
V63.0140, Fall 2003

Linear Algebra

C. Wendl

Study Questions

The following questions address some of the important concepts that you may want to think about in
preparation for the final. It’s great to be able to compute things (and you should review homework problems
in the textbook to remind yourself how to do that), but one should also understand why linear algebra works
the way it does.

1. Let A be an m × n matrix.

(a) What vector space is ColA a subspace of? What about NulA?

(b) Given a nonzero vector b ∈ R
m, what condition on b will guarantee that the equation Ax = b is

consistent? What does this have to do with ColA?

(c) Does the solution set of Ax = b form a vector space? (Remember that b 6= 0.)

(d) If there is a solution, what condition will guarantee that it is unique? Does this condition depend
on b, A or both? What does this have to do with the equation Ax = 0, or the subspace NulA?

2. Let A be an m × n matrix and let B be its reduced row echelon form.

(a) It’s clear on inspection that the pivot rows of B form a basis for RowB. Why is it true that they
also form a basis for Row A? Why is it not true that the pivot columns of B span ColA? What
do the pivot columns of B tell you about ColA, and why?

(b) Prove that RowA is the orthogonal complement of NulA. What relation does this imply between
the dimensions of RowA and NulA?

(c) If m 6= n, then RowA and ColA are subspaces of different vector spaces. . . yet their dimensions
are related to each other. How? Can you prove the relation? (Think about pivots.)

3. (a) Find a square matrix A that is invertible but not diagonalizable.

(b) Find one that is diagonalizable but not invertible.

(c) If A is diagonalizable, what does this mean about its eigenvectors?

(d) What condition on the eigenvalues of A suffices to guarantee that A is diagonalizable? Do all

diagonalizable matrices satisfy this condition?

(e) Find an n × n matrix that has only one eigenvalue (of multiplicity n) but is diagonalizable. Can
you conclude anything in general about such matrices? (You should be able to write down all of
them once you know the eigenvalue.)

4. Find an example to prove that det(A+B) 6= detA+detB in general. How can the formula det(AB) =
detA · detB be interpreted in terms of linear transformations and areas?

5. (a) Let u and v be column-vectors in R
2, and consider the 2×2 matrix A =

[

u v
]

. What is | detA|
the area of?

(b) Let v1, v2 and v3 be row-vectors in R
3. If det





v1

v2

v3



 = c, then what is det





v2

v3

v1



? Now switch to

column vectors and compare det
[

v1 v2 v3

]

with det
[

v2 v3 v1

]

. Any difference?

(c) Suppose U is a 2 × 2 rotation matrix. Prove by a purely geometric argument that detU = ±1.
(Think about areas.)

(d) Recall that rotation matrices are always orthogonal, i.e. U−1 = UT . Prove that n× n orthogonal
matrices always have determinant ±1. Hint: how are detU and detUT related?
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6. Let V and W be a pair of n-dimensional vector spaces, with β = {v1, . . . ,vn} a basis of V and
γ = {w1, . . . ,wn} a basis of W . Suppose we have a linear transformation T : V → W such that
T (vj) = wj for each j = 1, . . . , n.

(a) Are there any other linear transformations that act the same way on these basis vectors, or is T

the only one?

(b) Is T onto? Is it one-to-one? Is it an isomorphism?

(c) Using the coordinates defined by our two bases on V and W , we can define another linear trans-
formation which takes any coordinate vector [x]β ∈ R

n to the corresponding coordinate vector
[T (x)]γ ∈ R

n. This transformation maps R
n to R

n, so it can be defined by some n × n matrix.
What is this matrix? Does your answer make sense in light of part (b)? (If not, try again!)

(d) Make a slight change to T : suppose it takes vj to wj for j = 1, . . . , n − 1, but let T (vn) = wn−1

instead of wn. Now the answers to parts (b) and (c) should change. How?

7. Let A be an m × n matrix with m > n.

(a) How do you know that for some (indeed, for most) choices of b ∈ R
m, the equation Ax = b will

be inconsistent?

(b) Let P be the m× m matrix which projects vectors in R
m orthogonally onto the subspace ColA.

Given any b ∈ R
m, how would you compute the distance between b and ColA?

(c) How do you know that the equation Ax = Pb has a solution? In what sense is this an approximate

solution to the (probably unsolvable) equation Ax = b?

(d) Why might you want to solve the equation ATAx = AT b? Is there always a solution? What
condition on A will guarantee uniqueness?

8. The following steps essentially constitute a proof of the relation between the eigenvalues of a matrix
and its determinant and trace. This relation is especially useful in the 2×2 case; see the last two parts
of question 10.

(a) Assume A is a diagonalizable matrix. Use the factorization A = SΛS−1 to prove that detA
is the product of the eigenvalues of A, counted with multiplicity. (It’s true also when A is not
diagonalizable, but less simple to prove.)

(b) Recall that the trace of a square matrix is defined to be the sum of its diagonal entries:

tr







a11 · · · a1n

...
. . .

...
an1 · · · ann






= a11 + a22 + . . . + ann.

Is it true that for all n × n matrices A and B, tr(A + B) = trA + trB?

(c) Find an example to prove that tr(AB) 6= trA · trB in general.

(d) It does however turn out to be true always that tr(AB) = tr(BA), even if AB 6= BA (i.e. in
fancy language, A and B don’t commute). If you’re feeling adventurous, you can prove this by
calculation: write the entries of the matrices A, AB, B and BA as Aij , (AB)ij etc., then the
definition of matrix multiplication is

(AB)ij = Ai1B1j + Ai2B2j + . . . + AinBnj =

n
∑

k=1

AikBkj .

Stare at this formula long enough to convince yourself that it’s true, then use it to prove that AB

and BA have the same trace, i.e.

n
∑

i=1

(AB)ii =

n
∑

i=1

(BA)ii.

If you get stuck, just try to prove it in the 2 × 2 case.
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(e) Using the formula tr(AB) = tr(BA), prove that any two matrices have the same trace if they are
similar. (Recall: P and Q are called similar if we can write P = SQS−1.)

(f) Assuming once more that A is diagonalizable, use the factorization A = SΛS−1 to prove that
trA is the sum of the eigenvalues of A, counted with multiplicity. (This is also true for non-
diagonalizable A, but again the proof is more complicated.)

9. Define a quadratic form Q(x, y) = xy.

(a) Reexpress this by writing v =

[

x

y

]

and finding a symmetric matrix A such that Q(v) = v ·Av.

(b) Find orthonormal eigenvectors of A and use them to define new coordinates (ξ, η) in which Q has
the form Q(ξ, η) = λ1ξ

2 + λ2η
2.

(c) If you’ve done this correctly so far, you should conclude that Q is an indefinite form, i.e. its
values are sometimes positive, sometimes negative, and its graph is saddle-shaped. How do you
conclude this from the eigenvalues? Could you have concluded this more quickly by looking at
the determinant and/or trace of A?

10. Let A be a 2×2 matrix with real eigenvalues λ1 and λ2. Consider the differential equation ẋ(t) = Ax(t),

where as usual ẋ(t) means
d

dt
x(t).

(a) Suppose v1 and v2 are nonzero vectors such that Av1 = λ1v1 and Av2 = λ2v2. What are the
solutions of ẋ = Ax with initial conditions x(0) = v1 and x(0) = v2? Verify that your answers
are correct by plugging them into the differential equation.

(b) What is the solution of ẋ = Ax with initial condition x(0) = 3v1 − 2v2? Again, verify that your
answer is correct.

(c) The long-term behavior of any solution depends on the eigenvalues λ1 and λ2. There are always
two things we want to know: first, does x(t) expand outward to infinity, shrink inward to the
origin, or neither? Secondly, as t → ±∞, does x(t) get closer to being a multiple of v1 or v2, or
neither? Consider both of these questions for the solution from part (b) in each of the following
cases. (You may want to try drawing sample pictures of the trajectories.)

i. λ1 > λ2 > 0

ii. λ1 > 0 and λ2 < 0

iii. λ2 < λ1 < 0

iv. λ1 > 0 and λ2 = 0

v. λ1 < 0 and λ2 = 0

(d) Assume now that λ1 = λ2 = λ, and v1 and v2 are linearly independent. Can you now simplify
the solution from part (b)? Consider its long-term behavior in the cases where λ > 0, λ = 0 and
λ < 0.

(e) Recall that a dynamical system ẋ = Ax is called stable if the origin is an attractor, i.e. all solutions
x(t) shrink to 0 as t → +∞. In which of the cases considered above is the system stable? What
conditions on the eigenvalues λ1 and λ2 guarantee stability?

(f) In the cases where the system is stable, are the determinant and trace of A positive or negative?

(g) Consider the system

ẋ1 = −2x1 + x2

ẋ2 = x1 − 3x2

Is it stable? Don’t solve it, don’t compute the eigenvalues, just answer the question. Do this one

in your head!
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