (−1) =
1

2

∫ 0

0

(t2 − 1)(t + 2)

cosπt
dt + e−π = 0 + e−π =

1

eπ
.
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And,

F ′(x) =
1

2

d

dx

(
∫ 0

x2−1

(t2 − 1)(t + 2)

cosπt
dt

)

+
d

dx
eπx = −1

2

d

dx

(

∫ x2−1

0

(t2 − 1)(t + 2)

cosπt
dt

)

+ πeπx

= −1

2

[(x2 − 1)2 − 1][(x2 − 1) + 2]

cos[π(x2 − 1)]
· d

dx
(x2−1)+πeπx = −1

2

[(x2 − 1)2 − 1][(x2 − 1) + 2]

cos[π(x2 − 1)]
·2x+πeπx.

It’s not necessary to simplify this, for we can simply plug in x = −1 to find

F ′(−1) = −1

2

[((−1)2 − 1)2 − 1][((−1)2 − 1) + 2]

cos[π((−1)2 − 1)]
· (−2) + πe−π = −1

2

(−1)(2)

cos(0)
(−2) +

π

eπ
=

π

eπ
− 2.

We now have all the necessary ingredients, and can plug these into the general form for the equation of

a tangent line: y − 1

eπ
=
( π

eπ
− 2
)

(x + 1), or with the aid of a calculator, y − 0.043 = −1.864(x + 1).

24. Let g(x) = x2 −
∫ 2x

0

t√
t2 + 5

dt.

Find an equation for the tangent line to the curve y = g(x) at x = 1. The equation of the tangent line
will again have the form y − y0 = m(x − x0) where x0 = 1, y0 = g(x0) = g(1) and m = g′(x0) = g′(1).
We have to compute g(1) and g′(1); for the former, we compute the integral using the substitution
u = t2 + 5:

g(1) = 1−
∫ 2

0

t√
t2 + 5

dt = 1−
∫ 2

0

1√
u

(

1

2

du

dt

)

dt = 1−1

2

∫ u(2)

u(0)

u−1/2 du = 1−
√

u

∣

∣

∣

∣

9

5

= 1−(3−
√

5) =
√

5−2,

and for the latter we use part 1 of the fundamental theorem:

g′(x) = 2x − d

dx

∫ 2x

0

t√
t2 + 5

dt = 2x −
(

2x
√

(2x)2 + 5

)

· d

dx
2x = 2x − 4x√

4x2 + 5
,

so g′(1) = 2 − 4√
4+5

= 2/3. Thus the equation of the tangent line is y − (
√

5 − 2) = 2
3 (x − 1).

25. Let

F (x) =











x + 3 x ≤ −2,

1 +
√

1 − (x + 1)2 −2 ≤ x ≤ 0,

1 −√
x x ≥ 0.

Find
∫ 0

−2 F (x) dx,
∫ 0

−3 F (x) dx and
∫ 1

−3 F (x) dx. In the interval −2 ≤ x ≤ 0 we have F (x) = 1 +
√

1 − (x + 1)2, so the first integral can be rewritten as
∫ 0

−2
F (x) dx =

∫ 0

−2

(

1 +
√

1 − (x + 1)2
)

dx.

This can be computed geometrically: notice that if y = 1+
√

1 − (x + 1)2, then (x+1)2 +(y−1)2 = 1,
which is the equation of a circle of radius 1 centered at (−1, 1). The interval −2 ≤ x ≤ 0 encompasses
the whole circle, of which F (x) represents the upper half, so the integral is equal to the area between the
upper half of the circle and the x-axis: this is half the area of the circle, plus the area of a rectangle of

height 1, width 2 (graph it, you’ll see what I mean). So
∫ 0

−2 F (x) dx =
∫ 0

−2

(

1 +
√

1 − (x + 1)2
)

dx =
1
2π(12) + (1)(2) = π/2 + 2.

To find
∫ 0

−3 F (x) dx we must consider separately the intervals in which F (x) is defined by different
equations:

∫ 0

−3

F (x) dx =

∫ −2

−3

F (x) dx +

∫ 0

−2

F (x) dx =

∫ −2

−3

(x + 3) dx +

∫ 0

−2

(

1 +
√

1 − (x + 1)2
)

dx.

We just computed the second of these two integrals: it’s π/2+2. And the first is easy:
∫ −2

−3
(x+3) dx =

(

x2

2 + 3x
) ∣

∣

∣

−2

−3
= 1/2. You could also have done this geometrically, since the curve y = x + 3, for x
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between -3 and -2, forms a right triangle with base and height each equal to 1. So
∫ 0

−3 F (x) dx =
1/2 + (π/2 + 2) = 5/2 + π/2.

To find
∫ 1

−3
F (x) dx we must again split it into multiple intervals and use previous results:

∫ 1

−3

F (x) dx =

∫ 0

−3

F (x) dx +

∫ 1

0

F (x) dx.

The first integral is the one we just computed: it equals 5/2 + π/2. For the second, we have F (x) =

1 − √
x when 0 ≤ x ≤ 1, so

∫ 1

0
F (x) dx =

∫ 1

0
(1 − √

x) dx. Geometrically this represents a parabola
turned on its side, but we don’t know how to find the area of a parabola, so we can’t compute the
integral geometrically. Fortunately, we do know how to do this using the fundamental theorem:

∫ 1

0

(1 −
√

x) dx =

∫ 1

0

(

1 − x1/2
)

dx =

(

x − 2

3
x3/2

) ∣

∣

∣

∣

1

0

=
1

3
.

So
∫ 1

−3
F (x) dx = (5/2 + π/2) + 1/3 = 17/6 + π/2.

26.

∫ π/4

0

(cos3 x − 1)2

cos2 x
sin xdx. The integrand is defined and continuous in the given interval since cos2 x > 0

when 0 ≤ x ≤ π/4. Substitute u = cosx, du
dx = − sinx:

∫ π/4

0

(cos3 x − 1)2

cos2 x
sinxdx =

∫ π/4

0

(u3 − 1)2

u2

(

−du

dx

)

dx = −
∫ π/4

0

(u3 − 1)2

u2

du

dx
dx

= −
∫ cos(π/4)

cos(0)

(u3 − 1)2

u2
du = −

∫

√
2/2

1

u6 − 2u3 + 1

u2
du

= −
∫

√
2/2

1

(

u4 − 2u + u−2
)

du = −
(

u5

5
− u2 − 1

u

) ∣

∣

∣

∣

√
2/2

1

= −
[

1

5

(

25/2

25

)

− 1

2
−
√

2

]

−
[

−
(

1

5
− 1 − 1

)]

=

[

−1

5

(√
32

32

)

+
1

2
+
√

2

]

− 9

5
= −13

10
+

39
√

2

40
.

27. Prove that

∫ 2

0

e
√

x2−2x+5 dx ≥ 2e2.

In a problem of this sort, you don’t know how to compute the integral explicitly, but you can produce an
estimate by finding the maximum/minimum values of the integrand. If you can find a number m such

that e
√

x2−2x+5 ≥ m for all x from 0 to 2, then it’s clear that
∫ 2

0 e
√

x2−2x+5 dx ≥
∫ 2

0 m dx = mx
∣

∣

∣

2

0
= 2m.

So the question is simply: what is m, i.e. the minimum value of e
√

x2−2x+5 when 0 ≤ x ≤ 2? This
becomes a much simpler question if you notice that the function eu is always increasing with u, so
e
√

x2−2x+5 should attain its minimum at the same value for x that
√

x2 − 2x + 5 does. And we can
take the same argument one step further:

√
x2 − 2x + 5 attains its minimum at the same x value as

x2−2x+5. Let’s call g(x) = x2−2x+5, and find its minimum in the interval 0 ≤ x ≤ 2. g′(x) = 2x−2,
which is 0 when x = 1, thus 1 is a critical point, and we can easily check by plugging in x values on
either side of 1 that it’s a local minimum. It is, in fact, the only local minimum, since the equation
g′(x) = 2x−2 = 0 has only one solution. We conclude therefore that the minimum value of x2−2x+5
in our interval is g(1) = 4. It follows immediately that the minimum value of

√
x2 − 2x + 5 is

√
4 = 2,

and the minimum value of e
√

x2−2x+5 is thus e2. So for all x with 0 ≤ x ≤ 2, e
√

x2−2x+5 ≥ e2, and thus
∫ 2

0

e
√

x2−2x+5 dx ≥
∫ 2

0

e2 dx = 2e2.

28.
d

dx

√

ln(1 − x2). You could try to do this using the chain rule, and the answer you’d get would be

− x

(1−x2)
√

ln(1−x2)
. But you’d be wrong, for the following reason: (1 − x2) is always less than or equal
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to 1, thus ln
(

1 − x2
)

≤ 0 for all x. But
√

ln(1 − x2) is only defined when ln
(

1 − x2
)

≥ 0, which is
only true when x = 0. So the function is undefined at every point except x = 0, and you cannot take
the derivative a function whose domain is only one point. The correct answer is undefined.

29. Let

f(x) =

{

(x − 2)2 x ≤ 2√
x − 2 x ≥ 2

Find f ′(0), f ′(6) and
∫ 4

0 f(x) dx. At x = 0, x ≤ 2, thus f(x) = (x − 2)2, f ′(x) = 2(x − 2) and

f ′(0) = −4. Similarly at x = 6, x ≥ 2, so f(x) =
√

x − 2 and f ′(6) = 1
2
√

x−2
= 1

4 . (A question to think

about: what if we asked you for f ′(2)?)

To find
∫ 4

0 f(x) dx we must split it into two intervals:

∫ 4

0

f(x) dx =

∫ 2

0

f(x) dx +

∫ 4

2

f(x) dx

=

∫ 2

0

(x − 2)2 dx +

∫ 4

2

√
x − 2 dx =

(x − 2)3

3

∣

∣

∣

∣

2

0

+
2

3
(x − 2)3/2

∣

∣

∣

∣

4

2

=
8

3
+

4
√

2

3
.

30.

∣

∣

∣

∣

∫ 4

0

(x2 − 5x + 6) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

(

x3

3
− 5

2
x2 + 6x

)

∣

∣

∣

4

0

∣

∣

∣

∣

=

∣

∣

∣

∣

16

3

∣

∣

∣

∣

=
16

3
.

31.

∫ 4

0

|x2−5x+6| dx. We must first find out when x2−5x+6 is positive and when it’s negative, then we

can define the function |x2 − 5x + 6| “piecewise” as in problem 29. By solving the quadratic equation
g(x) = x2 − 5x + 6 = (x − 2)(x − 3) = 0 we find that g(x) = 0 when x is 2 or 3; then we can plug in
different values of x to see that g(x) > 0 when x < 2 or x > 3, and g(x) < 0 when 2 < x < 3. When
g(x) < 0, |g(x)| = −g(x), otherwise |g(x)| = g(x), so we can write:

f(x) = |g(x)| = |x2 − 5x + 6| =

{

x2 − 5x + 6 if x ≤ 2 or x ≥ 3,

−(x2 − 5x + 6) if 2 ≤ x ≤ 3.

Thus,

∫ 4

0

|x2 − 5x + 6| dx =

∫ 2

0

(

x2 − 5x + 6
)

dx +

∫ 3

2

−
(

x2 − 5x + 6
)

dx +

∫ 4

3

(

x2 − 5x + 6
)

dx

=

(

x3

3
− 5

2
x2 + 6x

)
∣

∣

∣

∣

2

0

−
(

x3

3
− 5

2
x2 + 6x

)
∣

∣

∣

∣

3

2

+

(

x3

3
− 5

2
x2 + 6x

)
∣

∣

∣

∣

4

3

=
14

3
−
(

−1

6

)

+
5

6
=

17

3
.

Notice that this is greater than the answer to problem 30, as one would expect.

32.

∫ 2

−2

|x2 − 1| dx. As in problem 31 we must find out when x2 − 1 is positive or negative, and we get:

|x2 − 1| =

{

x2 − 1 if x ≤ −1 or x ≥ 1,

−(x2 − 1) if −1 ≤ x ≤ 1.

Thus

∫ 2

−2

|x2 − 1| dx =

∫ −1

−2

(x2 − 1) dx +

∫ 1

−1

−(x2 − 1) dx +

∫ 2

1

(x2 − 1) dx

=

(

x3

3
− x

) ∣

∣

∣

∣

−1

−2

−
(

x3

3
− x

) ∣

∣

∣

∣

1

−1

+

(

x3

3
− x

) ∣

∣

∣

∣

2

1

=
4

3
−
(

−4

3

)

+
4

3
= 4.
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