What do these questions have in common?

1. **Topology**
 Given a closed manifold M, is it the boundary of a compact manifold?

2. **Global analysis**
 Given two (almost) complex manifolds W and W', what is the structure of the space of *holomorphic maps* $W \to W'$?
 Is it smooth? Is it compact? Is its topology interesting?

3. **Hamiltonian dynamics**
 Given $H(q_1, p_1, \ldots, q_n, p_n)$, does $H^{-1}(c)$ contain periodic orbits of
 \[
 \dot{q}_j = \frac{\partial H}{\partial p_j}, \quad \dot{p}_j = -\frac{\partial H}{\partial q_j},
 \]
What do these questions have in common?

1. Topology
Given a closed manifold M, is it the boundary of a compact manifold?

2. Global analysis
Given two (almost) complex manifolds W and W', what is the structure of the space of holomorphic maps $W \to W'$? Is it smooth? Is it compact? Is its topology interesting?

3. Hamiltonian dynamics
Given $H(q_1, p_1, \ldots, q_n, p_n)$, does $H^{-1}(c)$ contain periodic orbits of

$$\dot{q}_j = \frac{\partial H}{\partial p_j}, \quad \dot{p}_j = -\frac{\partial H}{\partial q_j}$$
What do these questions have in common?

1. Topology

Given a closed manifold M, is it the boundary of a compact manifold?

2. Global analysis

Given two (almost) complex manifolds W and W', what is the structure of the space of holomorphic maps $W \to W'$?
Is it smooth? Is it compact? Is its topology interesting?

3. Hamiltonian dynamics

Given $H(q_1, p_1, \ldots, q_n, p_n)$, does $H^{-1}(c)$ contain periodic orbits of

$$\dot{q}_j = \frac{\partial H}{\partial p_j}, \quad \dot{p}_j = -\frac{\partial H}{\partial q_j}$$
What do these questions have in common?

1. Topology

Given a closed manifold M, is it the boundary of a compact manifold?

2. Global analysis

Given two (almost) complex manifolds W and W', what is the structure of the space of holomorphic maps $W \to W'$?

Is it smooth? Is it compact? Is its topology interesting?

3. Hamiltonian dynamics

Given $H(q_1, p_1, \ldots, q_n, p_n)$, does $H^{-1}(c)$ contain periodic orbits of

$$
\dot{q}_j = \frac{\partial H}{\partial p_j}, \quad \dot{p}_j = -\frac{\partial H}{\partial q_j}.
$$

Chris Wendl (HU Berlin)
What do these questions have in common?

1. Topology
 Given a closed manifold M, is it the boundary of a compact manifold?

2. Global analysis
 Given two (almost) complex manifolds W and W', what is the structure of the space of **holomorphic maps** $W \to W'$?
 Is it smooth? Is it compact? Is its topology interesting?

3. Hamiltonian dynamics
 Given $H(q_1, p_1, \ldots, q_n, p_n)$, does $H^{-1}(c)$ contain periodic orbits of
 \[
 \dot{q}_j = \frac{\partial H}{\partial p_j}, \quad \dot{p}_j = -\frac{\partial H}{\partial q_j}.
 \]
What do these questions have in common?

1. Topology
Given a closed manifold M, is it the boundary of a compact manifold?

2. Global analysis
Given two (almost) complex manifolds W and W', what is the structure of the space of holomorphic maps $W \rightarrow W'$? Is it smooth? Is it compact? Is its topology interesting?

3. Hamiltonian dynamics
Given $H(q_1,p_1,\ldots,q_n,p_n)$, does $H^{-1}(c)$ contain periodic orbits of

$$\dot{q}_j = \frac{\partial H}{\partial p_j}, \quad \dot{p}_j = -\frac{\partial H}{\partial q_j}$$
Basic notions

- **Symplectic structures** \((\dim W = 2n)\)
- **Contact structures** \((\dim M = 2n - 1)\)

The following answer to Question 3 may serve as motivation:

Theorem (Rabinowitz-Weinstein '78)

Every star-shaped hypersurface in \(\mathbb{R}^{2n}\) has a periodic Hamiltonian orbit.
Basic notions

- **Symplectic structures** \((\dim W = 2n)\)
- **Contact structures** \((\dim M = 2n - 1)\)

The following answer to Question 3 may serve as motivation:

Theorem (Rabinowitz-Weinstein ’78)

Every star-shaped hypersurface in \(\mathbb{R}^{2n}\) has a periodic Hamiltonian orbit.
Basic notions

- **Symplectic structures** \((\dim W = 2n)\)
- **Contact structures** \((\dim M = 2n - 1)\)

The following answer to Question 3 may serve as motivation:

Theorem (Rabinowitz-Weinstein ’78)

Every star-shaped hypersurface in \(\mathbb{R}^{2n}\) has a periodic Hamiltonian orbit.
Basic notions

- **Symplectic structures** \((\dim W = 2n)\)
- **Contact structures** \((\dim M = 2n - 1)\)

The following answer to Question 3 may serve as motivation:

Theorem (Rabinowitz-Weinstein ’78)

Every star-shaped hypersurface in \(\mathbb{R}^{2n}\) has a periodic Hamiltonian orbit.
Basic notions

Definition

A symplectic structure on a $2n$-dimensional manifold W is an atlas of local coordinate charts $(q_1, p_1, \ldots, q_n, p_n)$ such that Hamilton’s equations are coordinate-invariant. This determines a symplectic 2-form:

$$\omega = dp_1 \wedge dq_1 + \ldots + dp_n \wedge dq_n.$$

The boundary ∂W is convex if it is transverse to a vector field that dilates the symplectic form: $\mathcal{L}_V \omega = \omega$.

Chris Wendl (HU Berlin)
A **symplectic structure** on a $2n$-dimensional manifold W is an atlas of local coordinate charts $(q_1, p_1, \ldots, q_n, p_n)$ such that Hamilton’s equations are coordinate-invariant. This determines a symplectic 2-form:

$$\omega = dp_1 \wedge dq_1 + \ldots + dp_n \wedge dq_n.$$

The boundary ∂W is **convex** if it is transverse to a vector field that dilates the symplectic form: $\mathcal{L}_V \omega = \omega$.

Definition

A **symplectic structure** on a $2n$-dimensional manifold W is an atlas of local coordinate charts $(q_1, p_1, \ldots, q_n, p_n)$ such that Hamilton’s equations are coordinate-invariant. This determines a symplectic 2-form:

$$\omega = dp_1 \wedge dq_1 + \ldots + dp_n \wedge dq_n.$$

The boundary ∂W is **convex** if it is transverse to a vector field that dilates the symplectic form: $\mathcal{L}_V \omega = \omega$.
Basic notions

Definition

A symplectic structure on a $2n$-dimensional manifold W is an atlas of local coordinate charts $(q_1, p_1, \ldots, q_n, p_n)$ such that Hamilton’s equations are coordinate-invariant. This determines a symplectic 2-form:

$$\omega = dp_1 \wedge dq_1 + \ldots + dp_n \wedge dq_n.$$

The boundary ∂W is convex if it is transverse to a vector field that dilates the symplectic form: $\mathcal{L}_V \omega = \omega$.
An example from complex geometry

A **Stein manifold** is a complex manifold \((W, J)\) with a proper holomorphic embedding

\[
(W, J) \hookrightarrow (\mathbb{C}^N, i).
\]

(Grauert) \(\iff\) \((W, J)\) admits an exhausting **plurisubharmonic** function \(f : W \to \mathbb{R}\), meaning

\[
\omega_J := \frac{i}{2} \partial \bar{\partial} f = -d(df \circ J) \text{ is symplectic (on all complex submanifolds)}.
\]

Then \(\omega_J\) is dilated by \(\nabla f\), so \(W_c := f^{-1}((-\infty, c])\) is symplectic with convex boundary \(M_c := f^{-1}(c)\).
A **Stein manifold** is a complex manifold (W, J) with a proper holomorphic embedding

$$(W, J) \hookrightarrow (\mathbb{C}^N, i).$$

(Grauert) $\iff (W, J)$ admits an exhausting **plurisubharmonic** function $f : W \to \mathbb{R}$, meaning

$$\omega_J := \frac{i}{2} \partial \bar{\partial} f = -d(df \circ J)$$

is symplectic (on all complex submanifolds).

Then ω_J is dilated by ∇f, so $W_c := f^{-1}((−\infty, c])$ is symplectic with convex boundary $M_c := f^{-1}(c)$.
A **Stein manifold** is a complex manifold \((W, J)\) with a proper holomorphic embedding

\[(W, J) \hookrightarrow (\mathbb{C}^N, i).\]

(Grauert) \(\iff\) \((W, J)\) admits an exhausting **plurisubharmonic** function \(f : W \to \mathbb{R}\), meaning

\[
\omega_J := \frac{i}{2} \partial \bar{\partial} f = -d(df \circ J) \text{ is symplectic (on all complex submanifolds)}.
\]

Then \(\omega_J\) is dilated by \(\nabla f\), so \(W_c := f^{-1}((-\infty, c])\) is **symplectic with convex boundary** \(M_c := f^{-1}(c)\).
An example from complex geometry

A **Stein manifold** is a complex manifold \((W, J)\) with a proper holomorphic embedding

\[(W, J) \hookrightarrow (\mathbb{C}^N, i).\]

(Grauert) \(\Leftrightarrow\) \((W, J)\) admits an exhausting **plurisubharmonic** function \(f : W \to \mathbb{R}\), meaning

\[
\omega_J := \frac{i}{2} \partial \bar{\partial} f = -d(df \circ J) \text{ is symplectic (on all complex submanifolds).}
\]

Then \(\omega_J\) is dilated by \(\nabla f\), so \(W_c := f^{-1}((-\infty, c])\) is **symplectic with convex boundary** \(M_c := f^{-1}(c)\).
An example from complex geometry

The maximal complex subbundle

\[\xi := TM_c \cap J(TM_c) \subset TM_c \]

is then a **contact structure** on \(M_c \), i.e. it is maximally nonintegrable.

\((W, \omega) \) symplectic with contact boundary

\[\partial(W, \omega) \cong (M, \xi) \]

(unique up to isotopy):
An example from complex geometry

The maximal complex subbundle

\[\xi := TM_c \cap J(TM_c) \subset TM_c \]

is then a **contact structure** on \(M_c \), i.e. it is maximally nonintegrable.

(W, \omega) symplectic with contact boundary

\(\rightsquigarrow \text{contact structure} \) \(\xi \) on \(M := \partial W \) (unique up to isotopy):

\[\partial(W, \omega) = (M, \xi) \]
An example from complex geometry

The maximal complex subbundle

\[\xi := T M_c \cap J(T M_c) \subset T M_c \]

is then a contact structure on \(M_c \), i.e. it is maximally nonintegrable.

\((W, \omega)\) symplectic with contact boundary

\[\sim \text{ contact structure } \xi \text{ on } M := \partial W \text{ (unique up to isotopy)}: \]

\[\partial(W, \omega) = (M, \xi) \]
An example from complex geometry

The maximal complex subbundle

\[\xi := T M_c \cap J(T M_c) \subset T M_c \]

is then a **contact structure** on \(M_c \), i.e. it is maximally nonintegrable.

\((W, \omega)\) symplectic with contact boundary

\(\sim\) **contact structure** \(\xi \) on \(M := \partial W \) (unique up to isotopy):

\[\partial(W, \omega) = (M, \xi) \]
Some problems in contact topology

1. Classification of contact structures
Given ξ_1, ξ_2 on M, is there a diffeomorphism $M \to M$ taking ξ_1 to ξ_2?

2. Weinstein conjecture
Do Hamiltonian flows on compact contact hypersurfaces always have periodic orbits?

3. Fillings and cobordisms
What are all the symplectic fillings of (M, ξ)?
Which (M', ξ') admit symplectic cobordisms to (M, ξ), i.e. "$(M', \xi') \prec (M, \xi)$"
1. Classification of contact structures
Given ξ_1, ξ_2 on M, is there a diffeomorphism $M \to M$ taking ξ_1 to ξ_2?

2. Weinstein conjecture
Do Hamiltonian flows on compact contact hypersurfaces always have periodic orbits?

3. Fillings and cobordisms
What are all the symplectic fillings of (M, ξ)?
Which (M', ξ') admit symplectic cobordisms to (M, ξ), i.e. "$(M', \xi') \prec (M, \xi)$"?
Some problems in contact topology

1. Classification of contact structures
Given ξ_1, ξ_2 on M, is there a diffeomorphism $M \to M$ taking ξ_1 to ξ_2?

2. Weinstein conjecture
Do Hamiltonian flows on compact contact hypersurfaces always have periodic orbits?

3. Fillings and cobordisms
What are all the symplectic fillings of (M, ξ)?
Which (M', ξ') admit symplectic cobordisms to (M, ξ), i.e. “$(M', \xi') \prec (M, \xi)$”?
1. Classification of contact structures

Given ξ_1, ξ_2 on M, is there a diffeomorphism $M \to M$ taking ξ_1 to ξ_2?

2. Weinstein conjecture

Do Hamiltonian flows on compact contact hypersurfaces always have periodic orbits?

3. Fillings and cobordisms

What are all the symplectic fillings of (M, ξ)? Which (M', ξ') admit symplectic cobordisms to (M, ξ), i.e.

\[(M', \xi') \prec (M, \xi) \]
Some problems in contact topology

1. Classification of contact structures
Given ξ_1, ξ_2 on M, is there a diffeomorphism $M \rightarrow M$ taking ξ_1 to ξ_2?

2. Weinstein conjecture
Do Hamiltonian flows on compact contact hypersurfaces always have periodic orbits?

3. Fillings and cobordisms
What are all the symplectic fillings of (M, ξ)? Which (M', ξ') admit symplectic cobordisms to (M, ξ), i.e. "$(M', \xi') \prec (M, \xi)$"?
Rigidity and flexibility

Gromov (ICM 1986): “soft” vs. “hard” symplectic geometry
Rigidity and flexibility

Gromov (ICM 1986): “soft” vs. “hard” symplectic geometry
Rigidity and flexibility

Gromov (ICM 1986): “soft” vs. “hard” symplectic geometry

\[\text{SYMPLECTIC GEOMETRY} \]

\[\text{flexible} \]
\[\text{rigid} \]

Insight: The interesting questions are on the borderline.
Flexibility

Flexibility ("soft") comes from the h-principle,

Examples of symplectic flexibility

- **Existence** of symplectic structures on open manifolds [Gromov 1969]:
 \[
 \begin{align*}
 \{\text{sympl. forms}\} & \xrightleftharpoons{1:1} \{\text{almost } \mathbb{C}\text{-structures}\} \\
 \text{deformation} & \quad \text{homotopy}
 \end{align*}
 \]

- There is a flexible class of Stein structures: two such structures are Stein homotopic \(\Leftrightarrow\) homotopic as almost complex structures. [Cieliebak-Eliashberg 2012]
Flexibility

Flexibility ("soft") comes from the **h-principle**, e.g. the **Whitney-Graustein theorem** (1937):

\[\gamma_0, \gamma_1 : S^1 \to \mathbb{R}^2 \text{ are regularly homotopic } \iff \text{wind}(\dot{\gamma}_0) = \text{wind}(\dot{\gamma}_1). \]

Examples of symplectic flexibility

- **Existence** of symplectic structures on **open** manifolds [Gromov 1969]:

 \[
 \{\text{sympl. forms}\} \overset{1:1}{\underset{\text{deformation}}{\leftrightarrow}} \{\text{almost C-structures}\} \overset{\text{homotopy}}{\rightarrow}
 \]

- There is a flexible class of Stein structures: two such structures are **Stein homotopic** \(\iff\) **homotopic** as almost complex structures.

 [Cieliebak-Eliashberg 2012]
Flexibility

Flexibility ("soft") comes from the **h-principle**, e.g. the **Whitney-Graustein theorem** (1937):

\[\gamma_0, \gamma_1 : S^1 \to \mathbb{R}^2 \text{ are regularly homotopic } \iff \text{wind}(\dot{\gamma}_0) = \text{wind}(\dot{\gamma}_1). \]

Examples of symplectic flexibility

- **Existence** of symplectic structures on **open** manifolds [Gromov 1969]:
 \[
 \frac{\{\text{sympl. forms}\}}{\text{deformation}} \overset{1:1}{\leftrightarrow} \frac{\{\text{almost } \mathbb{C}\text{-structures}\}}{\text{homotopy}}
 \]

- There is a flexible class of Stein structures: two such structures are **Stein homotopic** \(\iff\) **homotopic** as almost complex structures.

 [Cieliebak-Eliashberg 2012]
Flexibility

Flexibility ("soft") comes from the h-principle, e.g. the Whitney-Graustein theorem (1937):

$$\gamma_0, \gamma_1 : S^1 \rightarrow \mathbb{R}^2$$ are regularly homotopic $$\Leftrightarrow$$ \(\text{wind}(\dot{\gamma}_0) = \text{wind}(\dot{\gamma}_1)\).

Examples of symplectic flexibility

- **Existence** of symplectic structures on open manifolds [Gromov 1969]:

 \[
 \{ \text{sympl. forms} \} \overset{1:1}{\leftrightarrow} \{ \text{almost } \mathbb{C}\text{-structures} \}
 \]

 deformation homotopy

- There is a flexible class of Stein structures: two such structures are Stein homotopic $$\Leftrightarrow$$ homotopic as almost complex structures. [Cieliebak-Eliashberg 2012]
Flexibility

Flexibility ("soft") comes from the **h-principle**, e.g. the **Whitney-Graustein theorem** (1937):

\[\gamma_0, \gamma_1 : S^1 \to \mathbb{R}^2 \text{ are regularly homotopic } \iff \text{wind}(\dot{\gamma}_0) = \text{wind}(\dot{\gamma}_1). \]

Examples of symplectic flexibility

- **Existence** of symplectic structures on **open** manifolds [Gromov 1969]:

 \[\{\text{sympl. forms}\} \xleftrightarrow{1:1} \{\text{almost } \mathbb{C}-\text{structures}\} \]

 \text{deformation} \quad \text{homotopy}

- There is a flexible class of Stein structures: two such structures are **Stein homotopic** \(\iff\) **homotopic** as almost complex structures.

 [Cieliebak-Eliashberg 2012]
Two “overtwisted” contact structures ξ_1, ξ_2 are isotopic \iff they are homotopic. [Eliashberg 1989] + [Borman-Eliashberg-Murphy 2014]
Rigidity ("hard") comes from invariants: Gromov-Witten, Floer homology, symplectic field theory (SFT), Seiberg-Witten. . .

Examples of symplectic rigidity

- \((S^3, \xi_{\text{std}})\) has a unique Stein filling up to deformation. [Gromov 1985], [Eliashberg 1989]
- \(\exists\) symp. fillable contact manifolds with no Stein fillings. [Ghiggini 2005]
Rigidity ("hard") comes from invariants: Gromov-Witten, Floer homology, symplectic field theory (SFT), Seiberg-Witten…

Examples of symplectic rigidity

- \((S^3, \xi_{\text{std}})\) has a unique Stein filling up to deformation. [Gromov 1985], [Eliashberg 1989]

- \(\exists\) symp. fillable contact manifolds with no Stein fillings. [Ghiggini 2005]
Rigidity ("hard") comes from invariants: Gromov-Witten, Floer homology, symplectic field theory (SFT), Seiberg-Witten.

Examples of symplectic rigidity

- \((S^3, \xi_{\text{std}})\) has a unique Stein filling up to deformation. [Gromov 1985], [Eliashberg 1989]

- \(\exists\) symp. fillable contact manifolds with no Stein fillings. [Ghiggini 2005]
Rigidity ("hard") comes from invariants: Gromov-Witten, Floer homology, symplectic field theory (SFT), Seiberg-Witten. . .

Examples of symplectic rigidity

- (S^3, ξ_{std}) has a unique Stein filling up to deformation. [Gromov 1985], [Eliashberg 1989]

- \exists symp. fillable contact manifolds with no Stein fillings. [Ghiggini 2005]
Rigidity ("hard") comes from **invariants**: Gromov-Witten, Floer homology, symplectic field theory (SFT), Seiberg-Witten. . .

Examples of symplectic rigidity

- (S^3, ξ_{std}) has a **unique Stein filling** up to deformation. [Gromov 1985], [Eliashberg 1989]

- ∃ **symp. fillable** contact manifolds with **no Stein fillings**. [Ghiggini 2005]
Rigidity

Rigidity ("hard") comes from **invariants**: Gromov-Witten, Floer homology, symplectic field theory (SFT), Seiberg-Witten...

Examples of symplectic rigidity

- \((S^3, \xi_{std})\) has a **unique Stein filling** up to deformation. [Gromov 1985].

 [Eliashberg 1989]

- \(\exists\) **symp. fillable** contact manifolds with **no Stein fillings**. [Ghiggini 2005]
Rigidity ("hard") comes from invariants: Gromov-Witten, Floer homology, symplectic field theory (SFT), Seiberg-Witten…

Examples of symplectic rigidity

- \((S^3, \xi_{\text{std}})\) has a **unique Stein filling** up to deformation. [Gromov 1985].
 [Eliashberg 1989]

- \(\exists\) **symp. fillable** contact manifolds with **no Stein fillings**. [Ghiggini 2005]
Rigidity ("hard") comes from invariants: Gromov-Witten, Floer homology, symplectic field theory (SFT), Seiberg-Witten...

Examples of symplectic rigidity

- (S^3, ξ_{std}) has a unique Stein filling up to deformation. [Gromov 1985], [Eliashberg 1989]
- \exists symp. fillable contact manifolds with no Stein fillings. [Ghiggini 2005]
- The 3-torus admits an infinite sequence of contact structures that are homotopic but not isotopic. [Giroux 1994]
 Only the first is fillable [Eliashberg 1996], and its filling is unique. [W. 2010]
The middle ground: quasiflexibility

Stein is generally **more rigid** than *symplectic*, e.g. Ghiggini ’05 proved

\[
\text{Stein}(W) \to \text{Symp}^{\text{convex}}(W)
\]

is **not always surjective** on \(\pi_0 \).

Open question

Is there a manifold with two Stein structures that are symplectomorphic but **not** Stein homotopic?

Main theorem (Lisi, Van Horn-Morris, W. ’17)

Suppose \(\dim_{\mathbb{R}} W = 4 \), \(J_0 \) and \(J_1 \) are Stein structures on \(W \), and \(J_0 \) admits a compatible **Lefschetz fibration of genus 0**. Then

\[
J_0 \sim^{\text{Stein}} J_1 \iff \omega_{J_0} \sim^{\text{symp}} \omega_{J_1}.
\]

We call these Stein structures "**quasiflexible**".
The middle ground: quasiflexibility

Stein is generally **more rigid** than *symplectic*, e.g. Ghiggini ’05 proved

\[
\text{Stein}(W) \to \text{Symp}^{\text{convex}}(W)
\]

is **not always surjective** on π_0.

Open question

Is there a manifold with two Stein structures that are symplectomorphic but not Stein homotopic?

Main theorem (Lisi, Van Horn-Morris, W. ’17)

Suppose $\dim_{\mathbb{R}} W = 4$, J_0 and J_1 are Stein structures on W, and J_0 admits a compatible **Lefschetz fibration of genus 0**. Then

\[
J_0 \xrightarrow{\text{Stein}} J_1 \iff \omega_{J_0} \xrightarrow{\text{symp}} \omega_{J_1}.
\]

We call these Stein structures “**quasiflexible**”.

Chris Wendl (HU Berlin) — When is a Stein manifold merely symplectic? — November 28, 2017
The middle ground: quasiflexibility

Stein is generally more rigid than **symplectic**, e.g. Ghiggini ’05 proved

\[
\text{Stein}(W) \to \text{Symp}^{\text{convex}}(W)
\]

is **not always surjective** on \(\pi_0\).

Open question

Is there a manifold with two Stein structures that are symplectomorphic but not Stein homotopic?

Main theorem (Lisi, Van Horn-Morris, W. ’17)

Suppose \(\dim_{\mathbb{R}} W = 4\), \(J_0\) and \(J_1\) are Stein structures on \(W\), and \(J_0\) admits a compatible Lefschetz fibration of genus 0. Then

\[
J_0 \overset{\text{Stein}}{\sim} J_1 \iff \omega_{J_0} \overset{\text{symp}}{\sim} \omega_{J_1}.
\]

We call these Stein structures “quasiflexible”.
The middle ground: quasiflexibility

Stein is generally more rigid than symplectic, e.g. Ghiggini ’05 proved

\[\text{Stein}(W) \to \text{Symp}^{\text{convex}}(W) \]

is not always surjective on \(\pi_0 \).

Open question

Is there a manifold with two Stein structures that are symplectomorphic but not Stein homotopic?

Main theorem (Lisi, Van Horn-Morris, W. ’17)

Suppose \(\dim_{\mathbb{R}} W = 4 \), \(J_0 \) and \(J_1 \) are Stein structures on \(W \), and \(J_0 \) admits a compatible Lefschetz fibration of genus 0. Then

\[J_0 \sim^{\text{Stein}} J_1 \iff \omega_{J_0} \sim^{\text{symp}} \omega_{J_1}. \]

We call these Stein structures “quasiflexible”.
The middle ground: quasiflexibility

Stein is generally **more rigid** than *symplectic*, e.g. Ghiggini ’05 proved

\[\text{Stein}(W) \rightarrow \text{Symp}^{\text{convex}}(W) \]

is not always surjective on \(\pi_0 \).

Open question

Is there a manifold with two Stein structures that are symplectomorphic but **not Stein homotopic**?

Main theorem (Lisi, Van Horn-Morris, W. ’17)

Suppose \(\dim_{\mathbb{R}} W = 4 \), \(J_0 \) and \(J_1 \) are Stein structures on \(W \), and \(J_0 \) admits a compatible **Lefschetz fibration of genus 0**. Then

\[J_0 \overset{\text{Stein}}{\sim} J_1 \iff \omega_{J_0} \overset{\text{symp}}{\sim} \omega_{J_1}. \]

We call these Stein structures “**quasiflexible**”.

Chris Wendl (HU Berlin) When is a Stein manifold merely symplectic? November 28, 2017 11 / 19
The middle ground: quasiflexibility

Stein is generally **more rigid** than *symplectic*, e.g. Ghiggini ’05 proved

\[\text{Stein}(W) \to \text{Symp}^{\text{convex}}(W) \]

is **not always surjective** on \(\pi_0 \).

Open question

Is there a manifold with two Stein structures that are symplectomorphic but **not Stein homotopic**?

Main theorem (Lisi, Van Horn-Morris, W. ’17)

*Suppose \(\dim_{\mathbb{R}} W = 4 \), \(J_0 \) and \(J_1 \) are Stein structures on \(W \), and \(J_0 \) admits a compatible **Lefschetz fibration of genus** 0. Then*

\[J_0 \overset{\text{Stein}}{\sim} J_1 \iff \omega_{J_0} \overset{\text{symp}}{\sim} \omega_{J_1}. \]

We call these Stein structures “**quasiflexible**”.
Lefschetz fibrations

\[\pi : W^4 \to \Sigma^2 \] with isolated critical points

\[\pi(z_1, z_2) = z_1^2 + z_2^2 \]

in local complex coordinates.

Theorem (Thurston, Gompf)

If \([\text{fiber}] \neq 0 \in H_2(W; \mathbb{Q})\], then \(W\) admits a canonical deformation class of symplectic forms with \(\omega|_{\text{fibers}} > 0\).
Lefschetz fibrations

\[\pi : W^4 \to \Sigma^2 \] with isolated critical points

\[\pi(z_1, z_2) = z_1^2 + z_2^2 \]

in local complex coordinates.
Lefschetz fibrations

\[\pi : W^4 \to \Sigma^2 \] with isolated critical points

\[\pi(z_1, z_2) = z_1^2 + z_2^2 \]

in local complex coordinates.
Lefschetz fibrations

\[\pi : W^4 \to \Sigma^2 \text{ with isolated critical points} \]

\[\pi(z_1, z_2) = z_1^2 + z_2^2 \]

in local complex coordinates.

Theorem (Thurston, Gompf)

If \[\{\text{fiber}\} \neq 0 \in H_2(W; \mathbb{Q}) \], then \(W \) admits a canonical deformation class of symplectic forms with \(\omega \mid_{\text{fibers}} > 0 \).
Lefschetz fibrations

\[\pi : W^4 \to \Sigma^2 \] with isolated critical points

\[\pi(z_1, z_2) = z_1^2 + z_2^2 \]

in local complex coordinates.
π : W^4 \to \Sigma^2 \text{ with isolated critical points}

\[\pi(z_1, z_2) = z_1^2 + z_2^2 \]

in local complex coordinates.
Lefschetz fibrations

\[\pi : W^4 \to \Sigma^2 \text{ with isolated critical points} \]

\[\pi(z_1, z_2) = z_1^2 + z_2^2 \]

in local complex coordinates.

Theorem (Thurston, Gompf)

If \[[\text{fiber}] \neq 0 \in H_2(W; \mathbb{Q}) \], then \(W \) admits a canonical deformation class of symplectic forms with \(\omega|_{\text{fibers}} > 0 \).
Lefschetz fibrations

\[\pi : W^4 \to \Sigma^2 \] with isolated critical points

\[\pi(z_1, z_2) = z_1^2 + z_2^2 \]

in local complex coordinates.

Theorem (Thurston, Gompf)

If \([\text{fiber}] \neq 0 \in H_2(W; \mathbb{Q}) \), then \(W \) admits a canonical deformation class of symplectic forms with \(\omega|_{\text{fibers}} > 0 \).
Lefschetz fibrations

\[\pi : W^4 \rightarrow \Sigma^2 \] with isolated critical points

\[\pi(z_1, z_2) = z_1^2 + z_2^2 \]

in local complex coordinates.
Lefschetz fibrations

$\pi : W^4 \to \Sigma^2$ with isolated critical points

$\pi(z_1, z_2) = z_1^2 + z_2^2$

in local complex coordinates.

Theorem (Thurston, Gompf)

If $[\text{fiber}] \neq 0 \in H_2(W; \mathbb{Q})$, then W admits a canonical deformation class of symplectic forms with $\omega|_{\text{fibers}} > 0$.
Lefschetz fibrations with boundary (over \mathbb{D}^2)

$\partial W = \partial v W \cup \partial h W$, where

$\partial v W := \pi^{-1}(\partial \mathbb{D}^2)$ fibration $\rightarrow \partial \mathbb{D}^2 = S^1$,

$\partial h W := \bigcup_{z \in \mathbb{D}^2} \partial (\pi^{-1}(z)) \sim = \biguplus (S^1 \times \mathbb{D}^2)$

\Rightarrow ∂W inherits an open book decomposition.

Chris Wendl (HU Berlin)
When is a Stein manifold merely symplectic?

November 28, 2017 13 / 19
Lefschetz fibrations with boundary (over \mathbb{D}^2)

\[
\partial W = \partial v W \cup \partial h W,
\]
where \(\partial v W := \pi^{-1}(\partial \mathbb{D}^2)\) fibration \(\rightarrow \partial \mathbb{D}^2 = S^1\), \(\partial h W := \bigsqcup_{z \in \mathbb{D}^2} \partial (\pi^{-1}(z)) \sim = \bigsqcup (S^1 \times \mathbb{D}^2)\)

\(\Rightarrow\) \(\partial W\) inherits an open book decomposition.
Lefschetz fibrations with boundary (over D^2)

\[\partial W = \partial v W \cup \partial h W, \]
where
\[\partial v W := \pi^{-1}(\partial D^2) \text{ fibration} \rightarrow \partial D^2 = S^1, \]
\[\partial h W := \bigcup_{z \in D^2} \partial (\pi^{-1}(z)) \sim = \bigsqcup (S^1 \times D^2) \]

⇒ \[\partial W \] inherits an open book decomposition.
Lefschetz fibrations with boundary (over \mathbb{D}^2)

\[\partial W = \partial v W \cup \partial h W, \]
where

\[\partial v W := \pi^{-1}(\partial \mathbb{D}^2) \to \partial \mathbb{D}^2 = S^1, \]

\[\partial h W := \bigcup_{z \in \mathbb{D}^2} \partial (\pi^{-1}(z)) \sim = \biguplus (S^1 \times \mathbb{D}^2). \]

\[\Rightarrow \partial W \text{ inherits an open book decomposition.} \]
Lefschetz fibrations with boundary (over \mathbb{D}^2)

$$\partial W = \partial v W \cup \partial h W,$$

where

$$\partial v W := \pi^{-1}(\partial \mathbb{D}^2) \to \partial \mathbb{D}^2 = S^1,$$

$$\partial h W := \bigcup_{z \in \mathbb{D}^2} \partial (\pi^{-1}(z)) \sim = \bigsimeq (S^1 \times \mathbb{D}^2).$$

\Rightarrow ∂W inherits an open book decomposition.
Lefschetz fibrations with boundary (over \mathbb{D}^2)

\[\partial W = \partial v W \cup \partial h W, \]

where

\[\partial v W := \pi^{-1}(\partial \mathbb{D}^2) \xrightarrow{\text{fibration}} \partial \mathbb{D}^2 = S^1, \]

\[\partial h W := \bigcup_{z \in \mathbb{D}^2} \partial (\pi^{-1}(z)) \sim = \biguplus (S^1 \times \mathbb{D}^2), \]

\[\Rightarrow \partial W \text{ inherits an open book decomposition.} \]
Lefschetz fibrations with boundary (over \mathbb{D}^2)

$$\partial W = \partial v W \cup \partial h W,$$
where

$$\partial v W := \pi^{-1}(\partial \mathbb{D}^2) \to \partial \mathbb{D}^2 = S^1,$$

$$\partial h W := \bigcup_{z \in \mathbb{D}^2} \partial (\pi^{-1}(z)) \sim \biguplus (S^1 \times \mathbb{D}^2).$$

\Rightarrow ∂W inherits an open book decomposition.

Chris Wendl (HU Berlin)

When is a Stein manifold merely symplectic?

November 28, 2017
13 / 19
Lefschetz fibrations with boundary (over \mathbb{D}^2)

\[\partial W = \partial v_W \cup \partial h_W, \]

where

\[\partial v_W := \pi^{-1}(\partial \mathbb{D}^2) \rightarrow \partial \mathbb{D}^2 = S^1, \]

\[\partial h_W := \bigcup_{z \in \mathbb{D}^2} \partial (\pi^{-1}(z)) \sim \bigsqcup (S^1 \times \mathbb{D}^2) \]

\[\Rightarrow \partial W \text{ inherits an open book decomposition}. \]
Lefschetz fibrations with boundary (over \mathbb{D}^2)

$\partial W = \partial_v W \cup \partial_h W$, where

$\partial_v W := \pi^{-1}(\partial \mathbb{D}^2) \xrightarrow{\text{fibration}} \partial \mathbb{D}^2 = S^1,$

$\partial_h W := \bigcup_{z \in \mathbb{D}^2} \partial (\pi^{-1}(z)) \cong \bigsqcup (S^1 \times \mathbb{D}^2) \Rightarrow \partial W$ inherits an open book decomposition.
Lefschetz fibrations with boundary (over \mathbb{D}^2)

$\partial W = \partial_v W \cup \partial_h W$, where

$\partial_v W := \pi^{-1}(\partial \mathbb{D}^2) \xrightarrow{\text{fibration}} \partial \mathbb{D}^2 = S^1,$

$\partial_h W := \bigcup_{z \in \mathbb{D}^2} \partial (\pi^{-1}(z)) \cong \bigsqcup (S^1 \times \mathbb{D}^2)$

$\Rightarrow \partial W$ inherits an open book decomposition.
Lemma (Lisi, Van Horn-Morris, W.)

Suppose $\pi : W \to \mathbb{D}^2$ has no closed components in its singular fibers (i.e. π is “allowable”). Then W admits a canonical deformation class of Stein structures such that the fibers are holomorphic curves, and the contact structure on ∂W is supported (in the sense of Giroux) by the induced open book decomposition.
Fundamental lemma of symplectic topology (Gromov '85)

On every symplectic manifold \((W, \omega)\), there is a contractible space of “tamed” almost complex structures

\[
\{ J : TW \to TW \mid J^2 = -1 \text{ and } \omega(X, JX) > 0 \text{ for all } X \neq 0 \}.
\]

Given a Riemann surface \((\Sigma, j)\), a map \(u : \Sigma \to W\) is called \(J\)-holomorphic if it satisfies the nonlinear Cauchy-Riemann equation:

\[
Tu \circ j = J \circ Tu
\]

\(\Leftrightarrow\) in local coordinates \(s + it\),

\[
\partial_s u + J(u) \partial_t u = 0.
\]

This is a first-order elliptic PDE.
Fundamental lemma of symplectic topology (Gromov '85)

On every symplectic manifold \((W, \omega)\), there is a **contractible** space of “tamed” almost complex structures

\[
\{ J : TW \to TW \mid J^2 = -1 \text{ and } \omega(X, JX) > 0 \text{ for all } X \neq 0 \}.
\]

Given a Riemann surface \((\Sigma, j)\), a map \(u : \Sigma \to W\) is called **\(J\)-holomorphic** if it satisfies the **nonlinear Cauchy-Riemann equation**:

\[
Tu \circ j = J \circ Tu
\]

\[\Leftrightarrow\text{ in local coordinates } s + it,\]

\[
\partial_s u + J(u) \partial_t u = 0.
\]

This is a **first-order elliptic PDE**.
Heavy artillery

Fundamental lemma of symplectic topology (Gromov ’85)

On every symplectic manifold \((W, \omega)\), there is a **contractible** space of “tamed” almost complex structures

\[\{ J : TW \to TW \mid J^2 = -1 \text{ and } \omega(X, JX) > 0 \text{ for all } X \neq 0 \} . \]

Given a Riemann surface \((\Sigma, j)\), a map \(u : \Sigma \to W\) is called **J-holomorphic** if it satisfies the **nonlinear Cauchy-Riemann equation**:

\[Tu \circ j = J \circ Tu \]

\[\iff \text{ in local coordinates } s + it, \]

\[\partial_s u + J(u) \partial_t u = 0. \]

This is a **first-order elliptic PDE**.
Fundamental lemma of symplectic topology (Gromov ’85)

On every symplectic manifold \((W, \omega)\), there is a **contractible** space of “tamed” almost complex structures

\[
\{ J : TW \to TW \mid J^2 = -1 \text{ and } \omega(X, JX) > 0 \text{ for all } X \neq 0 \}.
\]

Given a Riemann surface \((\Sigma, j)\), a map \(u : \Sigma \to W\) is called **\(J\)-holomorphic** if it satisfies the **nonlinear Cauchy-Riemann equation**:

\[
Tu \circ j = J \circ Tu
\]

\[\Leftrightarrow\] in local coordinates \(s + it\),

\[
\partial_s u + J(u) \partial_t u = 0.
\]

This is a **first-order elliptic PDE**.
Ellipticity

\[|u|_{W^{1,p}} \leq |u|_{L^p} + |\partial_s u + i \partial_t u|_{L^p} \]
Ellipticity

\[\|u\|_{W^{1,p}} \leq \|u\|_{L^p} + \|\partial_s u + i \partial_t u\|_{L^p} \]

⇒ moduli spaces of holomorphic curves are (often)
- **smooth** finite-dimensional manifolds,
Ellipticity

\[\|u\|_{W^{1,p}} \leq \|u\|_{L^p} + \|\partial_s u + i \partial_t u\|_{L^p} \]

⇒ moduli spaces of holomorphic curves are (often)
 - smooth finite-dimensional manifolds,
 - compact...
Ellipticity

\[\| u \|_{W^{1,p}} \leq \| u \|_{L^p} + \| \partial_s u + i \partial_t u \|_{L^p} \]

\Rightarrow \text{moduli spaces of holomorphic curves are (often)}

- **smooth** finite-dimensional manifolds,
- **compact**... up to **bubbling** and **breaking**.
Ellipticity

\[\| u \|_{W^{1,p}} \leq \| u \|_{L^p} + \| \partial_s u + i \partial_t u \|_{L^p} \]

⇒ moduli spaces of holomorphic curves are (often)

- **smooth** finite-dimensional manifolds,
- **compact**... up to **bubbling** and **breaking**.
Ellipticity

\[\|u\|_{W^{1,p}} \leq \|u\|_{L^p} + \|\partial_s u + i\partial_t u\|_{L^p} \]

⇒ moduli spaces of holomorphic curves are (often)

- **smooth** finite-dimensional manifolds,
- **compact**...up to bubbling and breaking.
Ellipticity

$$\|u\|_{W^{1,p}} \leq \|u\|_{L^p} + \|\partial_s u + i\partial_t u\|_{L^p}$$

⇒ moduli spaces of holomorphic curves are (often)
 - **smooth** finite-dimensional manifolds,
 - **compact**... up to **bubbling** and **breaking**.
Ellipticity

\[\|u\|_{W^{1,p}} \leq \|u\|_{L^p} + \|\partial_s u + i \partial_t u\|_{L^p} \]

⇒ moduli spaces of holomorphic curves are (often)
- **smooth** finite-dimensional manifolds,
- **compact**... up to **bubbling** and **breaking**.
Ellipticity

\[\|u\|_{W^{1,p}} \leq \|u\|_{L^p} + \|\partial_s u + i \partial_t u\|_{L^p} \]

\[\Rightarrow \] moduli spaces of holomorphic curves are (often)

- **smooth** finite-dimensional manifolds,
- **compact**... up to **bubbling** and **breaking**.
Lemma (W. '10)

Suppose (W^4, ω_{τ}) is a 1-parameter family of symplectic fillings of (M^3, ξ), where ξ is supported by a planar open book (i.e. its fibers have genus zero).

Choose a generic family J_{τ} of ω_{τ}-tame almost complex structures on the symplectic completion $(\hat{W}, \hat{\omega}_{\tau})$.

Then the open book extends to a smooth family of Lefschetz fibrations

$$W \xrightarrow{\pi_{\tau}} \mathbb{D}^2$$

with J_{τ}-holomorphic fibers, and they are allowable if ω_{τ} is exact for any τ.

Lemma (W. ’10)

Suppose \((W^4, \omega)\) is a 1-parameter family of symplectic fillings of \((M^3, \xi)\), where \(\xi\) is supported by a planar open book (i.e. its fibers have genus zero).

Choose a generic family \(J_\tau\) of \(\omega\)-tame almost complex structures on the symplectic completion \((\hat{W}, \hat{\omega})\).

Then the open book extends to a smooth family of Lefschetz fibrations

\[
W \xrightarrow{\pi_\tau} D^2
\]

with \(J_\tau\)-holomorphic fibers, and they are allowable if \(\omega\) is exact for any \(\tau\).
Lemma (W. ’10)

Suppose \((W^4, \omega_\tau)\) is a 1-parameter family of symplectic fillings of \((M^3, \xi)\), where \(\xi\) is supported by a planar open book (i.e. its fibers have genus zero).

Choose a generic family \(J_\tau\) of \(\omega_\tau\)-tame almost complex structures on the symplectic completion \((\widehat{W}, \widehat{\omega}_\tau)\).

Then the open book extends to a smooth family of Lefschetz fibrations

\[W \xrightarrow{\pi_\tau} \mathbb{D}^2 \]

with \(J_\tau\)-holomorphic fibers, and they are allowable if \(\omega_\tau\) is exact for any \(\tau\).
$(\hat{W}, \hat{\omega}_{\tau_0}, J_{\tau_0})$
$(\widehat{W}, \widehat{\omega}_\tau, J_\tau)$
$(\widehat{W}, \widehat{\omega_\tau}, J_\tau_0)$
\((\hat{W}, \hat{\omega}_\tau, J_\tau)\)
$$(\mathcal{W}, \mathcal{\mathcal{G}_{\tau_0}}, J_{\tau_0})$$
$(\hat{W}, \hat{\omega}_0, J_{\tau_0})$
$(\hat{W}, \hat{\omega}_\tau, J_{\tau_0})$
$(\hat{W}, \hat{\omega}_{\tau_0}, J_{\tau_0})$
$(\hat{W}, \hat{\omega}_{\tau_0}, J_{\tau_0})$
$(\tilde{W}, \tilde{\omega}_{\tau_0}, J_{\tau_0})$
$(\widehat{W}, \widehat{\omega}_0, J_0)$
$(\hat{W}, \hat{\omega}_{\tau_0}, J_{\tau_0})$
\((\hat{W}, \hat{\omega}_{\tau_0}, J_{\tau_0})\)
\((\hat{W}, \hat{\omega}_0, J_0)\)
$(\hat{W}, \hat{\omega}_0, J_0)$
(\(\hat{\mathcal{W}} \), \(\hat{\omega}_{\tau_0} \), \(J_{\tau_0} \))

only if \(\omega_{\tau_0} \) not exact!
$(\hat{W}, \hat{\omega}_{\tau_0}, J_{\tau_0})$
\((\hat{W}, \hat{\omega}_{\tau_2}, J_{\tau_2})\)
\(\hat{W}, \hat{\omega}_3, J_3 \)
\((\widehat{W}, \tilde{\omega}_{\tau_4}, J_{\tau_4})\)
Remark: This does not work with higher-genus open books. Curves have index $2 - 2g$.

$(\tilde{W}, \tilde{\omega}_{\tau_4}, J_{\tau_4})$
Remark: This does not work with higher-genus open books. Curves have index $2 - 2g$.

Proof of main theorem:
Remark: This does not work with higher-genus open books. Curves have index $2 - 2g$.

Proof of main theorem:
Symplectic deformation
\implies isotopy of Lefschetz fibrations
Remark: This does not work with higher-genus open books. Curves have index $2 - 2g$.

Proof of main theorem:
Symplectic deformation
\[\implies\] isotopy of Lefschetz fibrations
\[\implies\] homotopy of Stein structures.
Conclusion

Even rigid structures can be...
Conclusion

Even rigid structures can be... **somewhat flexible.**
Conclusion

Even rigid structures can be... somewhat flexible.

Some questions for the future

- Is there quasiflexibility in higher dimensions?
Conclusion

Even rigid structures can be... **somewhat flexible**.

Some questions for the future

- Is there quasiflexibility in **higher dimensions**?
- Is there a quasiflexible class of **contact structures** in dimension 3? *(planar?)*
Thank you for your attention!

Pictures of contact structures by Patrick Massot:

https://www.math.u-psud.fr/~pmassot/exposition/gallerie_contact/