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Midterm 1: Review Questions

Integration Problems

The following problems in the textbook are good for practicing the integration techniques we’ve covered:
Pp. 512–513 #17,18, 22–28, 35, 36, 38, 42, 43.
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Thinking Questions

These have less to do with practical calculation than with understanding the theoretical underpinnings of
the subject. While you will not encounter any questions quite like these on the exam (certainly nothing so
open-ended), it would be a good idea to give a little time and thought to these during your studying.

1. One way to write the formula for integration by parts is
∫

f(x)g′(x) dx = f(x)g(x) −
∫

f ′(x)g(x) dx,

or for definite integrals,
∫ b

a

f(x)g′(x) dx = f(x)g(x)
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f ′(x)g(x) dx.

How do these follow from the product rule for derivatives? In other words, pretend for a moment that
you know nothing about integration by parts, but you understand the product rule perfectly well. Now
how could you derive these formulas?

2. Let P (x) = anxn + an−1x
n−1 + . . . + a1x + a0 be any polynomial of degree n. What would you have

to do to compute
∫

P (x)ex dx?

3. Suppose G(x) is a function defined by the following two properties: G(1) = 0, and G′(x) = e−x2

for
all x. How, in principle, could you compute the value G(3), if your life depended on it? (You will not
be able to get an exact answer, but an approximation is good enough.)

4. Given a parametric curve (x(t), y(t)), how would you compute the slope of the curve at the point
(x(t0), y(t0)) for some given time t0? Now suppose you have a polar curve r = F (θ): show that the
slope of the curve at a given point [F (θ0), θ0] is

F ′(θ0) sin θ0 + F (θ0) cos θ0

F ′(θ0) cos θ0 − F (θ0) sin θ0



Hint: you can always turn a polar curve into a parametric curve, and thus use the first question to
answer the second. Use θ as a parameter and write x and y as functions of θ.

5. Let z(t) be a function on the interval t0 ≤ t ≤ t1 with values that are complex numbers: its real and
imaginary parts are real -valued functions x(t) and y(t), so we write

z(t) = x(t) + iy(t).

You can think of z(t) as tracing out a curve in the complex plane, just as a parametric curve is
traced out in the xy-plane. (So for instance, z(t) = eit for t ∈ [0, 2π] traces out the unit circle in the
complex plane.) We define the derivative of z(t) in a natural way: it is the complex-valued function
z′(t) = x′(t) + iy′(t). Show that the length of the curve traced out by any such function z(t) is always
given by

L =

∫ t1

t0

|z′(t)| dt.

Then use this formula to compute (yet again) the circumference of a unit circle.


