V63.0122.003, Calculus 2
Instructor: Chris Wendl
Fall 2001, Homework 11 Solutions
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10. z = 2cosf, y = sin’f = ﬁ—g +y = cos?f +sin?f = 1. So the points on this curve lie on the

parabola given by y = 1 — :”4—2. To see what portion of the parabola is represented, observe that
x = 2cosf oscillates over the range of values —2 < z < 2. So the parametrized point (z(t),y(t))
moves continually back and forth along the parabola between the two endpoints (—2,0) and (2, 0) (see
Figure 1).

Figure 1

12. z=1Int,y =t =>t=e" = y = e = (e%)'/2 = ¢?/2. This represents part of an exponential growth
curve: as t increases from 1 to co,  moves from 0 to co, thus we graph the curve y = e*/2 only for
z > 0 (Figure 2).

Figure 2
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20. =1 -3, y=t>-3t=> %L = g%‘;ﬁ = 33tt22__63t = tt:__zlt = (t:(lt)_(';)rl). Thus the curve has horizontal
tangents at ¢ = —1 and 1, and vertical tangents at ¢t = 0 and 2. We plug these into the equations
for x and y to determine the corresponding points on the graph: these are indicated with dots in
Figure 3. Note that ¢ = —1 and ¢ = 2 both represent the point (z,y) = (—4,2): this is because
the curve passes through that point twice at different times in different directions. Now note that
ddy _ dt2—1 _ 2t(>—20)-(*—1)(2t—2) _  2(#*—t+1)

s = L = CEnE — Sz < 0 for all ¢ (this is true because 2 —t + 1 is
always positive, as you can check with a little algebra). We conclude that the slope is always decreasing
as t increases, which means that the curve will appear concave down whenever it is being traced to
the right (i.e. dz/dt > 0), and concave up when traced to the left (i.e. dz/dt < 0). With these facts in
mind, we connect the dots to form the graph in Figure 3.




Figure 3
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) ) " dz\’ dy\ >
x—a(c059+€sm0),y-a(sm@—GcosG)is—/o \/(@> +(@> do

™

=/ \/[a(—sin0+0c050+sin0)]2+[a(c050+6?sin0—cos€)]2dt9:/ aV/0? cos? 0 + 62 sin2 6 d =

0 0
T 2
a/0d9=7”1.
0

2
z=3t-13 y =232 => Z—z = Zfiﬁi = 3_6§t2 = %, so the graph has a horizontal tangent when
t = 0, and a vertical tangent at ¢ = 1 (there’s also a vertical tangent at ¢ = —1 but we can ignore

it since we’re only concerned with the interval 0 < ¢t < 2. Along with the points corresponding
tot = 0 and t = 1, we plot the endpoint of the interval, where ¢ = 2: these three points are
(0,0), (2,3) and (—2,12) respectively, as shown by dots in Figure 4. The slope changes according to

2 2
% e = 2(1_51)_;22;2(_%) = ?l(t_:;ig > 0 for all ¢, so the slope is always increasing as ¢ increases, as shown

2 2 2 2
in Figure 4. The length of the curve is s = / \/(2—?) + (%) dt = / V(3 —3t2)% + (6t)2 dt =
0 0

2 2
/ V9 + 18t2 + 9t dtz/ (3 +3t) dt =[14].
0 0

Figure 4

— 3 — 32 — ' d_$2 @ ’ — ' 2 22 2 —
z=3t-t%y=3% = A= | 2my[( o) +(g) d= 21 (3t2)/ (3 — 3t2)2 + (6t)2 dt =
0

0
1 1
4
677/ £2(3 + 3t%) dt:187r/ (2 414 dt = 187> =| 287 |
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7r/41 7r/41 1 ™ 1 ™
8.A:/ —r2d0:/ —sin240d0:—/ sin2udu:—/(1—cos2u)du= |
0 2 0 2 8 0 0

16

27 dr 2 2 arctan 27
48.7':0#3:/ 7‘2+(—> do = \/62+1d9=/ sec’ t dt,
0 0 0

de
where we’ve used the trigonometric substitution § = tant. Stewart demonstrates in Section 7.2,
Example 8 that [sec®t dt = (secttant + In|sect + tant|), so plugging this in and using the facts
that tan(arctanz) = z and sec(arctanz) = /1 + 22 (you can use the identity 1 + tan?z = sec® =z

arctan 27

arctan 2w 1
. . 3
to prove this; try it!), we get s = / sec’t dt = §(sectta,nt + In|sect + tant|)
0 0

%[2#\/14-471'2-}-111(\/1+47r2+27r)] =7 1+47r2+%1n(\/1+47r2+27r) .




