
ar
X

iv
:1

61
2.

01
00

9v
2 

 [
m

at
h.

SG
] 

 8
 D

ec
 2

01
6

Lectures on Symplectic Field Theory

Chris Wendl

Institut für Mathematik, Humboldt-Universität zu Berlin, Unter

den Linden 6, 10099 Berlin, Germany

E-mail address : wendl@math.hu-berlin.de

http://arxiv.org/abs/1612.01009v2




Contents

Preface vii

About the current version ix

Lecture 1. Introduction 1
1.1. In the beginning, Gromov wrote a paper 1
1.2. Hamiltonian Floer homology 4
1.3. Contact manifolds and the Weinstein conjecture 9
1.4. Symplectic cobordisms and their completions 16
1.5. Contact homology and SFT 20
1.6. Two applications 23

Lecture 2. Basics on holomorphic curves 25
2.1. Linearized Cauchy-Riemann operators 25
2.2. Some useful Sobolev inequalities 28
2.3. The fundamental elliptic estimate 30
2.4. Regularity 32
2.5. Linear local existence and applications 38
2.6. Simple curves and multiple covers 41

Lecture 3. Asymptotic operators 43
3.1. The linearization in Morse homology 43
3.2. Spectral flow 46
3.3. The Hessian of the contact action functional 57
3.4. The Conley-Zehnder index 61

Lecture 4. Fredholm theory with cylindrical ends 67
4.1. Cauchy-Riemann operators with punctures 67
4.2. A global weak regularity result 70
4.3. Elliptic estimates on cylindrical ends 71
4.4. The semi-Fredholm property 73
4.5. Formal adjoints and proof of the Fredholm property 74

Lecture 5. The index formula 81
5.1. Riemann-Roch with punctures 81
5.2. Some remarks on the formal adjoint 86
5.3. The index zero case on a torus 90
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Preface

This book is a slightly expanded version of the lecture notes I produced for a
two-semester course taught at University College London in 2015–16, for Ph.D. stu-
dents with a background in basic symplectic geometry and interest in symplectic
topology and/or geometric analysis. I say “slightly expanded,” although the reader
will quickly notice that most individual chapters contain far more material than can
reasonably fit into a two-hour lecture. In reality, much of that material was only
sketched or mentioned in passing during lectures, and I ended up using the notes
to discuss everything that I would like to have explained if I’d had unlimited time.
This includes relatively detailed discussions of several important technical points
(e.g. the definition of spectral flow, generic transversality in symplectizations, the
punctured Riemann-Roch formula, finite energy and asymptotics with arbitrary sta-
ble Hamiltonian structures) which are either incompletely covered by the existing
literature or, in my opinion, simply more difficult to learn from other sources than
they should be. For topics that are on the other hand well covered elsewhere, I have
usually not felt obliged to explain every detail, but have tried always to provide
adequate references.

One of the interesting features of SFT is that its foundations are—at the time of
this writing—not yet complete. When the original “propaganda paper” [EGH00]
appeared in 2000, it was widely believed that the technical details would be filled in
within a few years, and several papers introducing important applications of SFT
to contact topology were written under this assumption. Since then, a certain re-
alization has set in that the results in those papers cannot truly be regarded as
“theorems” in the sense of mathematics, and it has become less socially acceptable
to preface statements of results with caveats of the form, “this theorem is dependent
on the foundations of SFT”. At the same time, the need for a robust perturbation
scheme to achieve transversality in SFT spawned the development of a whole new
approach to infinite-dimensional differential geometry, the polyfold project [Hof06],
which is intended for much more general applications but is not yet finished. Opin-
ions vary among symplectic topologists as to how unsatisfied we should all be with
this state of affairs, and what could be done about it—among other things, one could
make an entire course out of the discussion of such issues, but I have not chosen to
do that. My approach is instead to develop the classical1 analysis of pseudoholo-
morphic curves in symplectizations and symplectic cobordisms, to explain how this
would lead to a theory of algebraic contact invariants if transversality for multiple
covers were not an issue, and then to use the tools and insights gained from this

1For the purposes of this discussion, the word “classical” may be defined as “not involving the
words polyfold, virtual or Kuranishi”.
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discussion to prove rigorous mathematical theorems about contact manifolds. Typi-
cally, such theorems can be regarded informally as consequences of computations in
a (not yet well-defined) theory called SFT, but in a rigorous sense, they are actually
consequences of the methods used in those computations. Examples covered in these
notes include distinguishing tight contact structures on the 3-torus that are homo-
topic but not isomorphic (Lecture 10), and the nonexistence of symplectic fillings
or symplectic cobordisms between certain pairs of contact manifolds (Lecture 16).
The choice of applications is of course biased somewhat toward my own research
interests.

Prerequisites. The stated target audience for the lecture course was “Ph.D. stu-
dents in differential geometry or related fields who are not afraid of analysis”. More
precisely, the notes assume some knowledge of the following topics:

• Differential geometry: manifolds and vector bundles, differential forms and
Stokes’ theorem, connections, basic familiarity with symplectic manifolds
• Functional analysis: linear operators on Banach spaces, basics of Sobolev
spaces, Fredholm operators
• Differential topology: smooth mapping degree, intersection numbers, Sard’s
theorem
• Algebraic topology: fundamental group, homology and cohomology of man-
ifolds, Poincaré duality, first Chern class, homological intersection numbers

The following topics are not considered formal prerequisites, but some knowledge of
them is likely in any case to be helpful to the reader, who may want to have a good
reference for them (as suggested below) within arm’s reach:

• Contact manifolds (e.g. Geiges [Gei08])
• Differential calculus on Banach spaces and Banach manifolds (e.g. these
two books by Lang: [Lan93] and [Lan99])
• Closed pseudoholomorphic curves (e.g. McDuff-Salamon [MS04] or my
other book in preparation [Wend])
• Floer homology (e.g. Salamon [Sal99] or Audin-Damian [AD14])

Acknowledgements. I would like to thank the students who sat through the
course that gave rise to these notes, and in particular Alexandru Cioba and Agust́ın
Moreno for their assistance in editing the first several lectures. My understanding
of Taubes’s approach to the Riemann-Roch formula (explained in Lecture 5) and its
generalization to the punctured case emerged in part from discussions with Chris
Gerig, and I am grateful also to Tim Perutz for helpful hints about Weitzenböck
formulas, and Patrick Massot for patient discussions of singular integral operators
and elliptic regularity. Thanks also to Michael Hutchings and Janko Latschev for
helping me understand the combinatorial factors in Lecture 12, to Jo Nelson for
helpful comments on coefficients and orbifold singularities, and to Sam Lisi and
Barney Bramham for advice on the Floer Cε space.



About the current version

At the time of posting this on the arXiv, Lectures 14, 15 and 16 each consist
of messy handwritten notes that have not yet been typed up, but will eventually
appear in the published version of the book. The main goal for those lectures
is to carry out some explicit computations of the torsion invariant introduced at
the end of Lecture 13, and to explain the consequences for filling and cobordism
obstructions, including for instance the classic result that overtwistedness implies
vanishing contact homology and thus obstructs fillability. In keeping with the spirit
of the book, the theorems about torsion in Lecture 16 will need to be understood
with the usual caveat that they depend on the unfinished foundations of SFT, but
part of the point is also to extract complete and rigorous proofs of the important
consequences regarding symplectic fillings. Lectures 14 and 15 are more technical
in nature, in the spirit of Lectures 2 through 9 except that they deal with topics
that are only relevant in low-dimensional settings (and thus significantly increase
the power of the theory in those settings). Aside from dealing with topics that
are valuable in their own right, they specifically precede Lecture 16 because they
introduce techniques that will be used in the computations in that lecture.

As far as the rest of the manuscript is concerned, I have tried to produce some-
thing that is relatively well polished, but I admit I have not tried quite as diligently
for that as I do with most of my research papers. Trying to produce another one
of these lectures every week while teaching the course was a formidable task, and I
had more time to be careful with it in some weeks than in others. I have since gone
back and reworked some portions, but not all, so I apologize for any sloppiness that
I may have failed so far to expunge. All comments and corrections are welcome,2

and may be sent to wendl@math.hu-berlin.de. Updates on the publication of the
book will be posted periodically on my website at

https://www.mathematik.hu-berlin.de/~wendl/publications.html#notes

2especially if those corrections are received before the book goes to press
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LECTURE 1

Introduction

Contents
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1.6.1. Tight contact structures on T3 23
1.6.2. Filling and cobordism obstructions 23

Symplectic field theory is a general framework for defining invariants of contact
manifolds and symplectic cobordisms between them via counts of “asymptotically
cylindrical” pseudoholomorphic curves. In this first lecture, we’ll summarize some
of the historical background of the subject, and then sketch the basic algebraic
formalism of SFT.

1.1. In the beginning, Gromov wrote a paper

Pseudoholomorphic curves first appeared in symplectic geometry in a 1985 paper
of Gromov [Gro85]. The development was revolutionary for the field of symplectic
topology, but it was not unprecedented: a few years before this, Donaldson had
demonstrated the power of using elliptic PDEs in geometric contexts to define in-
variants of smooth 4-manifolds (see [DK90]). The PDE that Gromov used was a
slight generalization of one that was already familiar from complex geometry.

Recall that if M is a smooth 2n-dimensional manifold, an almost complex
structure onM is a smooth linear bundle map J : TM → TM such that J2 = −1.
This makes the tangent spaces ofM into complex vector spaces and thus induces an
orientation on M ; the pair (M,J) is called an almost complex manifold. In this
context, a Riemann surface is an almost complex manifold of real dimension 2
(hence complex dimension 1), and a pseudoholomorphic curve (also called J-
holomorphic) is a smooth map

u : Σ→M

satisfying the nonlinear Cauchy-Riemann equation

(1.1) Tu ◦ j = J ◦ Tu,
1
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where (Σ, j) is a Riemann surface and (M,J) is an almost complex manifold (of
arbitrary dimension). The almost complex structure J is called integrable if M
is admits the structure of a complex manifold such that J is multiplication by i
in holomorphic coordinate charts. By a basic theorem of the subject, every almost
complex structure in real dimension two is integrable, hence one can always find
local coordinates (s, t) on neighorhoods in Σ such that

j∂s = ∂t, j∂t = −∂s.
In these coordinates, (1.1) takes the form

∂su+ J(u)∂tu = 0.

The fundamental insight of [Gro85] was that solutions to the equation (1.1)
capture information about symplectic structures onM whenever they are related to
J in the following way.

Definition 1.1. Suppose (M,ω) is a symplectic manifold. An almost complex
structure J on M is said to be tamed by ω if

ω(X, JX) > 0 for all X ∈ TM with X 6= 0.

Additionally, J is compatible with ω if the pairing

g(X, Y ) := ω(X, JY )

defines a Riemannian metric on M .

We shall denote by J (M) the space of all smooth almost complex structures on
M , with the C∞

loc-topology, and if ω is a symplectic form on M , let

Jτ(M,ω),J (M,ω) ⊂ J (M)

denote the subsets consisting of almost complex structures that are tamed by or
compatible with ω respectively. Notice that Jτ(M,ω) is an open subset of J (M),
but J (M,ω) is not. A proof of the following may be found in [Wend, §2.2], among
other places.

Proposition 1.2. On any symplectic manifold (M,ω), the spaces Jτ(M,ω) and
J (M,ω) are each nonempty and contractible. �

Tameness implies that the energy of a J-holomorphic curve u : Σ→M ,

E(u) :=

∫

Σ

u∗ω,

is always nonnegative, and it is strictly positive unless u is constant. Notice moreover
that if the domain Σ is closed, then E(u) depends only on the cohomology class
[ω] ∈ H2

dR(M) and the homology class

[u] := u∗[Σ] ∈ H2(M),

so in particular, any family of J-holomorphic curves in a fixed homology class sat-
isfies a uniform energy bound. This basic observation is one of the key facts behind
Gromov’s compactness theorem, which states that moduli spaces of closed curves in
a fixed homology class are compact up to “nodal” degenerations.
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The most famous application of pseudoholomorphic curves presented in [Gro85]
is Gromov’s nonsqueezing theorem, which was the first known example of an obstruc-
tion for embedding symplectic domains that is subtler than the obvious obstruction
defined by volume. The technology introduced in [Gro85] also led directly to the
development of the Gromov-Witten invariants (see [MS04,RT95,RT97]), which
follow the same pattern as Donaldson’s earlier smooth 4-manifold invariants; they
use counts of J-holomorphic curves to define invariants of symplectic manifolds up
to symplectic deformation equivalence.

Here is another sample application from [Gro85]. We denote by

A · B ∈ Z

the intersection number between two homology classes A,B ∈ H2(M) in a closed
oriented 4-manifold M .

Theorem 1.3. Suppose (M,ω) is a closed and connected symplectic 4-manifold
with the following properties:

(i) (M,ω) does not contain any symplectic submanifold S ⊂ M that is diffeo-
morphic to S2 and satisfies [S] · [S] = −1.

(ii) (M,ω) contains two symplectic submanifolds S1, S2 ⊂ M which are both
diffeomorphic to S2, satisfy

[S1] · [S1] = [S2] · [S2] = 0,

and have exactly one intersection point with each other, which is transverse
and positive.

Then (M,ω) is symplectomorphic to (S2 × S2, σ1 ⊕ σ2), where for i = 1, 2, the σi
are area forms on S2 satisfying

∫

S2

σi = 〈[ω], [Si]〉.

Sketch of the proof. Since S1 and S2 are both symplectic submanifolds,
one can choose a compatible almost complex structure J on M for which both of
them are the images of embedded J-holomorphic curves. One then considers the
moduli spaces M1(J) and M2(J) of equivalence classes of J-holomorphic spheres
homologous to S1 and S2 respectively, where any two such curves are considered
equivalent if one is a reparametrization of the other (in the present setting this just
means they have the same image). These spaces are both manifestly nonempty,
and one can argue via Gromov’s compactness theorem for J-holomorphic curves
that both are compact. Moreover, an infinte-dimensional version of the implicit
function theorem implies that both are smooth 2-dimensional manifolds, carrying
canonical orientations, hence both are diffeomorphic to closed surfaces. Finally, one
uses positivity of intersections to show that every curve in M1(J) intersects every
curve inM2(J) exactly once, and this intersection is always transverse and positive;
moreover, any two curves in the same space M1(J) or M2(J) are either identical
or disjoint. It follows that both moduli spaces are diffeomorphic to S2, and both
consist of smooth families of J-holomorphic spheres that foliate M , hence defining
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a diffeomorphism

M1(J)×M2(J)→M

that sends (u1, u2) to the unique point in the intersection im u1∩im u2. This identifies
M with S2 × S2 such that each of the submanifolds S2 × {∗} and {∗} × S2 are
symplectic. The latter observation can be used to determine the symplectic form
up to deformation, so that by the Moser stability theorem, ω is determined up to
isotopy by its cohomology class [ω] ∈ H2

dR(S
2 × S2), which depends only on the

evaluation of ω on [S2 × {∗}] and [{∗} × S2] ∈ H2(S
2 × S2). �

For a detailed exposition of the above proof of Theorem 1.3, see [Wene, Theo-
rem E].

1.2. Hamiltonian Floer homology

Throughout the following, we write

S1 := R/Z,

so maps on S1 are the same as 1-periodic maps on R. One popular version of the
Arnold conjecture on symplectic fixed points can be stated as follows. Suppose
(M,ω) is a closed symplectic manifold and H : S1 × M → R is a smooth func-
tion. Writing Ht := H(t, ·) : M → R, H determines a 1-periodic time-dependent
Hamiltonian vector field Xt via the relation1

(1.2) ω(Xt, ·) = −dHt.

Conjecture 1.4 (Arnold conjecture). If all 1-periodic orbits of Xt are nonde-
generate, then the number of these orbits is at least the sum of the Betti numbers
of M .

Here a 1-periodic orbit γ : S1 →M of Xt is called nondegenerate if, denoting
the flow of Xt by ϕ

t, the linearized time 1 flow

dϕ1(γ(0)) : Tγ(0)M → Tγ(0)M

does not have 1 as an eigenvalue. This can be thought of as a Morse condition for
an action functional on the loop space whose critical points are periodic orbits; like
Morse critical points, nondegenerate periodic orbits occur in isolation. To simplify
our lives, let’s restrict attention to contractible orbits and also assume that (M,ω)
is symplectically aspherical, which means

[ω]|π2(M) = 0.

Then if C∞
contr(S

1,M) denotes the space of all smoothly contractible smooth loops
in M , the symplectic action functional can be defined by

AH : C∞
contr(S

1,M)→ R : γ 7→ −
∫

D

γ̄∗ω +

∫

S1

Ht(γ(t)) dt,

1Elsewhere in the literature, you will sometimes see (1.2) without the minus sign on the right
hand side. If you want to know why I strongly believe that the minus sign belongs there, see
[Wenc], but to some extent this is just a personal opinion.



Lectures on Symplectic Field Theory 5

where γ̄ : D→M is any smooth map on the closed unit disk D ⊂ C satisfying

γ̄(e2πit) = γ(t),

and the symplectic asphericity condition guarantees that AH(γ) does not depend
on the choice of γ̄.

Exercise 1.5. Regarding C∞
contr(S

1,M) as a Fréchet manifold with tangent
spaces TγC

∞
contr(S

1,M) = Γ(γ∗TM), show that the first variation of the action func-
tional AH is

dAH(γ)η =

∫

S1

[ω(γ̇, η) + dHt(η)] dt =

∫

S1

ω(γ̇ −Xt(γ), η) dt

for η ∈ Γ(γ∗TM). In particular, the critical points of AH are precisely the con-
tractible 1-periodic orbits of Xt.

A few years after Gromov’s introduction of pseudoholomorphic curves, Floer
proved the most important cases of the Arnold conjecture by developing a novel
version of infinite-dimensional Morse theory for the functional AH. This approach
mimicked the homological approach to Morse theory which has since been popular-
ized in books such as [AD14,Sch93], but was apparently only known to experts at
the time. In Morse homology, one considers a smooth Riemannian manifold (M, g)
with a Morse function f : M → R, and defines a chain complex whose generators
are the critical points of f , graded according to their Morse index. If we denote the
generator corresponding to a given critical point x ∈ Crit(f) by 〈x〉, the boundary
map on this complex is defined by

∂〈x〉 =
∑

ind(y)=ind(x)−1

#
(
M(x, y)

/
R
)
〈y〉,

whereM(x, y) denotes the moduli space of negative gradient flow lines u : R→ M ,
satisfying ∂su = −∇f(u(s)), lims→−∞ u(s) = x and lims→+∞ u(s) = y. This space
admits a natural R-action by shifting the variable in the domain, and one can show
that for generic choices of f and the metric g, M(x, y)/R is a finite set whenever
ind(x)− ind(y) = 1. The real magic however is contained in the following statement
about the case ind(x)− ind(y) = 2:

Proposition 1.6. For generic choices of f and g and any two critical points
x, y ∈ Crit(f) with ind(x) − ind(y) = 2, M(x, y)/R is homeomorphic to a finite
collection of circles and open intervals whose end points are canonically identified
with the finite set

∂M(x, y) :=
⋃

ind(z)=ind(x)−1

M(x, z)×M(z, y).

We say that M(x, y) has a natural compatification M(x, y), which has the
topology of a compact 1-manifold with boundary, and its boundary is the set of
all broken flow lines from x to y, cf. Figure 1.1. This set of broken flow lines
is precisely what is counted if one computes the 〈y〉 coefficient of ∂2〈x〉, hence we
deduce

∂2 = 0
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Figure 1.1. One-parameter families of gradient flow lines on a
Riemannian manifold degenerate to broken flow lines.

as a consequence of the fact that compact 1-manifolds always have zero boundary
points when counted with appropriate signs.2 The homology of the resulting chain
complex can be denoted by HM∗(M ; g, f) and is called the Morse homology
of M . The well-known Morse inequalities can then be deduced from a fundamen-
tal theorem stating that HM∗(M ; g, f) is, for generic f and g, isomorphic to the
singular homology of M .

With the above notion of Morse homology understood, Floer’s approach to the
Arnold conjecture can now be summarized as follows:

Step 1: Under suitable technical assumptions, construct a homology theory

HF∗(M,ω ; H, {Jt}),
depending a priori on the choices of a Hamiltonian H : S1 ×M → R with
all 1-periodic orbits nondegenerate, and a generic S1-parametrized family
of ω-compatible almost complex structures {Jt}t∈S1. The generators of the
chain complex are the critical points of the symplectic action functional
AH , i.e. 1-periodic orbits of the Hamiltonian flow, and the boundary map
is defined by counting a suitable notion of gradient flow lines connecting
pairs of orbits (more on this below).

Step 2: Prove that HF∗(M,ω) := HF∗(M,ω ; H, {Jt}) is a symplectic invariant,
i.e. it depends on ω, but not on the auxiliary choices H and {Jt}.

Step 3: Show that if H and {Jt} are chosen to be time-independent and H is
also C2-small, then the chain complex for HF∗(M,ω ; H, {Jt}) is isomor-
phic (with a suitable grading shift) to the chain complex for Morse ho-
mology HM∗(M ; g,H) with g := ω(·, Jt·). The isomorphism between
HM∗(M ; g,H) and singular homology thus implies that the Floer com-
plex must have at least as many generators (i.e. periodic orbits) as there
are generators of H∗(M), proving the Arnold conjecture.

2Counting with signs presumes that we have chosen suitable orientations for the moduli spaces
M(x, y), and this can always be done. Alternatively, one can avoid this issue by counting modulo 2
and thus define a homology theory with Z2 coefficients.
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The implementation of Floer’s idea required a different type of analysis than
what is needed for Morse homology. The moduli space M(x, y) in Morse homol-
ogy is simple to understand as the (generically transverse) intersection between the
unstable manifold of x and the stable manifold of y with respect to the negative
gradient flow. Conveniently, both of those are finite-dimensional manifolds, with
their dimensions determined by the Morse indices of x and y. We will see in Lec-
ture 3 that no such thing is true for the symplectic action functional: to the extent
that AH can be thought of as a Morse function on an infinite-dimensional manifold,
its Morse index and its Morse “co-index” at every critical point are both infinite,
hence the stable and unstable manifolds are not nearly as nice as finite-dimensional
manifolds, providing no reason to expect that their intersection should be. There
are additional problems since C∞

contr(S
1,M) does not have a Banach space topology:

in order to view the negative gradient flow of AH as an ODE and make use of the
usual local existence/uniqueness theorems (as in [Lan99, Chapter IV]), one would
have to extend to AH to a smooth function on a suitable Hilbert manifold with a
Riemannian metric. There is a very limited range of situations in which one can do
this and obtain a reasonable formula for ∇AH , e.g. [HZ94, §6.2] explains the case
M = T2n, in which AH can be defined on the Sobolev space H1/2(S1,R2n) and then
studied using Fourier series. This approach is very dependent on the fact that the
torus T2n is a quotient of R2n; for general symplectic manifolds (M,ω), one cannot
even define H1/2(S1,M) since functions of class H1/2 on S1 need not be continuous
(H1/2 is a “Sobolev borderline case” in dimension one).

One of the novelties in Floer’s approach was to refrain from viewing the gradient
flow as an ODE in a Banach space setting, but instead to write down a formal
version of the gradient flow equation and regard it as an elliptic PDE. To this end,
let us regard C∞

contr(S
1,M) formally as a manifold with tangent spaces

TγC
∞
contr(S

1,M) := Γ(γ∗TM),

choose a formal Riemannian metric on this manifold (i.e. a smoothly varying family
of L2 inner products on the spaces Γ(γ∗TM)) and write down the resulting equation
for the negative gradient flow. A suitable Riemannian metric can be defined by
choosing a smooth S1-parametrized family of compatible almost complex structures

{Jt ∈ J (M,ω)}t∈S1 ,

abbreviated in the following as {Jt}, and setting

〈ξ, η〉L2 :=

∫

S1

ω(ξ(t), Jtη(t)) dt

for ξ, η ∈ Γ(γ∗TM). Exercise 1.5 then yields the formula

dAH(γ)η = 〈Jt(γ̇ −Xt(γ)), η〉L2,

so that it seems reasonable to define the so-called unregularized gradient of AH by

(1.3) ∇AH(γ) := Jt(γ̇ −Xt(γ)) ∈ Γ(γ∗TM).

Let us also think of a path u : R→ C∞
contr(S

1,M) as a map u : R×S1 →M , writing
u(s, t) := u(s)(t). The negative gradient flow equation ∂su +∇AH(u(s)) = 0 then
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Figure 1.2. A family of smooth Floer trajectories can degenerate
into a broken Floer trajectory.

becomes the elliptic PDE

(1.4) ∂su+ Jt(u) (∂tu−Xt(u)) = 0.

This is called the Floer equation, and its solutions are often called Floer tra-
jectories. The relevance of Floer homology to our previous discussion of pseudo-
holomorphic curves should now be obvious. Indeed, the resemblance of the Floer
equation to the nonlinear Cauchy-Riemann equation is not merely superficial—we
will see in Lecture 6 that the former can always be viewed as a special case of the
latter. In any case, one can use the same set of analytical techniques for both: el-
liptic regularity theory implies that Floer trajectories are always smooth, Fredholm
theory and the implicit function theorem imply that (under appropriate assump-
tions) they form smooth finite-dimensional moduli spaces. Most importantly, the
same “bubbling off” analysis that underlies Gromov’s compactness theorem can be
used to prove that spaces of Floer trajectories are compact up to “breaking”, just as
in Morse homology (see Figure 1.2)—this is the main reason for the relation ∂2 = 0
in Floer homology.

We should mention one complication that does not arise either in the study of
closed holomorphic curves or in finite-dimensional Morse theory. Since the gradient
flow in Morse homology takes place on a closed manifold, it is obvious that every
gradient flow line asymptotically approaches critical points at both −∞ and +∞.
The following example shows that in the infinite-dimensional setting of Floer theory,
this is no longer true.

Example 1.7. Consider the Floer equation onM := S2 = C∪{∞} with H := 0
and Jt defined as the standard complex structure i for every t. Then the orbits of Xt

are all constant, and a map u : R× S1 → S2 satisfies the Floer equation if and only
if it is holomorphic. Identifying R × S1 with C∗ := C \ {0} via the biholomorphic
map (s, t) 7→ e2π(s+it), a solution u approaches periodic orbits as s → ±∞ if and
only if the corresponding holomorphic map C∗ → S2 extends continuously (and
therefore holomorphically) over 0 and∞. But this is not true for every holomorphic
map C∗ → S2, e.g. take any entire function C→ C that has an essential singularity
at ∞.
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Exercise 1.8. Show that in the above example with an essential singularity
at ∞, the symplectic action AH(u(s, ·)) is unbounded as s→∞.

Exercise 1.9. Suppose u : R×S1 →M is a solution to the Floer equation with
lims→±∞ u(s, ·) = γ± uniformly for a pair of 1-periodic orbits γ± ∈ Crit(AH). Show
that
(1.5)

A(γ−)−A(γ+) =
∫

R×S1

ω(∂su, ∂tu−Xt(u)) ds dt =

∫

R×S1

ω(∂su, Jt(u)∂su) ds dt.

The right hand side of (1.5) is manifestly nonnegative since Jt is compatible
with ω, and it is strictly positive unless γ− = γ+. It is therefore sensible to call
this expression the energy E(u) of a Floer trajectory. The following converse of
Exercise 1.9 plays a crucial role in the compactness theory for Floer trajectories, as it
guarantees that all the “levels” in a broken Floer trajectory are asymptotically well
behaved. We will prove a variant of this result in the SFT context (see Prop. 1.23
below) in Lecture 9.

Proposition 1.10. If u : R×S1 →M is a Floer trajectory with E(u) <∞ and
all 1-periodic orbits of Xt are nonegenerate, then there exist orbits γ−, γ+ ∈ Crit(AH)
such that lims→±∞ u(s, ·) = γ± uniformly. �

Remark 1.11. It should be emphasized again that we have assumed [ω]|π2(M) =
0 throughout this discussion; Floer homology can also be defined under more general
assumptions, but several details become more complicated.

For nice comprehensive treatments of Hamiltonian Floer homology—unfortunately
not always with the same sign conventions as used here—see [Sal99,AD14]. Note
that this is only one of a few “Floer homologies” that were introduced by Floer in
the late 80’s: the others include Lagrangian intersection Floer homology [Flo88a]
(which has since evolved into the Fukaya category, see [Sei08]), and instanton ho-
mology [Flo88c], an extension of Donaldson’s gauge-theoretic smooth 4-manifold
invariants to dimension three. The development of new Floer-type theories has
since become a major industry.

1.3. Contact manifolds and the Weinstein conjecture

A Hamiltonian system on a symplectic manifold (W,ω) is called autonomous if
the Hamiltonian H : W → R does not depend on time. In this case, the Hamiltonian
vector field XH defined by

ω(XH, ·) = −dH
is time-independent and its orbits are confined to level sets of H . The images of
these orbits on a given regular level set H−1(c) depend on the geometry of H−1(c)
but not on H itself, as they are the integral curves (also known as characteristics)
of the characteristic line field on H−1(c), defined as the unique direction spanned
by a vector X such that ω(X, Y ) = 0 for all Y tangent to H−1(c). In 1978, Weinstein
[Wei78] and Rabinowitz [Rab78] proved that certain kinds of regular level sets in
symplectic manifolds are guaranteed to admit closed characteristics, hence implying
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Figure 1.3. A star-shaped hypersurface in Euclidean space

the existence of periodic Hamiltonian orbits. In particular, this is true whenever
H−1(c) is a star-shaped hypersurface in the standard symplectic R2n (see Figure 1.3).

The following symplectic interpretation of the star-shaped condition provides
both an intuitive reason to believe Rabinowitz’s existence result and motivation for
the more general conjecture of Weinstein. In any symplectic manifold (W,ω), a
Liouville vector field is a smooth vector field V that satisfies

LV ω = ω.

By Cartan’s formula for the Lie derivative, the dual 1-form λ defined by λ := ω(V, ·)
satisfies dλ = ω if and only if V is a Liouville vector field; moreover, λ then also
satisfies LV λ = λ, and it is referred to as a Liouville form. A hypersurface
M ⊂ (W,ω) is said to be of contact type if it is transverse to a Liouville vector
field defined on a neighborhood of M .

Example 1.12. Using coordinates (q1, p1, . . . , qn, pn) on R2n, the standard sym-
plectic form is written as

ωstd :=

n∑

j=1

dpj ∧ dqj,
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and the Liouville form λstd := 1
2

∑n
j=1(pj dqj − qj dpj) is dual to the radial Liouville

vector field

Vstd :=
1

2

n∑

j=1

(
pj

∂

∂pj
+ qj

∂

∂qj

)
.

Any star-shaped hypersurface is therefore of contact type.

Exercise 1.13. Suppose (W,ω) is a symplectic manifold of dimension 2n, M ⊂
W is a smoothly embedded and oriented hypersurface, V is a Liouville vector field
defined near M and λ := ω(V, ·) is the dual Liouville form. Define a 1-form on M
by α := λ|TM .

(a) Show that V is positively transverse to M if and only if α satisfies

(1.6) α ∧ (dα)n−1 > 0.

(b) If V is positively transverse to M , choose ǫ > 0 sufficiently small and
consider the embedding

Φ : (−ǫ, ǫ)×M →֒ W : (r, x) 7→ ϕrV (x),

where ϕtV denotes the time t flow of V . Show that

Φ∗λ = erα,

hence Φ∗ω = d(erα).

The above exercise presents any contact-type hypersurface M ⊂ (W,ω) as
one member of a smooth 1-parameter family of contact-type hypersurfaces Mr :=
ϕrV (M) ⊂ W , each canonically identified with M such that ω|TMr = er dα. In
particular, the characteristic line fields on Mr are the same for all r, thus the ex-
istence of a closed characteristic on any of these implies that there also exists one
on M . This observation has sometimes been used to prove such existence theorems,
e.g. it is used in [HZ94, Chapter 4] to reduce Rabinowitz’s result to an “almost
existence” theorem based on symplectic capacities. This discussion hopefully makes
the following conjecture seem believable.

Conjecture 1.14 (Weinstein conjecture, symplectic version). Any closed contact-
type hypersurface in a symplectic manifold admits a closed characteristic.

Weinstein’s conjecture admits a natural rephrasing in the language of contact
geometry. A 1-form α on an oriented (2n − 1)-dimensional manifold M is called a
(positive) contact form if it satisfies (1.6), and the resulting co-oriented hyperplane
field

ξ := kerα ⊂ TM

is then called a (positive and co-oriented) contact structure.3 We call the pair
(M, ξ) a contact manifold, and refer to a diffeomorphism ϕ : M → M ′ as a

3The adjective “positive” refers to the fact that the orientation of M agrees with the one deter-
mined by the volume form α∧ (dα)n−1; we call α a negative contact form if these two orientations
disagree. It is also possible in general to define contact structures without co-orientations, but con-
tact structures of this type will never appear in these notes; for our purposes, the co-orientation is
always considered to be part of the data of a contact structure.
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contactomorphism from (M, ξ) to (M ′, ξ′) if ϕ∗ maps ξ to ξ′ and also preserves
the respective co-orientations. Equivalently, if ξ and ξ′ are defined via contact forms
α and α′ respectively, this means

ϕ∗α′ = fα for some f ∈ C∞(M, (0,∞)).

Contact topology studies the category of contact manifolds (M, ξ) up to con-
tactomorphism. The following basic result provides one good reason to regard ξ
rather than α as the geometrically meaningful data, as the result holds for contact
structures, but not for contact forms.

Theorem 1.15 (Gray’s stability theorem). IfM is a closed (2n−1)-dimensional
manifold and {ξt}t∈[0,1] is a smooth 1-parameter family of contact structures on M ,
then there exists a smooth 1-parameter family of diffeomorphisms {ϕt}t∈[0,1] such
that ϕ0 = Id and (ϕt)∗ξ0 = ξt.

Proof. See [Gei08, §2.2] or [Wend, Theorem 1.6.12]. �

A corollary is that while the contact form α induced on a contact-type hyper-
surface M ⊂ (W,ω) via Exercise 1.13 is not unique, its induced contact structure is
unique up to isotopy. Indeed, the space of all Liouville vector fields transverse to M
is very large (e.g. one can add to V any sufficiently small Hamiltonian vector field),
but it is convex, hence any two choices of the induced contact form α on M are
connected by a smooth 1-parameter family of contact forms, implying an isotopy of
contact structures via Gray’s theorem.

Exercise 1.16. If α is a nowhere zero 1-form on M and ξ = kerα, show that α
is contact if and only if dα|ξ defines a symplectic vector bundle structure on ξ → M .
Moreover, the orientation of ξ determined by this symplectic bundle structure is
compatible with the co-orientation determined by α and the orientation of M for
which α ∧ (dα)n−1 > 0.

The following definition is based on the fact that since dα|ξ is nondegenerate
when α is contact, ker dα ⊂ TM is always 1-dimensional and transverse to ξ.

Definition 1.17. Given a contact form α on M , the Reeb vector field is the
unique vector field Rα that satisfies

dα(Rα, ·) ≡ 0, and α(Rα) ≡ 1.

Exercise 1.18. Show that the flow of any Reeb vector field Rα preserves both
ξ = kerα and the symplectic vector bundle structure dα|ξ.

Conjecture 1.19 (Weinstein conjecture, contact version). On any closed con-
tact manifold (M, ξ) with contact form α, the Reeb vector field Rα admits a periodic
orbit.

To see that this is equivalent to the symplectic version of the conjecture, ob-
serve that any contact manifold (M, ξ = kerα) can be viewed as the contact-type
hypersurface {0} ×M in the open symplectic manifold

(R×M, d(erα)) ,

called the symplectization of (M, ξ).
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Exercise 1.20. Recall that on any smooth manifold M , there is a tautological
1-form λ that locally takes the form λ =

∑n
j=1 pj dqj in any choice of local coordi-

nates (q1, . . . , qn) on a neighbood U ⊂ M , with (p1, . . . , pn) denoting the induced
coordinates on the cotangent fibers over U . This is a Liouville form, with dλ defin-
ing the canonical symplectic structure of T ∗M . Now if ξ ⊂ TM is a co-oriented
hyperplane field on M , consider the submanifold

SξM :=
{
p ∈ T ∗M

∣∣ ker p = ξ and p(X) > 0 for any X ∈ TM pos. transverse to ξ
}
.

Show that ξ is contact if and only if SξM is a symplectic submanifold of (T ∗M, dλ),
and the Liouville vector field on T ∗M dual to λ is tangent to SξM . Moreover, if ξ is
contact, then any choice of contact form for ξ determines a diffeomorphism of SξM
to R×M identifying the Liouville form λ along SξM with erα.

Remark 1.21. Exercise 1.20 shows that up to symplectomorphism, our defi-
nition of the symplectization of (M, ξ) above actually depends only on ξ and not
on α.

In 1993, Hofer [Hof93] introduced a new approach to the Weinstein conjecture
that was based in part on ideas of Gromov and Floer. Fix a contact manifold (M, ξ)
with contact form α, and let

J (α) ⊂ J (R×M)

denote the nonempty and contractible space of all almost complex structures J on
R×M satisfying the following conditions:

(1) The natural translation action on R×M preserves J ;
(2) J∂r = Rα and JRα = −∂r, where r denotes the canonical coordinate on

the R-factor in R×M ;
(3) Jξ = ξ and dα(·, J ·)|ξ defines a bundle metric on ξ.

It is easy to check that any J ∈ J (α) is compatible with the symplectic structure
d(erα) on R×M . Moreover, if γ : R → M is any periodic orbit of Rα with period
T > 0, then for any J ∈ J (α), the so-called trivial cylinder

u : R× S1 → R×M : (s, t) 7→ (Ts, γ(T t))

is a J-holomorphic curve. Following Floer, one version of Hofer’s idea would be to
look for J-holomorphic cylinders that satisfy a finite energy condition as in Prop. 1.10
forcing them to approach trivial cylinders asymptotically—the existence of such a
cylinder would then imply the existence of a closed Reeb orbit and thus prove the
Weinstein conjecture. The first hindrance is that the “obvious” definition of energy
in this context, ∫

R×S1

u∗d(erα),

is not the right one: this integral is infinite if u is a trivial cylinder. To circumvent
this, notice that every J ∈ J (α) is also compatible with any symplectic structure
of the form

ωϕ := d(eϕ(r)α),
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where ϕ is a function chosen freely from the set

(1.7) T :=
{
ϕ ∈ C∞(R, (−1, 1))

∣∣ ϕ′ > 0
}
.

Essentially, choosing ωϕ means identifying R × M with a subset of the bounded
region (−1, 1) × M , in which trivial cylinders have finite symplectic area. Since
there is no preferred choice for the function ϕ, we define the Hofer energy4 of a
J-holomorphic curve u : Σ→ R×M by

(1.8) E(u) := sup
ϕ∈T

∫

Σ

u∗ωϕ.

This has the desired property of being finite for trivial cylinders, and it is also
nonnegative, with strict positivity whenever u is not constant.

Another useful observation from [Hof93] was that if the goal is to find periodic
orbits, then we need not restrict our attention to J-holomorphic cylinders in par-
ticular. One can more generally consider curves defined on an arbitrary punctured
Riemann surface

Σ̇ := Σ \ Γ,
where (Σ, j) is a closed connected Riemann surface and Γ ⊂ Σ is a finite set of
punctures. For any ζ ∈ Γ, one can find coordinates identifying some punctured
neighborhood of ζ biholomorphically with the closed punctured disk

Ḋ := D \ {0} ⊂ C,

and then identify this with either the positive or negative half-cylinder

Z+ := [0,∞)× S1, Z− := (−∞, 0]× S1

via the biholomorphic maps

Z+ → Ḋ : (s, t) 7→ e−2π(s+it), Z− → Ḋ : (s, t) 7→ e2π(s+it).

We will refer to such a choice as a (positive or negative) holomorphic cylindrical
coordinate system near ζ , and in this way, we can present (Σ̇, j) as a Riemann
surface with cylindrical ends, i.e. the union of some compact Riemann surface with
boundary with a finite collection of half-cylinders Z± on which j takes the standard
form j∂s = ∂t. Note that the standard cylinder R× S1 is a special case of this, as
it can be identified biholomorphically with S2 \ {0,∞}. Another important special
case is the plane, C = S2 \ {∞}.

If u : (Σ̇, j) → (R × M,J) is a J-holomorphic curve and ζ ∈ Γ is one of its
punctures, we will say that u is positively/negatively asymptotic to a T -periodic
Reeb orbit γ : R → M at ζ if one can choose holomorphic cylindrical coordinates
(s, t) ∈ Z± near ζ such that

u(s, t) = exp(Ts,γ(Tt)) h(s, t) for |s| sufficiently large,

4Strictly speaking, the energy defined in (1.8) is not identical to the notion introduced in
[Hof93] and used in many of Hofer’s papers, but it is equivalent to it in the sense that uniform
bounds on either notion of energy imply uniform bounds on the other.
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Σ̇

u

{∞} ×M

{−∞} ×M

Figure 1.4. An asymptotically cylindrical holomorphic curve in a
symplectization, with genus 1, one positive puncture and two negative
punctures.

where h(s, t) is a vector field along the trivial cylinder satisfying h(s, ·) → 0 uni-
formly as |s| → ∞, and the exponential map is defined with respect to any R-

invariant choice of Riemannian metric on R×M . We say that u : (Σ̇, j)→ (R×M,J)
is asymptotically cylindrical if it is (positively or negatively) asymptotic to some
closd Reeb orbit at each of its punctures. Note that this partitions the finite set of
punctures Γ ⊂ Σ into two subsets,

Γ = Γ+ ∪ Γ−,

the positive and negative punctures respectively, see Figure 1.4.

Exercise 1.22. Suppose u : (Σ̇, j)→ (R×M,J) is an asymptotically cylindrical
J-holomorphic curve, with the asymptotic orbit at each puncture ζ ∈ Γ± denoted
by γζ, having period Tζ > 0. Show that

∑

ζ∈Γ+

Tζ −
∑

ζ∈Γ−

Tζ =

∫

Σ̇

u∗dα ≥ 0,

with equality if and only if the image of u is contained in that of a trivial cylinder.
In particular, u must have at least one positive puncture unless it is constant. Show
also that E(u) is finite and satisfies an upper bound determined only by the periods
of the positive asymptotic orbits.

The following analogue of Prop. 1.10 will be proved in Lecture 9. For simplicity,
we shall state a weakened version of what Hofer proved in [Hof93], which did not
require any nondegeneracy assumption. A T -periodic Reeb orbit γ : R → M is
called nondegenerate if the Reeb flow ϕtα has the property that its linearization
along the contact bundle (cf. Exercise 1.18),

dϕTα(γ(0))|ξγ(0) : ξγ(0) → ξγ(0)

does not have 1 as an eigenvalue. Note that since Rα is not time-dependent, closed
Reeb orbits are never completely isolated—they always exist in S1-parametrized
families—but these families are isolated in the nondegenerate case.
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Proposition 1.23. Suppose (M, ξ) is a closed contact manifold, with a contact
form α such that all closed Reeb orbits are nondegenerate. If u : (Σ̇, j)→ (R×M,J)
is a J-holomorphic curve with E(u) <∞ on a punctured Riemann surface such that
none of the punctures are removable, then u is asymptotically cylindrical. �

The main results in [Hof93] state that under certain assumptions on a closed
contact 3-manifold (M, ξ), namely if either ξ is overtwisted (as defined in [Eli89])
or π2(M) 6= 0, one can find for any contact form α on (M, ξ) and any J ∈ J (α) a
finite-energy J-holomorphic plane. By Proposition 1.23, this implies the existence
of a contractible periodic Reeb orbit and thus proves the Weinstein conjecture in
these settings.

1.4. Symplectic cobordisms and their completions

After the developments described in the previous three sections, it seemed nat-
ural that one might define invariants of contact manifolds via a Floer-type theory
generated by closed Reeb orbits and counting asymptotically cylindrical holomor-
phic curves in symplectizations. This theory is what is now called SFT, and its
basic structure was outlined in a paper by Eliashberg, Givental and Hofer [EGH00]
in 2000, though some of its analytical foundations remain unfinished in 2016. The
term “field theory” is an allusion to “topological quantum field theories,” which
associate vector spaces to certain geometric objects and morphisms to cobordisms
between those objects. Thus in order to place SFT in its proper setting, we need to
introduce symplectic cobordisms between contact manifolds.

Recall that if M+ and M− are smooth oriented closed manifolds of the same
dimension, an oriented cobordism from M− to M+ is a compact smooth oriented
manifold W with oriented boundary

∂W = −M− ⊔M+,

where −M− denotes M− with its orientation reversed. Given positive contact struc-
tures ξ± on M±, we say that a symplectic manifold (W,ω) is a symplectic cobor-
dism from (M−, ξ−) to (M+, ξ+) if W is an oriented cobordism5 from M− to M+

such that both components of ∂W are contact-type hypersurfaces with induced con-
tact structures isotopic to ξ±. Note that our chosen orientation conventions imply
in this case that the Liouville vector field chosen near ∂W must point outward at
M+ and inward at M−; we say in this case that M+ is a symplectically convex
boundary component, while M− is symplectically concave. As important special
cases, (W,ω) is a symplectic filling of (M+, ξ+) ifM− = ∅, and it is a symplectic
cap of (M−, ξ−) if M+ = ∅. In the literature, fillings and caps are sometimes also
referred to as convex fillings or concave fillings respectively.

The contact-type condition implies the existence of a Liouville form λ near ∂W
with dλ = ω, such that by Exercise 1.13, neighborhoods of M+ and M− in W can
be identified with the collars (see Figure 1.5)

(−ǫ, 0]×M+ or [0, ǫ)×M−

5We assume of course that W is assigned the orientation determined by its symplectic form.
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((−ǫ, 0]×M+, d(e
rα+))

([0, ǫ)×M−, d(e
rα−))

(W,ω)

Figure 1.5. A symplectic cobordism with concave boundary
(M−, ξ−) and convex boundary (M+, ξ+), with symplectic collar neigh-
borhoods defined by flowing along Liouville vector fields near the
boundary.

respectively for sufficiently small ǫ > 0, with λ taking the form

λ = erα±,

where α± := λ|TM± are contact forms for ξ±. The symplectic completion of

(W,ω) is the noncompact symplectic manifold (Ŵ , ω̂) defined by attaching cylindri-
cal ends to these collar neighborhoods (Figure 1.6):

(Ŵ , ω̂) = ((−∞, 0]×M−, d(e
rα−)) ∪M− (W,ω)

∪M+ ([0,∞)×M+, d(e
rα+)) .

(1.9)

In this context, the symplectization (R × M, d(erα)) is symplectomorphic to the
completion of the trivial symplectic cobordism ([0, 1]×M, d(erα)) from (M, ξ =
kerα) to itself. More generally, the object in the following easy exercise can also
sensibly be called a trivial symplectic cobordism:

Exercise 1.24. Suppose (M, ξ) is a closed contact manifold with contact form
α, and f± :M → R is a pair of functions with f− < f+ everywhere. Show that the
domain {

(r, x) ∈ R×M
∣∣ f−(x) ≤ r ≤ f+(x)

}
⊂ R×M

defines a symplectic cobordism from (M, ξ) to itself, with a global Liouville form
λ = erα inducing contact forms ef−α and ef+α on its concave and convex boundaries
respectively.

We say that (W,ω) is an exact symplectic cobordism or Liouville cobor-
dism if the Liouville form λ can be extended from a neighborhood of ∂W to define
a global primitive of ω on W . Equivalently, this means that ω admits a global Li-
ouville vector field that points inward at M− and outward at M+. An exact filling
of (M+, ξ+) is an exact cobordism whose concave boundary is empty. Observe that

if (W,ω) is exact, then its completion (Ŵ , ω̂) also inherits a global Liouville form.

Exercise 1.25. Use Stokes’ theorem to show that there is no such thing as an
exact symplectic cap.
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−

(W,ω)

((−ǫ, 0]×M+, d(e
rα+))

([0, ǫ)×M−, d(e
rα−))

([0,∞)×M+, d(e
rα+))

((−∞, 0]×M−, d(e
rα−))

Figure 1.6. The completion of a symplectic cobordism

The above exercise hints at an important difference between cobordisms in the
symplectic as opposed to the oriented smooth category: symplectic cobordisms are
not generally reversible. If W is an oriented cobordism from M− to M+, then
reversing the orientation of W produces an oriented cobordism from M+ to M−.
But one cannot simply reverse orientations in the symplectic category, since the
orientation is determined by the symplectic form. For example, many obstructions
to the existence of symplectic fillings of given contact manifolds are known—some
of them defined in terms of SFT—but we do not know any obstructions at all to
symplectic caps, in fact it is known that all contact 3-manifolds admit them.

The definitions for holomorphic curves in symplectizations in the previous sec-
tion generalize to completions of symplectic cobordisms in a fairly straightforward
way since these completions look exactly like symplectizations outside of a compact
subset. Define

J (W,ω, α+, α−) ⊂ J (Ŵ )

as the space of all almost complex structures J on Ŵ such that

J |W ∈ J (W,ω), J |[0,∞)×M+ ∈ J (α+) and J |(−∞,0]×M− ∈ J (α−).
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Σ̇

u Ŵ

d(

Figure 1.7. An asymptotically cylindrical holomorphic curve in a
completed symplectic cobordism, with genus 2, one positive puncture
and two negative punctures.

Occasionally it is useful to relax the compatibility condition on W to tameness,6

i.e. J |W ∈ Jτ (W,ω), producing a space that we shall denote by

Jτ (W,ω, α+, α−) ⊂ J (Ŵ ).

As in Prop. 1.2, both of these spaces are nonempty and contractible. We can then
consider asymptotically cylindrical J-holomorphic curves

u : (Σ̇ = Σ \ (Γ+ ∪ Γ−), j)→ (Ŵ , J),

which are proper maps asymptotic to closed orbits of Rα± inM± at punctures in Γ±,
see Figure 1.7.

One must again tinker with the symplectic form on Ŵ in order to define a notion
of energy that is finite when we need it to be. We generalize (1.7) as

T :=
{
ϕ ∈ C∞(R, (−1, 1))

∣∣ ϕ′ > 0 and ϕ(r) = r near r = 0
}
,

and associate to each ϕ ∈ T a symplectic form ω̂ϕ on Ŵ defined by

ω̂ϕ :=





d(eϕ(r)α+) on [0,∞)×M+,

ω on W,

d(eϕ(r)α−) on (−∞, 0]×M−.

One can again check that every J ∈ J (W,ω, α+, α−) or Jτ(W,ω, α+, α−) is com-
patible with or, respectively, tamed by ω̂ϕ for every ϕ ∈ T . Thus it makes sense to

6It seems natural to wonder whether one could not also relax the conditions on the cylindrical
ends and require J |ξ± to be tamed by dα±|ξ± instead of compatible with it. I do not currently

know whether this works, but in later lectures we will see some reasons to worry that it might not.
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define the energy of u : (Σ̇, j)→ (Ŵ , J) by

E(u) := sup
ϕ∈T

∫

Σ̇

u∗ω̂ϕ.

It will be a straightforward matter to generalize Proposition 1.23 and show that
finite energy implies asymptotically cylindrical behavior in completed cobordisms.

Exercise 1.26. Show that if (W,ω) is an exact cobordism, then every asymp-

totically cylindrical J-holomorphic curve in Ŵ has at least one positive puncture.

1.5. Contact homology and SFT

We can now sketch the algebraic structure of SFT. We shall ignore or suppress
several pesky details that are best dealt with later, some of them algebraic, others
analytical. Due to analytical problems, some of the “theorems” that we shall (often
imprecisely) state in this section are not yet provable at the current level of tech-
nology, though we expect that they will be soon. We shall use quotation marks to
indicate this caveat wherever appropriate.

The standard versions of SFT all define homology theories with varying levels of
algebraic structure which are meant to be invariants of a contact manifold (M, ξ).
The chain complexes always depend on certain auxiliary choices, including a nonde-
generate contact form α and a generic J ∈ J (α). The generators consist of formal
variables qγ , one for each7 closed Reeb orbit γ. In the most straightforward gen-
eralization of Hamiltonian Floer homology, the chain complex is simply a graded
Q-vector space generated by the variables qγ, and the boundary map is defined by

∂CCHqγ =
∑

γ′

#
(
M(γ, γ′)

/
R
)
qγ′ ,

where M(γ, γ′) is the moduli space of J-holomorphic cylinders in R ×M with a
positive puncture asymptotic to γ and a negative puncture asymptotic to γ′, and the
sum ranges over all orbits γ′ for which this moduli space is 1-dimensional. The count
# (M(γ, γ′)/R) is rational, as it includes rational weighting factors that depend on
combinatorial information and are best not discussed right now.8

“Theorem” 1.27. If α admits no contractible Reeb orbits, then ∂2CCH = 0, and
the resulting homology is independent of the choices of α with this property and
generic J ∈ J (α).

The invariant arising from this result is known as cylindrical contact homol-
ogy, and it is sometimes quite easy to work with when it is well defined, though it
has the disadvantage of not always being defined. Namely, the relation ∂2CCH = 0
can fail if α admits contractible Reeb orbits, because unlike in Floer homology, the
compactification of the space of cylinders M(γ, γ′) generally includes objects that
are not broken cylinders. In fact, the objects arising in the “SFT compactification”

7Actually I should be making a distinction here between “good” and “bad” Reeb orbits, but
let’s discuss that later; see Lecture 11.

8Similar combinatorial factors are hidden behind the symbol “#” in our definitions of ∂CH

and H, and will be discussed in earnest in Lecture 12.
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Ŵ Ŵuk

(M+, ξ+)

(M−, ξ−)

v+1

v0

v−1

v−2

v−3

R×M+

R×M−

R×M−

R×M−

Figure 1.8. Degeneration of a sequence uk of finite energy punc-
tured holomorphic curves with genus 2, one positive puncture and two
negative punctures in a symplectic cobordism. The limiting holomor-
phic building (v+1 , v0, v

−
1 , v

−
2 , v

−
3 ) in this example has one upper level

living in the symplectization R ×M+, a main level living in Ŵ , and
three lower levels, each of which is a (possibly disconnected) finite-
energy punctured nodal holomorphic curve in R×M−. The building
has arithmetic genus 2 and the same numbers of positive and negative
punctures as uk.

of moduli spaces of finite-energy curves in completed cobordisms can be quite elab-
orate, see Figure 1.8. The combinatorics of the situation are not so bad however
if the cobordism is exact, as is the case for a symplectization: Exercise 1.26 then
prevents curves without positive ends from appearing. The only possible degen-
erations for cylinders then consist of broken configurations whose levels each have
exactly one positive puncture and arbitrary negative punctures; moreover, all but
one of the negative punctures must eventually be capped off by planes, which is why
“Theorem” 1.27 holds in the absence of planes.

If planes do exist, then one can account for them by defining the chain complex
as an algebra rather than a vector space, producing the theory known as contact
homology. For this, the chain complex is taken to be a graded unital algebra over
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Q, and we define

∂CHqγ =
∑

(γ1,...,γm)

#
(
M(γ; γ1, . . . , γm)

/
R
)
qγ1 . . . qγm ,

withM(γ; γ1, . . . , γm) denoting the moduli space of punctured J-holomorphic spheres
in R × M with a positive puncture at γ and m negative punctures at the orbits
γ1, . . . , γm, and the sum ranges over all integers m ≥ 0 and all m-tuples of orbits for
which the moduli space is 1-dimensional. The action of ∂CH is then extended to the
whole algebra via a graded Leibniz rule

∂CH(qγqγ′) := (∂CHqγ) qγ′ + (−1)|γ|qγ (∂CHqγ′) .

The general compactness and gluing theory for genus zero curves with one positive
puncture now implies:

“Theorem” 1.28. ∂2CH = 0, and the resulting homology is (as a graded unital
Q-algebra) independent of the choices α and J .

Maybe you’ve noticed the pattern: in order to accommodate more general classes
of holomorphic curves, we need to add more algebraic structure. The full SFT
algebra counts all rigid holomorphic curves in R×M , including all combinations of
positive and negative punctures and all genera. Here is a brief picture of what it
looks like. Counting all the 1-dimensional moduli spaces of J-holomorphic curves
modulo R-translation in R×M produces a formal power series

H :=
∑

#
(
Mg(γ

+
1 , . . . , γ

+
m+

; γ−1 , . . . , γ
−
m−)
/
R

)
qγ−1 . . . qγ

−
m−
pγ+1 . . . pγ

+
m+

~g−1,

where the sum ranges over all integers g,m+, m− ≥ 0 and tuples of orbits, ~ and pγ
(one for each orbit γ) are additional formal variables, and

Mg(γ
+
1 , . . . , γ

+
m+

; γ−1 , . . . , γ
−
m−)

denotes the moduli space of J-holomorphic curves in R × M with genus g, m+

positive punctures at the orbits γ+1 , . . . , γ
+
m+

, and m− negative punctures at the

orbits γ−1 , . . . , γ
+
m−. We can regard H as an operator on a graded algebra W of

formal power series in the variables {pγ}, {qγ} and ~, equipped with a graded bracket
operation that satisfies the quantum mechanical commutation relation

[pγ, qγ ] = κγ~,

where κγ is a combinatorial factor that is best ignored for now. Note that due to the
signs that accompany the grading, odd elements F ∈W need not satisfy [F,F] = 0,
and H itself is an odd element, thus the following statement is nontrivial; in fact,
it is the algebraic manifestation of the general compactness and gluing theory for
punctured holomorphic curves in symplectizations.

“Theorem” 1.29. [H,H] = 0, hence by the graded Jacobi identity, H deter-
mines an operator

DSFT : W→W : F 7→ [H,F]

satisfying D2
SFT = 0. The resulting homology depends on (M, ξ) but not on the

auxiliary choices α and J .
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It takes some time to understand how pictures such as Figure 1.8 translate
into algebraic relations like [H,H] = 0, but this is a subject we’ll come back to.
There is also an intermediate theory between contact homology and full SFT, called
rational SFT, which counts only genus zero curves with arbitrary positive and
negative punctures. Algebraically, it is obtained from the full SFT algebra as a
“semiclassical approximation” by discarding higher-order factors of ~ so that the
commutation bracket in W becomes a graded Poisson bracket. We will discuss all
of this in Lecture 12.

1.6. Two applications

We briefly mention two applications that we will be able to establish rigorously
using the methods developed in this book. Since SFT itself is not yet well defined
in full generality, this sometimes means using SFT for inspiration while proving
corollaries via more direct methods.

1.6.1. Tight contact structures on T3. The 3-torus T3 = S1×S1×S1 with
coordinates (t, θ, φ) admits a sequence of contact structures

ξk := ker (cos(2πkt) dθ + sin(2πkt) dφ) ,

one for each k ∈ N. These cannot be distinguished from each other by any classical
invariants, e.g. they all have the same Euler class, in fact they are all homotopic as
co-oriented 2-plane fields. Nonetheless:

Theorem 1.30. For k 6= ℓ, (T3, ξk) and (T3, ξℓ) are not contactomorphic.

We will be able to prove this in Lecture 10 by rigorously defining and computing
cylindrical contact homology for a suitable choice of contact forms on (T3, ξk).

1.6.2. Filling and cobordism obstructions. Consider a closed connected
and oriented surface Σ presented as Σ+ ∪Γ Σ−, where Σ± ⊂ Σ are each (not neces-
sarily connected) compact surfaces with a common boundary Γ. By an old result of
Lutz [Lut77], the 3-manifold S1 × Σ admits a unique isotopy class of S1-invariant
contact structures ξΓ such that the loops S1 × {z} are positively/negatively trans-

verse to ξΓ for z ∈ Σ̊± and tangent to ξΓ for z ∈ Γ. Now for each k ∈ N, define

(Vk, ξk) := (S1 × Σ, ξΓ)

where Σ = Σ+ ∪Γ Σ− is chosen such that Γ has k connected components, Σ− is
connected with genus zero, and Σ+ is connected with positive genus (see Figure 1.9).

Theorem 1.31. The contact manifolds (Vk, ξk) do not admit any symplectic
fillings. Moreover, if k > ℓ, then there exists no exact symplectic cobordism from
(Vk, ξk) to (Vℓ, ξℓ).

For these examples, one can use explicit constructions from [Wen13,Avd] to
show that non-exact cobordisms from (Vk, ξk) to (Vℓ, ξℓ) do exist, and so do exact
cobordisms from (Vℓ, ξℓ) to (Vk, ξk), thus both the directionality of the cobordism
relation and the distinction between exact and non-exact are crucial. The proof
of the theorem, due to the author with Latschev and Hutchings [LW11], uses a
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−

S1×

S1×

(W, dλ)

(V2, ξ2)

(V3, ξ3)

Figure 1.9. This exact symplectic cobordism does not exist.

numerical contact invariant based on the full SFT algebra—in particular, the curves
that cause this phenomenon have multiple positive ends and are thus not seen by
contact homology. We will introduce the relevant numerical invariant in Lecture 13
and compute it for these examples in Lecture 16.
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In this lecture we begin studying the analysis of J-holomorphic curves. The
coverage will necessarily be a bit sparse in some places, but more detailed proofs of
everything in this lecture can be found in [Wend].

2.1. Linearized Cauchy-Riemann operators

In order to motivate the study of linear Cauchy-Riemann type operators, we
begin with a formal discussion of the nonlinear Cauchy-Riemann equation and its
linearization.

Fix a Riemann surface (Σ, j) and almost complex manifold (W,J), and suppose
that we wish to understand the structure of some space of the form

(2.1) {u : Σ→ W | Tu ◦ j = J ◦ Tu plus further conditions} ,
where the “further conditions” (which we will for now leave unspecified) may impose
constraints on e.g. the regularity of u, as well as its boundary and/or asymptotic
behavior. The standard approach in global analysis can be summarized as follows:

Step 1: Construct a smooth Banach manifold B of maps u : Σ → W such that all
the solutions we’re interested in will be elements of B. The tangent spaces
TuB are then Banach spaces of sections of u∗TW .

Step 2: Construct a smooth Banach space bundle E → B such that for each u ∈ B,
the fiber Eu is a Banach space of sections of the vector bundle

HomC(TΣ, u
∗TW )→ Σ

of complex-antilinear bundle maps (TΣ, j)→ (u∗TW, J). Since our purpose
is to study a first-order PDE, we need the sections in Eu to be “one step
less regular” than the maps in B, e.g. if B consists of maps of Sobolev class
W k,p, then the sections in Eu should be of class W k−1,p.

25
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Step 3: Show that

∂̄J : B → E : u 7→ Tu+ J(u) ◦ Tu ◦ j
defines a smooth section of E → B, whose zero set is precisely the space of
solutions (2.1).

Step 4: Show that under suitable assumptions (e.g. on regularity and asymptotic
behavior), one can arrange such that for every u ∈ ∂̄−1

J (0), the lineariza-
tion of ∂̄J ,

D∂̄J(u) : TuB → Eu
is a Fredholm operator and is generically surjective. (In geometric terms,
this would mean that ∂̄J is transverse to the zero section.)

Step 5: Using the implicit function theorem in Banach spaces (see [Lan93]), the
surjectivity of D∂̄J(u) implies that ∂̄−1

J (0) is a smooth finite-dimensional
manifold, with its tangent space at each u ∈ ∂̄−1

J (0) canonically identified
with kerD∂̄J(u), hence the dimension of ∂̄−1

J (0) near u equals the Fredholm
index of D∂̄J (u).

Without worrying about the fact that these are actually not Banach spaces, and
some Sobolev completion is needed, let us assume, for simplicity, that the bundle
E → B has as base the space B = C∞(Σ,W ) and the fiber over u ∈ B is given by
Eu = HomC(TΣ, u

∗TW ). The linearization of the section ∂J at a point u ∈ ∂̄−1
J (0)

should then take the form

Du : Γ(u
∗TW )→ Ω0,1(Σ, u∗TW ),

where the right hand side denotes the space of u∗TW -valued (0, 1)-forms on Σ, or
equivalently, smooth sections of HomC(TΣ, u

∗TW ) = T 0,1Σ⊗C u
∗TW , where T 0,1Σ

denotes the (0, 1)-part of the complexified cotangent bundle.
In order to compute such a linearization, we need to make a choice of “connec-

tion” on the bundle E . Choose a connection ∇ on W , and recall the fact that this
naturally induces a connection on the bundles T 0,1Σ ⊗C u

∗TW and End(u∗TW )
by setting ∇(α ⊗ s) = α ⊗ ∇s and (∇J)s = ∇(Js) − J∇s, for s ∈ Γ(u∗TW ),
J ∈ End(u∗TW ) and α ∈ Γ(T 0,1Σ). We shall make the ansatz that for any smooth
1-parameter family of maps uρ : Σ → W for ρ ∈ (−ǫ, ǫ) and a section ηρ ∈ Euρ
along the path (i.e a section of the pullback bundle of E under the map (−ǫ, ǫ)→ B
mapping ρ to uρ), the connection takes the form

(∇ρηρ)X = ∇ρ(ηρ(X)),

for X ∈ TΣ, where this expression should be interpreted as the pullback connection
under the map displayed above. The tensorial property of connections implies that
∇ρηρ does not depend on the connection at the values ρ for which ηρ = 0.

Given u ∈ ∂−1

J (0) and η in TuB = Γ(u∗TW ), take a one-parameter family uρ ∈ B
with u0 = u and ∂ρuρ|ρ=0 = η. We then have that

Duη = ∇ρ

(
∂̄J(uρ)

)∣∣
ρ=0

= ∇ρ(Tuρ + J(uρ) ◦ Tuρ ◦ j)|ρ=0 .

Since ∂̄Ju = 0, this is independent of the connection, and we may therefore choose
∇ to be symmetric.
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Fix a point z ∈ Σ and choose local holomorphic coordinates s+it around it. The
symmetry of the connection implies ∇ρ∂suρ|ρ=0 = ∇s∂ρuρ|ρ=0 = ∇sη, and similarly

for the variable t. Observing also that ∇ηJ = ∇∂ρuρ|ρ=0
J = ∇ρ (J(uρ))|ρ=0, and

using the above ansatz, we obtain

(Duη)∂s = ∇ρ(∂suρ + J(uρ) ◦ ∂tuρ)|ρ=0 = ∇sη + J(u)∇tη + (∇ηJ)∂tu

Since Duη is an antilinear map, and ∂t = j∂s, it is therefore determined by its
action on ∂s. One can check that the operator on the right hand side below is also
antilinear, and thus removing the ∂s, we obtain

(2.2) Duη = ∇η + J(u) ◦ ∇η ◦ j + (∇ηJ) ◦ Tu ◦ j.

Definition 2.1. Fix a complex vector bundle E over a Riemann surface (Σ, j).
A (real) linear Cauchy-Riemann type operator on E is a real-linear first-order
differential operator

D : Γ(E)→ Ω0,1(Σ, E)

such that for every f ∈ C∞(Σ,R) and η ∈ Γ(E),

(2.3) D(fη) = (∂̄f)η + fDη,

where ∂̄f denotes the complex-valued (0, 1)-form df + i df ◦ j.
Observe that D is complex linear if and only if the Leibniz rule (2.3) also holds

for all smooth complex-valued functions f , not just real-valued. It is a standard
result in complex geometry that choosing a complex-linear Cauchy-Riemann type
operator D on E is equivalent to endowing it with the structure of a holomorphic
vector bundle, where local sections η are defined to be holomorphic if and only
if Dη = 0. Indeed, every holomorphic bundle comes with a canonical Cauchy-
Riemann operator that is expressed as ∂̄ in holomorphic trivializations, and in the
other direction, the equivalence follows from a local existence result for solutions to
the equation Dη = 0, proved in §2.5 below.1

Exercise 2.2. If D is a linear Cauchy-Riemann type operator on E, prove that
every other such operator is of the form D + A where A : E → HomC(TΣ, E) is
a smooth linear bundle map. Using this, show that in suitable local trivializations
over a subset U ⊂ Σ identified biholomorphically with an open set in C, every
Cauchy-Riemann type operator D takes the form

D = ∂̄ + A : C∞(U ,Cm)→ C∞(U ,Cm),

where ∂̄ = ∂s + i∂t in complex coordinates z = s+ it and A ∈ C∞(U ,EndR(C
m)).

Exercise 2.3. Verify that the linearized operator Du of (2.2) is a real-linear
Cauchy-Riemann type operator.

1This statement about the existence of holomorphic vector bundle structures is true when
the base is a Riemann surface, but not if it is a higher-dimensional complex manifold. In higher
dimensions there are obstructions, see e.g. [Kob87].
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2.2. Some useful Sobolev inequalities

In this section, we review a few general properties of Sobolev spaces that are
essential for applications in nonlinear analysis. The results stated here are explained
in more detail in Appendix A.

Throughout this section we consider functions with values in C unless otherwise
specified, and defined on an open domain U in either Rn or a quotient of Rn on
which the Lebesgue measure is well defined. Certain regularity assumptions must
generally be placed on the boundary of U in order for all the results stated below
to hold; we will ignore this detail except to mention that the necessary assumptions
are satisfied for the two classes of domains that we are most interested in, which are

U = D̊ ⊂ C,

U = (0, L)× S1 ⊂ C/Z, 0 < L ≤ ∞.

Here D denotes the closed unit disk and D̊ is its interior. Certain results will be
specified to hold only for bounded domains, which means in practice that they hold
on D̊ and (0, L)× S1 for any L > 0, but not on (0,∞)× S1.

Recall that for p ∈ [1,∞) we define the Lp norm of a measurable function
f : U → Rm to be

‖f‖Lp =

(∫

U
|f |p
)1/p

.

For the space L∞ we define the norm to be the essential supremum of f over U .
Denote by

C∞
0 (U) ⊂ C∞(U)

the set of smooth functions with compact support in U . We say a function f has
a weak j-th partial derivative g if the integration by parts formula holds for all
ϕ ∈ C∞

0 (U): ∫

U
gϕ = −

∫

U
f ∂jϕ.

Equivalently, this means that g is a partial derivative of f in the sense of distribu-
tions (see e.g. [LL01]). Higher order weak partial derivatives are defined similarly:
recall that for a multiindex α = (i1, ...in) we denote

∂αf =
∂|α|f

∂xi11 . . . ∂x
in
n

,

where |α| :=∑j ij. We then write ∂αf = g if for all ϕ ∈ C∞
0 (U),

∫

U
gϕ = (−1)|α|

∫

U
f ∂αϕ.

Now we may define W k,p(U) to be the set of functions on U with weak partial
derivatives up to order k lying in Lp, and define the norm of such a function by:

‖f‖W k,p =
∑

|α|≤k
‖∂αf‖Lp.
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As W k,p(U) can be regarded as a subset of a k-fold product of Lp(U), it is a Banach
space, and it is reflexive and separable for 1 < p <∞.

While the Sobolev spaces W k,p(U) are generally defined on open domains, we of-
ten consider the closure U as the domain for spaces of differentiable functions Ck(U)
and C∞(U). For instance, Ck(U) is the Banach space of k-times differentiable func-
tions on U whose derivatives up to order k are bounded and uniformly continuous
on U ; note that uniform continuity implies the existence of continuous extensions
to the closure U . Given suitable regularity assumptions for the boundary of U , one
can show (with some effort) that Ck(U) is precisely the set of functions which admit
k-times differentiable extensions to some open set containing U .

The following two results are special cases of the more general Theorems A.6
and A.9 in Appendix A, proofs of which may be found e.g. in [AF03].

Proposition 2.4 (Sobolev embedding theorem). Assume 1 ≤ p < ∞, kp > n
and d ≥ 0 is an integer. Then there exists a continuous inclusion

W k+d,p(U) →֒ Cd(U),
which is compact if U is bounded. �

Proposition 2.5 (Rellich-Kondrachov compactness theorem). If 1 ≤ p < ∞
and U is bounded, then the natural inclusion

W k+1,p(U) →֒ W k,p(U)
is compact. �

Exercise 2.6. Show that Proposition 2.5 fails in general for unbounded do-
mains, e.g. for R.

The next three results for the case kp > n are proved in §A.2 as corollaries of
the Sobolev embedding theorem.

Proposition 2.7 (Banach algebra property). Suppose 1 ≤ p <∞, kp > n and
0 ≤ m ≤ k. Then the product pairing (f, g) 7→ fg defines a continuous bilinear map

W k,p(U)×Wm,p(U)→Wm,p(U).
In particular, W k,p(U) is a Banach algebra. �

The continuity statements above translate into inequalities between the norms
in the respective spaces. For example, continuous inclusions W k+d,p →֒ Cd and
W k+1,p →֒ W k,p respectively imply that

‖f‖Cd ≤ c‖f‖W k+d,p

‖f‖W k,p ≤ c‖f‖W k+1,p

for some constants c > 0 which may depend on d, k, p or U , but not f . Similarly,
the Banach algebra property implies

‖fg‖Wm,p ≤ c‖f‖W k,p‖g‖Wm,p,

where again, the constant c is independent of g and f .
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We state the next result only for the case of bounded domains; it does have
an extension to unbounded domains, but the statement becomes more complicated
(cf. Theorem A.12). Given an open set Ω ⊂ Rn, we denote

W k,p(U ,Ω) :=
{
u ∈ W k,p(U ,Rn)

∣∣∣ u(U) ⊂ Ω
}
.

Note that this is an open subset if kp > n, due to the Sobolev embedding theorem.

Proposition 2.8 (Ck-continuity property). Assume 1 ≤ p < ∞, kp > n, U is
bounded and Ω ⊂ Rn is an open set. Then the map

Ck(Ω,RN )×W k,p(U ,Ω)→W k,p(U ,RN) : (f, u) 7→ f ◦ u
is well defined and continuous. �

Remark 2.9. Though we will not yet use it in this lecture, Propositions 2.4,
2.7 and 2.8 are the essential conditions needed in order to define smooth Banach
manifold structures on spaces of W k,p-smooth maps from one manifold to another,
cf. [El̆ı67,Pal68]. This only works under the condition kp > n, as the smooth
category is not well equipped to deal with discontinuous maps!

The following rescaling result will be needed for nonlinear regularity arguments;
see Theorem A.15 in Appendix A for a proof.

Proposition 2.10. Assume p ∈ [1,∞) and k ∈ N satisfy kp > n, let D̊n

denote the open unit ball in Rn, and for each f ∈ W k,p(D̊n) and ǫ ∈ (0, 1], define

fǫ ∈ W k,p(D̊n) by
fǫ(x) := f(ǫx).

Then there exist constants C > 0 and r > 0 such that for every f ∈ W k,p(D̊n),

‖fǫ − f(0)‖W k,p(D̊n) ≤ Cǫr‖f − f(0)‖W k,p(D̊n) for all ǫ ∈ (0, 1].

�

Exercise 2.11. Working on a 2-dimensional domain with kp > 2, prove directly
that for any multiindex α of positive degree k,

‖∂αfǫ‖Lp(D̊) ≤ ǫk−2/p‖∂αf‖Lp(D̊)

for f ∈ W k,p(D̊). Find examples (e.g. in W 1,2(D̊)) to show that no estimate of the
form

‖∂αfǫ‖Lp(D̊) ≤ Cǫ‖f − f(0)‖W k,p(D̊)

with limǫ→0+ Cǫ = 0 is possible when kp ≤ 2.

2.3. The fundamental elliptic estimate

We will make considerable use of the fact that the linear first-order differential
operator

∂̄ := ∂s + i∂t : C
∞(C,C)→ C∞(C,C)

is elliptic. There is no need to discuss here precisely what ellipticity means in full
generality (see [Wend, §2.B] if you’re curious about this); in practice, the main
consequence is the following pair of analytical results.
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Theorem 2.12. If 1 < p < ∞, then ∂̄ : W 1,p(D̊) → Lp(D̊) admits a bounded

right inverse T : Lp(D̊)→W 1,p(D̊).

Theorem 2.13. If 1 < p < ∞ and k ∈ N, then there exists a constant c > 0
such that for all f ∈ W k,p

0 (D̊),

‖f‖W k,p ≤ c‖∂̄f‖W k−1,p.

Here W k,p
0 (D̊) denotes the W k,p-closure of C∞

0 (D̊), the latter being space of

smooth functions on D̊ with compact support.
The complete proofs of the two theorems above are rather lengthy, and we shall

refer to [Wend, §2.6 and 2.A] for the details, but we can at least explain why
they hold in the case p = 2. First, it is straightforward to show that the function
K ∈ L1

loc(C) defined by

K(z) =
1

2πz

is a fundamental solution for the equation ∂̄u = f , meaning it satisfies

∂̄K = δ

in the sense of distributions, where δ denotes the Dirac δ-function. Hence for any
f ∈ C∞

0 (C), one finds a smooth solution u : C → C to the equation ∂̄u = f as the
convolution

u(z) = (K ∗ f)(z) :=
∫

C

K(z − ζ)f(ζ) dµ(ζ),

where dµ(ζ) denotes the Lebesgue measure with respect to the variable ζ ∈ C. It
is not hard to show from this formula that whenever f ∈ C∞

0 , K ∗ f has decaying
behavior at infinity (see [Wend, Lemma 2.6.13]). Thus if u ∈ C∞

0 and ∂̄u = f , it
follows that u−K ∗ f is a holomorphic function on C that decays at infinity, hence
u ≡ K ∗ f . Since C∞

0 (D̊) is dense in Lp(D̊) for all p <∞, Theorem 2.12 now follows

from the claim that for all f ∈ C∞
0 (D̊), there exist estimates of the form

(2.4) ‖K ∗ f‖Lp(D̊) ≤ c‖f‖Lp(D̊), ‖∂j(K ∗ f)‖Lp(D̊) ≤ c‖f‖Lp(D̊),

with ∂j = ∂s or ∂t for j = 1, 2 respectively, and the constant c > 0 independent of f .

Exercise 2.14. Use Theorem 2.12 and the remarks above to prove Theorem 2.13
for the case k = 1 with f ∈ C∞

0 (D̊), then extend it to f ∈ W 1,p
0 (D̊) by a density

argument. Then extend it to the general case by differentiating both f and ∂̄f .

The first estimate in (2.4) is not too hard if you remember your introductory
measure theory class: it follows from a general “potential inequality” for convolu-
tion operators (see [Wend, Lemma 2.6.10]), similar to Young’s inequality, the key

points being that K is locally of class L1 and D̊ has finite measure. For the second
inequality, observe that ∂̄(K ∗ f) = f , and the rest of the first derivative of K ∗ f is
determined by ∂(K ∗ f), where

∂ := ∂s − i∂t.
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Differentiating K in the sense of distributions provides a formula for ∂(K ∗ f) as a
principal value integral, namely

∂(K ∗ f)(z) = −1

π
lim
ǫ→0+

∫

|ζ−z|≥ǫ

f(ζ)

(z − ζ)2 dµ(ζ).

This is a so-called singular integral operator: it is similar to our previous con-
volution operator, but more difficult to handle because the kernel 1

z2
is not of class

L1
loc on C. The proof of the estimate ‖∂(K ∗ f)‖Lp ≤ c‖f‖Lp for all f ∈ C∞

0 (D̊)
follows from a rather difficult general estimate on singular integral operators, known
as the Calderón-Zygmund inequality, cf. [Wend, §2.A] and the references therein.
The good news however is that the first step in that proof is not hard: that is the
case p = 2.

As is the case for all elliptic operators with constant coefficients, the L2-estimate
on the fundamental solution of ∂̄ admits an easy proof using Fourier transforms:

Proposition 2.15. For all f ∈ C∞
0 (C), we have ‖∂(K ∗ f)‖L2 = ‖f‖L2.

Proof. A sufficiently nice function u : C→ C is related to its Fourier transform
û : C→ C by

u(z) =

∫

C

û(ζ)e2πi(z·ζ) dµ(ζ)

and thus satisfies the identities

̂̄∂u(ζ) = 2πiζû(ζ),

∂̂u(ζ) = 2πiζû(ζ).

Since u = K ∗ f we have û = K̂f̂ , and since ∂̄K = δ, we have 2πiζK̂ = 1. Hence
we may apply Plancharel’s theorem to deduce

‖∂(K ∗ f)‖L2 = ‖∂u‖L2 = ‖∂̂u‖L2 = ‖2πiζû‖L2 = ‖2πiζK̂f̂‖L2

=

∥∥∥∥
ζ

ζ
2πiζK̂f̂

∥∥∥∥
L2

=

∥∥∥∥
ζ

ζ
f̂

∥∥∥∥
L2

= ‖f̂‖L2 = ‖f‖L2.

�

2.4. Regularity

We will now use the estimate ‖u‖W k,p ≤ c‖∂̄u‖W k−1,p from the previous section
to prove three types of results about solutions to Cauchy-Riemann type equations:

(1) All solutions of reasonable Sobolev-type regularity are smooth.
(2) Any collection of solutions satisfying uniform bounds in certain Sobolev

norms also locally satisfy uniform C∞-bounds.
(3) All reasonable Sobolev-type topologies on spaces of solutions are (locally)

equivalent to the C∞-topology.

In the following,

Dr ⊂ C



Lectures on Symplectic Field Theory 33

denotes the closed disk of radius r > 0, and D̊r denotes its interior. Note that func-
tions of class C∞(Dr) are assumed to be smooth up to the boundary (or equivalently,

on some open neighborhood of Dr in C), not just on D̊r.

2.4.1. The linear case. Recall from Exercise 2.2 that every linear Cauchy-
Riemann type operator on a vector bundle of complex rank n locally takes the form
∂̄ + A, where ∂̄ = ∂s + i∂t, and A is a smooth function with values in EndR(C

n).
Using the Sobolev embedding theorem, the following result implies by induction
that solutions u ∈ W 1,p to the equation (∂̄ + A)u = 0 are always smooth.

Theorem 2.16 (Linear regularity). Assume 1 < p <∞ and k,m ∈ N.

(1) If u ∈ W k,p(D̊) satisfies ∂̄u ∈ Wm,p(D̊), then u is in Wm+1,p on every

compact subset of D̊.
(2) Suppose fν ∈ Wm,p(D̊) is a sequence converging in the Wm,p-topology to

f ∈ Wm,p(D̊) as ν →∞, and uν ∈ W k,p(D̊) is a sequence with ∂̄uν = fν.

(a) If there exist uniform bounds on ‖uν‖W k,p and ‖fν‖Wm,p over D̊ as
ν → ∞, then ‖uν‖Wm+1,p is also uniformly bounded on every compact

subset of D̊.
(b) If the sequence uν is W k,p-convergent on D̊ to a function u ∈ W k,p(D̊)

satisfying ∂̄u = f , then it is also Wm+1,p-convergent on every compact
subset of D̊.

Proof. We begin by proving statement (2a), assuming that statement (1) is

already known, hence uν ∈ Wm+1,p
loc (D̊) since fν ∈ Wm,p(D̊). Assume m = k,

since there is otherwise nothing to prove. Then by induction, it suffices to show
that uniform bounds on ‖uν‖W k,p(D̊) and ‖fν‖W k,p(D̊) imply a uniform bound on

‖uν‖W k+1,p(D̊r)
for any given r < 1; equivalently, this would mean there is a uniform

bound on ‖∂juν‖W k,p(D̊r)
for j = 1, 2. In order to apply the elliptic estimate, we need

to work with functions with compact support in D̊, thus choose a smooth bump
function

β ∈ C∞
0 (D̊, [0, 1])

that satisfies β|Dr ≡ 1. We then have β ∂juν ∈ C∞
0 (D̊), so by Theorem 2.13,

‖∂juν‖W k,p(D̊r)
≤ ‖β ∂juν‖W k,p(D̊) ≤ c

∥∥∂̄ (β ∂juν)
∥∥
W k−1,p(D̊)

≤ c‖(∂̄β)(∂juν)‖W k−1,p + c‖β ∂̄(∂juν)‖W k−1,p.
(2.5)

The first term on the right hand side is uniformly bounded since ∂̄β is smooth and
‖uν‖W k,p is uniformly bounded. To control the second term, we differentiate the
equation ∂̄uν = fν , giving

∂̄(∂juν) = ∂jfν .

This also has a uniformly boundedW k−1,p-norm since ‖fν‖W k,p is uniformly bounded.
Since β is smooth, this bounds the second term on the right hand side of (2.5) as
ν →∞, and we are done.

Statement (2b) follows by a similar argument bounding ‖∂j(u − uν)‖W k,p(D̊r)
in

terms of ‖u− uν‖W k,p(D̊) and ‖f − fν‖W k,p(D̊); we leave the details as an exercise.
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Lastly, we prove statement (1), where again it suffices to assume ∂̄u = f ∈
W k,p(D̊) and show that u|D̊r

∈ W k+1,p(D̊r) for some r < 1. The idea is to use the
same argument that was used for statement (2a), but with the partial derivatives
∂ju replaced by the difference quotients

Dh
j u(z) :=

u(z + hej)− u(z)
h

, j = 1, 2,

where e1 := ∂s, e2 := ∂t, and the role of the index ν → ∞ is now played by the
parameter h ∈ R \ {0} approaching 0. Note that if u ∈ W k,p(D̊), then β Dh

j u is a

well-defined function on D̊ for all |h| 6= 0 sufficiently small and belongs to W k,p
0 (D̊).

The analogue of (2.5) in this context is then

‖Dh
j u‖W k,p(D̊r)

≤ ‖βDh
j u‖W k,p(D̊) ≤ c

∥∥∂̄
(
β Dh

j u
)∥∥

W k−1,p(D̊)

≤ c‖(∂̄β)(Dh
j u)‖W k−1,p + c‖β ∂̄(Dh

j u)‖W k−1,p.

The first term is bounded independently of h since ∂ju ∈ W k−1,p(D̊), implying a
uniform W k−1,p-bound on Dh

j u as h→ 0. To control the second term, we can apply

the operator Dh
j to the equation ∂̄u = f , giving

∂̄(Dh
j u) = Dh

j (∂̄u) = Dh
j f.

This satisfies a W k−1,p-bound that is uniform in h since ∂jf ∈ W k−1,p(D̊), so we
conclude that for all |h| sufficiently small,

‖Dh
j u‖W k,p(D̊r)

≤ c

for some constant c > 0 that does not change as h→ 0. By a standard application
of the Banach-Alaoglu theorem (cf. [Eva98, §5.8.2]), this implies the existence of a

sequence hν → 0 for which Dhν
j u isW

k,p-convergent on D̊r, and its limit is necessarily

∂ju, which therefore belongs to W k,p. Indeed, if k = 0, the uniform Lp-bound

on Dhν
j u over D̊r for any sequence hν → 0 gives rise to a weakly Lp-convergent

subsequence via the Banach-Alaoglu theorem. The limit of this subsequence belongs
to Lp(D̊r), and it is straightforward to show using the definition of weak derivatives
that this limit is ∂ju. One finds the same result for any k ∈ N by applying this
argument to higher-order derivatives of ∂ju. The conclusion is that u is in W k+1,p

on D̊r, since u and both of its first partial derivatives belong to W k,p. �

Exercise 2.17. Show that all three parts of Theorem 2.16 continue to hold if
the operator ∂̄ is replaced by ∂̄ + A or ∂̄ + Aν , where A,Aν ∈ C∞(D,EndR(C

n))
with Aν → A in C∞ as ν →∞.

Exercise 2.18. Use Theorem 2.16(1) to extend Theorem 2.12 to the existence
of a bounded right inverse for

∂̄ : W k,p(D̊)→W k−1,p(D̊).

Hint: For anyR > 1, there exists a bounded linear extension operatorE :W k,p(D̊)→
W k,p(D̊R) with the property (Ef)|D̊ = f for all f ∈ W k,p(D̊); see Theorem A.4 and

Corollary A.5.
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The above exercise can be used to improve the first part of Theorem 2.16 to
cover weak solutions of class L1

loc. We start with a classical result about “weakly
holomorphic” functions:

Lemma 2.19. If u ∈ L1(D̊) satisfies ∂̄u = 0 in the sense of distributions, then u
is smooth and holomorphic.

Proof. Taking real and imaginary parts, it suffices to prove that the same
statement holds for the Laplace equation. By mollification, any weakly harmonic
function can be approximated in L1 with smooth harmonic functions. The lat-
ter satisfy the mean value property, which behaves well under L1-convergence, so
the result follows from the mean value characterization of harmonic functions; see
[Wend, Lemma 2.6.26] for more details. �

Lemma 2.20. Suppose 1 < p < ∞, k ∈ N, and u ∈ L1(D̊) is a weak solution to

∂̄u = f for some f ∈ W k,p(D̊). Then u is of class W k+1,p on every compact subset

of D̊.

Proof. Let T : W k,p(D̊) → W k+1,p(D̊) denote a bounded right inverse of ∂̄ :

W k+1,p(D̊) → W k,p(D̊) as provided by Exercise 2.18. Then u − Tf ∈ L1(D̊) is a
weak solution to ∂̄(u− Tf) = 0 and is thus smooth by Lemma 2.19. In particular,

u − Tf restricts to D̊r for every r < 1 as a function of class W k+1,p, implying that
u also has a restriction in W k+1,p(D̊r). �

Corollary 2.21 (Weak linear regularity). Suppose 1 < p < ∞. Then given

A ∈ C∞(D,EndR(C
n)), every weak solution u ∈ Lp(D̊,Cn) of (∂̄+A)u = 0 is smooth

on D̊. �

2.4.2. The nonlinear case. Locally, every J-holomorphic curve can be re-
garded as a map u : D̊→ Cn satisfying u(0) = 0 and

∂̄Ju := ∂su+ J(u)∂tu = 0,

where J is a smooth almost complex structure on Cn satisfying J(0) = i. Theo-
rem 2.16 now has the following analogue.

Theorem 2.22 (Nonlinear regularity). Assume 1 < p < ∞ and k ∈ N satisfy
kp > 2, and fix a smooth almost complex structure J on Cn with J(0) = i.

(1) Every map u ∈ W k,p(D̊,Cn) satisfying u(0) = 0 and ∂̄Ju = 0 is smooth

on D̊.
(2) Suppose Jν is a sequence of smooth almost complex structures on Cn con-

verging in C∞
loc to J as ν → ∞, and uν ∈ W k,p(D̊,Cn) is a sequence of

smooth maps satisfying ∂̄Jνuν = 0.

(a) If the maps uν are uniformly W k,p-bounded on D̊, then they are also

uniformly Cm-bounded on compact subsets of D̊ for every m ∈ N.
(b) If the sequence uν is W k,p-convergent on D̊ to a smooth map u : D̊ →

Cn, then it is also C∞-convergent on every compact subset of D̊.
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Our proof of this will follow much the same outline as the proof of Theorem 2.16,
and indeed, one could use exactly the same argument if J were identically equal to i
(in which case the theorem can also be deduced from complex analysis). The reason
it works in the general case is that if we zoom in on a sufficiently small neighborhood
of the origin in Cn, then J can be viewed as a C∞-small perturbation of i. To make
this precise, we shall use the following rescaling trick.

Associate to any smooth almost complex structure J on Cn the function

Q := i− J ∈ C∞(Cn,EndR(C
n)).

In terms of Q, the equation ∂su+ J(u)∂tu = 0 then becomes

(2.6) ∂̄u− (Q ◦ u)∂tu = 0,

where we are regarding Q ◦ u as a function D̊→ EndR(C
n). Given constants R ≥ 1

and ǫ ∈ (0, 1], associate to J and u the functions

Ĵ : Cn → EndR(C
n), Ĵ(p) := J(p/R),

Q̂ : Cn → EndR(C
n), Q̂(p) := Q(p/R) = i− Ĵ(p),

û : D̊→ Cn, u(z) := Ru(ǫz).

(2.7)

Now u satisfies (2.6) if and only if û satisfies

(2.8) ∂̄û− (Q̂ ◦ û)∂tû = 0.

The rescaled almost complex structure has the convenient feature that if J(0) = i,

then Ĵ can be made arbitrarily C∞-close to i on the unit disk

D2n ⊂ Cn

by choosing R sufficiently large, which means ‖Q̂‖Cm(D2n) can be made arbitrarily
small for every m ∈ N. If u is also continuous and satisfies u(0) = 0, then after
fixing some large value for R, we can also choose ǫ ∈ (0, 1] sufficiently small to ensure

u(D̊) ⊂ D̊2n and make ‖Q̂ ◦ û‖C0(D) arbitrarily small. By Propositions 2.8 and 2.10,

we can similarly arrange for ‖Q̂ ◦ û‖W k,p to be arbitrarily small if u is of class W k,p

with kp > 2, and the same will hold for ‖Q̂ν ◦ ûν‖W k,p when ν is large if ‖uν‖W k,p

is uniformly bounded and uν(0) → 0. Here of course we abbreviate Qν := i − Jν
and Q̂ν(p) := Qν(p/R). The effect is to make equations such as (2.8) W k,p-close
to the linear equation ∂̄û = 0 if ǫ > 0 and R > 0 are sufficiently small and large
respectively.

The price we pay for this rescaling is that if we are able to prove e.g. a uniform
bound on the norms ‖ûν‖W k,p(D̊) for some sequence uν , then the resulting W k+1,p-

bound for uν will be valid only on D̊ǫ, a very small ball about the origin. But this
is good enough for obtaining estimates over all compact subsets of D̊: indeed, we
can always reparametrize u : D̊ → Cn to put the origin at some other point and
prove suitable estimates near that point, appealing in the end to the fact that any
compact subset of D̊ is covered by a finite union of small disks about points.

The need to use this rescaling trick is one of a few reasons why the condition
kp > 2 is needed in Theorem 2.22, while it was irrelevant in the linear case.
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Proof of Theorem 2.22. We will prove statement (2a) and leave the rest as
exercises.

By the remarks above, it suffices to prove that if uν : D̊ → Cn are smooth Jν-
holomorphic curves satisfying a uniform bound in W k,p(D̊), then for some r < 1, the

rescaled Ĵν-holomorphic curves ûν : D̊ → Cn defined as in (2.7) satisfy a uniform

W k+1,p-bound on D̊r. In fact, it suffices to prove that every subsequence of uν has
a further subsequence for which this is true. Indeed, if the bound for the whole
sequence did not exist, then we would be able to find a subsequence with norms
blowing up to infinity, and no further subsequence of this subsequence could satisfy
a uniform bound. With this understood, we can appeal to the fact that W k,p-
bounded sequences are also C0-bounded for kp > 2 and thus replace uν with a
subsequence (still denoted by uν) such that, after a suitable change of coordinates
on Cn,

uν(0)→ 0.

Our goal is then to show that for a suitable choice of the rescaling parameters ǫ and
R, this subsequence admits a uniform bound on ‖∂j ûν‖W k,p(D̊r)

for j = 1, 2 .
The argument begins exactly the same as in the linear case: choose a smooth

bump function

β ∈ C∞
0 (D̊, [0, 1])

that satisfies β|Dr ≡ 1. We then have β ∂j ûν ∈ C∞
0 (D̊), so by Theorem 2.13,

(2.9) ‖∂j ûν‖W k,p(D̊r)
≤ ‖β ∂j ûν‖W k,p(D̊) ≤ c

∥∥∂̄ (β ∂j ûν)
∥∥
W k−1,p(D̊)

.

Instead of rewriting ∂̄(β ∂j ûν) as a sum of two terms, let us derive a PDE satisfied

by β ∂j ûν . Differentiating the equation ∂̄ûν − (Q̂ν ◦ ûν)∂tûν = 0 gives

∂̄(∂j ûν) = ∂j(∂̄ûν) = (dQ̂ν ◦ ûν) (∂j ûν , ∂tûν) + (Q̂ν ◦ ûν)∂j∂tûν ,
thus β ∂j ûν satisfies

∂̄(β ∂j ûν)− (Q̂ν◦ûν)∂t(β ∂j ûν)
= β(dQ̂ν ◦ ûν)(∂j ûν , ∂tûν) +

(
∂̄β − (Q̂ν ◦ ûν)∂tβ

)
∂j ûν

= (dQ̂ν ◦ ûν)(β ∂j ûν , ∂tûν) +
(
∂̄β − (Q̂ν ◦ ûν)∂tβ

)
∂j ûν ,

(2.10)

and combining this with (2.9) gives

(2.11)

‖β ∂j ûν‖W k,p ≤ c
∥∥(Q̂ν ◦ ûν)∂t(β ∂j ûν)

∥∥
W k−1,p + c

∥∥(dQ̂ν ◦ ûν)(β ∂j ûν, ∂tûν)
∥∥
W k−1,p

+ c
∥∥∥
(
∂̄β − (Q̂ν ◦ ûν)∂tβ

)
∂j ûν

∥∥∥
W k−1,p

.

In order to find bounds for the three terms on the right, recall that using Proposi-
tions 2.8 and 2.10 and the assumption uν(0)→ 0, we can suppose

∥∥∥Q̂ν ◦ ûν
∥∥∥
W k,p
≤ δ
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for sufficiently large ν, where δ > 0 is a constant that may be assumed arbitrarily
small via suitable choices of the rescaling parameters ǫ and R. This provides a
uniform bound on the third term in (2.11), as there is also a continuous product
pairing W k,p ×W k−1,p →W k−1,p by Prop. 2.7, giving an estimate of the form
∥∥∥
(
∂̄β − (Q̂ν ◦ ûν)∂tβ

)
∂j ûν

∥∥∥
W k−1,p

≤ c
∥∥∥
(
∂̄β − (Q̂ν ◦ ûν)∂tβ

)∥∥∥
W k,p
· ‖∂jûν‖W k−1,p

≤ c′‖ûν‖W k,p ≤ c′′.

For the first term on the right side of (2.11), the product pairing similarly gives
∥∥(Q̂ν ◦ ûν)∂t(β ∂j ûν)

∥∥
W k−1,p ≤ c

∥∥Q̂ν ◦ ûν
∥∥
W k,p · ‖∂t(β ∂j ûν)‖W k−1,p

≤ cδ‖β ∂j ûν‖W k,p.

Finally, since Jν → J in Ck+1 on compact subsets, we are also free to assume after
adjusting the rescaling parameters that

‖dQ̂ν ◦ ûν‖W k,p ≤ δ,

so we can apply the product pairing W k,p ×W k−1,p → W k−1,p twice to estimate
∥∥(dQ̂ν ◦ ûν)(β ∂j ûν , ∂tûν)

∥∥
W k−1,p ≤ c

∥∥dQ̂ν ◦ ûν
∥∥
W k,p · ‖β ∂j ûν‖W k,p · ‖∂tûν‖W k−1,p

≤ cδ‖β ∂j ûν‖W k,p · ‖ûν‖W k,p

≤ cc′δ‖β ∂j ûν‖W k,p =: c′′δ‖β ∂j ûν‖W k,p.

Combining the three estimates for the right hand side of (2.11) now gives

‖β ∂j ûν‖W k,p ≤ c+ cδ‖β ∂j ûν‖W k,p,

so after adjusting the scaling parameters R and ǫ to ensure cδ < 1, we obtain the
uniform bound

‖β ∂j ûν‖W k,p ≤ c

1− cδ .
This provides the desired uniform bound on ‖∂j ûν‖W k,p(D̊r)

. �

Exercise 2.23. Use an analogous argument via difference quotients to prove
statement (1) in Theorem 2.22. Hint: If you’re anything like me, you might get

stuck trying to estimate the second term in the difference quotient analogue of

(2.11). The difficulty is that this expression was derived using the chain rule for

derivatives, and there is no similarly simple chain rule for difference quotients. The

trick is to remember that difference quotients only differ from the corresponding

derivatives by a remainder term. The remainder will produce an extra term in the

difference quotient version of (2.11), but the extra term can be bounded.

2.5. Linear local existence and applications

The following lemma can be applied in the case A ∈ C∞(D,EndC(C
n)) to prove

the aforementioned standard fact that complex-linear Cauchy-Riemann type oper-
ators induce holomorphic structures on vector bundles. The version with weakened
regularity will be applied below to prove a useful “unique continuation” result about
solutions to (∂̄ + A)f = 0 in the real-linear case.
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Lemma 2.24. Assume 2 < p < ∞ and A ∈ Lp(D̊,EndR(C
n)). Then for suffi-

ciently small ǫ > 0, the problem

∂̄u+ Au = 0

u(0) = u0

has a solution u ∈ W 1,p(D̊ǫ,C
n).

Remark 2.25. Note that u : D̊ǫ → Cn in the above statement is only a weak
solution to ∂̄u + Au = 0, as it is not necessarily differentiable, but by the Sobolev
embedding theorem, it is at least continuous.

Proof of Lemma 2.24. The main idea is that if we take ǫ > 0 sufficiently
small, then the restriction of ∂̄ + A to D̊ǫ can be regarded as a small perturbation
of ∂̄ in the space of bounded linear operators W 1,p → Lp. Since the latter has a
bounded right inverse by Theorem 2.12, the same will be true for the perturbation.

Since p > 2, the Sobolev embedding theorem implies that functions u ∈ W 1,p

are also continuous and bounded by ‖u‖W 1,p, thus we can define a bounded linear
operator

Φ :W 1,p(D̊)→ Lp(D̊)× Cn : u 7→ (∂̄u, u(0)).

Theorem 2.12 implies that this operator is also surjective and has a bounded right
inverse, namely

Lp(D̊)× Cn →W 1,p(D̊) : (f, u0) 7→ Tf − Tf(0) + u0,

where T : Lp(D̊) → W 1,p(D̊) is a right inverse of ∂̄. Thus any operator sufficiently
close to Φ in the norm topology also has a right inverse. Now define χǫ : D→ R to
be the function that equals 1 on Dǫ and 0 outside of it, and let

Φǫ : W
1,p(D̊)→ Lp(D̊)× Cn : u 7→ ((∂̄ + χǫA)u, u(0)).

To see that this is a bounded operator, it suffices to check that W 1,p → Lp : u 7→ Au
is bounded if A ∈ Lp; indeed,

‖Au‖Lp ≤ ‖A‖Lp‖u‖C0 ≤ c‖A‖Lp‖u‖W 1,p,

again using the Sobolev embedding theorem. Now by this same trick, we find

‖Φǫu− Φu‖ = ‖χǫAu‖Lp(D̊) ≤ c‖A‖Lp(D̊ǫ)
‖u‖W 1,p(D̊),

thus ‖Φǫ − Φ‖ is small if ǫ is small, and it follows that in this case Φǫ is surjective.

Our desired solution is therefore the restriction of any u ∈ Φ−1
ǫ (0, u0) to D̊ǫ. �

Here is a corollary, which says that every solution to a real-linear Cauchy-
Riemann type equation looks locally like a holomorphic function in some continuous
local trivialization.

Theorem 2.26 (Similarity principle). Suppose A : D→ EndR(C
n) is smooth and

u : D̊→ Cn satisfies the equation ∂̄u+ Au = 0 with u(0) = 0. Then for sufficiently

small ǫ > 0, there exist maps Φ ∈ C0(Dǫ,EndC(C
n)) and f ∈ C∞(D̊ǫ,C

n) such that

u(z) = Φ(z)f(z), ∂̄f = 0, and Φ(0) = 1.
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Proof. After shrinking the domain if necessary, we may assume without loss
of generality that the smooth solution u : D̊ → Cn is bounded. Choose a map
C : D → EndC(C

n) satisfying C(z)u(z) = A(z)u(z) and |C(z)| ≤ |A(z)| for almost

every z ∈ D. Then C ∈ L∞(D̊,EndC(C
n)) and u is a weak solution to (∂̄+C)u = 0.

Note that since we do not know anything about the zero set of u, we cannot assume
C is continuous, but we have no trouble assuming C ∈ Lp(D̊) for every p > 2.

Since ∂̄+C is now complex linear, we can use Lemma 2.24 to find a complex basis
ofW 1,p-smooth weak solutions to (∂̄+C)v = 0 on D̊ǫ that define the standard basis of
Cn at 0, and these solutions are continuous by the Sobolev embedding theorem. This
gives rise to a map Φ ∈ C0(D̊ǫ,EndC(C

n)) that satisfies (∂̄ + C)Φ = 0 in the sense
of distributions and Φ(0) = 1. Since Φ is continuous, we can assume without loss of

generality that Φ(z) is invertible everywhere on D̊ǫ. Setting f := Φ−1u : D̊ǫ → Cn,
the Leibniz rule then implies

0 = (∂̄ + C)u = (∂̄ + C)(Φf) =
[
(∂̄ + C)Φ

]
f + Φ(∂̄f) = Φ(∂̄f),

thus ∂̄f = 0, and f is smooth by Lemma 2.19. �

Corollary 2.27 (Unique continuation). SupposeD is a linear Cauchy-Riemann
type operator on a vector bundle E over a connected Riemann surface, and η ∈ Γ(E)
satisfies Dη = 0. Then either η is identically zero or its zeroes are isolated.

The similarity principle also has many nice applications for the nonlinear Cauchy-
Riemann equation. Here is another “unique continuation” type result for the non-
linear case.

Proposition 2.28. Suppose J is a smooth almost complex structure on Cn and
u, v : D̊ → Cn are smooth J-holomorphic curves such that u(0) = v(0) = 0 and
u and v have matching partial derivatives of all orders at 0. Then u ≡ v on a
neighborhood of 0.

Proof. Let h = v − u : D̊→ Cn. We have

(2.12) ∂su+ J(u(z))∂tu = 0

and
∂sv + J(u(z))∂tv = ∂sv + J(v(z))∂tv + [J(u(z))− J(v(z))] ∂tv

= − [J(u(z) + h(z))− J(u(z))] ∂tv

= −
(∫ 1

0

d

dt
J(u(z) + th(z)) dt

)
∂tv

= −
(∫ 1

0

dJ(u(z) + th(z)) · h(z) dt
)
∂tv =: −A(z)h(z),

(2.13)

where the last step defines a smooth family of linear maps A(z) ∈ EndR(C
n). Sub-

tracting (2.12) from (2.13) gives the linear equation

∂sh(z) + J̄(z)∂th(z) + A(z)h(z) = 0,

where J̄(z) := J(u(z)). This is a linear Cauchy-Riemann type equation on a trivial

complex vector bundle over D̊ with complex structure J̄(z) on the fiber at z. The
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similarity principle thus implies h(z) = Φ(z)f(z) near 0 for some holomorphic func-
tion f(z) ∈ Cn and some continuous map Φ(z) ∈ GL(2n,R) representing a change of
trivialization. Now if h has vanishing derivatives of all orders at 0, Taylor’s formula
implies

lim
z→0

|Φ(z)f(z)|
|z|k = 0

for all k ∈ N, so f must also have a zero of infinite order and thus f ≡ 0. �

2.6. Simple curves and multiple covers

We now prove a global result about the structure of closed J-holomorphic curves.
In Lecture 6 we will be able to generalize it in a straightforward way for punctured
holomorphic curves with asymptotically cylindrical behavior.

Theorem 2.29. Assume (Σ, j) is a closed connected Riemann surface, (W,J)
is a smooth almost complex manifold and u : (Σ, j) → (W,J) is a nonconstant
pseudoholomorphic curve. Then there exists a factorization u = v ◦ ϕ, where

• ϕ : (Σ, j) → (Σ′, j′) is a holomorphic map of positive degree to another
closed and connected Riemann surface (Σ′, j′);
• v : (Σ′, j′)→ (W,J) is a pseudoholomorphic curve which is embedded except
at a finite set of critical points and self-intersections.

Note that holomorphic maps (Σ, j) → (Σ′, j′) of degree 1 are always diffeomor-
phisms, so the factorization u = v ◦ ϕ in this case is just a reparametrization, and
u is then called a simple curve. In all other cases, k := deg(ϕ) ≥ 2 and ϕ is in
general a branched cover; we then call u a k-fold branched cover of the simple
curve v.

The main idea in the proof is to construct Σ′ (minus some punctures) explicitly
as the image of u after removing finitely many singular points, so that we can take
v to be the inclusion Σ′ →֒ W . The map ϕ : Σ → Σ′ is then uniquely determined.
In order to carry out this program, we need some information on what the image
of u can look like near each of its singularities. These come in two types, each type
corresponding to one of the lemmas below, both of which should seem immediately
plausible if your intuition comes from complex analysis.

Lemma 2.30 (Intersections). Suppose u : (Σ, j) → (W,J) and v : (Σ′, j′) →
(W,J) are two nonconstant pseudoholomorphic curves with an intersection u(z) =
v(z′). Then there exist neighborhoods z ∈ U ⊂ Σ and z′ ∈ U ′ ⊂ Σ′ such that

either u(U) = v(U ′) or u(U \ {z}) ∩ v(U ′) = u(U) ∩ v(U ′ \ {z′}) = ∅.
�

Lemma 2.31 (Branching). Suppose u : (Σ, j)→ (W,J) is a nonconstant pseudo-
holomorphic curve and z0 ∈ Σ is a critical point of u. Then a neighborhood U ⊂ Σ
of z0 can be biholomorphically identified with the unit disk D ⊂ C such that

u(z) = v(zk) for z ∈ D = U ,
where k ∈ N, and v : D → W is an injective J-holomorphic map with no critical
points except possibly at the origin. �
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These two local results follow from a well-known formula of Micallef and White
[MW95] describing the local behavior of J-holomorphic curves near critical points
and their intersections. The proof of that theorem is analytically quite involved, but
one can also use an easier “approximate” version, which is proved in [Wend, §2.14].
Since both are closely related to the phenomenon of unique continuation, you will
not be surprised to learn that the similarity principle plays a role in the proof: the
main idea is again to exploit the fact that locally J is always a small perturbation
of i, hence the local behavior of J-holomorphic curves is also similar to the integrable
case.

Proof of Theorem 2.29. Let Crit(u) = {z ∈ Σ | du(z) = 0} denote the set
of critical points, and define ∆ ⊂ Σ to be the set of all points z ∈ Σ such that there
exists z′ ∈ Σ and neighborhoods z ∈ U ⊂ Σ and z′ ∈ U ′ ⊂ Σ with u(z) = u(z′) but
u(U \ {z}) ∩ u(U ′ \ {z′}) = ∅.

The lemmas quoted above imply that both of these sets are discrete. Both are
therefore finite, and the set Σ̇′ = u(Σ \ (Crit(u) ∪ ∆)) ⊂ W is then a smooth
submanifold of W with J-invariant tangent spaces, so it inherits a natural complex
structure j′ for which the inclusion (Σ̇′, j′) →֒ (W,J) is pseudoholomorphic. We
shall now construct a new Riemann surface (Σ′, j′) from which (Σ̇′, j′) is obtained

by removing a finite set of points. Let ∆̂ = (Crit(u) ∪ ∆)/ ∼, where two points
in Crit(u) ∪ ∆ are defined to be equivalent whenever they have neighborhoods in

Σ with identical images under u. Then for each [z] ∈ ∆̂, the branching lemma
provides an injective J-holomorphic map u[z] from the unit disk D onto the image
of a neighborhood of z under u. We define (Σ′, j′) by

Σ′ = Σ̇′ ∪Φ


 ⊔

[z]∈∆̂

D


 ,

where the gluing map Φ is the disjoint union of the maps u[z] : D\{0} → Σ̇′ for each

[z] ∈ ∆̂; since this map is holomorphic, the complex structure j′ extends from Σ̇′ to

Σ′. Combining the maps u[z] : D → W with the inclusion Σ̇′ →֒ W now defines a

pseudoholomorphic map v : (Σ′, j′)→ (W,J) which restricts to Σ̇′ as an embedding
and otherwise has at most finitely many critical points and double points. Moreover,
the restriction of u to Σ \ (Crit(u)∪∆) defines a holomorphic map to (Σ̇′, j′) which
extends by removal of singularities to a proper holomorphic map ϕ : (Σ, j)→ (Σ′, j′)
such that u = v ◦ ϕ. Its holomorphicity implies that it has positive degree. �
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We now begin with the analysis of the particular class of J-holomorphic curves
that are important in SFT. The next three lectures will focus on the linearized
problem, the goal being to prove that this linearization is Fredholm and to compute
its index. Using this along with the implicit function theorem and the Sard-Smale
theorem (on genericity of smooth nonlinear Fredholm maps), we will later be able
to show that moduli spaces of asymptotically cylindrical J-holomorphic curves are
smooth finite-dimensional manifolds under suitable genericity assumptions.

3.1. The linearization in Morse homology

Since Morse homology is the prototype for all Floer-type theories, we can gain
useful intuition by recalling how the analysis works for the linearization of the gradi-
ent flow problem in Morse theory. The basic features of the problem were discussed
already in §1.2.

Assume (M, g) is a closed n-dimensional Riemannian manifold, f :M → R is a
smooth function, and for two critical points x+, x− ∈ Crit(f), consider the moduli
space of parametrized gradient flow lines

M(x−, x+) :=

{
u ∈ C∞(R,M)

∣∣ u̇+∇f(u) = 0, lim
s→±∞

u(s) = x±

}
.

The map M(x−, x+) → M : u 7→ u(0) gives a natural identification ofM(x−, x+)
with the intersection between the unstable manifold of x− and the stable manifold
of x+ for the negative gradient flow, and we say the pair (g, f) is Morse-Smale if
f is Morse and this intersection is transverse, in which caseM(x−, x+) is a smooth
manifold with

dimM(x−, x+) = ind(x−)− ind(x+).

43
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This can all be proved using finite-dimensional differential topology, but since that
approach does not work in the study of Floer trajectories or holomorphic curves
in symplectizations, let us instead see how one proves it using nonlinear functional
analysis. For more details on the following discussion, see [Sch93].

Following the strategy laid out in §2.1, M(x−, x+) can be identified with the
zero set of a smooth section

σ : B → E : u 7→ u̇+∇f(u),
where B is a Banach manifold of maps u : R → M satisfying lims→±∞ u(s) = x±,
and E → B is a smooth Banach space bundle whose fibers Eu contain Γ(u∗TM).
The linearization Dσ(u) : TuB → Eu of this section at a zero u ∈ σ

−1(0) defines a
first-order linear differential operator

Du : Γ(u
∗TM)→ Γ(u∗TM)

which takes the form

Duη = ∇sη +∇η∇f
for any choice of symmetric connection ∇ on M . Taking suitable Sobolev comple-
tions of Γ(u∗TM), we are therefore led to consider bounded linear operators1 of the
form

(3.1) Du = ∇s +∇∇f : W k,p(u∗TM)→W k−1,p(u∗TM)

for k ∈ N and 1 < p < ∞, and the first task is to prove that whenever x+ and
x− satisfy the Morse condition, this is a Fredholm operator of index indDu =
ind(x−)− ind(x+).

Choose coordinates near x+ in which g looks like the standard Euclidean inner
product at x+. This induces a trivialization of u∗TM over [T,∞) for T > 0 suf-
ficiently large, and we are free to assume that the connection ∇ is the standard
one determined by these coordinates on [T,∞). Using the trivialization to identify
sections β ∈ Γ(u∗TM) over [T,∞) with maps f : [T,∞) → Rn, Du now acts on f
as

(3.2) (Duf)(s) = ∂sf(s) + A(s)f(s),

where A(s) ∈ Rn×n is the matrix of the linear transformation dX(s) : Rn → Rn,
with X(s) ∈ Rn being the coordinate representation of ∇f(u(s)) ∈ Tu(s)M . As
s→∞, the zeroth-order term in this expression converges to a symmetric matrix

A+ := lim
s→∞

A(s),

which is the coordinate representation of the Hessian ∇2f(x+). Any choice of coor-
dinates near x− produces a similar formula for Du over (−∞,−T ], A(s) converging
as s → −∞ to another symmetric matrix A− representing ∇2f(x−). Both the
Morse condition and the dimension ind(x−)− ind(x+) can now be expressed entirely

1We are ignoring an analytical subtlety: since u∗TM → R has no canonical trivialization and R

is noncompact, it is not completely obvious what the definition of the Sobolev space W k,p(u∗TM)
should be. We will return to this issue in a more general context in the next lecture.
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in terms of these two matrices: x± is Morse if and only if A± is invertible, and the
Fredholm index of Du will then be

ind(x−)− ind(x+) = dimE−(A−)− dimE−(A+),

where for any symmetric matrix A we denote by E−(A) the direct sum of all its
eigenspaces with negative eigenvalue. The main linear functional analytic result
underlying Morse homology can now be stated as follows (cf. [Sch93]):

Proposition 3.1. Assume k ∈ N and 1 < p < ∞. Suppose E → R is a
smooth vector bundle with trivializations fixed in neighborhoods of −∞ and +∞, and
D :W k,p(E)→ W k−1,p(E) is a first-order differential operator which asymptotically
takes the form (3.2) near ±∞ with respect to the chosen trivializations, where A(s)
is a smooth family of n-by-n matrices with well-defined asymptotic limits A± :=
lims→±∞A(s) which are symmetric. If A+ and A− are also invertible, then D is
Fredholm and

(3.3) ind(D) = dimE−(A−)− dimE−(A+).

�

Remark 3.2. The hypothesis that A± is invertible in Prop. 3.1 cannot be lifted:
indeed, suppose D is Fredholm but e.g. A+ has 0 in its spectrum. Then one can
easily perturb A(s) and hence A+ in two distinct ways producing two distinct values
of dimE−(A+), pushing the zero eigenvalue either up or down. This produces two
perturbed Fredholm operators that have different indices according to (3.3), but
they also belong to a continuous family of Fredholm operators, and must therefore
have the same index, giving a contradiction.

The formula (3.3) makes sense of course because E−(A±) are both finite-dimen-
sional vector spaces, but in Floer-type theories we typically encounter critical points
with infinite Morse index. With this in mind, it is useful to note that (3.3) can
be rewritten without explicitly referencing E−(A+) or E−(A−). Indeed, choose
a continuous path of symmetric matrices {Bt}t∈[−1,1] connecting B(−1) := A− to
B(1) := A+. The spectrum of Bt varies continuously with t in the following sense:
one can choose a family of continuous functions

{λj : [−1, 1]→ R}j∈I
for the index set I = {1, . . . , n} such that for every t ∈ [−1, 1], the set of eigenvalues
of Bt counted with multiplicity is {λj(t)}j∈I . The spectral flow from A− to A+ is
then defined as a signed count of the number of paths of eigenvalues that cross from
one side of zero to the other, namely (cf. Theorem 3.3)

µspec(A−, A+) := #
{
j ∈ I

∣∣ λj(−1) < 0 < λj(1)
}
−#

{
j ∈ I

∣∣ λj(−1) > 0 > λj(1)
}
.

The index formula (3.3) now becomes

ind(D) = µspec(A−, A+).

This description of the index has the advantage that it could potentially make
sense and give a well-defined integer even if A± were symmetric operators on an
infinite-dimensional Hilbert space: they might both have infinitely many positive
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and negative eigenvalues, but only finitely many that change sign along a path from
A− to A+. We will make this discussion precise in the next section.

3.2. Spectral flow

We will see in §3.3 that in Floer-type theories, the role of the symmetric linear
transformation TxM → TxM defined by the Hessian ∇2f(x) of a Morse function
f :M → R at a critical point is played by a certain class of symmetric operators on
the space of loops η : S1 → R2n, namely operators of the form

(3.4) (Aη)(t) := −J0 ∂tη(t)− S(t)η(t),
where J0 denotes the standard complex structure on R2n = Cn, and S : S1 →
End(R2n) is a smooth loop of symmetric matrices. The goal of this section is to
define a notion of spectral flow for operators of this type. Regarding A as an
unbounded linear operator on L2(S1,R2n) with dense domain H1(S1,R2n), we will
see that its spectrum consists of isolated real eigenvalues with finite multiplicity. We
shall prove:

Theorem 3.3. Assume {Ss : S1 → End(R2n)}s∈[−1,1] is a smooth family of loops
of symmetric matrices, and consider the corresponding 1-parameter family of un-
bounded linear operators

As = −J0∂t − Ss(t) : L2(S1,R2n) ⊃ H1(S1,R2n)→ L2(S1,R2n).

Then there exists a set of continuous functions

{λj : [−1, 1]→ R}j∈Z
such that for every s ∈ [−1, 1], the spectrum ofAs consists of the numbers {λj(s)}j∈Z,
each of which is an eigenvalue with finite multiplicity equal to the number of times
it is repeated as j varies in Z.

Moreover, if additionally A− := A−1 and A+ := A1 both have trivial kernel,
then the number µspec(A−,A+) ∈ Z defined by

#
{
j ∈ Z

∣∣ λj(−1) < 0 < λj(1)
}
−#

{
j ∈ Z

∣∣ λj(−1) > 0 > λj(1)
}

is well defined and depends only on A− and A+.

We will start by giving a more abstract definition of spectral flow as an inter-
section number between a path of symmetric index 0 Fredholm operators and the
subvariety of noninvertible operators. This relies on the general fact that spaces
of operators with kernel and cokernel of fixed finite dimensions form smooth finite-
codimensional submanifolds in the Banach space of all bounded linear operators.
We explain this fact in §3.2.1, and then specialize to the case of symmetric index 0
operators to define the abstract version of spectral flow in §3.2.2. In §3.2.3, we show
that the spectra of such operators vary continuously under small perturbations, and
in §3.2.4 we specialize further to operators of the form (3.4) and explain how to
interpret the abstract definition of spectral flow in terms of eigenvalues crossing the
origin in R, leading to a proof of Theorem 3.3.

Spectral flow can be defined more generally for certain classes of self-adjoint
elliptic partial differential operators, see e.g. [APS76,RS95], and standard proofs
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of its existence typically rely on perturbation results as in [Kat95] for the spectra of
self-adjoint operators. In the following presentation, we have chosen to avoid making
explicit use of self-adjointness and instead focus on the Fredholm property; in this
way the discussion is mostly self-contained and, in particular, does not require any
results from [Kat95].

3.2.1. Geometry in the space of Fredholm operators. Fix a field

F := R or C.

Given Banach spaces X and Y over F, denote by LF(X, Y ) the Banach space of
bounded F-linear maps from X to Y , with LF(X) := LF(X,X), and let

FredF(X, Y ) ⊂ LF(X, Y )

denote the open subset consisting of Fredholm operators. Recall that an operator
T ∈ LF(X, Y ) is Fredholm if its image is closed,2 and its kernel and cokernel
(i.e. the quotient cokerT := Y/ imT) are both finite dimensional. Its index is
defined as

indF(T) := dimF kerT− dimF cokerT ∈ Z.

The index defines a continuous and thus locally constant function FredF(X, Y )→ Z,
and for each i ∈ Z, we shall denote

FrediF(X, Y ) :=
{
T ∈ FredF(X, Y )

∣∣ ind(T) = i
}
.

We will often have occasion to use the following general construction. Given
T0 ∈ FredF(X, Y ), one can choose splittings into closed linear subspaces

X = V ⊕K, Y =W ⊕ C
such that K = kerT0, W = imT0, the quotient projection πC : Y → cokerT0

restricts to C ⊂ Y as an isomorphism, and T0|V defines an isomorphism from V
to W . Using these splittings, any other T ∈ FredF(X, Y ) can be written in block
form as

T =

(
A B
C D

)
,

with T0 itself written in this way as

(
A0 0
0 0

)
for some Banach space isomorphism

A0 : V →W . Let O ⊂ FredF(X, Y ) denote the open neighborhood of T0 for which
the block A is invertible, and define a map

(3.5) Φ : O → HomF(kerT0, cokerT0) : T 7→ D−CA−1B.

Lemma 3.4. The map Φ in (3.5) is smooth, and holomorphic in the case F = C,
and its derivative at T0 defines a surjective bounded linear operator LF(X, Y ) →
HomF(kerT0, cokerT0) of the form

dΦ(T0)H = πCH|kerT0,

2It is not strictly necessary to require that imT ⊂ Y be closed, as this follows from the
finite-dimensionality of the kernel and cokernel, cf. [AA02, Cor. 2.17].
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where πC denotes the natural projection Y → cokerT0. Moreover, there exists a
smooth function Ψ : O → LF(X) such that for every T ∈ O, Ψ(T) : X → X maps
ker Φ(T) ⊂ kerT0 isomorphically to kerT.

Proof. Smoothness, holomorphicity3 and the formula for the derivative are
easily verified from the given formula for Φ; in particular, since the blocks B and C
both vanish for T = T0, we have

dΦ(T0) : LF(X, Y )→ HomF(K,C)(
A′ B′

C′ D′

)
7→ D′.

The map Ψ : O → LF(X) = LF(V ⊕K) is defined by

Ψ(T) =

(
1 −A−1B
0 1

)
.

For each T, this is an isomorphism; indeed, its inverse is given by

Ψ(T)−1 =

(
1 A−1B
0 1

)
.

Then TΨ(T) =

(
A 0
C Φ(T)

)
, and sinceA is invertible, kerTΨ(T) = {0}⊕ker Φ(T).

�

Proposition 3.5. For each i ∈ Z and each nonnegative integer k ≥ i, the subset

Fredi,kF (X, Y ) :=
{
T ∈ FrediF(X, Y )

∣∣ dimF kerT = k and dimF cokerT = k − i
}

admits the structure of a smooth (and complex-analytic if F = C) finite-codimensional
Banach submanifold of LF(X, Y ), with

codimF Fred
i,k
F (X, Y ) = k(k − i).

Proof. Applying the implicit function theorem to the map Φ from Lemma 3.4
endows a neighborhood of T0 in Φ−1(0) ⊂ FredF(X, Y ) with the structure of a
smooth Banach submanifold with

codimFΦ
−1(0) = dimFHomF(kerT0, cokerT0) = k(k − i).

If F = C, then Φ is also holomorphic and Φ−1(0) is thus a complex-analytic sub-
manifold near T0. Now observe that for every T ∈ O,

dimF kerT = dimF ker Φ(T) ≤ dimF kerT0 = k,

with equality if and only if Φ(T) = 0, hence, since the index is locally constant, we

get Φ−1(0) = Fredi,kF (X, Y ) in a neighborhood of T0. �

3Holomorphicity in this infinite-dimensional setting means the same thing as usual: LC(X,Y )
and HomC(kerT0, cokerT0) both have natural complex structures if T0 ∈ FredC(X,Y ), and we
require dΦ(T) to commute with them for all T ∈ O.
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For real-linear operators of index 0, one can use Prop. 3.5 to define the following
“relative” invariant. Given two Banach space isomorphisms T± : X → Y that lie in
the same connected component of FredR(X, Y ), define

µspec
Z2

(T−,T+) ∈ Z2

as the parity of the number of times that a generic smooth path [−1, 1]→ Fred0
R(X, Y )

from T− to T+ passes through operators with nontrivial kernel. This is well
defined due to the following consequences of standard transversality theory (see
Exercise 3.6): first, generic paths {T(t) ∈ Fred0

R(X, Y )}t∈[−1,1] are transverse to

Fred0,k
R (X, Y ) for every k ∈ N, which implies via the codimension formula in Prop. 3.5

that they never intersect Fred0,k
R (X, Y ) for k ≥ 2, and their intersections with

Fred0,1
R (X, Y ) are transverse and thus isolated. Second, transversality also holds

for generic homotopies

[0, 1]× [−1, 1]→ Fred0
R(X, Y ) : (s, t) 7→ Ts(t)

with fixed end points between any pair of generic paths T0(t) and T1(t), so that the

set of intersections with Fred0,k
R (X, Y ) is again empty for k ≥ 2 and forms a smooth

1-dimensional submanifold in [0, 1]× [−1, 1] for k = 1. This submanifold, moreover,
is disjoint from [0, 1] × {−1, 1} since Ts(±1) = T±, and it is also compact since
the set of T ∈ Fred0

R(X, Y ) with nontrivial kernel is a closed subset. We therefore
obtain a compact 1-dimensional cobordism between the intersection sets of T0 and
T1 respectively with Fred0,1

R (X, Y ), implying that the count of intersections modulo 2
does not depend on the choice of generic path.

Exercise 3.6. Convince yourself that the standard results (as in e.g. [Hir94,
§3.2] about generic transversality of intersections between smooth maps f :M → N
and submanifolds A ⊂ N continue to hold—with minimal modifications to the
proofs—when N is an infinite-dimensional Banach manifold and A ⊂ N has finite
codimension.

Exercise 3.7. For matrices A± ∈ GL(n,R), show that µspec
Z2

(A−, A+) = 0 if and
only if detA+ and detA− have the same sign.

3.2.2. Symmetric operators of index zero. We now add the following as-
sumptions to the setup from the previous subsection:

• Y is a Hilbert space H over F, with inner product denoted by 〈 , 〉H;
• X is an F-linear subspace D ⊂ H, carrying a Banach space structure for
which the inclusion D →֒ H is a compact linear operator.

The notation D = X is motivated by the fact that if T ∈ LF(D,H), then we can
also regard T as an unbounded operator on H with domain D and thus consider
the spectrum of T, see §3.2.3 below.

Since H is a Hilbert space, the space LF(H) of bounded linear operators from
H to itself contains a distinguished closed linear subspace

L
sym
F (H) ⊂ LF(H),

consisting of self-adjoint operators. For operators that are bounded from D to H
but not necessarily defined or bounded on H, there is also the space of symmetric
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operators

L
sym
F (D,H) :=

{
T ∈ LF(D,H)

∣∣ 〈x,Ty〉H = 〈Tx, y〉H for all x, y ∈ D
}
.

Important examples of symmetric operators are those which are self-adjoint (see
Remark 3.11 below), though for our purposes, it will suffice to restrict attention to
symmetric operators that are also Fredholm with index 0. It turns out that the space
of symmetric operators in Fred0,1

F (D,H) is a canonically co-oriented hypersurface in
L

sym
F (D,H), so that the invariant µspec

Z2
(T−,T+) defined above has a natural integer-

valued lift when T± are symmetric. We will need a slightly more specialized version
of this statement in order to give a general definition of spectral flow.

In the following, we let

Fredsym
F (D,H) := Fred0

F(D,H) ∩L
sym
F (D,H)

denote the space of symmetric Fredholm operators with index 0, and for k ∈ N,

Fredsym,k
F (D,H) := Fredsym

F (D,H) ∩ Fred0,k
F (D,H).

Given Tref ∈ Fredsym
F (D,H), consider the space

Fredsym
F (D,H,Tref) :=

{
Tref +K : D → H

∣∣ K ∈ L
sym
F (H)

}
.

Note that the restriction of each K ∈ LF(H) to D is a compact operator D → H,
thus Fredsym

F (D,H,Tref) has a natural continuous inclusion into Fredsym
R (D,H). It is

also an affine space over L
sym
F (H) and can thus be regarded naturally as a smooth

Banach manifold locally modeled on L
sym
F (H); in particular, its tangent spaces are

TT (Fredsym
F (D,H,Tref)) = L

sym
F (H).

A remark about the case F = C is in order: L
sym
C (D,H) is a real -linear and not a

complex subspace of LC(D,H), thus Fredsym
C (D,H,Tref) is a real Banach manifold

but does not carry a natural complex structure.

Lemma 3.8. For any T ∈ L
sym
F (D,H) that is Fredholm with index 0, kerT is the

orthogonal complement of imT in H, hence there exist splittings into closed linear
subspaces

D = V ⊕K, H =W ⊕ C
where K = C = kerT, W = imT and V = W ∩ D.

Proof. If x ∈ K := kerT, then symmetry implies 〈x,Ty〉H = 〈Tx, y〉H = 0
for all y ∈ D, hence K ⊂ W⊥, where W := imT. But since indT = 0, the
dimension of kerT equals the codimension of imT, implying that K already has the
largest possible dimension for a subspace that intersects W trivially, and therefore
W ⊕K = H. Since K is also a subspace of D and the latter is a subspace of H, any
x ∈ D can be written uniquely as x = v + k where k ∈ K and v ∈ W ∩ D =: V .
The continuous inclusion of D into H and the fact that W is closed in H imply that
V is a closed subspace of D. �

We now have the following modification of Prop. 3.5.
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Proposition 3.9. For each integer k ≥ 0, the subset

Fredsym,k
F (D,H,Tref) :=

{
T ∈ Fredsym

F (D,H,Tref)
∣∣ dimF kerT = k

}

is a smooth finite-codimensional Banach submanifold of Fredsym
F (D,H,Tref), with

codimR Fred
sym,k
F (D,H,Tref) =

{
k(k + 1)/2 if F = R,

k2 if F = C.

In particular, Fredsym,1
F (D,H,Tref) is a submanifold of Fredsym

F (D,H,Tref) with codi-
mension 1, and moreover, it carries a canonical co-orientation.

Proof. Given T0 ∈ Fredsym,k
F (D,H,Tref), fix the splittings D = V ⊕ K and

H = W ⊕ K as in Lemma 3.8. Using these in the construction of the map Φ
from (3.5) produces a neighborhood O ⊂ Fredsym

F (D,H,Tref) of T0 such that, by
Lemma 3.4, {T ∈ O | dimF kerT = k} = Φ−1(0), where

Φ : O → EndF(K) :

(
A B
C D

)
7→ D−CA−1B.

Since the splittings are orthogonal, an element T =

(
A B
C D

)
∈ O is symmetric if

and only if

〈x,Ay〉H = 〈Ax, y〉H for all x, y ∈ V ,
〈x,Dy〉H = 〈Dx, y〉H for all x, y ∈ K,
〈x,By〉H = 〈Cx, y〉H for all x ∈ V , y ∈ K,
〈x,Cy〉H = 〈Bx, y〉H for all x ∈ K, y ∈ V ,

and it follows then that Φ(T) ∈ Endsym
F (K), where Endsym

F (K) ⊂ EndF(K) is the real
vector space of symmetric (or Hermitian when F = C) linear maps on (K, 〈 , 〉H).
We thus have O∩Fredsym,k

F (D,H,Tref) = Φ−1(0) with Φ regarded as a smooth map
O ∩ Fredsym

F (D,H,Tref)→ Endsym
F (K). The derivative at T0 again takes the form

dΦ(T0) : L
sym
F (H)→ Endsym

F (K) :

(
A′ B′

C′ D′

)
7→ D′,

where now the block matrix represents an element of L
sym
F (H) with respect to the

splitting H = W ⊕K. This operator is evidently surjective, hence by the implicit
function theorem, Φ−1(0) is a smooth Banach submanifold with codimension equal
to dimR End

sym
F (K).

Finally, we observe that in the case k = 1, the above identifies Fredsym,1
F (D,H,Tref)

locally with the zero set of a submersion to Endsym
F (K), which is a real 1-dimensional

vector space since K is a 1-dimensional vector space over F. The canonical isomor-
phism

R→ Endsym
F (K) : a 7→ a1

thus determines a co-orientation on Fredsym,1
F (D,H,Tref). �
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The canonical co-orientation of Fredsym,1
F (D,H,Tref) makes it natural to define

signed intersection numbers between Fredsym,1
F (D,H,Tref) and smooth paths in the

ambient space Fredsym
F (D,H,Tref). The codimensions of Fredsym,k

F (D,H,Tref) for
each k ≥ 2 are still at least 3, hence large enough to ensure that generic paths or
homotopies of paths will never intersect them. The following notion is therefore
independent of choices.

Definition 3.10. Suppose T+ : T− ∈ Fredsym
F (D,H,Tref) are both Banach

space isomorphisms D → H. The spectral flow

µspec(T−,T+) ∈ Z

from T− to T+ is then defined as the signed count of intersections of T : [−1, 1]→
Fredsym

F (D,H,Tref) with Fredsym,1
F (D,H,Tref), where the latter is assumed to carry

the co-orientation given by Prop. 3.9, and T : [−1, 1] → Fredsym
F (D,H,Tref) is any

smooth path that is transverse to Fredsym,k
F (D,H,Tref) for every k ≥ 1 and satisfies

T(±1) = T±.

3.2.3. Perturbation of eigenvalues. Continuing in the setting of the previous
subsection, we shall now regard each T ∈ Fredsym

F (D,H,Tref) as an unbounded
operator on H with domain D, see e.g. [RS80, Chapter VIII]. Notice that for each
scalar λ ∈ F, the operator T−λ also belongs to Fredsym

F (D,H,Tref). The spectrum

σ(T) ⊂ F

of T is defined as the set of all λ ∈ F for which T − λ : D → H does not ad-
mit a bounded inverse. In particular, λ ∈ σ(T) is an eigenvalue of T whenever
T− λ : D → H has nontrivial kernel, and the dimension of this kernel is called the
multiplicity of the eigenvalue. We call λ a simple eigenvalue if it has multiplic-
ity 1. By a standard argument familiar to both mathematicians and physicists, the
eigenvalues of a symmetric complex-linear operator are always real.

Remark 3.11. If D ⊂ H is dense, then the adjoint of T is defined as an
unbounded operator T∗ with domain D∗ satisfying

〈x,Ty〉H = 〈T∗x, y〉H for all x ∈ D∗, y ∈ D,
where D∗ is the set of all x ∈ H such that there exists z ∈ H satisfying 〈x,Ty〉H =
〈z, y〉H for all y ∈ D. One says that T is self-adjoint if T = T∗, which means
both that T is symmetric and D = D∗. In many applications (e.g. in Exercise 3.29),
the latter amounts to a condition on “regularity of weak solutions”. This condition
implies that the inclusion kerT →֒ (imT)⊥—valid for all symmetric operators—is
also surjective, so if T : D → H is Fredholm, it is then automatic that ind(T) = 0.

Proposition 3.12. Assume T0 ∈ Fredsym
F (D,H,Tref). Then:

(1) Every λ ∈ σ(T0) is an eigenvalue with finite multiplicity.
(2) The spectrum σ(T0) is a discrete subset of R.
(3) Suppose λ0 ∈ σ(T0) is an eigenvalue with multiplicity m ∈ N and ǫ > 0 is

chosen such that no other eigenvalues lie in [λ0− ǫ, λ0 + ǫ]. Then T0 has a
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neighorhood O ⊂ Fredsym
F (D,H,Tref) such that for all T ∈ O,
∑

λ∈σ(T)∩[λ0−ǫ,λ0+ǫ]
m(λ) = m,

where m(λ) ∈ N denotes the multiplicity of λ ∈ σ(T).

Proof. For every λ ∈ F, T0 − λ is a Fredholm operator with index 0, so it is
a Banach space isomorphism D → H and thus has a bounded inverse if and only
if its kernel is trivial. The Fredholm property also implies that the kernel is finite
dimensional whenever it is nontrivial, so this proves (1).

For (2) and (3), let us assume F = C, as the case F = R will follow by taking
complexifications of real vector spaces. We claim therefore that σ(T0) is a discrete
subset of C. To see this, suppose λ0 ∈ R is an eigenvalue of T0 with multiplicity m,
so

T0 − λ0 ∈ Fredsym,m
C (D,H).

By Lemma 3.8, there are splittings D = V ⊕ K and H = W ⊕ K with K =
ker(T0 − λ0), W = im(T0 − λ0) and V = W ∩ D. Any scalar λ ∈ C appears in

block-diagonal form

(
λ 0
0 λ

)
with respect to these splittings, and the block form for

T0 is thus

T0 =

(
A0 + λ0 0

0 λ0

)

for some Banach space isomorphism A0 : V → W . Writing nearby operators

T ∈ FredC(D,H) as

(
A B
C D

)
, we can imitate the construction in (3.5) to pro-

duce neighborhoods O(T0) ⊂ FredC(D,H) of T0 and Dǫ(λ0) ⊂ C of λ0, admitting
a holomorphic map

Φ : O(T0)× Dǫ(λ0)→ EndC(K) : (T, λ) 7→ (D− λ)−C (A− λ)−1B

such that ker(T−λ) ∼= ker Φ(T, λ). The set of eigenvalues of T0 near λ0 is then the
zero set of the holomorphic function

(3.6) Dǫ(λ0)→ C : λ 7→ det Φ(T0, λ).

This function cannot be identically zero since there are no eigenvalues outside of R,
thus the zero at λ0 is isolated, proving (2).

To prove (3), note finally that if the neighborhood O(T0) ⊂ FredC(D,H) of T0

is sufficiently small, then for every T ∈ O(T0), the holomorphic function

fT : Dǫ(λ0)→ C : λ 7→ det Φ(T, λ)

has the same algebraic count of zeroes in Dǫ(λ0), all of which lie in [λ0 − ǫ, λ0 + ǫ]
if T is symmetric. Observe moreover that since

∂λΦ(T0, λ0) = −1 ∈ EndC(K),

we are free to assume after possibly shrinking ǫ and O(T0) that ∂λΦ(T, λ) is always
a nonsingular transformation in EndC(K). Since Φ(T, λ) is in Endsym

C (K) and thus
diagonalizable whenever T is symmetric and λ ∈ R, it follows via Exercise 3.13
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below that the order of any zero fT(λ) = 0 is precisely the multiplicity of λ as an
eigenvalue of T.

�

Exercise 3.13. Suppose U ⊂ C is an open subset, A : U → Cn×n is a holomor-
phic map and z0 ∈ U is a point at which A(z0) is noninvertible but diagonalizable,
and A′(z0) ∈ GL(n,C). Show that dimC kerA(z0) is the order of the zero of the
holomorphic function detA : U → C at z0.

The next result implies that for a generic path of symmetric index 0 operators
as appears in our definition of µspec(T−,T+), the spectral flow is indeed a signed
count of eigenvalues crossing 0.

Proposition 3.14. Suppose {Tt ∈ Fredsym
F (D,H,Tref)}t∈(−1,1) is a smooth path

and λ0 ∈ R is a simple eigenvalue of T0. Then:

(1) For sufficiently small ǫ > 0, there exists a unique smooth function λ :
(−ǫ, ǫ) → R such that λ(0) = λ0 and λ(t) is a simple eigenvalue of Tt for
each t ∈ (−ǫ, ǫ).

(2) The derivative λ′(0) is nonzero if and only if the intersection of the path
{Tt − λ0 ∈ Fredsym

F (D,H,Tref)}t∈(−1,1) with Fredsym,1
F (D,H,Tref) at t = 0

is transverse, and the sign of λ′(0) is then the sign of the intersection.

Proof. Using the same construction as in the proof of Proposition 3.12, we can
find small numbers ǫ > 0 and δ > 0 such that{

(t, λ) ∈ (−ǫ, ǫ)× (λ0 − δ, λ0 + δ)
∣∣ λ ∈ σ(Tt)

}
= Φ−1(0),

where

Φ : (−ǫ, ǫ)× (λ0 − δ, λ0 + δ)→ Endsym
F (K) : (t, λ) 7→ (Dt − λ)−Ct (At − λ)−1Bt,

and we write Tt =

(
At Bt

Ct Dt

)
with respect to splittings D = V ⊕K and H =W⊕K

with K = ker(T0 − λ0), W = im(T0 − λ0) and V = W ∩ D. In saying this, we’ve
implicitly used the assumption that λ0 is a simple eigenvalue, as it follows that
dimF ker(T− λ) cannot be larger than 1 for any T near T0 and λ near λ0, so that
Φ−1(0) catches all nearby eigenvalues. Simplicity also means that Endsym

F (K) is real
1-dimensional, and we have

∂tΦ(0, λ0) = ∂tDt|t=0, ∂λΦ(0, λ0) = −1.
The implicit function theorem thus gives Φ−1(0) near (0, λ0) the structure of a
smooth 1-manifold with tangent space at (0, λ0) spanned by the vector

∂t + (∂tDt|t=0) ∂λ,

where we are identifying ∂tDt|t=0 ∈ Endsym
F (K) with a real number via the natural

isomorphism Endsym
F (K) = R. Therefore Φ−1(0) can be written as the graph of

a uniquely determined smooth function λ, whose derivative at zero is a multiple
of ∂tDt|t=0. This proves both statements in the proposition, since by the proof of
Proposition 3.9, the intersection of {Tt}t∈(−1,1) with Fredsym,1

F (D,H,Tref) is trans-
verse if and only if ∂tDt|t=0 6= 0, and its sign is then the sign of ∂tDt|t=0. �
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The purpose of the next lemma is to prevent eigenvalues from escaping to ±∞
under smooth families of operators in Fredsym

F (D,H,Tref).

Lemma 3.15. Suppose {Kt ∈ L
sym
F (H)}t∈(a,b) is a smooth path of symmetric

bounded linear operators, and λ : (a, b)→ R is a smooth function such that for every
t ∈ (a, b), λ(t) is a simple eigenvalue of Tt := Tref+Kt ∈ Fredsym

F (D,H,Tref). Then

|λ̇(t)| ≤ ‖∂tKt‖L (H) for all t ∈ (a, b).

Proof. Since {Tt − λ(t) ∈ Fredsym
F (D,H,Tref)}t∈(a,b) is a smooth family of

operators in FredF(D,H) with 1-dimensional kernel, one can use the local families
of isomorphisms Ψ(Tt − λ(t)) ∈ LF(D) from Lemma 3.4 to find a smooth family of
eigenvectors x(t) ∈ ker(Tt − λ(t)) for t ∈ (a, b). Normalize these so that ‖x(t)‖H =
1 for all t. Then 0 = ∂t〈x(t), x(t)〉H = 〈ẋ(t), x(t)〉H + 〈x(t), ẋ(t)〉H and λ(t) =

〈x(t),Ttx(t)〉H, so writing K̇t := ∂tKt = ∂tTt, we have

λ̇(t) = ∂t〈x(t),Ttx(t)〉H = 〈x(t), K̇tx(t)〉H + 〈ẋ(t),Ttx(t)〉H + 〈x(t),Ttẋ(t)〉H
= 〈x(t), K̇tx(t)〉H,

as the last two terms in the first line become λ(t) [〈ẋ(t), x(t)〉H + 〈x(t), ẋ(t)〉H] = 0
since Tt is symmetric and Ttx(t) = λ(t)x(t). We obtain

|λ̇(t)| ≤ ‖x(t)‖H‖K̇t‖L (H)‖x(t)‖H = ‖K̇t‖L (H).

�

3.2.4. Homotopies of eigenvalues. Specializing further, we now set H and
D equal to the specific real Hilbert spaces

H := L2(S1,R2n), D := H1(S1,R2n),

and set Tref := −J0 ∂t, where J0 denotes the standard complex structure on R2n =
Cn. Observe that any bounded linear operator on L2 determines a compact operator
H1 → L2 via composition with the compact inclusion. In particular, we shall
consider compact perturbations of −J0 ∂t in the form

(3.7) A = −J0 ∂t − S(t)
with S : S1 → Endsym

R (R2n) smooth. It is straightforward to check that this operator
is symmetric with respect to the L2-product since S(t) is symmetric for every t. The
following then implies that A ∈ Fredsym

R (D,H,Tref).

Lemma 3.16. The operator −J0 ∂t : H1(S1,R2n)→ L2(S1,R2n) is Fredholm with
index 0.

Proof. Since J0 defines an isomorphism, it suffices actually to show that the
ordinary differential operator

∂t : H
1(S1,R2n)→ L2(S1,R2n)

is Fredholm with index 0. The kernel of this operator is the space of constant
functions S1 → R2n, which has dimension 2n. To compute the dimension of the
cokernel, we observe that if f = ∂tF lies in the image of this operator, we have∫
S1 f(t) dt = 0 since F is periodic in t. Conversely, if

∫
S1 f(t) dt = 0 with f ∈
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L2(S1,R2n), then the function F (s) =
∫ s
0
f(t) dt is periodic in s and defines an

element of H1(S1,R2n) satisfying ∂tF = f . Hence the image of ∂t is exactly the set

im(∂t) =

{
f ∈ L2(S1,R2n)

∣∣∣∣
∫

S1

f(t) dt = 0

}
,

which has codimension 2n. �

The proof of Theorem 3.3 requires only one more technical ingredient, whose
proof is given in Appendix C and should probably be skipped on first reading unless
you have already read Lecture 7 or seen similar applications of the Sard-Smale
theorem. You might however find the result plausible in accordance with the notion
that maps from 2-dimensional domains, such as a map of the form

(−1, 1)× R→ Fredsym
R (D,H,Tref) : (t, λ) 7→ Tt − λ

should generically not intersect submanifolds that have codimension 3 or more, such
as Fredsym,k

R (D,H,Tref) when k ≥ 2.

Lemma 3.17. Fix a smooth map S : [−1, 1] × S1 → Endsym
R (R2n) and consider

the 1-parameter family of unbounded linear operators

As := −J0 ∂t − S(s, ·) : L2(S1,R2n) ⊃ H1(S1,R2n)→ L2(S1,R2n)

for s ∈ [−1, 1]. One can arrange after a C∞-small perturbation of S fixed at s = ±1
that the following conditions hold:

(1) For each s ∈ (−1, 1), all eigenvalues of As are simple.
(2) All intersections of the path

(−1, 1)→ Fredsym
R (D,H,Tref) : s 7→ As

with Fredsym,1
R (D,H,Tref) are transverse.

�

Proof of Theorem 3.3. Given a smooth family {As}s∈[−1,1] as stated in the
theorem, use Lemma 3.17 to obtain a C∞-small perturbation for which the eigen-
values are simple for s ∈ (−1, 1) and all intersections with Fredsym,1

R (D,H) are
transverse. Proposition 3.14 then implies that the eigenvalues depend smoothly
on s, and Lemma 3.15 imposes a uniform bound on their derivatives with respect
to s so that each one varies only in a bounded subset of R for s ∈ (−1, 1). The
smooth families of eigenvalues for s ∈ (−1, 1) therefore extend to continuous families
for s ∈ [−1, 1] since the space of noninvertible Fredholm operators with index 0 is
closed. Proposition 3.12 ensures moreover that these continuous families hit every
eigenvalue with the correct multiplicity at s = ±1, and by Proposition 3.14, the
formula for µspec(A−,A+) stated in the theorem is correct for the perturbed family
with simple eigenvalues and transverse crossings. To obtain the same result for the
original family, suppose we have a sequence of perturbations {Aν

s}s∈[−1,1] converging
in C∞ as ν → ∞ to {As}s∈[−1,1]. Lemma 3.15 then provides a uniform C1-bound
for each sequence of smooth families of eigenvalues, so they have C0-convergent sub-
sequences as ν → ∞, giving rise to the continuous families in the statement of the
theorem. �
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Remark 3.18. It is important to understand that the definition of spectral flow
depends on the particular co-orientation of Fredsym,1

F (D,H,Tref) that arose in the
proof of Prop. 3.9; we saw in Prop. 3.14 that this is indeed the right co-orientation
to use if we want to interpret signed intersections with Fredsym,1

F (D,H,Tref) as
signed crossing numbers of eigenvalues. In the non-symmetric setting of §3.2.1,
one can show that Fred0,1

R (X, Y ) is also co-orientable; this is obvious in the finite-

dimensional case since Fred0,1
R (Rn,Rn) is then a regular level set of the determinant

function. Moreover, Fred0,1
R (Rn,Rn) is connected (see Exercise 3.19 below), so the

co-orientation is unique up to a sign. One can therefore lift the Z2-valued spectral
flow of §3.2.1 to Z, but as in Exercise 3.7, the result will be a different and much
less interesting invariant than µspec(A−, A+), as its value will always be either 0 (if
detA− and detA+ have the same sign) or ±1 (if they don’t). The reason for the
discrepancy is that the canonical co-orientation of Fredsym,1

R (D,H,Tref) must gen-
erally differ on some connected components from any possible co-orientation of the
larger hypersurface Fred0,1

R (D,H) ⊂ Fred0
R(D,H).

Exercise 3.19. Show that the space Fred0,1
R (R2,R2) of rank 1 matrices in R2×2 is

connected, but the space Fredsym,1
R (R2,R2) of symmetric rank 1 matrices is not, and

that the canonical co-orientation of Fredsym,1
R (R2,R2) coming from Prop. 3.9 differs

on some components from any possible co-orientation of Fred0,1
R (R2,R2) ⊂ R2×2.

Hint: A non-symmetric 2-by-2matrix may have rank 1 even if both of its eigenvalues

are 0. For symmetric matrices this cannot happen.

Exercise 3.20. Find a smooth path A : [−1, 1] → R2×2 of symmetric matrices
such that A± := A(±1) are both invertible and µspec(A−, A+) = 2, but A+ and A−
can also be connected by a smooth path of (not necessarily symmetric) invertible
matrices in R2×2.

3.3. The Hessian of the contact action functional

Before returning to contact geometry, let’s quickly revisit the Floer homology for
a time-dependent Hamiltonian {Ht :M → R}t∈S1 on a symplectic manifold (M,ω).
In Lecture 1, we introduced the symplectic action functionalAH : C∞

contr(S
1,M)→ R

and wrote down the formula

∇AH(γ) = Jt(γ) (γ̇ −Xt(γ)) ∈ Γ(γ∗TM) =: TγC
∞
contr(S

1,M)

for the “unregularized” gradient of AH at a contractible loop γ ∈ C∞
contr(S

1,M).
Here Xt denotes the Hamiltonian vector field and Jt is a time-dependent family of
compatible almost complex structures, which determines the L2-product

〈η1, η2〉L2 =

∫

S1

ω(η1(t), Jtη2(t)) dt.

The critical points of AH are the loops γ such that ∇AH(γ) = 0. Formally, the
Hessian of AH at γ ∈ Crit(AH) is the “linearization of AH at γ,” which gives a
linear operator

Aγ := ∇2AH(γ) : Γ(γ∗TM)→ Γ(γ∗TM).
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To write it down, one can choose any connection ∇ on M , and choose for η ∈
Γ(γ∗TM) a smooth family {γρ : S1 →M}ρ∈(−ǫ,ǫ) with γ0 = γ and ∂ργρ|ρ=0 = η, and
then compute

Aγη := ∇ρ [∇AH(γρ)]|ρ=0 .

The result is independent of the choice of connection since ∇AH(γ) = 0.

Exercise 3.21. Show that if the connection ∇ onM is chosen to be symmetric,
then Aγη = Jt(∇tη −∇ηXt).

We now introduce the class of symmetric operators that appear in asymptotic
formulas in SFT. Fix a (2n − 1)-dimensional contact manifold (M, ξ) with contact
form α, induced Reeb vector field Rα, and a complex structure J : ξ → ξ compatible
with the symplectic structure dα|ξ. Let

πξ : TM → ξ

denote the projection along Rα. The contact action functional is defined by

Aα : C∞(S1,M)→ R : γ 7→
∫

S1

γ∗α.

The first variation of this functional for γ ∈ C∞(S1,M) and η ∈ Γ(γ∗TM) is

dAα(γ)η =

∫

S1

dα(η, γ̇) dt = −
∫

S1

dα(πξγ̇, η) dt.

The functional has a built-in degeneracy since it is parametrization-invariant; in
particular, dAα(γ)η = 0 whenever η points in the direction of the Reeb vector field,
a symptom of the fact that closed Reeb orbits always come in families related to
each other by reparametrization. A loop γ : S1 → M is critical for Aα if and
only if γ̇ is everywhere tangent to Rα, allowing for an infinite-dimensional family
of distinct perturbations—however, there exist preferred parametrizations, namely
those for which γ̇ is a constant multiple of Rα, meaning

(3.8) γ̇ = T · Rα(γ), T := Aα(γ).
Such a loop corresponds to a T -periodic solution x : R → M to ẋ = Rα(x), where
γ(t) = x(T t).

The discussion above indicates that we cannot derive a “Hessian” of Aα in the
same straightforward way as in Floer homology, as the resulting operator will always
have nontrivial kernel due to the degeneracy in the Rα direction. To avoid this, we
shall consider only preferred parametrizations γ : S1 → M of the form (3.8), and
perturbations in directions tangent to ξ, which is transverse to every Reeb orbit.
For η ∈ Γ(γ∗ξ), we then have

dAα(γ)η =

∫

S1

dα(−Jπξγ̇, Jη) dt = 〈−Jπξ γ̇, η〉L2,

where we define an L2-product for sections of γ∗ξ by

(3.9) 〈η, η′〉L2 :=

∫

S1

dα(η, Jη′) dt.
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It therefore seems sensible to write

∇Aα(γ) := −Jπξγ̇ ∈ Γ(γ∗ξ),

and we shall define the Hessian at a critical point γ as the linearization in ξ directions,
i.e.

∇2Aα(γ) : Γ(γ∗ξ)→ Γ(γ∗ξ).

Given η ∈ Γ(γ∗ξ), choose a smooth family {γρ : S1 → M}ρ∈(−ǫ,ǫ) with γ0 = γ and
∂ργρ|ρ=0 = η, and fix a symmetric connection ∇ on M . Since πξγ̇ = 0, the covariant
derivative of ∇Aα(γρ) at ρ = 0 is then

∇ρ (−Jπξγ̇ρ)|ρ=0 = −J ∇ρ (πξ γ̇ρ)|ρ=0 = −J ∇ρ [γ̇ρ − α(γ̇ρ)Rα(γρ)]|ρ=0

= −J (∇tη − T∇ηRα − ∂ρ [α(γ̇ρ)] |ρ=0 · Rα(γ)) .

In the last term, we can write ∂ρ [α(γ̇ρ)] |ρ=0 = dα(η, γ̇) + ∂t [α(η)] = 0 since γ̇ =
TRα(γ) and α(η) = 0 for η ∈ Γ(γ∗ξ). One can now check that the remaining terms
define a section of γ∗ξ, thus we are led to the following definition.

Definition 3.22. Given a loop γ : S1 → M parametrizing a closed Reeb orbit
in (M, ξ = kerα) with period T ≡ α(γ̇), the asymptotic operator associated to γ
is the first-order differential operator on γ∗ξ defined by

Aγ : Γ(γ
∗ξ)→ Γ(γ∗ξ) : η 7→ −J(∇tη − T∇ηRα)

Exercise 3.23. Show thatAγ is symmetric with respect to the L2 inner product
(3.9) on Γ(γ∗ξ). Moreover, γ is nondegenerate (see §1.3) if and only if kerAγ is
trivial. Hint for nondegeneracy: Consider the pullback of γ∗ξ via the cover R →
S1 = R/Z, and show that solutions to ∇tη − T∇ηRα = 0 on the pullback are given

by operating on ξγ(0) with the linearized Reeb flow. To see this, try differentiating

families of solutions to the equation ẋ = TRα(x).

Remark 3.24. Another way of phrasing the hint in the the above exercise is

as follows: Aγ can also be written as −J∇̂t, where ∇̂t is the unique symplectic
connection on (γ∗ξ, dα) for which parallel transport is given by the linearized Reeb
flow.

You might be slightly concerned about the sign difference between the two for-
mulas we’ve derived for asymptotic operators in contact geometry and in Floer
homology. I also find this troubling, but the discrepancy seems to originate from
the fact that our account of Floer homology has referred always to the negative gra-
dient flow of AH, while SFT is actually defined via the positive gradient flow of Aα.
The words “gradient flow” in SFT must in any case be interpreted very loosely. If

u : [0,∞)× S1 → R×M
is the cylindrical end of a finite-energy J-holomorphic curve for some J ∈ J (α) as
we described in Lecture 1, then u(s, t) does not satisfy anything so straightforward
as ∂s −∇Aα(u(s, ·)) = 0, but it does satisfy

πξ∂su+ Jπξ∂tu = 0,

which can be interpreted as the projection of a positive gradient flow equation to the
contact bundle. This observation is a local symptom of a more important global fact
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that follows from Stokes’ theorem: any asymptotically cylindrical J-holomorphic
curve u : Σ̇→ R×M with positive and negative punctures Γ± asymptotic to orbits
{γz}z∈Γ± satisfies

∑

z∈Γ+

Aα(γ)−
∑

z∈Γ−

Aα(γ) =
∫

Σ̇

u∗dα ≥ 0.

This generalizes the basic fact in Floer homology that flow lines decrease action and,
conversely, have their energy controlled by the action.

We would now like to develop some of the general properties of asymptotic
operators. Recall that on any symplectic vector bundle (E, ω), a compatible complex
structure J determines a Hermitian inner product

〈v, w〉 = ω(v, Jw) + iω(v, w),

and conversely, any Hermitian inner product on a complex vector bundle determines
a symplectic structure via the same relation. For this reason, we shall refer to any
vector bundle E with a compatible pair (J, ω) as a Hermitian vector bundle. A
unitary trivialization of such a bundle is a trivialization that identifies fibers with
R2n such that J and ω become the standard complex structure J0 and symplectic
structure ω0 respectively.

Definition 3.25. Fix a Hermitian vector bundle (E, J, ω) over S1. An asymp-
totic operator on (E, J, ω) is any real-linear differential operator A : Γ(E)→ Γ(E)
that takes the form

(3.10) A : C∞(S1,R2n)→ C∞(S1,R2n) : η 7→ −J0∂tη − S(t)η
in unitary trivializations, where S : S1 → End(R2n) is a smooth loop of symmetric
matrices.

Equivalently, an asymptotic operator on (E, J, ω) is any operator of the form
−J∇ where ∇ is a symplectic connection on E.

Exercise 3.26. Show that any asymptotic operator on a Hermitian vector bun-
dle (E, J, ω) over S1 is symmetric with respect to the real L2 bundle metric

〈η1, η2〉L2 :=

∫

S1

ω(η1(t), Jη2(t)) dt.

Exercise 3.27. Show that the asymptotic operator Aγ for a closed Reeb orbit
γ is also an asymptotic operator on (γ∗ξ, J, dα) in the sense of Definition 3.25.

For functional analytic purposes, we shall regard asymptotic operators on Her-
mitian bundles (E, J, ω) as bounded real-linear operators

A : H1(E)→ L2(E).

By Lemma 3.16, all asymptotic operators are then Fredholm with index 0, and any
two such operators on the same bundle are compact perturbations of each other.
Regarding them alternatively as unbounded symmetric operators on L2(E), the
spectral flow

µspec(A−,A+) ∈ Z



Lectures on Symplectic Field Theory 61

between two such operatorsA± with trivial kernel is defined by choosing any unitary
trivialization to write both in the form −J0 ∂t − S(t), and it is independent of this
choice. The following is what we mean when we say that critical points of the action
functional have “infinite Morse index” and “infinite Morse co-index”:

Proposition 3.28. Every asymptotic operator has infinitely many eigenvalues
of both signs.

Proof. It is easy to verify that this is true for A0 := −J0∂t : H1(S1,R2n) →
L2(S1,R2n); see the proof of theorem 3.35 below. It is therefore also true for A0 + ǫ
for any ǫ ∈ R, and this operator has trivial kernel whenever ǫ 6∈ 2πZ. For any
other trivialized asymptotic operator A with 0 6∈ σ(A), the result then follows from
Theorem 3.3 since µspec(A0 + ǫ,A) is finite, and this is precisely the signed count
of eigenvalues which change sign. The condition 0 6∈ σ(A) can then be lifted by
replacing A with A+ ǫ. �

Exercise 3.29. Show that asymptotic operators are self-adjoint (as unbounded
operators on L2 with domain H1) in the sense of Remark 3.11.

3.4. The Conley-Zehnder index

We are now in a position to define a suitable replacement for the Morse index in
the context of SFT. We shall say that an asymptotic operator A is nondegenerate
whenever 0 6∈ σ(A). We will begin by defining the Conley-Zehnder index as an
integer-valued invariant of homotopy classes of nondegenerate asymptotic operators
on the trivial Hermitian bundle S1 × R2n; the definition on arbitrary Hermitian
bundles will then depend on a choice of trivialization.

It is customary elsewhere in the literature (see e.g. [SZ92]) to adopt a somewhat
different perspective on the Conley-Zehnder index, in which it defines an integer-
valued invariant of connected components of the space of “nondegenerate symplectic
arcs” {

Ψ ∈ C0([0, 1], Sp(2n))
∣∣ Ψ(0) = 1 and 1 6∈ σ(Ψ(1))

}
.

These are two different perspectives on the same notion. A dictionary from ours
to the other perspective is provided by associating to any trivialized nondegenerate
asymptotic operator A = −J0∂t − S(t) the symplectic arc Ψ defined by the initial
value problem

(−J0∂t − S(t))Ψ(t) = 0, Ψ(0) = 1.

Conversely, any smooth symplectic arc determines via this same formula a smooth
path of symmetric matrices S : [0, 1] → End(R2n), producing a mild generalization
of our notion of an asymptotic operator.4

4If S(t) is not continuous on S1 but is continuous on [0, 1], then −J0∂t − S(t) cannot be
regarded as a linear operator on C∞(S1,R2n) but is still a very well-behaved symmetric Fredholm
operator from H1(S1) to L2(S1). All of the important functional analytic results in this lecture
can thus be generalized to allow this.
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Definition 3.30. The Conley-Zehnder index associates to every trivialized
nondegenerate asymptotic operator A : H1(S1,R2n) → L2(S1,R2n) as in (3.10) an
integer

µCZ(A) ∈ Z

determined uniquely by the following properties:

(1) Set µCZ(A) := 0 for the operator A = −J0∂t −
(
1 0
0 −1

)
.

(2) For any two nondegenerate operators A±, set

µCZ(A−)− µCZ(A+) := µspec(A−,A+).

Definition 3.31. Given a nondegenerate asymptotic operatorA on a Hermitian
bundle (E, J, ω) over S1 and a choice of complex trivialization τ for (E, J), the
Conley-Zehnder index of A with respect to τ is the integer

µτCZ(A) ∈ Z

defined by choosing any unitary trivialization homotopic to τ to write A as an
operator H1(S1,R2n)→ L2(S1,R2n) and then plugging in Definition 3.30.

If γ is a nondegenerate Reeb orbit γ in a (2n− 1)-dimensional contact manifold
(M, ξ = kerα), then for any complex trivialization τ of γ∗ξ → S1, the Conley-
Zehnder index of γ relative to τ is defined as

µτCZ(γ) := µτCZ(Aγ).

Remark 3.32. From the perspective of [SZ92], µτCZ(γ) is the Conley-Zehnder
index of the linearized Reeb flow along γ restricted to ξ, expressed via a choice of
unitary trivialization as a nondegenerate arc in Sp(2n− 2).

Exercise 3.33. Show that ifA1 andA2 are nondegenerate asymptotic operators
on Hermitian bundles E1 and E2 respectively, then A1⊕A2 defines a nondegenerate
asymptotic operator on E1 ⊕ E2, and given trivializations τj for j = 1, 2,

µτ1⊕τ2CZ (A1 ⊕A2) = µτ1CZ(A1) + µτ2CZ(A2).

The following is a functional-analytic version of the well-known fact that the
Conley-Zehnder index classifies homotopy classes of nondegenerate symplectic arcs.

Theorem 3.34. On any Hermitian bundle (E, J, ω)→ S1 with complex trivial-
ization τ , two nondegenerate asymptotic operatorsA± lie in the same connected com-
ponent of the space of nondegenerate asymptotic operators if and only if µτ

CZ
(A+) =

µτ
CZ
(A−).

Proof. Trivializing the bundle, we need to show that if A± = −J0∂t − S±(t)
satisfy µspec(A−,A+) = 0, then there exists a path of asymptotic operators between
them for which no eigenvalues cross 0. To see this, we can first choose any path
{At}t∈[−1,1] of asymptotic operators with A±1 = A±, and then use Lemma 3.17 to
add generic compact perturbations producing a family

{
A′
t ∈ Fredsym

R (H1, L2,A+)
}
t∈[−1,1]
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whose intersections with Fredsym,k
R (H1, L2,A+) are transverse for every k ≥ 1, hence

only simple eigenvalues cross 0 and they cross transversely. Any neighboring pair
of crossings with opposite signs can then be eliminated by changing {A′

t}t∈[−1,1] to
{A′

t + c(t)}t∈[−1,1] for a suitable choice of smooth function c : [−1, 1] → R. Since
the spectral flow is zero, one can repeat this modification until one obtains a path
of perturbed operators with no crossings, and it is a small perturbation of the path
of asymptotic operators {At + c(t)}t∈[−1,1]. Since A± are both nondegenerate, one
can assume moreover that all eigenvalues of At + c(t) stay a fixed distance δ > 0
away from 0, where δ is independent of the perturbation. One can therefore “turn
off the perturbation” as in the proof of Theorem 3.3, i.e. there exists a sequence of
perturbed paths {Aν

t }t∈[−1,1] converging to {At+c(t)} whose eigenvalues stay a fixed
distance away from 0, and the same is therefore true for the continuous families of
eigenvalues of At + c(t) obtained as ν →∞. �

To compute Conley-Zehnder indices, Exercise 3.33 shows that it suffices if we
know how to compute them for operators on Hermitian line bundles. The next two
theorems provide a tool for handling the latter.

Theorem 3.35. Let A = −J0∂t − S(t) : H1(S1,R2) → L2(S1,R2), where S(t)
is a smooth loop of symmetric 2-by-2 matrices. For each λ ∈ σ(A), denote the
corresponding eigenspace by Eλ ⊂ H1(S1,R2).

(1) Every nontrivial eigenfunction eλ ∈ Eλ is nowhere zero and thus has a
well-defined winding number wind(eλ) ∈ Z.

(2) Any two nontrivial eigenfunctions in the same eigenspace Eλ have the same
winding number.

(3) If λ, µ ∈ σ(A) satisfy λ < µ, then any two nontrivial eigenfunctions eλ ∈ Eλ
and eµ ∈ Eµ satisfy wind(eλ) ≤ wind(eµ).

(4) For every k ∈ Z, A has exactly two eigenvalues (counting multiplicity) for
which the corresponding eigenfunctions have winding number equal to k.

Proof. We follow the proof given in [HWZ95].
Observe first that (1) follows from the fact that nontrivial eigenfunctions are so-

lutions to an ODE, for which classical existence and uniqueness results are available.
Since the trivial map is a solution, every eigenfunction which vanishes at a point
must be itself trivial, by uniqueness.

To prove (2), let ν0 and ν1 be nontrivial eigenfunctions for the same eigenvalue λ.
If their winding numbers are different, then there exists t0 ∈ S1 at which ν1(t0) is a
nonzero real multiple of ν0(t0), so after rescaling, we can assume ν0(t0) = ν1(t0). But
ν0 and ν1 are both solutions to the same linear ODE, so this implies ν0(t) = ν1(t)
for all t and thus contradicts the assumption on the winding numbers.

We first prove the rest for the case S = 0 and the operator A0 = −J0∂t. Given
ν ∈ H1(S1,R2), written as ν(t) = (x(t), y(t)), we have that ν is an element of Eλ
for the operator A0 if and only (ẏ,−ẋ) = λ(x, y). This has solutions of the form

{
x(t) = A cos(λt)−B sin(λt)
y(t) = B cos(λt) + A sin(λt)

,
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for some constants A,B ∈ R, which are defined on S1 as long as λ ∈ 2πZ. In other
words, the spectrum of this operator is σ(A0) = 2πZ. Hence ν(t) = ν(0)eiλt, which
has winding number

wind(ν) =
λ

2π

Statements (2) and (3) are now obvious, and (4) follows from the observation that Eλ
is two-dimensional, so in this case each eigenvalue is to be counted with multiplicity
two.

For the general case, consider the path of asymptotic operators given by

{Aτ = −J0∂t − τS(t)}τ∈[0,1] .

Theorem 3.3 gives continuous families {λj : [0, 1] → R}j∈Z and {νj : [0, 1] →
H1(S1,R2)}j∈Z such that for every τ ∈ [0, 1], νj(τ) is an eigenfunction for the
operatorAτ with eigenvalue λj(τ), whose multiplicity is given by the number of i ∈ Z

for which λi(τ) = λj(τ), and such that λ2n+k(0) = 2πn, for k = 0, 1 (this eigenvalue
has multiplicity 2). Now, since the winding number is a homotopy invariant (hence
invariant under deformations), we have

wind(ν2n+k(τ)) = wind(ν2n+k(0)) = n,

for k = 0, 1. Moreover, since the winding only depends on the eigenvalue, the only
paths that can possibly meet are λ2n and λ2n+1, which implies that the multiplicity
of every eigenvalue λi(τ) is at most two, with equality where these two “branches”
meet. Hence (3) and (4) follow, where equality in (3) holds if and only if the two
branches of paths of eigenvalues with same winding number end up at different
points. �

The theorem implies the existence of a well-defined and nondecreasing function

σ(A)→ Z : λ 7→ wind(λ),

where wind(λ) is defined as wind(eλ) for any nontrivial eλ ∈ Eλ, and this function
attains every value exactly twice (counting multiplicity of eigenvalues). Since eigen-
values of A are isolated, we can therefore associate to any nondegenerate asymptotic
operator A on the trivial Hermitian line bundle its extremal winding numbers
and its parity,

α+(A) = min
λ∈σ(A)∩(0,∞)

wind(λ) ∈ Z,

α−(A) = max
λ∈σ(A)∩(−∞,0)

wind(λ) ∈ Z,

p(A) = α+(A)− α−(A) ∈ {0, 1}.

(3.11)

Theorem 3.36. If A is a nondegenerate asymptotic operator on the trivial Her-
mitian line bundle S1 × R2 → S1, then

µCZ(A) = 2α−(A) + p(A) = 2α+(A)− p(A).
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Proof. The operator A0 = −J0∂t −
(
1 0
0 −1

)
satisfies µCZ(A0) = 0 by def-

inition, and it has two constant eigenfunctions with eigenvalues of opposite signs,
hence

α−(A0) = α+(A0) = 0,

consistent with the stated formula. The general case then follows by computing
the spectral flow from A0 to any other nondegenerate operator A, and observing
that the winding number associated to any continuous family of eigenvalues (as in
Theorem 3.3) for a path {At}t∈[−1,1] of asymptotic operators cannot change. �

For any Hermitian line bundle (E, J, ω) over S1 with a nondegenerate asymptotic
operator A, we can similarly choose a complex trivialization τ to define the winding
numbers ατ±(A) ∈ Z and parity p(A) = ατ+(A) − ατ−(A) ∈ {0, 1}; note that the
dependence on τ cancels out in the last formula, so that p(A) is independent of
choices. We then can associate to any nondegenerate Reeb orbit γ in a contact
3-manifold (M, ξ = kerα) with a trivialization τ of γ∗ξ the integers ατ±(γ) and p(γ),
such that

µτCZ(γ) = 2ατ−(γ) + p(γ) = 2ατ+(γ)− p(γ)
holds.

Exercise 3.37. Given a Hermitian vector bundle (E, J, ω)→ S1 with two com-
plex trivializations τj : E → S1 × R2n for j = 1, 2, denote by

deg(τ1 ◦ τ−1
2 ) ∈ Z

the winding number of det g : S1 → C \ {0}, where g : S1 → GL(n,C) is the
transition map appearing in the formula τ1 ◦ τ−1

2 (t, v) = (t, g(t)v). Show that for
any asymptotic operator A on (E, J, ω),

µτ2CZ(A) = µτ1CZ(A) + 2 deg(τ2 ◦ τ−1
1 ).

Exercise 3.37 provides the useful formula

µτ2CZ(γ) = µτ1CZ(γ) + 2 deg(τ2 ◦ τ−1
1 )

for any two trivializations τ1, τ2 of ξ along a nondegenerate Reeb orbit γ. In partic-
ular, this shows that the parity

µZ2
CZ(γ) := [µτCZ(γ)] ∈ Z2

of the orbit does not depend on a choice of trivialization. We sometimes refer to
even orbits and odd orbits accordingly.

Exercise 3.38. Show that if a Reeb orbit γ : S1 → M in a contact 3-manifold
(M, ξ = kerα) is nondegenerate and has even parity, then the same is true for all of
its multiple covers

γk : S1 →M : t 7→ γ(kt), k ∈ N.
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Fredholm theory with cylindrical ends
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In this lecture we will study the class of linear Cauchy-Riemann type operators
that arise by linearizing the nonlinear equation for moduli spaces in SFT. We saw
in the previous lecture that linearizing PDEs over domains with cylindrical ends
naturally leads one to consider certain symmetric asymptotic operators (e.g. the
Hessian of a Morse function at its critical points), which have trivial kernel if and only
if a nondegeneracy (i.e. Morse) condition is satisfied. Our goal in this lecture is to
write down the SFT version of this story and show that the linear Cauchy-Riemann
type operators are Fredholm if their asymptotic operators are nondegenerate.

4.1. Cauchy-Riemann operators with punctures

The setup throughout this lecture will be as follows.
Assume (Σ, j) is a closed connected Riemann surface of genus g ≥ 0, Γ ⊂ Σ is a

finite set partitioned into two subsets

Γ = Γ+ ∪ Γ−,

and Σ̇ := Σ \ Γ denotes the resulting punctured Riemann surface. We shall fix
a choice of holomorphic cylindrical coordinate near each puncture z ∈ Γ±,
meaning the following. Given R ≥ 0, let (ZR

± , i) denote the half-cylinders

ZR
+ := [R,∞)× S1, ZR

− := (−∞,−R]× S1, Z± := Z0
±,

with complex structure i∂s = ∂t, i∂t = −∂s in coordinates (s, t) ∈ R × S1. The
standard half-cylinders Z± are each biholomorphically equivalent to the punctured
disk Ḋ := D \ {0} via the maps

ψ± : Z± → Ḋ : (s, t) 7→ e∓2π(s+it).

For z ∈ Γ±, we choose a closed neighborhood Uz ⊂ Σ of z with a biholomorphic
map

ϕz : (U̇z, j)→ (Z±, i),

67
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where U̇z := Uz \ {z}, such that ψ± ◦ ϕz : U̇z → Ḋ extends holomorphically to
Uz → D with z 7→ 0. One can always find such coordinates by choosing holomorphic
coordinates near z. We can thus view the punctured neighborhoods U̇z ⊂ Σ̇ as
cylindrical ends Z±.

Suppose (E, J) is a smooth complex vector bundle of rank m over (Σ̇, j). An
asymptotically Hermitian structure on (E, J) is a choice of Hermitian vector
bundles (Ez, Jz, ωz) of rank m associated to each puncture z ∈ Γ±, together with
choices of complex bundle isomorphisms

E|U̇z
→ pr∗2Ez

covering ϕz : U̇z → Z±, where pr2 : Z± → S1 denotes the natural projection to the
S1 factor. This isomorphism induces from any unitary trivialization τ of (Ez, Jz, ωz)
a complex trivialization

(4.1) τ : E|U̇z
→ Z± × R2m

over the cylindrical end, which we will call an asymptotic trivialization near z.
The bundle (Ez, Jz, ωz) will be referred to as the asymptotic bundle associated
to (E, J) near z.

Fixing asymptotic trivializations near every puncture, we can now define Sobolev
spaces of sections of E by

W k,p(E) :=
{
η ∈ W k,p

loc (E)
∣∣∣ ηz ∈ W k,p(Z̊±,R

2m) for every z ∈ Γ±
}
,

where ηz : Z± → R2m denotes the expression of η|U̇z
in terms of the asymptotic trivi-

alization, and we use the standard area form ds∧dt on Z± to define the norm. Since
S1 is compact, different choices of asymptotic trivialization give rise to equivalent
norms, however:

Exercise 4.1. Convince yourself that different choices of asymptotically Her-
mitian structure on E → Σ̇ can give rise to inequivalent W k,p-norms.

Any linear Cauchy-Riemann type operator on E has as its target the complex
vector bundle

F := HomC(T Σ̇, E),

so sections of F are the same thing as E-valued (0, 1)-forms. An asymptotic trivi-
alization τ as in (4.1) then also induces a complex trivialization

F |U̇z
→ Z± × R2m : λ 7→ τ(λ(∂s)),

where ∂s is the vector field on U̇z arising from its identification with Z±. This
trivialization yields a corresponding definition for the Sobolev spacesW k,p(F ), which
depend on the asymptotically Hermitian structure of E but not on the choices of
asymptotic trivializations. Having made these choices, a Cauchy-Riemann type
operator D : Γ(E)→ Γ(F ) always appears over U̇z as a linear map on C∞(Z±,R

2m)
of the form

(4.2) Dη(s, t) = ∂̄η(s, t) + S(s, t)η(s, t),

where ∂̄ := ∂s + J0∂t and S ∈ C∞(Z±,End(R
2m)).
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Definition 4.2. Suppose Az is an asymptotic operator on (Ez, Jz, ωz) and D is
a linear Cauchy-Riemann type operator on (E, J). We say that D is asymptotic to
Az at z if D appears in the form (4.2) with respect to an asymptotic trivialization
near z, with

‖S − S∞‖Ck(ZR
±) → 0 as R→∞

for all k ∈ N, where S∞(s, t) := S∞(t) is a smooth loop of symmetric matrices
such that Az appears in the corresponding unitary trivialization of (Ez, Jz, ωz) as
−J0∂t − S∞.

Recall that an asymptotic operator is called nondegenerate if 0 is not in its
spectrum, which means it defines an isomorphism H1 → L2. The objective of this
lecture will be to prove the following:

Theorem 4.3. Suppose (E, J) is an asymptotically Hermitian vector bundle
over (Σ̇, j), Az is a nondegenerate asymptotic operator on the associated asymptotic
bundle (Ez, Jz, ωz) for each z ∈ Γ, and D is a linear Cauchy-Riemann type operator
asymptotic to Az at each puncture z. Then for every k ∈ N and 1 < p <∞,

D : W k,p(E)→W k−1,p(F )

is Fredholm. Moreover, indD and kerD are each independent of k and p, the latter
being a space of smooth sections whose derivatives of all orders decay to 0 at infinity.

Remark 4.4. The asymptotic decay conditions on S(s, t) in Definition 4.2 can
be relaxed at the cost of limiting the range of k ∈ N for which Theorem 4.3 is
valid. To prove that D :W 1,p → Lp is Fredholm, it suffices to assume S(s, ·)→ S∞
uniformly as |s| → ∞.

The index of D is determined by a generalization of the Riemann-Roch formula
involving the Conley-Zehnder indices µτCZ(Az) that were introduced in the previous
lecture. We will postpone serious discussion of the index formula until the next
lecture, but here is the statement:

Theorem 4.5. In the setting of Theorem 4.3,

indD = mχ(Σ̇) + 2cτ1(E) +
∑

z∈Γ+

µτ
CZ
(Az)−

∑

z∈Γ−

µτ
CZ
(Az),

where τ is an arbitrary choice of asymptotic trivializations, cτ1(E) ∈ Z is the relative
first Chern number of E with respect to τ , and the sum is independent of this choice.

For the rest of this lecture, we maintain as standing assumptions that k ∈ N,
1 < p < ∞, and D is a linear Cauchy-Riemann type operator on E asymptotic at
the punctures to a fixed set of asymptotic operators {Az}z∈Γ. We will not always
need to assume that the Az are nondegenerate, so this condition will be specified
whenever it is relevant. For subdomains Σ0 ⊂ Σ̇, we will sometimes denote the
W k,p-norm on sections of E restricted to Σ0 by

‖η‖W k,p(Σ0) := ‖η‖W k,p(E|Σ0
),
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and we will use the same notation for sections of other bundles such as F =
HomC(T Σ̇, E) over this domain when there is no danger of confusion. The space

W k,p
0 (Σ0) ⊂W k,p(E)

is defined in this case as the W k,p-closure of the space of smooth sections of E with
compact support in Σ0 \ ∂Σ0. For some background discussion on Sobolev spaces of
sections of vector bundles, see Appendix A.

4.2. A global weak regularity result

In Lecture 2 we proved that for 1 < p <∞, weak solutions of class Lploc to linear
Cauchy-Riemann type equations are always smooth. Here is a global version of that
result.

Proposition 4.6. Suppose 1 < p <∞ and k ∈ N. If η ∈ Lp(E) weakly satisfies

Dη ∈ W k−1,p(F ),

then η ∈ W k,p(E).

Proof. By induction, it suffices to show that if η ∈ W k−1,p and Dη ∈ W k−1,p

then η ∈ W k,p. We already know that this is true locally, so the task is to bound the
W k,p-norm of η on the cylindrical ends. Pick an asymptotic trivialization and write
D on one of the ends Z± ∼= U̇z as ∂̄+S(s, t). Let us assume for concreteness that the
puncture is a positive one, and now consider theW k,p-norm of η on (N,N+1)×S1 ⊂
U̇z for N ∈ N. Choosing a smooth bump function β : R× S1 → [0, 1] supported in
(N − 1, N + 2) × S1 with β = 1 on [N,N + 1] × S1, we can use the usual elliptic
estimate to write

‖η‖W k,p((N,N+1)×S1) ≤ ‖βη‖W k,p((N−1,N+2)×S1) ≤ c‖∂̄(βη)‖W k−1,p((N−1,N+2)×S1)

≤ c‖η‖W k−1,p((N−1,N+2)×S1) + c‖∂̄η‖W k−1,p((N−1,N+2)×S1)

= c‖η‖W k−1,p((N−1,N+2)×S1) + c‖Dη − Sη‖W k−1,p((N−1,N+2)×S1)

≤ c′‖η‖W k−1,p((N−1,N+2)×S1) + c′‖Dη‖W k−1,p((N−1,N+2)×S1).

An important detail here is that the constants in these estimates can be assumed
independent of N : indeed, one can use shifts of the same cutoff function for any N ,
and the Ck−1-norm of S on [N −1, N +2]×S1 is also bounded uniformly in N since
S(s, t) converges asymptotically to some S∞(t). We can therefore take the sum of
this estimate for all N ∈ N, producing

‖η‖W k,p(Z̊1
+) ≤ c‖η‖W k−1,p(Z̊+) + c‖Dη‖W k−1,p(Z̊+).

�

Corollary 4.7. For 1 < p < ∞, any weak solution η ∈ Lp(E) of Dη = 0 is
smooth, with derivatives of all orders decaying to 0 at infinity.

Proof. Proposition 4.6 implies η ∈ W k,p(E) for every k ∈ N, so smoothness
follows from the Sobolev embedding theorem. Moreover, suppose k and p are large
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enough to have a continuous inclusion W k,p →֒ Cm for some m ∈ N. Then the
finiteness of the W k,p-norm also implies that for each end U̇z = Z±,

‖η‖Cm(ZR
±) ≤ c‖η‖W k,p(Z̊R

±) → 0 as R→∞.
�

4.3. Elliptic estimates on cylindrical ends

The local elliptic estimates for ∂̄ = ∂s + J0∂t in Lecture 2 applied to functions
on D̊ ⊂ C with compact support. Using a finite open covering with a subordinate
partition of unity, it is a straightforward matter to turn these local estimates into
the following global result (cf. [Wend, Lemma 3.3.2]):

Proposition 4.8. If Σ0 ⊂ Σ̇ is a compact 2-dimensional submanifold with
boundary, then there exists a constant c > 0 such that

‖η‖W k,p(Σ0) ≤ c‖Dη‖W k−1,p(Σ0) + c‖η‖W k−1,p(Σ0)

for all η ∈ W k,p
0 (Σ0). �

This unfortunately is unsufficient for the global problem under consideration,
since one has to chop off the cylindrical ends of Σ̇ in order to obtain a compact
domain. We therefore supplement the previous local estimates with an asymptotic
estimate.

Proposition 4.9. Suppose z ∈ Γ± is a puncture such that the asymptotic op-
erator Az is nondegenerate. Then on ZR

± ⊂ U̇z for sufficiently large R ≥ 0, there
exists a constant c > 0 such that

‖η‖W k,p(Z̊R
±) ≤ c‖Dη‖W k−1,p(Z̊R

±) for all η ∈ W k,p
0 (Z̊R

±).

Remark 4.10. Recall that W k,p
0 (Z̊R

±) denotes the W k,p-closure of C∞
0 (Z̊R

±), so
such functions remain in W k,p if they are extended as zero to larger domains con-
taining Z̊R

± . Note that functions of classW
k,p
0 on Z̊R

± need not actually have compact
support; in fact C∞

0 is dense in W k,p(R× S1), see §A.4.
The proof of this requires a basic result about translation-invariant Cauchy-

Riemann type operators on the cylinder. Other than the elliptic estimates we dis-
cussed in Lecture 2, this is the main analytical ingredient that makes all Floer-type
theories in symplectic geometry work.

Theorem 4.11. Suppose k ∈ N, 1 < p < ∞, and A = −J0∂t − S(t) is a
nondegenerate asymptotic operator on the trivial Hermitian vector bundle S1×R2n →
S1. Then the operator

∂s −A = ∂s + J0∂t + S(t) : W k,p(R× S1,R2n)→W k−1,p(R× S1,R2n)

is an isomorphism. �

A detailed proof of this result for k = 1 can be found in [Sal99, Lemma 2.4],
and the general result follows easily from this using regularity (Proposition 4.6). I
will not attempt to reproduce the proof in Salamon’s notes here since it is somewhat



72 Chris Wendl

involved, but let us informally sketch the first step, which is the interesting part.
The goal is to prove that D0 := ∂s −A is an invertible operator from H1(R × S1)
to L2(R × S1). To gain some intuition on this, consider the special case where the
asymptotic operator is of the form A = −i∂t − C for some constant C ∈ R. One
can then write down an inverse of D0 explicitly by combining a Fourier transform
in the s variable with a Fourier series in the t variable. That is, sufficiently nice
functions u on R× S1 can be expressed as

u(s, t) =
∑

k∈Z

∫

R

ûk(σ)e
2πiσse2πikt dσ,

where the hybrid Fourier transform/series û depends on a continuous variable σ ∈ R

and a discrete variable k ∈ Z. One can then obtain û from u by

ûk(σ) =

∫

R×S1

u(s, t)e−2πiσse−2πikt ds dt,

and we have the usual derivative formulas ∂̂suk(σ) = 2πiσûk(σ) and ∂̂tuk(σ) =
2πikûk(σ). The relation (∂s+ i∂t+C)u = f therefore produces an inversion formula
of the form

ûk(σ) =
f̂k(σ)

2πiσ − 2πk + C
.

This is a nice formula and produces from any f ∈ L2 an element u ∈ H1 unless
C ∈ 2πZ, in which case the denominator has a singularity. This condition means C
must not be an eigenvalue of−i∂t, or in other words, A = −i∂t−C is nondegenerate.
One can perhaps imagine carrying out a similar argument in the general case using
an orthonormal set of eigenfunctions1 for A in place of the functions e2πikt; this is
presumably part of the idea behind the actual proof in [Sal99], which uses strongly
continuous semigroups generated by the self-adjoint operator A.

Proof of Proposition 4.9. Write D = ∂s + J0∂t + S(s, t) and D0 = ∂s +
J0∂t + S∞(t) in an asymptotic trivialization on U̇z = Z±, where the nondegenerate
asymptotic operator is A = −J0∂t − S∞(t) and we assume

‖S − S∞‖Ck−1(ZR
±) → 0 as R→∞.

For η ∈ W k,p
0 (Z̊R

±), there is a canonical extension η ∈ W k,p(R×S1) that equals zero
outside ZR

± , so by Theorem 4.11 we have

‖η‖W k,p(Z̊R
±) = ‖η‖W k,p(R×S1) ≤ c‖D0η‖W k−1,p(R×S1) = c‖D0η‖W k−1,p(R×S1).

Rewriting this in terms of D gives

‖η‖W k,p(Z̊R
±) ≤ c‖Dη‖W k−1,p(ZR

±) + c‖(S∞ − S)η‖W k−1,p(ZR
±),

1Recall from Lecture 3 that the spectrum σ(A) of an arbitrary asymptotic operator A always
consists only of isolated real eigenvalues, thus one can find λ ∈ R for which λ − A : H1(S1) →
L2(S1) is invertible. Its inverse, also known as the resolvent, then defines a compact self-adjoint
operator (λ − A)−1 : L2(S1) → L2(S1) due to the compact inclusion H1(S1) →֒ L2(S1). The
spectral theorem for compact self-adjoint operators now provides an orthonormal basis of L2(S1)
consisting of eigenfunctions of (λ −A)−1, which are also eigenfunctions of A.
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where the constants c > 0 do not depend on R. For this reason, we are free to make
R ≥ 0 large enough to make the Ck−1-norm of S∞−S on ZR

± less than an arbitrarily
small number δ > 0, in which case the above gives

‖η‖W k,p(Z̊R
±) ≤ c‖Dη‖W k−1,p(ZR

±) + cδ‖η‖W k−1,p(ZR
±),

and thus by the inclusion W k−1,p →֒ W k,p,

‖η‖W k,p(Z̊R
±) ≤

c

1− cδ‖Dη‖W k−1,p(ZR
±).

�

4.4. The semi-Fredholm property

The standard approach for proving that elliptic operators are Fredholm begins
by proving that they are semi-Fredholm, meaning dim kerD < ∞ and imD is
closed. In most settings, it is not hard to show that local elliptic estimates give rise
to global estimates of the form ‖η‖W k,p ≤ c‖Dη‖W k−1,p + ‖η‖W k−1,p. The step from
these estimates to the semi-Fredholm property is then provided by the following
lemma.

Lemma 4.12. Suppose X, Y and Z are Banach spaces, T ∈ L (X, Y ), K ∈
L (X,Z) is compact, and there is a constant c > 0 such that for all x ∈ X,

(4.3) ‖x‖X ≤ c‖Tx‖Y + c‖Kx‖Z .
Then kerT is finite dimensional and imT is closed.

Proof. A vector space is finite dimensional if and only if the unit ball in that
space is a compact set, so we begin by proving the latter holds for kerT. Suppose
xk ∈ kerT is a bounded sequence. Then since K is a compact operator, Kxk has
a convergent subsequence in Z, which is therefore Cauchy. But (4.3) then implies
that the corresponding subsequence of xk in X is also Cauchy, and thus converges.

Since we now know kerT is finite dimensional, we also know there is a closed
complement V ⊂ X with kerT ⊕ V = X . Then the restriction T|V has the same
image as T, thus if y ∈ imT, there is a sequence xk ∈ V such that Txk → y.
We claim that xk is bounded. If not, then T(xk/‖xk‖X) → 0 and K(xk/‖xk‖X)
has a convergent subsequence, so (4.3) implies that a subsequence of xk/‖xk‖X also
converges to some x∞ ∈ V with ‖x∞‖ = 1 and Tx∞ = 0, a contradiction. But now
since xk is bounded, Kxk also has a convergent subsequence and Txk converges by
assumption, thus (4.3) yields also a convergent subsequence of xk, whose limit x
satisfies Tx = y. This completes the proof that imT is closed. �

In the analysis of closed J-holomorphic curves, one makes use of the above lemma
by placing the inclusion W k−1,p →֒ W k,p in the role of the compact operator K.
Unfortunately, W k−1,p →֒ W k,p is not compact when the domain Σ̇ has cylindrical
ends; in contrast to the case of a compact domain, there is no way to write the norm
on the ends as a finite sum of norms for functions on domains of finite measure. To
circumvent this problem, let

ΣR ⊂ Σ̇
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denote the compact complement of the ends Z̊R
± ⊂ U̇z for all z ∈ Γ.

Lemma 4.13. Fix k ∈ N and 1 < p < ∞, and assume all the Az are non-
degenerate. Then for sufficiently large R > 0, there exists a constant c > 0 such
that

‖η‖W k,p(Σ̇) ≤ c‖Dη‖W k−1,p(Σ̇) + c‖η‖W k−1,p(ΣR)

for all η ∈ W k,p(E).

Proof. Fix a smooth cutoff function β ∈ C∞
0 (ΣR) such that β|ΣR−1 ≡ 1, and

write

U̇RΓ ⊂ Σ̇

for the union of all the ends Z̊R
± ⊂ U̇z for z ∈ Γ+ ∪ Γ−. Then we can write any

η ∈ W k,p(E) as η = βη+(1−β)η so that βη ∈ W k,p
0 (ΣR) and (1−β)η ∈ W k,p

0 (U̇R−1
Γ ).

Choosing R large enough to make Proposition 4.9 valid, we can apply this together
with Proposition 4.8 to show

‖η‖W k,p(Σ̇) ≤ ‖βη‖W k,p(ΣR) + ‖(1− β)η‖W k,p(U̇R−1
Γ )

≤ c‖D(βη)‖W k−1,p(ΣR) + c‖βη‖W k−1,p(ΣR) + ‖D [(1− β)η] ‖W k−1,p(U̇R−1
Γ ).

After applying the Leipbniz rule and absorbing the norms of β and ∂̄β into the
constants, this produces the stated inequality since the term involving the W k−1,p-
norm of η on the cylindrical ends includes ∂̄(1−β), which vanishes outside of ΣR. �

Lemma 4.12 is now applicable since the operator

W k,p(Σ̇)→W k−1,p(ΣR) : η 7→ η|ΣR

involves the compact inclusion W k,p(ΣR) →֒ W k−1,p(ΣR) and is thus compact.

Corollary 4.14. If all the Az are nondegenerate, then

D : W k,p(E)→W k−1,p(F )

is semi-Fredholm. �

4.5. Formal adjoints and proof of the Fredholm property

In order to show that cokerD is also finite dimensional, we will apply the above
arguments to the formal adjoint of D, an operator whose kernel is naturally isomor-
phic to the cokernel of D. Let us choose Hermitian bundle metrics 〈 , 〉E on E and
〈 , 〉F on F , and fix an area form d vol on Σ̇ that takes the form d vol = ds ∧ dt
on the cylindrical ends. The formal adjoint of D is then defined as the unique
first-order linear differential operator

D∗ : Γ(F )→ Γ(E)

that satisfies the relation

〈λ,Dη〉L2(F ) = 〈D∗λ, η〉L2(E) for all η ∈ C∞
0 (E), λ ∈ C∞

0 (F ),



Lectures on Symplectic Field Theory 75

where we use the real-valued L2-pairings

〈η, ξ〉L2(E) := Re

∫

Σ̇

〈η, ξ〉E d vol, for η, ξ ∈ Γ(E),

〈α, λ〉L2(F ) := Re

∫

Σ̇

〈α, λ〉F d vol, for α, λ ∈ Γ(F ).

The word “formal” refers to the fact that we are not viewing D∗ as the adjoint of
an unbounded operator on a Hilbert space (cf. [RS80]); that would be a stronger
condition.

Exercise 4.15. Show thatD∗ is well defined and, for suitable choices of complex
local trivializations of E and F and holomorphic coordinates on open subsets U ⊂ Σ̇,
can be written locally as

D∗ = −∂ + A : C∞(U ,R2n)→ C∞(U ,R2n)

for some A ∈ C∞(U ,End(R2n)), where ∂ := ∂s − J0∂t.
The formula in the above exercise reveals that D∗ is also an elliptic operator2

and thus has the same local properties as D; indeed, −∂ + A can be transformed
into ∂̄ + B for some zeroth-order term B if we conjugate it by a suitable complex-
antilinear change of trivialization. In particular, our local estimates for D and their
consequences, notably Proposition 4.8, are all equally valid for D∗.

To obtain suitable asymptotic estimates for D∗, let us fix asymptotic trivializa-
tions τ of E, use the corresponding trivializations of F over the ends as described
in §4.1, and choose the bundle metrics such that both appear standard in these
trivializations over the ends. We will say that the bundle metrics are compatible
with the asymptotically Hermitian structure of E whenever they are chosen
in this way outside of a compact subset of Σ̇. We can then express D as ∂̄ + S(s, t)
on U̇z = Z±, and integrate by parts to obtain

D∗ = −∂ + S(s, t)T.

To identify this expression with a Cauchy-Riemann type operator, let C :=

(
1 0
0 −1

)

denote the R-linear transformation on R2n = Cn representing complex conjugation.
Then since C anticommutes with J0, we have

(C−1D∗C)η = −C∂s(Cη) + CJ0∂t(Cη) + CS(s, t)TCη

= −∂sη − J0∂tη + CS(s, t)TCη = −(∂̄η − CS(s, t)TCη)
=: −(∂̄ + S̄(s, t))η,

where we’ve defined S̄(s, t) := −CS(s, t)TC. Now if the asymptotic operator Az at
z ∈ Γ± is written in the chosen trivialization as A := −J0∂s−S∞(t), the asymptotic

2Technically, this property of the formal adjoint is part of the definition of ellipticity: we call a
differential operator elliptic whenever (1) it has the properties necessary for proving fundamental
estimates using Fourier transforms as we did with ∂̄ in §2.3, and (2) its formal adjoint also has this
property. The former requires the principal symbol of the operator to be everywhere injective, and
the latter requires it to be surjective.
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convergence of S(s, t) implies that similarly

‖S̄ − S̄∞‖Ck(ZR
±) → 0 as R→∞

for all k ∈ N, where
S̄∞(t) := −CS∞(t)C.

This defines a trivialized asymptotic operator A = −J0∂t − S̄∞(t) to which −D∗ is
(after a suitable change of trivialization) asymptotic at the puncture z; in particular,
our proof of the global regularity result, Proposition 4.6, now also works for D∗.
Finally, notice that A and −A are conjugate: indeed,

(C−1AC)η = −CJ0∂t(Cη) + CCS∞(t)C(Cη) = J0∂tη + S∞(t)η = −Aη.
This implies that A is nondegenerate if and only if A is; applying this assumption
for all of the Az, the proofs of Proposition 4.9 and Lemma 4.13 now also go through
for D∗.

We’ve proved:

Proposition 4.16. Suppose D∗ is defined with respect Hermitian bundle metrics
on E and F = HomC(T Σ̇, E) that are compatible with the asymptotically Hermitian
structure of E. If additionally all the asymptotic operators Az are nondegenerate,
then

D∗ :W k,p(F )→W k−1,p(E)

is semi-Fredholm, and its kernel is a space of smooth sections contained in Wm,q(F )
for all m ∈ N and q ∈ (1,∞). �

Since kerD∗ is now known to be finite dimensional, the next result completes
the proof of the Fredholm property for D by showing that its image has finite
codimension:

Lemma 4.17. Under the same assumptions as in Proposition 4.16,

W k−1,p(F ) = imD+ kerD∗.

Proof. Consider first the case k = 1. Since D : W 1,p(E) → Lp(F ) is semi-
Fredholm, its image is closed, hence imD + kerD∗ is a closed subspace of Lp(F ).
Then if imD + kerD∗ 6= Lp(F ), the Hahn-Banach theorem3 provides a nontrivial
element α ∈ (Lp(F ))∗ ∼= Lq(F ) for 1

p
+ 1

q
= 1 such that

(4.4) 〈Dη + λ, α〉L2(F ) = 0 for all η ∈ W 1,p(E), λ ∈ kerD∗.

Choosing λ = 0, this implies in particular

〈Dη, α〉L2(F ) = 0 for all η ∈ C∞
0 (E),

which means that α is a weak solution of class Lq to the formal adjoint equation
D∗α = 0. By Proposiiton 4.6, α is therefore smooth and belongs to kerD∗. But
this contradicts (4.4) if we plug in η = 0 and λ = α, so this completes the proof for
k = 1.

3In the case p = 2, one can forego the Hahn-Banach theorem and simply take an L2-orthogonal
complement.
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For k ≥ 2, suppose α ∈ W k−1,p(F ) ⊂ Lp(F ) is given: then the case k = 1
provides elements η ∈ W 1,p(E) and λ ∈ kerD∗ such that Dη + λ = α. Since
Proposition 4.6 implies λ ∈ Wm,q(F ) for all m ∈ N and q ∈ (1,∞), we have
Dη = α − λ ∈ W k−1,p(F ) and thus, by Prop. 4.6 again, η ∈ W k,p(E), completing
the proof for all k ∈ N. �

The proof of Theorem 4.3 is now complete, but as long as we’re talking about
the formal adjoint, let us take note of a few more properties that will be useful in
the future. Assume from now on that all the assumptions of Proposition 4.16 are
satisfied. We can now strengthen Lemma 4.17 as follows.

Proposition 4.18. W k−1,p(F ) = imD⊕kerD∗ andW k−1,p(E) = imD∗⊕kerD.
In particular, the projections defined by these splittings give isomorphisms

cokerD ∼= kerD∗ and cokerD∗ ∼= kerD,

thus D∗ : W k,p(F )→W k−1,p(E) is a Fredholm operator with

indD∗ = − indD.

Proof. By Lemma 4.17, the first splitting follows if we can show that imD ∩
kerD∗ = {0}. Recall first (see §A.4) that C∞

0 (Σ̇) is dense in W k,p(Σ̇) for every
k ≥ 0 and p ∈ [1,∞), so the definition of the formal adjoint implies via density and
Hölder’s inequality that if 1 < p, q <∞ and 1

p
+ 1

q
= 1,

(4.5) 〈λ,Dη〉L2(F ) = 〈D∗λ, η〉L2(E) for all η ∈ W 1,p(E), λ ∈ W 1,q(F ).

Now suppose λ ∈ imD ∩ kerD∗ and write λ = Dη, assuming η ∈ W k,p(E). Reg-
ularity implies that since D∗λ = 0, λ ∈ W 1,q(F ), where q can be chosen to satisfy
1
p
+ 1

q
= 1. We can therefore apply (4.5) and obtain

〈λ, λ〉L2(F ) = 〈λ,Dη〉L2(F ) = 〈D∗λ, η〉L2(E) = 0,

hence λ = 0.
The proof that W k−1,p(E) = imD∗ ⊕ kerD is analogous. �

This result hints at the fact that D∗ is in fact—under some natural extra
assumptions—globally equivalent to another Cauchy-Riemann type operator. To
see this, let us impose a further constraint on the relation between the Hermitian
bundle metrics 〈 , 〉E and 〈 , 〉F . Note that since the area form d vol is necessarily
j-invariant, it induces a Hermitian structure on T Σ̇, namely

〈X, Y 〉Σ := d vol(X, jY ) + i d vol(X, Y ),

which matches the standard bundle metric in the trivializations over the ends defined
via the cylindrical coordinates. This induces real-linear isomorphisms from T Σ̇ to
the complex-linear and -antilinear parts of the complexified cotangent bundle,

T Σ̇→ Λ1,0T ∗Σ̇ : X 7→ X1,0 := 〈X, ·〉Σ,
T Σ̇→ Λ0,1T ∗Σ̇ : X 7→ X0,1 := 〈·, X〉Σ,

where the first isomorphism is complex antilinear and the second is complex linear.
We use these to define Hermitian bundle metrics on Λ1,0T ∗Σ̇ and Λ0,1T ∗Σ̇ in terms
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of the metric on T Σ̇; note that this is a straightforward definition for Λ0,1T ∗Σ̇, but
since the isomorphism to Λ1,0T ∗Σ̇ is complex antilinear, we really mean

〈X1,0, Y 1,0〉Σ := 〈Y,X〉Σ for X, Y ∈ T Σ̇.
Now observe that as a vector bundle with complex structure λ 7→ J ◦ λ, F =
HomC(T Σ̇, E) is naturally isomorphic to the complex tensor product

F = Λ0,1T ∗Σ⊗E.
We can therefore make a natural choice for 〈 , 〉F as the tensor product metric
determined by 〈 , 〉Σ and 〈 , 〉E. It is easy to check that this choice is compatible
with the asymptotically Hermitian structure of E.

Next, we notice that the area form d vol also induces a natural complex bundle
isomorphism

E → HomC(T Σ̇, F ).

Indeed, the right hand side is canonically isomorphic to the complex tensor product

HomC(T Σ̇, F ) = Λ1,0T ∗Σ̇⊗ F = Λ1,0T ∗Σ̇⊗ Λ0,1T ∗Σ̇⊗ E,
and Λ1,0T ∗Σ̇⊗Λ0,1T ∗Σ̇ is isomorphic to the trivial complex line bundle ǫ1 := Σ̇×C→
Σ̇ via

Λ1,0T ∗Σ̇⊗ Λ0,1T ∗Σ̇→ ǫ1 : X1,0 ⊗ Y 0,1 7→ X1,0(Y ) = 〈X, Y 〉Σ.
Exercise 4.19. Assuming 〈 , 〉F is chosen as the tensor product metric described

above, show that under the natural identification of E with HomC(T Σ̇, F ),

−D∗ : Γ(F )→ Ω1,0(Σ̇, F )

satisfies the Leibniz rule

−D∗(fλ) = (∂f)λ + f(−D∗λ)

for all f ∈ C∞(Σ̇,R), where ∂f ∈ Ω1,0(Σ̇) denotes the complex-valued (1, 0)-form
df − i df ◦ j.

We might summarize this exercise by saying that −D∗ is an “anti-Cauchy-
Riemann type” operator on F . But such an object is easily transformed into an
honest Cauchy-Riemann type operator: let F̄ denote the conjugate bundle to F ,
which we define as the same real vector bundle F but with the sign of its complex
structure reversed, so λ 7→ −J ◦ λ. Now there is a canonical isomorphism

HomC(T Σ̇, F ) = HomC(T Σ̇, F̄ ),

and the same operator defines a real-linear map

−D∗ : Γ(F̄ )→ Ω0,1(Σ̇, F̄ )

which satisfies our usual Leibniz rule for Cauchy-Riemann type operators.
Its asymptotic behavior also fits into the scheme we’ve been describing: we

have already seen this by computing D∗ on the ends with respect to asymptotic
trivializations. To express this in trivialization-invariant language, observe that each
of the Hermitian bundles (Ez, Jz, ωz) over S

1 for z ∈ Γ has a conjugate bundle Ēz
with complex structure −Jz and symplectic structure −ωz; its natural Hermitian
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inner product is then the complex conjugate of the one on Ez. The asymptotic

operator Az on Ez can be expressed as −Jz∇̂t, where ∇̂t is a symplectic connection
on (Ez, ωz). Then ∇̂t is also a symplectic connection on (Ēz,−ωz), so we naturally
obtain an asymptotic operator on Ēz in the form

(4.6) Az := −Az : Γ(Ēz)→ Γ(Ēz),

where the sign reversal arises from the reversal of the complex structure. One can
check that if we choose a unitary trivialization of Ez and the conjugate trivialization
of Ēz, this relationship between Az and Az produces precisely the relationship
between A = −J0∂t − S∞(t) and A = −J0∂t − S̄∞(t) that we saw previously, with
S̄∞(t) = −CS∞(t)C. Let us summarize all this with a theorem.

Theorem 4.20. Assume 〈 , 〉F is chosen to be the tensor product metric on
F = Λ0,1T ∗Σ ⊗ E induced by 〈 , 〉E and the area form d vol. Then under the
isomorphism induced by d vol from E to HomC(T Σ̇, F ) and the natural identification

of the latter with its conjugate HomC(T Σ̇, F̄ ), the operator −D∗ : Γ(F ) → Γ(E)
defines a linear Cauchy-Riemann type operator on the conjugate bundle F̄ ,

−D∗ : Γ(F̄ )→ Ω0,1(Σ̇, F̄ ),

and it is asymptotic at each puncture z ∈ Γ to the conjugate asymptotic operator
(4.6). �
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5.1. Riemann-Roch with punctures

As in the previous lecture, let D denote a linear Cauchy-Riemann type operator
on an asymptotically Hermitian vector bundle E of complex rankm over a punctured
Riemann surface (Σ̇ = Σ \ (Γ+ ∪ Γ−), j), and assume that D is asymptotic at each
puncture z ∈ Γ to a nondegenerate asymptotic operator Az on the asymptotic
bundle (Ez, Jz, ωz) over S

1. Writing

F := HomC(T Σ̇, E)

for the bundle of complex-antilinear homomorphisms T Σ̇ → E, the main result of
the previous lecture was that

D : W k,p(E)→W k−1,p(F )

is Fredholm for any k ∈ N and p ∈ (1,∞), and its kernel and index do not depend
on k or p. The main goal of this lecture is to compute ind(D) ∈ Z.

The index will depend on the Conley-Zehnder indices µτCZ(Az) ∈ Z introduced
in Lecture 3, but since these depend on arbitrary choices of unitary trivializations τ ,
we need a way of selecting preferred trivializations. The most natural condition is to
require that every (Ez, Jz, ωz) be endowed with a unitary trivialization such that the
corresponding asymptotic trivializations of (E, J) extend to a global trivialization1;
if there is only one puncture z, for instance, then this condition determines µτCZ(Az)
uniquely. This convention has been used to state the formula for ind(D) in several
of the standard references, e.g. in [HWZ99]. We would prefer however to state a
formula which is also valid when Γ = ∅ and E → Σ is nontrivial. One way to do

1Note that (E, J) is always globally trivializable unless Γ = ∅, as a punctured surface can be
retracted to its 1-skeleton.
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this is by allowing completely arbitrary asymptotic trivializations, but introducing
a topological invariant to measure their failure to extend globally over E.

Definition 5.1. Fix a compact oriented surface S with boundary. The relative
first Chern number associates to every complex vector bundle (E, J) over S and
trivialization τ of E|∂S an integer

cτ1(E) ∈ Z

satisfying the following properties:

(1) If (E, J)→ S is a line bundle, then cτ1(E) is the signed count of zeroes for
a generic smooth section η ∈ Γ(E) that appears as a nonzero constant at
∂S with respect to τ .

(2) For any two bundles (E1, J1) and (E2, J2) with trivializations τ1 and τ2
respectively over ∂S,

cτ1⊕τ21 (E1 ⊕E2) = cτ11 (E1) + cτ21 (E2).

These two conditions uniquely determine cτ1(E) for all complex vector bundles
since bundles of higher rank can always be split into direct sums of line bundles.
The definition clearly matches the usual first Chern number c1(E) when ∂S = ∅,
and it extends in an obvious way to the category of asymptotically Hermitian vector
bundles with asymptotic trivializations.

Exercise 5.2. Given two distinct choices of asymptotic trivializations τ1 and τ2
for an asymptotically Hermitian bundle E of rank m, show that

cτ21 (E) = cτ11 (E)− deg(τ2 ◦ τ−1
1 ),

where deg(τ2 ◦ τ−1
1 ) ∈ Z denotes the sum over all punctures of the winding numbers

of the determinants of the transition maps S1 → U(m).2

Exercise 5.3. Combining Exercise 5.2 above with Exercise 3.37, show that for
our asymptotically Hermitian vector bundle E with Cauchy-Riemann type operator
D and asymptotic operators Az, the number

2cτ1(E) +
∑

z∈Γ+

µτCZ(Az)−
∑

z∈Γ−

µτCZ(Az)

is independent of the choice of asymptotic trivializations τ .

The above exercise shows that the right hand side of the following index formula
is independent of all choices.

Theorem 5.4. The Fredholm index of D is given by

indD = mχ(Σ̇) + 2cτ1(E) +
∑

z∈Γ+

µτ
CZ
(Az)−

∑

z∈Γ−

µτ
CZ
(Az),

where m = rankCE and τ is an arbitrary choice of asymptotic trivializations.

2Caution: to compute this winding number at a negative puncture using cylindrical coordinates
(s, t) ∈ (−∞, 0] × S1, one must traverse {−s} × S1 for s ≫ 1 in the wrong direction, as this is
consistent with the orientation induced on {−s}×S1 as a boundary component of a large compact

subdomain of Σ̇.
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Notation. Throughout this lecture, we shall denote the integer on the right
hand side in Theorem 5.4 by

I(D) := mχ(Σ̇) + 2cτ1(E) +
∑

z∈Γ+

µτCZ(Az)−
∑

z∈Γ−

µτCZ(Az) ∈ Z.

Our goal is thus to prove that ind(D) = I(D).

When Γ = ∅, Theorem 5.4 is equivalent to the classical Riemann-Roch formula,
which is more often stated for holomorphic vector bundles over a closed Riemann
surface (Σ, j) with genus g as

(5.1) indC(D0) = m(1− g) + c1(E).

This formula assumes that the Cauchy-Riemann type operator D0 is complex linear,
but an arbitrary real-linear Cauchy-Riemann operator is then of the form D = D0+
B, where the zeroth-order term B ∈ Γ(HomR(E, F )) defines a compact perturbation
since the inclusionW k,p(Σ) →֒W k−1,p(Σ) is compact. It follows thatD has the same
real Fredholm index asD0, namely twice the complex index shown on the right hand
side of (5.1), which matches what we see in Theorem 5.4.

Remark 5.5. Now seems a good moment to clarify explicitly that all dimensions
(and therefore also Fredholm indices) in this lecture are real dimensions, not complex
dimensions, unless otherwise stated.

Reduction to the complex-linear case does not work in general if there are punc-
tures: it remains true that arbitrary Cauchy-Riemann type operators can be written
as D = D0 + B where D0 is complex linear, but the perturbation introduced by
the zeroth-order term B is not compact since W k,p(Σ̇) →֒ W k−1,p(Σ̇) is not compact
when Γ 6= ∅. Another indication that this idea cannot work is the fact that while
the formula in Theorem 5.4 always gives an even integer when Γ = ∅, it can be odd
when there are punctures, in which case D clearly cannot have the same index is
any complex-linear operator. Our proof will therefore have to deal with more than
just the complex category.

The punctured version of Theorem 5.4 was first proved by Schwarz in his the-
sis [Sch95], its main purpose at the time being to help define algebraic operations
(notably the pair-of-pants product) in Hamiltonian Floer homology. Schwarz’s proof
used a “linear gluing” construction that gives a relation between indices of opera-
tors on bundles over surfaces obtained by gluing together constituent surfaces along
matching cylindrical ends. Since any surface with ends can be “capped off” to form
a closed surface, one obtains the general index formula if one already knows how to
compute it for closed surfaces and for planes (i.e. caps). For the latter, it is simple
enough to write down model Cauchy-Riemann operators on planes and compute
their kernels and cokernels explicitly, so in this way the general case is reduced to
the classical Riemann-Roch formula. An analogous linear gluing argument for com-
pact surfaces with boundary is used in [MS04, Appendix C] to reduce the general
Riemann-Roch formula to an explicit computation for Cauchy-Riemann operators
on the disk with a totally real boundary condition.
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In this lecture, we will follow a different path and use an argument that was
first sketched by Taubes for the closed case in [Tau96a, §7], with an additional
argument for the punctured case suggested by Chris Gerig [Ger]. The argument is
(in my opinion) analytically somewhat easier than the more standard approaches,
and in addition to proving the formula we need for punctured surfaces, it produces a
new proof in the closed case without assuming the classical Riemann-Roch formula.
It also provides a gentle preview of two analytical phenomena that will later assume
prominent roles in our discussion of SFT: bubbling and gluing.

To see the idea behind Taubes’s argument, we can start by noticing an apparent
numerical coincidence in the closed case. Assume (E, J) is a complex line bundle over
a closed Riemann surface (Σ, j), and D : Γ(E) → Γ(F ) = Ω0,1(Σ, E) is a Cauchy-
Riemann type operator. We know that ind(D) = ind(D + B) for any zeroth-order
term B ∈ Γ(HomR(E, F )). But E and F are both complex vector bundles, so B
can always be split uniquely into its complex-linear and complex-antilinear parts,
i.e. there is a natural splitting of HomR(E, F ) into a direct sum of complex line
bundles3

HomR(E, F ) = HomC(E, F )⊕ HomC(E, F ).

Out of curiosity, let’s compute the first Chern number of the second factor; this will
be the signed count of zeroes of a generic complex-antilinear zeroth-order perturba-
tion. To start with, note that

HomC(E, F ) = HomC(E,C)⊗ F,
and then observe that HomC(E,C) and E are isomorphic: indeed, any Hermitian
bundle metric 〈 , 〉E on E gives rise to a bundle isomorphism4

E → HomC(E,C) : η 7→ 〈·, η〉E.
We thus have HomC(E, F ) ∼= E ⊗ F , so c1(HomC(E, F )) = c1(E) + c1(F ). We can
compute c1(F ) by the same trick since

F = HomC(TΣ, E) = HomC(TΣ,C)⊗ E ∼= TΣ⊗ E,
so c1(F ) = c1(TΣ) + c1(E) = χ(Σ) + c1(E), and thus

c1(HomC(E, F )) = χ(Σ) + 2c1(E).

Since we’re looking at a line bundle over a surface without punctures, this number
is the same as I(D). This coincidence is too improbable to ignore, and indeed, it
turns out not to be coincidental. Here is an informal statement of a result that we
will later prove a more precise version of in order to deduce Theorem 5.4.

“Theorem”. Given a Cauchy-Riemann type operator D : H1(E)→ L2(F ) on a
line bundle (E, J) over a closed Riemann surface (Σ, j), choose a complex-antilinear
zeroth-order perturbation B ∈ Γ(HomC(E, F )) whose zeroes are all nondegenerate.

3Here the complex structure on HomR(E,F ) and its subbundles is defined in terms of the
complex structure of F , i.e. it sends B ∈ HomR(E,F ) to J ◦B ∈ HomR(E,F ).

4We are assuming as usual that Hermitian inner products are complex antilinear in the first
argument and linear in the second.
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Then for sufficiently large σ > 0, ker(D + σB) is approximately spanned by 1-
dimensional spaces of sections with support localized near the positive zeroes of B.
In particular, dimker(D+ σB) equals the number of positive zeroes of B.

To deduce ind(D) = I(D) from this, we need to apply the same trick to the
formal adjoint D∗. As we will review in §5.2, −D∗ can be regarded under certain
natural assumptions as a Cauchy-Riemann type operator on the bundle F̄ conjugate
to F , and the formal adjoint of D + σB then gives rise to a Cauchy-Riemann type
operator of the form

−D∗ + σB′ : Γ(F̄ )→ Γ(Ē) = Ω0,1(Σ, F̄ ),

where B′ : F̄ → Ē is also complex antilinear and has the same zeroes as B, but with
opposite signs. Applying the above “theorem” to −D∗ thus identifies ker(D+ σB)∗

for sufficiently large σ > 0 with a space whose dimension equals the number of
negative zeroes of B. This gives

ind(D) = ind(D+ σB) = dim ker(D+ σB)− dimker(D+ σB)∗

= c1(HomC(E, F )) = I(D).

It’s worth mentioning that the “large perturbation” argument we’ve just sketched
is only one simple example of an idea with a long and illustrious history: another
simple example is the observation by Witten [Wit82] that after choosing a Morse
function on a Riemannian manifold, certain large deformations of the de Rham
complex lead to an approximation of the Morse complex, with generators of the de
Rham complex having support concentrated near the critical points of the Morse
function—this yields a somewhat novel proof of de Rham’s theorem. A much deeper
example is Taubes’s isomorphism [Tau96b] between the Seiberg-Witten invariants
of symplectic 4-manifolds and certain holomorphic curve invariants: here also, the
idea is to consider a large compact perturbation of the Seiberg-Witten equations and
show that, in the limit where the perturbation becomes infinitely large, solutions of
the Seiberg-Witten equations localize near J-holomorphic curves. For a more recent
exploration of this idea in the context of Dirac operators, see [Mar].

Before proceeding with the details, let us fix two simplifying assumptions that
can be imposed without loss of generality:

Assumption 5.6. (E, J) has complex rank 1.

Indeed, an asymptotically Hermitian bundle E of complex rank m ∈ N always
admits a decomposition into asymptotically Hermitian line bundles E = E1 ⊕ . . .⊕
Em, producing a corresponding splitting of the target bundle F = F1 ⊕ . . . ⊕ Fm.
The operator D need not respect these splittings, but it is always homotopic through
Fredholm operators to one that does: we saw in Theorem 3.34 that the asymptotic
operators Az are homotopic through nondegenerate asymptotic operators to any
other operators A′

z that have the same Conley-Zehnder indices, so one can choose
A′
z to respect the splitting. Any homotopy of Cauchy-Riemann operators following

such a homotopy of nondegenerate asymptotic operators then produces a continuous
family of Fredholm operators by the main result of Lecture 4, implying that their
indices do not change. The general index formula then follows from the line bundle
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case since any two Cauchy-Riemann type Fredholm operators D1 and D2 over the
same Riemann surface satisfy

ind(D1 ⊕D2) = ind(D1) + ind(D2) and I(D1 ⊕D2) = I(D1) + I(D2).

Assumption 5.7. k = 1 and p = 2.

This means we will concretely be considering the operator

D : H1(E)→ L2(F ),

where H1 as usual is an abbreviation for W 1,2. This assumption is clearly harmless
since we know that indD does not depend on the choice of k and p.

5.2. Some remarks on the formal adjoint

For the beginning of this section we can drop the assumption that (E, J) is a
line bundle and assume rankCE = m ∈ N, though later we will again set m = 1.

Recall from the end of Lecture 4 that if we fix global Hermitian structures 〈 , 〉E
and 〈 , 〉F on (E, J) and (F, J) respectively and an area form d vol on Σ̇ that matches
ds ∧ dt on the cylindrical ends, then D has a formal adjoint

D∗ : Γ(F )→ Γ(E)

satisfying

〈λ,Dη〉L2(F ) = 〈D∗λ, η〉L2(E) for all η ∈ H1(E), λ ∈ H1(F ).

Here the real-valued L2 pairings are defined by

〈η, ξ〉L2(E) := Re

∫

Σ̇

〈η, ξ〉E d vol for η, ξ ∈ Γ(E),

and similarly for sections of F . The essential features of the formal adjoint are
that kerD∗ ∼= cokerD and cokerD∗ ∼= kerD, hence ind(D∗) = − ind(D). Recall

moreover that d vol induces a natural Hermitian bundle metric on Σ̇ by

〈·, ·〉Σ = d vol(·, j·) + i d vol(·, ·),
which determines a bundle isomorphism

T Σ̇→ Λ0,1T ∗Σ̇ : X 7→ X0,1 := 〈·, X〉Σ,
as well as a complex-antilinear isomorphism

T Σ̇→ Λ1,0T ∗Σ̇ : X 7→ X1,0 := 〈X, ·〉Σ.
If 〈 , 〉F is then chosen to be the tensor product metric determined via the natural
isomorphism

F = HomC(T Σ̇, E) = Λ0,1T ∗Σ̇⊗ E = T Σ̇⊗ E,
then E admits a natural isomorphism to Λ1,0T ∗Σ̇⊗ F such that

−D∗ : Γ(F )→ Γ(E) = Ω1,0(Σ̇, F )

becomes an anti-Cauchy-Riemann type operator, i.e. it satisfies the Leibniz rule

−D∗(fλ) = (∂f)λ + f(−D∗λ)
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for all f ∈ C∞(Σ̇,R), with ∂f := df − i df ◦ j ∈ Ω1,0(Σ̇). Equivalently, −D∗ defines

a Cauchy-Riemann type operator on the conjugate bundle F̄ → Σ̇, defined as the
real bundle F → Σ̇ but with the sign of its complex structure reversed; we shall
distinguish this Cauchy-Riemann operator from −D∗ by writing it as

−D∗
: Γ(F̄ )→ Ω0,1(Σ̇, F̄ ),

though it is technically the same operator. Recall that the identity map defines a
natural complex-antilinear isomorphism between any complex vector bundle and its
conjugate bundle; we shall denote this isomorphism generally by

E → Ē : v 7→ v̄,

so in particular it satisfies cv = c̄v̄ for all scalars c ∈ C, and similarly

D
∗
λ̄ = D∗λ

for λ ∈ Γ(F ). The asymptotic operators for −D∗
are

Az = −Az : Γ(Ēz)→ Γ(Ēz).

Lemma 5.8. If τ is a choice of asymptotic trivialization on E and τ̄ denotes the
conjugate asymptotic trivialization5, then

cτ̄1(Ē) = −cτ1(E), and µτ̄
CZ
(Az) = −µτCZ

(Az) for all z ∈ Γ.

Proof. Assuming E is a line bundle, suppose η is a generic section of E that
matches a nonzero constant with respect to τ on the cylindrical ends, so cτ1(E) is
the signed count of zeroes of η. Then η̄ ∈ Γ(Ē) is similarly a nonzero constant on
the ends with respect to τ̄ , but the signs of its zeroes are opposite those of η because
they are defined as winding numbers with respect to conjugate local trivializations.
This proves cτ̄1(Ē) = −cτ1(E).

The Conley-Zehnder indices can be computed from the formula

µτCZ(Az) = ατ+(Az) + ατ−(Az),

see Theorem 3.36. Here ατ−(Az) is the largest possible winding number relative to
τ of an eigenfunction for Az with negative eigenvalue, and ατ+(Az) is the smallest

possible winding number with positive eigenvalue. The eigenfunctions of Az = −Az

are the same, but the signs of their eigenvalues are reversed, and the signs of their
winding numbers are also reversed because they must be measured relative to the
conjugate trivialization, thus

ατ̄±(Az) = −ατ∓(Az),

implying

µτ̄CZ(Az) = ατ̄+(Az) + ατ̄−(Az) = −ατ−(Az)− ατ+(Az) = −µτCZ(Az).

The above calculations are all valid for line bundles, but the general case follows
by taking direct sums. �

5If τ : E|U → U×Cm is a local trivialization of E with τ(v) = (z, w), the conjugate trivialization
τ̄ : Ē|U → U × Cm is defined by τ̄ (v̄) = (z, w̄).
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We are now able to show that Theorem 5.4 is consistent with what we already
know about the formal adjoint.

Proposition 5.9. I(−D∗
) = −I(D).

Proof. Under the isomorphism F = Λ0,1T ∗Σ̇ ⊗ E = T Σ̇ ⊗ E, an asymptotic
trivialization τ on E induces an asymptotic trivialization ∂s ⊗ τ on F , where ∂s
denotes the asymptotic trivialization of T Σ̇ defined via an outward pointing vector
field on the cylindrical ends. Counting zeroes of vector fields then proves c∂s1 (T Σ̇) =
χ(Σ̇), so

c∂s⊗τ1 (F ) = c∂s⊗τ1 (T Σ̇⊗ E) = mc∂s1 (T Σ̇) + cτ1(E) = mχ(Σ̇) + cτ1(E).

Applying Lemma 5.8 to the conjugate bundle then gives

c∂s⊗τ1 (F̄ ) = −mχ(Σ̇)− cτ1(E).
The unitary trivializations of the asymptotic bundles Ēz corresponding to ∂s ⊗ τ
are simply τ̄ , thus using Lemma 5.8 again for the Conley-Zehnder terms,

I(−D∗
) = mχ(Σ̇) + 2c∂s⊗τ1 (F̄ ) +

∑

z∈Γ+

µτ̄CZ(Az)−
∑

z∈Γ−

µτ̄CZ(Az)

= −mχ(Σ̇)− 2cτ1(E)−
∑

z∈Γ+

µτCZ(Az) +
∑

z∈Γ−

µτCZ(Az)

= −I(D).

�

We next consider the effect of an antilinear zeroth-order perturbation on the
formal adjoint. By “antilinear zeroth-order perturbation,” we generally mean a
smooth section

B ∈ Γ(HomC(E, F )).

It is perhaps easier to understand B in terms of the conjugate bundle Ē: indeed,
there exists a unique

β ∈ Γ(HomC(Ē, F ))

such that

Bη = βη̄,

and this correspondence defines a bundle isomorphism HomC(E, F ) = HomC(Ē, F ).

Exercise 5.10. Assume X and Y are complex vector bundles over the same
base.

(a) Show that X̄ ⊗ Ȳ is canonically isomorphic to the conjugate bundle of
X ⊗ Y .

(b) Show that HomC(X̄, Ȳ ) is canonically isomorphic to the conjugate bundle of
HomC(X, Y ), and HomC(X̄, Ȳ ) is canonically isomorphic to the conjugate
bundle of HomC(X, Y ).

(c) Show that Λ0,1X := HomC(X,C) is canonically isomorphic to the conjugate
bundle of Λ1,0X := HomC(X,C).
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Define the Cauchy-Riemann type operator

DB := D+B : Γ(E)→ Γ(F ) = Ω0,1(Σ̇, E),

so DBη = Dη+βη̄. To write down D∗
B, observe that since β : Ē → F is a complex-

linear bundle map between Hermitian bundles, it has a complex-linear adjoint

β† : F → Ē such that 〈β†λ, η̄〉Ē = 〈λ, βη̄〉F for λ ∈ F , η̄ ∈ Ē.
Here the bundle metric on Ē is defined by 〈η̄, ξ̄〉Ē := 〈ξ, η〉E. We then have

Re〈λ,Bη〉F = Re〈λ, βη̄〉F = Re〈β†λ, η̄〉Ē = Re〈η, β†λ〉E = Re〈β†λ, η〉E
= Re〈β†λ̄, η〉E,

where β† ∈ Γ(HomC(F̄ , E)) denotes the image of β† ∈ Γ(HomC(F, Ē)) under the
complex-antilinear identity map from HomC(F, Ē) to its conjugate bundle (see Ex-
ercise 5.10). The formal adjoint of DB is thus

D∗
B = D∗ +B∗ : Γ(F )→ Γ(E),

where B∗ : F → E is defined by

B∗λ := β†λ̄.

To write down the resulting Cauchy-Riemann type operator on F̄ , we replace B∗ :
F → E with B

∗
: F̄ → Ē, defined by

B
∗
λ̄ := B∗λ = β†λ,

giving a Cauchy-Riemann operator

−D∗
B = −D∗

+ (−B∗
) : Γ(F̄ )→ Γ(Ē) = Ω0,1(Σ̇, F̄ ).

The point of writing down this formula is to make the following observations:

Lemma 5.11. The zeroth-order perturbation −B∗
: F̄ → Ē appearing in −D∗

B

has the following properties:

(1) −B∗
: F̄ → Ē is complex antilinear;

(2) There is a natural complex bundle isomorphism HomC(F̄ , Ē) = HomC(F, Ē)

that identifies −B∗
with −β†;

(3) If m = 1 and B ∈ Γ(HomC(E, F )) has only nondegenerate zeroes, then

−B∗ ∈ Γ(HomC(F̄ , Ē)) has the same zeroes but with opposite signs.

Proof. The first two statements follow immediately from the fact that −B∗

is the composition of the canonical conjugation map F̄ → F with the complex-
linear bundle map −β† : F → Ē. For the third, it suffices to compare what β ∈
Γ(HomC(Ē, F )) and −β† : Γ(HomC(F, Ē)) look like in local trivializations near a
zero: one is minus the complex conjugate of the other, hence their zeroes count with
opposite signs. �
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5.3. The index zero case on a torus

As a warmup for the general case, we now fill in the details of Taubes’s proof of
Theorem 5.4 in the case

Σ̇ = T2 := C \ (Z⊕ iZ)
and E = T2 × C, i.e. a trivial line bundle. In this case I(D) = χ(T2) + 2c1(E) = 0,
so our aim is to prove ind(D) = 0. What we will show in fact is that D is homotopic
through a continuous family of Fredholm operators to one that is an isomorphism.
Since E and F are now both trivial, it will suffice to consider the operator

D := ∂̄ = ∂s + i∂t : H
1(T2,C)→ L2(T2,C),

whose formal adjoint is D∗ := −∂ = −∂s + i∂t. An antilinear zeroth-order pertur-
bation is then equivalent to a choice of function β : T2 → C, giving rise to a family
of operators

Dση := ∂̄η + σβη̄

for σ ∈ R, where η̄ : T2 → C now denotes the straightforward complex conjugate
of η. Let us assume that β : T2 → C is nowhere zero; note that this would not be
possible in more general situations, but is possible here because HomC(Ē, F ) is a
trivial bundle.

Lemma 5.12. Dσ is injective for all σ > 0 sufficiently large.

Proof. Elliptic regularity implies any η ∈ kerDσ is smooth, so we shall restrict
our attention to smooth functions η : T2 → C. We start by comparing the two
second-order differential operators

D∗D and D∗
σDσ : C∞(T2,C)→ C∞(T2,C).

Both are nonnegative L2-symmetric operators, and in fact the first is simply the
Laplacian

D∗D = −∂∂̄ = (−∂s + i∂t)(∂s + i∂t) = −∂2s − ∂2t = −∆.
The formal adjoint of Dσ takes the form

D∗
ση = D∗η + σB∗η = D∗η + σβη̄,

thus for any η ∈ C∞(T2,C),

D∗
σDση = (D∗ + σB∗)(D+ σB)η

= D∗Dη + σ
(
β∂̄η − ∂(βη̄)

)
+ σ2B∗Bη

= D∗Dη + σ (β∂η̄ − (∂β)η̄ − β∂η̄) + σ2B∗Bη

= D∗Dη + σ2B∗Bη − σ(∂β)η̄.

(5.2)

This is a Weitzenböck formula: its main message is that the Laplacian D∗D and
the related operator D∗

σDσ differ from each other only by a zeroth-order term that
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will be positive definite if σ is sufficiently large. Indeed, since β is nowhere zero, we
have |Bη| ≥ c|η| for some constant c > 0, thus

‖Dση‖2L2 = 〈η,D∗
σDση〉L2 = 〈η,D∗Dη〉L2 + σ2〈η, B∗Bη〉L2 − σ〈η, (∂β)η̄〉L2

= ‖Dη‖2L2 + σ2‖Bη‖2L2 − σ〈η, (∂β)η̄〉L2

≥
(
σ2c2 − σ‖∂β‖C0

)
‖η‖2L2.

We conclude that as soon as σ > 0 is large enough to make the quantity in paren-
theses positive, Dση cannot vanish unless ‖η‖L2 = 0. �

Proof of Theorem 5.4 for E = T2 × C. The lemma above shows that one
can add a large antilinear perturbation to D = ∂̄ making the deformed operator
Dσ injective. By Lemma 5.11, the same argument applies to the formal adjoint
D∗, implying that for sufficiently large σ > 0, D∗

σ is injective and thus Dσ is also
surjective, and therefore an isomorphism. This proves ind(D) = ind(Dσ) = 0. �

Let’s consider which particular details of the setup made the proof above possible.
First, the zeroth-order perturbation is complex antilinear. We used this, if only

implicitly, in deriving the Weitzenböck formula (5.2): the key step is in the third
line, where the two terms involving ∂η̄ cancel each other out and leave nothing but
zeroth-order terms remaining. This would not have happened if e.g. B : E → F
had been complex linear—we would then have seen terms depending on the first
derivative of η in D∗

σDση −D∗Dη, and this would have killed the whole argument.
The fact that this cancellation happens when the perturbation is antilinear probably
looks like magic at this point, but there is a principle behind it; we will discuss it
further in §5.4 below, see Remark 5.17.

The second crucial fact we used was that β : T2 → C is nowhere zero, in
order to obtain the lower bound on ‖Bη‖L2 in terms of ‖η‖L2. This cannot always
be achieved—it is possible in this special case only because E and F are both
trivial bundles and thus so is HomC(Ē, F ). On more general bundles, the best we
could hope for would be to pick β ∈ Γ(HomC(Ē, F )) with finitely many zeroes, all
nondegenerate. In this case the above argument fails, but it still tells us something.
Suppose Σǫ ⊂ T2 is a region disjoint from the isolated zeroes of β. Then there exists
a constant cǫ > 0, dependent on the region Σǫ, such that

‖βη̄‖2L2(T2) ≥ ‖βη̄‖2L2(Σǫ)
≥ cǫ‖η‖2L2(Σǫ)

,

so instead of the estimate at the end of the proof above implying Dσ is injective, we
obtain one of the form

‖Dση‖2L2(T2) ≥ cǫσ
2‖η‖L2(Σǫ) − cσ‖η‖2L2(T2).

To see what this means, imagine we have sequences σν → ∞ and ην ∈ kerDσν ,
normalized so that ‖ην‖L2 = 1 for all ν. The estimate above then implies

‖ην‖2L2(Σǫ)
≤ c

cǫσν
→ 0 as ν →∞,

so while all sections ην have the same amount of “energy” (as measured via their L2-
norms), the energy is escaping from Σǫ as σν increases. This is true for any domain
Σǫ disjoint from the zeroes, so we conclude that in the limit as σ →∞, sections in
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kerDσ have their energy concentrated in infinitesimally small neighborhoods of the
zeroes of β. We will see in the following how to extract useful information from this
concentration of energy.

5.4. A Weitzenböck formula for Cauchy-Riemann operators

The Weitzenböck formula (5.2) can be generalized to a useful relation between
any two Cauchy-Riemann type operators that differ by an antilinear zeroth-order
term. To see this, we start with a short digression on holomorphic and antiholomor-
phic vector bundles.

A smooth function f : C ⊃ U → C is called antiholomorphic if it satisfies
(∂s−i∂t)f = 0, which means its differential anticommutes with the complex structure
on C. The class of antiholomorphic functions is not closed under composition, but
it is closed under products, hence one can define an antiholomorphic structure
on a complex vector bundle to be a system of local trivializations for which all
transition maps are antiholomorphic. Given the standard correspondence between
holomorphic structures and Cauchy-Riemann type operators, it is easy to establish
a similar correspondence between aniholomorphic structures and (complex-linear)
anti-Cauchy-Riemann type operators, i.e. those which satisfy

D(fη) = (∂f)η + fDη

for all f ∈ C∞(Σ̇,C), where ∂f := df − i df ◦ j ∈ Ω1,0(Σ̇). We’ve seen one important
example of such an operator already: if D : Γ(E) → Γ(F ) is complex linear, then
−D∗ is a complex-linear anti-Cauchy-Riemann operator on F and thus endows F
with an antiholomorphic structure. Another natural example occurs naturally on
conjugate bundles: if E has a holomorphic structure, then Ē inherits from this an
antiholomorphic structure. This is immediate from the fact that f : C ⊃ U → C is
holomorphic if and only if f̄ : U → C is antiholomorphic. If D : Γ(E) → Γ(F ) =
Ω0,1(Σ̇, E) is the corresponding complex-linear Cauchy-Riemann type operator on
E, we shall denote the resulting anti-Cauchy-Riemann operator by

D : Γ(Ē)→ Γ(F̄ ) = Ω1,0(Σ̇, Ē),

where by definition Dη̄ = Dη.

Exercise 5.13. Show that if X and Y are antiholomorphic vector bundles over
the same base, then X⊗Y and HomC(X, Y ) both naturally inherit antiholomorphic
bundle structures such that the obvious Leibniz rules are satisfied. Remark: the

proof of this is exactly the same as for holomorphic bundles, one only needs to

change some signs.

Exercise 5.14. Suppose X and Y are complex vector bundles over the same
base, carrying real-linear anti-Cauchy-Riemann operators ∂X and ∂Y respectively.
Show that H := HomR(X, Y ) then admits a real-linear anti-Cauchy-Riemann oper-
ator ∂H such that for all Φ ∈ Γ(H) and η ∈ Γ(X),

∂Y (Φη) = (∂HΦ)η + Φ(∂Xη).
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Hint: write ∂X and ∂Y as complex-linear operators with real-linear zeroth-order

perturbations, and apply Exercise 5.13. Show moreover that any Ck-bounds satisfied

by the zeroth-order terms in ∂X and ∂Y are inherited by the zeroth-order term in ∂H .

The setup for the next result is as follows. We assume again m = 1, so E and F
are line bundles. Fix β ∈ Γ(HomC(Ē, F )), define B ∈ Γ(HomC(E, F )) by Bη := βη̄,
and use this to define the perturbed Cauchy-Riemann type operator

DB := D+B : Γ(E)→ Γ(F ),

whose formal adjoint is D∗
B = D∗ +B∗ with B∗λ := β†λ̄.

Proposition 5.15. The second-order differential operators D∗D and D∗
BDB on

E are related by
D∗
BDBη = D∗D∗η +B∗Bη − (∂Hβ)η̄,

where ∂H is a real-linear anti-Cauchy-Riemann type operator on HomC(Ē, F ). More-
over, if β is C1-bounded on Σ̇, then ∂Hβ is C0-bounded.

Proof. We have real-linear anti-Cauchy-Riemann operators D and −D∗ on Ē
and F respectively, so Exercise 5.14 produces an operator ∂H on HomC(Ē, F ) for
which the Leibniz rule is satisfied. We can then write

D∗
BDBη = (D∗ +B∗)(D+B)η

= D∗Dη + β†Dη − (−D∗)(βη̄) +B∗Bη

= D∗Dη + β†Dη̄ − (∂Hβ)η̄ − βDη̄ +B∗Bη

= D∗Dη +B∗Bη − (∂Hβ)η̄ +
(
β† − β

)
Dη̄.

Here β and β† are both viewed as complex-linear bundle maps F̄ → E, the latter in
the obvious way, and the former acting as 1 ⊗ β on F̄ = Λ1,0T ∗Σ̇ ⊗ Ē with target
Λ1,0T ∗Σ̇⊗ F = Λ1,0T ∗Σ̇⊗Λ0,1T ∗Σ̇⊗E = E. Choosing unitary local trivializations,
β and β† are represented by the same complex-valued function: indeed, the latter
is the transpose of the former as m-by-m complex matrices, but since m = 1, this
means they are identical.

Finally, we observe that the asymptotic convergence conditions satisfied by D
on the cylindrical ends imply similar conditions for all other Cauchy-Riemann and
anti-Cauchy-Riemann operators in this picture, yielding an estimate of the form
‖∂Hβ‖C0 ≤ c‖β‖C1 globally on Σ̇. �

Remark 5.16. The above proof used the assumption m = 1 in order to conclude
β† − β ≡ 0. For higher rank bundles, this imposes a nontrivial condition that must
be satisfied in order for the Weitzenböck formula to hold, cf. [GW].

Remark 5.17. We can now pick out a geometric reason for the miraculous can-
cellation in the Weitzenböck formula: the perturbation B is described by a complex
bundle map Ē → F , where Ē and F both have natural antiholomorphic bun-
dle structures defined via the complex-linear parts of D and −D∗ respectively. A
complex-linear perturbation B : E → F would not work because E is holomorphic
rather than antiholomorphic: while D can be fit into the same Leibniz rule with
−D∗, the same is not true of D.
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5.5. Large antilinear perturbations and energy concentration

We continue in the setting of Proposition 5.15 and set

Dσ := D+ σB : Γ(E)→ Γ(F )

for σ > 0. After a compact perturbation of D, we can without loss of generality
also impose the following assumptions on D, β ∈ Γ(HomC(Ē, F )) and the area
form d vol:

(i) All zeroes of β are nondegenerate.

(ii) Both |β| and 1/|β| are bounded outside of a compact subset of Σ̇.
(iii) Near each point ζ ∈ Σ̇ with β(ζ) = 0, there exists a neighborhood D(ζ) ⊂ Σ̇

of ζ , a holomorphic coordinate chart identifying (D(ζ), j, ζ) with the unit
disk (D, i, 0), and a local trivialization of E over D(ζ) that identifies D with
∂̄ = ∂s + i∂t : C

∞(D,C)→ C∞(D,C) and β with one of the functions

β(z) = z or β(z) = z̄,

the former if ζ is a positive zero and the latter if it is negative.
(iv) In the holomorphic coordinate on D(ζ) described above, d vol is the stan-

dard Lebesgue measure.

As in the torus case discussed in §5.3, we will see that the Weitzenböck formula
implies a concentration of energy near the zeroes of β for sections η ∈ kerDσ as
σ → ∞. To understand what really happens in this limit, we will use a rescaling
trick. Denote the zero set of β by

Z(β) = Z+(β) ∪ Z−(β) ⊂ Σ̇,

partitioned into the positive and negative zeroes. For any η ∈ Γ(E), ζ ∈ Z±(β) and
σ > 0, we then define a rescaled function

η(ζ,σ) : D√
σ → C : z 7→ 1√

σ
η(z/
√
σ),

where the right hand side denotes the local representation of η on D(ζ) in the chosen
coordinate and trivialization. Notice that the equation Dση = 0 appears in this local
representation as either ∂̄η + σzη̄ = 0 or ∂̄η + σz̄η̄ = 0 depending on the sign of ζ ,
and the function f := η(ζ,σ) then satisfies

∂̄f + zf̄ = 0 or ∂̄f + z̄f̄ = 0 on D√
σ.

We will take a closer look at these two PDEs in §5.6 below. But first, observe that
by change of variables, ∥∥η(ζ,σ)

∥∥
L2(D√

σ)
= ‖η‖L2(D(ζ)).

Lemma 5.18. Assume σν → ∞, and ην ∈ kerDσν is a sequence satisfying a
uniform L2-bound. Then after passing to a subsequence, the rescaled functions ηζν :=

η
(ζ,σν)
ν : D√

σν → C for each ζ ∈ Z±(β) converge in C∞
loc(C) to smooth functions
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ηζ∞ ∈ L2(C) satisfying

∂̄ηζ∞ + zηζ∞ = 0 if ζ ∈ Z+(β),

∂̄ηζ∞ + z̄ηζ∞ = 0 if ζ ∈ Z−(β).

Moreover, if ξν ∈ kerDσν is another sequence with these same properties and con-
vergence ξζν → ξζ∞, then

lim
ν→∞
〈ην , ξν〉L2(E) =

∑

ζ∈Z(β)
〈ηζ∞, ξζ∞〉L2(C).

Proof. The uniform L2-bound implies uniform bounds on ‖ηζν‖L2(DR) for every
R > 0, where ν here is assumed sufficiently large so that R <

√
σν . Since η

ζ
ν satisfies

a Cauchy-Riemann type equation on DR, the usual elliptic estimates (see Lecture 2)
then imply uniform Hk-bounds for every k ∈ N on every compact subset in the
interior of DR, hence η

ζ
ν has a C∞

loc-convergent subsequence on C, and the limit ηζ∞
clearly satisfies the stated PDE. The uniform L2-bound also implies a uniform bound
on ‖ηζν‖L2(D√

σν )
and thus an R-independent uniform bound on ‖ηζν‖L2(DR) as ν →∞,

implying that ηζ∞ is in L2(C).
The limit of 〈ην , ξν〉L2(E) is now proved using the Weitzenböck formula. Let

Σ̇ǫ := Σ̇ \
⋃

ζ∈Z(β)
D(ζ),

so there exists a constant c > 0 such that β satisfies |β(z)v̄| ≥ c|v| for all v ∈ Ez,
z ∈ Σ̇ǫ. (Note that this depends on the assumption of 1/|β| being bounded outside
of a compact subset.) Now by Proposition 5.15,

0 = ‖Dσνην‖2L2(Σ̇)
= 〈ην ,D∗

σνDσνην〉L2(Σ̇)

= 〈ην ,D∗Dην〉L2(Σ̇) + σ2
ν〈ην , B∗Bην〉L2(Σ̇) − σν〈ην , (∂Hβ)η̄ν〉L2(Σ̇)

≥ ‖Dην‖2L2(Σ̇)
+ σ2

νc
2‖ην‖2L2(Σ̇ǫ)

− σνc′‖ην‖2L2(Σ̇)

≥ σ2
νc

2‖ην‖2L2(Σ̇ǫ)
− σνc′‖ην‖2L2(Σ̇)

for some constant c′ > 0 independent of ν. This implies

‖ην‖2L2(Σ̇ǫ)
≤ c′

c2σν
‖ην‖2L2(Σ̇)

→ 0 as ν →∞

since ‖ην‖L2(Σ̇) is uniformly bounded. The same estimate applies to ξν , so that

〈ην , ξν〉L2(Σ̇ǫ)
→ 0 and thus by change of variables,

lim
ν→∞
〈ην , ξν〉L2(Σ̇) = lim

ν→∞

∑

ζ∈Z(β)
〈ην , ξν〉L2(D(ζ)) = lim

ν→∞

∑

ζ∈Z(β)
〈ηζν , ξζν〉L2(D√

σν )

=
∑

ζ∈Z(β)
〈ηζ∞, ξζ∞〉L2(C).

�
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5.6. Two Cauchy-Riemann type problems on the plane

The rescaling trick in the previous section produced smooth solutions f : C→ C

of class L2(C) to the two equations

∂̄f + zf̄ = 0, ∂̄f + z̄f̄ = 0.

It turns out that we can say precisely what all such solutions are. WriteD+f := ∂̄f+
zf̄ and D−f := ∂̄f + z̄f̄ . Both operators differ from ∂̄ by antilinear perturbations,
so they satisfy Weitzenböck formulas relating D∗

±D± to the Laplacian −∆ = ∂̄∗∂̄ =
−∂2s − ∂2t . Indeed, repeating Proposition 5.15 in these special cases gives

D∗
+D+f = −∆f + |z|2f − 2f̄ and D∗

−D−f = −∆f + |z|2f.
To make use of this, recall that a smooth function u : U → R on an open subset
U ⊂ C is called subharmonic if it satisfies

−∆u ≤ 0.

Subharmonic functions satisfy a mean value property:

−∆u ≤ 0 on U ⇒ u(z0) ≤
1

πr2

∫

Dr(z0)

u(z) dµ(z) for all Dr(z0) ⊂ U ,

where Dr(z0) ⊂ C denotes the disk of radius r > 0 about a point z0 ∈ U , and dµ(z)
is the Lebesgue measure on C; see e.g. [Eva98, p. 85].

Exercise 5.19. Show that for any smooth complex-valued function f on an
open subset of C,

∆|f |2 = 2Re〈f,∆f〉+ 2|∇f |2,
where 〈 , 〉 denotes the standard Hermitian inner product on C and |∇f |2 :=
|∂sf |2 + |∂tf |2.

Proposition 5.20. The equation ∂̄f + z̄f̄ = 0 does not admit any nontrivial
smooth solutions f ∈ L2(C,C).

Proof. If f : C → C is smooth with D−f = 0, then the Weitzenböck formula
for D− implies ∆f = |z|2f . Then by Exercise 5.19,

∆|f |2 = 2Re〈f, |z|2f〉+ 2|∇f |2 = 2|z|2|f |2 + 2|∇f |2,
implying that |f |2 : C → R is subharmonic. Now if f(z0) 6= 0 for some z0 ∈ C, the
mean value property implies

∫

Dr(z0)

|f(z)|2 dµ(z) ≥ πr2|f(z0)|2 →∞ as r →∞,

so f 6∈ L2(C). �

Proposition 5.21. Every smooth solution f ∈ L2(C,C) to the equation ∂̄f +

zf̄ = 0 is a constant real multiple of f0(z) := e−
1
2
|z|2.
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Proof. We claim first that every smooth solution in L2(C,C) of D+f = 0 is
purely real valued. The Weitzenböck formula for this case gives ∆f = |z|2f−2f̄ , and
taking the difference between this equation and its complex conjugate then implies
that u := Im f : C→ R satisfies

∆u = (|z|2 + 2)u.

Now by Exercise 5.19,

∆(u2) = 2|∇u|2 + 2(|z|2 + 2)u2 ≥ 0,

so u2 : C→ R is subharmonic, and the mean value property implies as in the proof
of Prop. 5.20 that u 6∈ L2(C) and hence f 6∈ L2(C) unless u ≡ 0. This proves the
claim.

It is easy to check however that f0 is a solution and is in L2(C). Since it is also
nowhere zero, every other solution f must then take the form f(z) = v(z)f0(z) for
some real-valued function v : C→ R. Since D+ is a Cauchy-Riemann type operator,
the Leibniz rule then implies ∂̄v ≡ 0. But the only globally holomorphic functions
with trivial imaginary parts are constant. �

5.7. A linear gluing argument

Now we’re getting somewhere.

Lemma 5.22. Suppose the assumptions of §5.5 hold and β ∈ Γ(HomC(Ē, F )) has
I+ ≥ 0 positive and I− ≥ 0 negative zeroes. Then for all σ > 0 sufficiently large,

dimkerDσ ≤ I+ and dim cokerDσ ≤ I−.

In particular, for sufficiently large σ, Dσ is injective if all zeroes of β are negative
and surjective if all zeroes are positive.

Proof. Arguing by contradiction, suppose there exists a sequence σν →∞ such
that dim kerDσν > I+, and pick (I++1) sequences of sections η1ν , . . . , η

I++1
ν ∈ kerDσν

which form L2-orthonormal sets for each ν. By Lemma 5.18, we can then extract
a subsequence such that rescaling near the zeroes of β produces C∞

loc-convergent
sequences whose limits form an (I+ + 1)-dimensional orthonormal set in

⊕

ζ∈Z(β)
L2(C,C),

where the component functions f ∈ L2(C,C) for ζ ∈ Z+(ζ) satisfy ∂̄f + zf̄ = 0,
while those for ζ ∈ Z−(ζ) satisfy ∂̄f + z̄f̄ = 0. Proposition 5.20 now implies that
the component functions for ζ ∈ Z−(ζ) are all trivial, and by Proposition 5.21,
the components for ζ ∈ Z+(ζ) belong to 1-dimensional subspaces kerD+ ⊂ L2(C)

generated by the function e−
1
2
|z|2. We conclude that the limiting orthonormal set

lives in a precisely I+-dimensional subspace
⊕

ζ∈Z+(β)

kerD+ ⊂
⊕

ζ∈Z(β)
L2(C,C),

and this is a contradiction since there are I+ + 1 elements in the set.
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Applying the same argument to the formal adjoint implies similarly dim kerD∗
σ ≤

I− for σ sufficiently large. �

We would next like to turn the two inequalities in the above lemma into equal-
ities, which means showing that the I+-dimensional subspace of

⊕
ζ∈Z+(β) L

2(C,C)

generated by solutions of ∂̄f+zf̄ = 0 is isomorphic to kerDσ for σ sufficiently large.
This requires a simple example of a linear gluing argument, the point of which is
to reverse the “convergence after rescaling” process that we saw in Lemma 5.18.
The first step is a pregluing construction which turns elements of

⊕
ζ∈Z+(β) kerD+

into approximate solutions to Dση = 0 for large σ. To this end, fix a smooth bump
function

ρ ∈ C∞
0 (D̊, [0, 1]), ρ|D1/2

≡ 1

and define for each ζ ∈ Z+(β) and σ > 0 a linear map

Φζσ : kerD+ → Γ(E)

such that Φζσ(f) is a section with support in D(ζ) whose expression in our fixed
coordinate and trivialization on that neighborhood is the function

f ζσ(z) = ρ(z)
√
σf(
√
σz).

Adding up the Φζσ for all ζ ∈ Z+(β) then produces a linear map

Φσ :
⊕

ζ∈Z+(β)

kerD+ → Γ(E)

whose image consists of sections supported near Z+(β), each a linear combination
of cut-off Gaussians with energy concentrated in smaller neighborhoods of Z+(β)
for larger σ. These sections are manifestly not in kerDσ since they vanish on open
subsets and thus violate unique continuation, but they are close, in a quantitative
sense:

Lemma 5.23. For each σ > 0, there exists a constant cσ > 0 such that

‖DσΦσ(f)‖L2 ≤ cσ‖f‖L2 for all f ∈
⊕

ζ∈Z+(β)

kerD+,

and cσ → 0 as σ →∞. Moreover, for every pair f, g ∈⊕ζ∈Z+(β) kerD+,

〈Φσ(f),Φσ(g)〉L2 → 〈f, g〉L2

as σ →∞.

Proof. First, observe that any f ∈⊕ζ∈Z+(β) kerD+ is described by a collection

of functions {fζ ∈ L2(C)}ζ∈β+(Z) which take the form

fζ(z) = Kζe
− 1

2
|z|2,
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for some constants Kζ ∈ R. Since each fζ is in kerD+, we find

Dσ

(
Φσ(f)|D(ζ)

)
(z) = ∂ρ(z)

√
σfζ(
√
σz) + ρ(z)σ∂fζ(

√
σz)

+ σzρ(z)
√
σfζ(
√
σz)

= ∂ρ(z)
√
σfζ(
√
σz) + ρ(z)σ(D+fζ)(

√
σz)

= ∂ρ(z)
√
σKζe

− 1
2
σ|z|2 .

(5.3)

Now since ∂ρ = 0 in D1/2, we obtain

‖DσΦσ(f)‖2L2 =
∑

ζ∈Z+(β)

∫

D(ζ)

|DσΦσ(f)(z)|2 dµ(z)

=
∑

ζ∈Z+(β)

∫

D\D1/2

|∂ρ(z)|2σK2
ζ e

−σ|z|2 dµ(z)

≤ Iσe−σ/4
∑

ζ∈Z+(β)

K2
ζ ,

where we abbreviate I :=
∫
D\D1/2

∣∣∂̄ρ(z)
∣∣2 dµ(z). The norm of f is given by

‖f‖2L2 =
∑

ζ∈Z+(β)

∫

C

K2
ζ e

−|z|2 dµ(z) =

(∫

C

e−|z|2 dµ(z)

) ∑

ζ∈Z+(β)

K2
ζ .

We conclude that there is a bound of the form

‖DσΦσ(f)‖L2 ≤ C
√
σe−σ/2‖f‖L2,

which proves the first statement since
√
σe−σ/2 → 0 as σ →∞.

The second statement follows by a change of variable, since

〈Φσ(f),Φσ(g)〉L2 =
∑

ζ∈Z+(β)

〈Φσ(f)|D(ζ),Φσ(g)|D(ζ)〉L2(D(ζ))

=
∑

ζ∈Z+(β)

∫

D

ρ2(z)σfζ(
√
σz)gζ(

√
σz) dµ(z)

=
∑

ζ∈Z+(β)

∫

D√
σ

ρ2
(

z√
σ

)
fζ(z)gζ(z) dµ(z)

The functions fζ and gζ are both real multiples of e−
1
2
|z|2, so this last integral for each

ζ ∈ Z+(β) is bounded between
∫
D√

σ/2
fζ(z)gζ(z) dµ(z) and

∫
D√

σ
fζ(z)gζ(z) dµ(z),

both of which converge to
∫
C
fζ(z)gζ(z) dµ(z) as σ →∞, thus

lim
σ→∞
〈Φσ(f),Φσ(g)〉L2 = 〈f, g〉L2.

�

To turn approximate solutions into actual solutions, let

Πσ : L2(E)→ kerDσ

denote the orthogonal projection. We will prove:
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Proposition 5.24. If all zeroes of β are positive, then the linear map

Πσ ◦ Φσ :
⊕

ζ∈Z+(β)

kerD+ → kerDσ

is injective for all σ > 0 sufficiently large.

This statement says in effect that whenever σ > 0 is large enough and η :=
Φσ(f) ∈ Γ(E) is in the image of the pregluing map, with f normalized by ‖f‖L2 = 1,
we can find a “correction” ξ ∈ (kerDσ)

⊥ such that

η + ξ 6= 0 but Dσ(η + ξ) = 0.

An element ξ ∈ (kerDσ)
⊥ with the second property certainly exists, and in fact

it’s unique: indeed, the assumption Z−(β) = ∅ implies via Lemma 5.22 that Dσ is
surjective and thus restricts to an isomorphism from (kerD)⊥ ∩ H1(E) to L2(F ),
with a bounded right inverse

Qσ : L2(F )→ H1(E) ∩ (kerD)⊥,

hence ξ := −Qσ(Dση). We know moreover from Lemma 5.23 that ‖η‖L2 is close
to ‖f‖L2 = 1, so to prove η + ξ 6= 0, it would suffice to show ‖ξ‖L2 is small, which
sounds likely since we also know ‖Dση‖L2 is small and Qσ is a bounded operator. To
make this reasoning precise, we just need to have some control over ‖Qσ‖ as σ →∞,
or equivalently, a quantitative measure of the injectivity of Dσ|(kerDσ)⊥∩H1(E). This
requires one last appeal to the Weitzenböck formula.

Lemma 5.25. Assume all zeroes of β are positive. Then there exist constants
c > 0 and σ0 such that for all σ > σ0,

‖η‖L2 ≤ c‖Dση‖L2 for all η ∈ H1(E) ∩ (kerDσ)
⊥.

Proof. Let us instead prove that if zeroes of β are all negative, then the same
bound holds for all η ∈ H1(E). The stated result follows from this by considering
the formal adjoint and using Exercise 5.26 below. Note that by density, it suffices
to prove the estimate holds for all η ∈ C∞

0 (E).
Assume therefore that Z+(β) = ∅ and, arguing by contradiction, suppose there

exist sequences σν →∞ and ην ∈ C∞
0 (E) with ‖ην‖L2 = 1 and

‖Dσνην‖L2 → 0.

The usual rescaling trick and application of the Weitzenböck formula then produces

for each ζ ∈ Z−(β) a sequence of functions ηζν := η
(ζ,σν)
ν : D√

σν → C which satisfy
∑

ζ∈Z−(β)

‖ηζν‖2L2(D√
σν )
→ 1 and ‖D−η

ζ
ν‖L2(D√

σν )
→ 0

as ν →∞. Indeed, defining Σ̇ǫ as in the proof of Lemma 5.18, a similar application
of the Weitzenböck formula yields

‖Dσνην‖2L2(Σ̇)
≥ σ2

νc
2‖ην‖2L2(Σ̇ǫ)

− σνc′‖ην‖2L2(Σ̇)
= σ2

νc
2‖ην‖2L2(Σ̇ǫ)

− σνc′,
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for some c′ > 0. Thus we obtain

‖ην‖2L2(Σ̇ǫ)
≤
‖Dσνην‖2L2(Σ̇)

c2σ2
ν

+
c′

σνc2
→ 0 as ν →∞,

so there is again concentration of energy near the zeroes of the antilinear perturba-
tion: in particular,

1 = lim
ν→∞
‖ην‖2L2(Σ̇)

= lim
ν→∞
‖ην‖2L2(Σ̇ǫ)

+ lim
ν→∞

∑

ζ∈Z−(β)

‖ην‖2L2(D(ζ))

= lim
ν→∞

∑

ζ∈Z−(β)

‖ηζν‖2L2(D√
σν )
.

Moreover, we have

D−η
ζ
ν(z) =

1

σν
∂ην

(
z√
σν

)
+

z̄√
σν
η̄ν

(
z√
σν

)
=

1

σν
Dσνην

(
z√
σν

)
.

Taking the square of the norms on each side, we may integrate and use change of
variables to obtain

‖D−η
ζ
ν‖L2(D√

σν )
=

1√
σν
‖Dσνην‖L2(D(ζ)) → 0 as ν →∞.

The elliptic estimates from Lecture 2 now provide uniformHk-bounds for each ηζν
on compact subsets of C for every k ∈ N, so that a subsequence converges in C∞

loc(C)
to a smooth map ηζ∞ ∈ L2(C,C) satisfying D−η

ζ
∞ = 0. But

∑
ζ∈Z−(β) ‖ηζ∞‖2L2(C) = 1,

so at least one of these solutions is nontrivial and thus contradicts Proposition 5.20.
�

Exercise 5.26. Show that for any Fredholm Cauchy-Riemann type operator D
on E, the following two estimates are equivalent, with the same constant c > 0 in
both:

(i) ‖η‖L2(E) ≤ c‖Dη‖L2(F ) for all η ∈ H1(E) ∩ (kerD)⊥;
(ii) ‖λ‖L2(F ) ≤ c‖D∗λ‖L2(E) for all λ ∈ H1(F ) ∩ (kerD∗)⊥.

Hint: elliptic regularity implies that for D and D∗ as bounded linear operators

H1 → L2, (kerD)⊥ = imD∗ and (kerD∗)⊥ = imD.

Proof of Proposition 5.24. If the statement is not true, then there exist
sequences σν →∞ and

fν ∈
⊕

ζ∈Z+(β)

kerD+

such that ‖fν‖L2 = 1 and ην := Φσν (fν) ∈ (kerDσν)
⊥ for all ν. Lemmas 5.23

and 5.25 then provide estimates of the form

• ‖ην‖L2 → 1,
• ‖Dσνην‖L2 → 0, and
• ‖ην‖L2 ≤ c‖Dσνην‖L2
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as ν →∞, with c > 0 independent of ν. These imply:

1 = lim
ν→∞
‖ην‖L2 ≤ lim

ν→∞
c‖Dσνην‖L2 = 0.

�

We’ve proved:

Proposition 5.27. Suppose the assumptions of §5.5 hold and that the section
β ∈ Γ(HomC(Ē, F )) has I+ ≥ 0 positive and I− ≥ 0 negative zeroes. If I− = 0, then
Dσ is surjective with dimkerDσ = I+ for all σ > 0 sufficiently large. If I+ = 0,
then Dσ is injective with dim cokerDσ = I− for all σ > 0 sufficiently large. In either
case,

ind(Dσ) = I+ − I−
for all σ > 0 sufficiently large. �

5.8. Antilinear deformations of asymptotic operators

Proposition 5.27 suffices to prove the index formula in the closed case, but there
is an additional snag if Γ 6= ∅: since H1(Σ̇) →֒ L2(Σ̇) is not a compact inclusion,
we have no guarantee that D and Dσ := D + σB will have the same index, and
generally they will not. A solution to this problem has been pointed out by Chris
Gerig [Ger], using a special class of asymptotic operators that also originate in the
work of Taubes (see [Tau10, Lemma 2.3]).

In general, the only obvious way to guarantee ind(D) = ind(Dσ) for large σ > 0
is if we can arrange for every operator in the family {Dσ}σ≥0 to be Fredholm, which
is not automatic since the zeroth-order perturbation B : E → F is required to be
bounded away from zero near∞ and must therefore change the asymptotic operators
at the punctures. We are therefore led to ask:

Question. For what nondegenerate asymptotic operators A : H1(E) → L2(E)
on a Hermitian line bundle (E, J, ω) → S1 can one find complex-antilinear bundle
maps B : E → E such that

Aσ := A− σB : H1(E)→ L2(E)

is an isomorphism for every σ ≥ 0?

It turns out that it will suffice to find, for each unitary trivialization σ and every
k ∈ Z, a particular pair (Ak, Bk) such that Ak−σBk is nondegenerate for all σ ≥ 0
and µτCZ(Ak) = k. To see why, let us proceed under the assumption that such pairs
can be found, and use them to compute the index:

Lemma 5.28. Given D as in Theorem 5.4, fix asymptotic trivializations τ and
suppose that for each puncture z ∈ Γ there exists an asymptotic operator A′

z on
(Ez, Jz, ωz) with µ

τ
CZ
(A′

z) = µτ
CZ
(Az), such that if A′

z is written with respect to τ as
−J0∂t − Sz(t), then the deformed asymptotic operator

(5.4) C∞(S1,R2)→ C∞(S1,R2) : η 7→ −J0∂tη − Sz(t)η − σβz(t)η̄
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is nondegenerate for some loop βz : S
1 → C \ {0} and every σ ≥ 0. Then

ind(D) = χ(Σ̇) + 2cτ1(E) +
∑

z∈Γ+

wind(βz)−
∑

z∈Γ−

wind(βz).

Proof. Since µτCZ(Az) = µτCZ(A
′
z), we can deform Az to A′

z continuously
through a family of nondegenerate asymptotic operators. It follows that we can
deform D through a continuous family of Fredholm Cauchy-Riemann type oper-
ators to a new operator D′ whose asymptotic operators are A′

z for z ∈ Γ, and
ind(D′) = ind(D). We are free to assume in fact that D′ is written with respect to
the trivialization τ on the cylindrical end near z ∈ Γ± as

∂s + J0∂t + Sz(t).

Now choose β ∈ Γ(HomC(Ē, F )) with nondegenerate zeroes such that the deformed
operators Dση := D′η + σβη̄ appear in trivialized form on the cylindrical end near
z ∈ Γ± as

Dση = ∂sη + J0∂tη + Sz(t)η + σβz(t)η̄.

This means Dσ is asymptotic at z to (5.4), which is nondegenerate for every σ ≥ 0,
implying Dσ is Fredholm for every σ ≥ 0 and thus

ind(D) = ind(Dσ).

The trivializations τ induce trivializations over the cylindrical ends for Ē and
F = Λ0,1T ∗Σ̇⊗E, and the expression for β in the resulting asymptotic trivialization
of HomC(Ē, F ) near z ∈ Γ is βz(t). It follows that the signed count of zeroes of β is

i(D) := cτ1(HomC(Ē, F )) +
∑

z∈Γ+

wind(βz)−
∑

z∈Γ−

wind(βz)

= χ(Σ̇) + 2cτ1(E) +
∑

z∈Γ+

wind(βz)−
∑

z∈Γ−

wind(βz),

where the computation cτ1(HomC(Ē, F )) = χ(Σ̇) + 2cτ1(E) follows from the natural
isomorphism

HomC(Ē, F ) = Ē∗ ⊗ F = E ⊗ F = E ⊗ Λ0,1T ∗Σ̇⊗ E = Λ0,1T ∗Σ̇⊗ E ⊗E
= T Σ̇⊗ E ⊗ E.

We are free to assume that all zeroes of β are either positive or negative, depending
on the sign of i(D). Proposition 5.27 then implies ind(Dσ) = i(D) for large σ. �

Notice that instead of nondegenerate familiesA−σB parametrized by σ ∈ [0,∞),
it is just as well to find such families which are nondegenerate and have the right
Conley-Zehnder index for all σ > 0, as the σ ≥ 1 portion of this family can be
rewritten as (A−B)−σB for σ ≥ 0. The following lemma thus completes the proof
of Theorem 5.4.

Lemma 5.29. For every k ∈ Z, the trivial Hermitian line bundle over S1 admits
an asymptotic operator Ak and a loop βk : S1 → C \ {0} such that the deformed
asymptotic operators

Ak,ση := Akη − σβkη̄
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are nondegenerate for every σ > 0 and satisfy

µCZ(Ak,σ) = wind(βk) = k.

Proof. We claim that the choices

Akη := −J0∂tη − πkη and βk(t) := e2πikt

do the trick. We prove this in three steps.
Step 1: k = 0. The above formula gives A0,σ = −J0∂tη − ση̄, in which the

σ = 1 case is precisely the operator that we used in Lecture 3 to normalize the
Conley-Zehnder index, hence µCZ(A0,1) = 0 by definition. More generally, all of
these operators can be expressed in the form A := −J0∂t − S where S ∈ EndR(R

2)
is a constant nonsingular 2-by-2 symmetric matrix that anticommutes with J0. We
claim that all asymptotic operators of this form are nondegenerate. Indeed, the

conditions ST = S and SJ0 = −J0S for J0 =

(
0 −1
1 0

)
imply that S takes the form

(
a b
b −a

)
with detS = −a2 − b2 6= 0, and moreover S is of this form if and only if

J0S also is. In particular, J0S is traceless, symmetric, and nonsingular. Solutions
of Aη = 0 then satisfy η̇ = J0Sη, which has no periodic solutions since J0S has one
positive and one negative eigenvalue, hence kerA = {0}.

Step 2: even k. There is a cheap trick to deduce the case k = 2m for any m ∈ N

from the k = 0 case. Recall that by Exercise 3.37 in Lecture 3, conjugating A0,σ by
a change of trivialization changes its Conley-Zehnder index by twice the degree of
that change. In particular, the operator

Ã0,ση := e2πimtA0,σ(e
−2πimtη)

is also a nondegenerate asymptotic operator, but with µCZ(Ã0,σ) = µCZ(A0,σ)+2m =
k. Explicitly, we compute

Ã0,ση = −J0∂tη − πkη − σke2πiktη̄,
so Ak,σ = Ã0,σ/k is also nondegenerate for every σ > 0.

Step 3: odd k. Another cheap trick relates eachAk,σ toA2k,σ after an adjustment
in σ. Given an arbitrary asymptotic operator A = −J0∂t − S(t) and m ∈ N, define

Am := −J0∂t −mS(mt).
Geometrically, if A is a trivialized representation for the asymptotic operator of
a Reeb orbit γ : S1 → M , then Am is the operator for the m-fold covered orbit
γm : S1 → M : t 7→ γ(mt). It is easy to check in particular that if we define
ηm(t) := η(mt) for any given loop η : S1 → R2, then

Amηm = m(Aη)m,

so this gives an embedding of kerA into kerAm, implying that whenever Am is
nondegenerate for some m ∈ N, so is A. To make use of this, observe that

A2
k,ση = −J0∂tη − π2kη − 2σe4πiktη̄ = A2k,2ση,

so A2
k,σ is nondegenerate for all σ > 0 by Step 2, and therefore so is Ak,σ. �
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The proof of Theorem 5.4 is now complete.

Exercise 5.30. Derive a Weitzenböck formula for asymptotic operators and use
it to show that for any asymptotic operator A on the trivial Hermitian line bundle
and any smooth β : S1 → C \ {0}, the deformed operators Aση := Aη − σβη̄ are
all nondegenerate for σ > 0 sufficiently large. Deduce from this that µCZ(Aσ) =
wind(β) for large σ > 0.
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Symplectic cobordisms and moduli spaces
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In this lecture we introduce the moduli spaces of holomorphic curves that are
used to define SFT.

6.1. Stable Hamiltonian structures and their symplectizations

In Lecture 1, we motivated the notion of a contact manifold by considering
hypersurfacesM in a symplectic manifold (W,ω) that satisfy a convexity (also known
as “contact type”) condition. The point of that condition was that it presents M
as one member of a smooth 1-parameter family of hypersurfaces that all have the
same Hamiltonian dynamics; that 1-parameter family furnishes the basic model of
what we call the symplectization of M with its induced contact structure. A useful
generalization of this notion was introduced in [HZ94] and was later recognized to
be the most natural geometric setting for punctured holomorphic curves. It has the
advantage of allowing us to view seemingly distinct theories such as Hamiltonian
Floer homology as special cases of SFT—and even if we are only interested in contact
manifolds, the generalization sometimes makes computations easier than they might
be in a purely contact setting.

Recall that every smooth hypersurface M in a 2n-dimensional symplectic mani-
fold (W,ω) has a characteristic line field

ker (ω|TM) ⊂ TM,

whose integral curves are the orbits onM of any Hamiltonian vector field generated
by a functionH :W → R that hasM as a regular level set. We say thatM ⊂ (W,ω)
is stable if a neighborhood of M admits a stabilizing vector field V : this means
that V is transverse to M and the 1-parameter family of hypersurfaces

Mt := ϕtV (M), −ǫ < t < ǫ

generated by the flow ϕtV of V has the property that each of the diffeomorphisms
M →Mt defined by flowing along V preserves characteristic line fields.

107
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Exercise 6.1. Show that if V is a stabilizing vector field for M ⊂ (W,ω), then
the 2-form and 1-form pair (Ω,Λ) defined on M by

Ω := ω|TM , Λ := ιV ω|TM
has the following properties:

(i) Ω|ker Λ is nondegenerate;
(ii) ker Ω ⊂ ker dΛ.

Show moreover that if M is assigned the orientation for which V is positively trans-
verse to M and ξ := ker Λ ⊂ TM is assigned the natural co-orientation determined
by Λ, then the induced orientation of ξ matches the orientation determined by the
symplectic vector bundle structure Ω|ξ, hence condition (i) can equivalently be writ-
ten as

(iii) Λ ∧ Ωn−1 > 0

where dimW = 2n.

A stable Hamiltonian structure (or “SHS” for short) on an arbitrary oriented
(2n − 1)-dimensional manifold M is a pair (Ω,Λ) consisting of a closed 2-form Ω
and 1-form Λ such that properties (ii) and (iii) in Exercise 6.1 are satisfied.

Exercise 6.2. Show that if (Ω,Λ) is a stable Hamiltonian structure, then

ω := d(rΛ) + Ω

is a symplectic form on (−ǫ, ǫ)×M for ǫ > 0 sufficiently small, where r denotes the
coordinate on (−ǫ, ǫ); moreover, {0}×M is a stable hypersurface in ((−ǫ, ǫ)×M,ω).

Example 6.3. If M ⊂ (W,ω) is a contact type hypersurface, then a Liouville
vector field V transverse to M is a stabilizing vector field, and the induced stable
Hamiltonian structure is (dα, α), where α := λ|TM with λ := ω(V, ·). We will refer
to this example henceforward as the contact case.

Proposition 6.4. Suppose M ⊂ (W,ω) is a closed stable hypersurface with
stabilizing vector field V and induced stable Hamiltonian structure (Ω,Λ) where
Ω = ω|TM and Λ = ιV ω|TM . Then a neighborhood of M in (W,ω) admits a sym-
plectomorphism to ((−ǫ, ǫ)×M, d(rΛ)+Ω) for some ǫ > 0, identifying M ⊂W with
{0} ×M ⊂ (−ǫ, ǫ)×M .

Proof. By the smooth tubular neighbourhood theorem and the preceeding ex-
ercise, we can view ω0 = d(rΛ) + Ω as a symplectic form in some neighbourhood
U0 ∼= ((−ǫ, ǫ)×M) of M . In this neighbourhood,

(ω0 − ω)|M = 0

by definition of ω0 and thus

ω0 − ω = dµ

for some 1-form µ such that µ|M = 0. Now define

ωt = ω + t dµ
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and observe that it is a closed 2-form which can be assumed to be non-degenerate
for a small enough choice of U0. Solving the Moser equation

ιvtωt = −µ
yields a well-defined, time-dependent vector field vt with the property that vt|M = 0.
Working back we produce an isotopy as follows:

dιvtωt = −dµ⇒

Lvtωt = dιvtωt + ιvtdωt = dιvtωt = −dµ = −dωt
dt
⇒

d

dt
(ρ∗tωt) = Lvtωt +

dωt
dt

= 0

where ρ∗t is the flow of vt. Then

ρ∗tωt = ρ∗0ω = ω

since ρ0 is the identity. The required symplectomorphism is then

ρ1 : ρ
−1
1 U0 → U0

and the fact that M is fixed under the isotopy follows from vt|M = 0. �

Example 6.5. In the contact case (Ω,Λ) = (dα, α), the symplectic form on the
collar neighborhood in Proposition 6.4 can be rewritten as d(etα) by defining the
coordinate t := ln(r + 1). The proposition is easier to prove in this case: one can
construct the collar neighborhood simply by flowing along V , with no need for the
Moser isotopy trick.

A stable Hamiltonian structureH = (Ω,Λ) gives rise to two important additional
objects: a co-oriented hyperplane distribution

ξ := ker Λ,

and a positively transverse vector field R determined by the conditions

Ω(R, ·) ≡ 0 and Λ(R) ≡ 1.

By analogy with the contact case, we will refer to R as the Reeb vector field of H.
The condition ker Ω ⊂ ker dΛ implies that it reduces to the usual contact notion of
the Reeb vector field for Λ whenever the latter happens also to be a contact form.

The symplectization of (M,H) for any stable Hamiltonian structure H =
(Ω,Λ) can be defined by choosing suitable diffeomorphisms of (−ǫ, ǫ) × M with
R×M : equivalently, this means we consider R×M with the family of symplectic
forms ωϕ defined by

(6.1) ωϕ := d (ϕ(r)Λ) + Ω

where ϕ is chosen arbitrarily from the set

(6.2) T :=
{
ϕ ∈ C∞(R, (−ǫ, ǫ))

∣∣ ϕ′ > 0
}
.
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Example 6.6. The following stable Hamiltonian structure places Hamiltonian
Floer homology into the setting of SFT. Suppose (W,ω) is a closed symplectic man-
ifold and H : S1×W → R is a smooth function, and denote Ht := H(t, ·) : W → R.
The time-dependent Hamiltonian vector field Xt defined by dHt = −ω(Xt, ·) can
then be viewed as defining a symplectic connection on the trivial symplectic fiber
bundle

M := S1 ×W t−→ S1,

i.e. the flow of R(t, x) := ∂t + Xt(x) defines symplectic parallel transport maps
between fibers. The horizontal subbundle for this connection is the “symplectic
complement” of the vertical subbundle with respect to the closed 2-form

Ω = ω + dt ∧ dH.
In other words, Ω restricts to the fibers of M → S1 as ω and the subbundle
{X ∈ TM | ω(X, ·)|T ({const}×W )} is generated by R, so Ω is the connection 2-
form defining the connection, cf. [MS98]. Setting Λ := dt then makes H := (Ω,Λ)
a stable Hamiltonian structure with Reeb vector field R, and its closed orbits in
homotopy classes that project to S1 with degree one are in 1-to-1 correspondence
with the 1-periodic Hamiltonian orbits on W . Notice that this is very different from
the contact case: ξ = ker dt is as far as possible from being a contact structure, it
is instead an integrable distribution whose integral submanifolds are the fibers of
M → S1.

Exercise 6.7. Show that for any stable Hamiltonian structure H = (Ω,Λ), the
flow of R preserves ξ = ker Λ along with its symplectic bundle structure Ω|ξ.

Definition 6.8. A T -periodic orbit x : R→ M of R is called nondegenerate
if 1 is not an eigenvalue of dϕT |ξx(0) : ξx(0) → ξx(0), where ϕ

t denotes the flow of R.

Exercise 6.9. Show that in Example 6.6, the notions of nondegeneracy for
closed Reeb orbits onM and for 1-periodic Hamiltonian orbits onW (see Lecture 1)
coincide.

If γ : S1 →M parametrizes a T -periodic orbit of R with γ̇ = T ·R(γ), then the
formula of Lecture 3 for the asymptotic operator

Aγη = −J(∇tη − T∇ηR)

still makes sense in this more general context, and it defines an L2-symmetric oper-
ator on the Hermitian vector bundle (γ∗ξ, J,Ω) over S1. It can also be interpreted
as a Hessian at a critical point, though for an action functional that is only lo-
cally defined: indeed, while Ω need not be globally exact, it is necessarily exact on
a neighborhood of γ0(S

1) for any given loop γ0 : S1 → M , so one can pick any
primitive λ of Ω on this neighborhood and, for a sufficiently small neighborhood
U(γ0) ⊂ C∞(S1,M) of γ0, consider the action functional

(6.3) AH : U(γ0)→ R : γ 7→
∫

S1

γ∗λ.
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Its first variation at γ ∈ U(γ0) in the direction η ∈ Γ(γ∗ξ) is then

dAH(γ)η = −
∫

S1

Ω(γ̇, η) dt = 〈−Jπξγ̇, η〉L2,

where πξ : TM → ξ denotes the projection along R and the L2-pairing on γ∗ξ
is defined via the bundle metric Ω(·, J ·)|ξ. This leads us to interpret −Jπξ γ̇ as a
“gradient” ∇AH(γ), and if γ̇ = T · R(γ), then differentiating this gradient in the
direction of η ∈ Γ(γ∗ξ) gives Aγη. As one would expect, nondegeneracy of γ is
then equivalent to the condition kerAγ = {0}, and one can in this case define the
Conley-Zehnder index µτCZ(γ) ∈ Z as in Lecture 3, relative to a choice of unitary
trivialization τ for (ξ, J,Ω).

Exercise 6.10. In the setting of Example 6.6, work out the relationship between
AH and the symplectic action functional for Hamiltonian systems that we discussed
in Lecture 1. (Try not to worry too much about signs.)

Definition 6.11. Given a stable Hamiltonian structure H = (Ω,Λ), denote by

J (H) ⊂ J (R×M)

the space of smooth almost complex structures J on R × M with the following
properties:

• J is invariant under the R-action on R×M by translation of the first factor;
• J∂r = R and JR = −∂r, where r denotes the natural coordinate on the
first factor;
• J(ξ) = ξ and J |ξ is compatible with the symplectic vector bundle structure
Ω|ξ.

Notice that if H = (dα, α) for a contact form α, then J (H) matches the space
J (α) defined in Lecture 1.

Exercise 6.12. Show that every J ∈ J (H) is tamed by all of the symplectic
structures ωϕ as defined in (6.1) for ϕ ∈ T .

Given J ∈ J (H), we define the energy of a J-holomorphic curve u : (Σ, j) →
(R×M,J) by

E(u) := sup
ϕ∈T

∫

Σ

u∗ωϕ.

Exercise 6.12 above implies that E(u) ≥ 0, with equality if and only if u is constant.
In the contact case, this notion of energy is not identical to the “Hofer energy” that
we defined in Lecture 1, nor to Hofer’s original definition from [Hof93], but all three
are equivalent for our purposes since uniform bounds on any of them imply uniform
bounds on the others.

Just as in the contact case, the simplest example of a finite-energy J-holomorphic
curve is a trivial cylinder

uγ : R× S1 → R×M : (s, t) 7→ (Ts, γ(t)),

where γ : S1 →M is a “constant velocity” parametrization of a T -periodic orbit of
R, i.e. γ̇ = T ·R(γ). More generally, given a punctured Riemann surface (Σ̇ = Σ\Γ, j)
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with Γ = Γ+ ∪ Γ−, we consider asymptotically cylindrical J-holomorphic curves
u : (Σ̇, j) → (R × M,J), which are assumed to have the property that for each
z ∈ Γ±, there exist holomorphic cylindrical coordinates identifying a punctured
neighborhood U̇z ⊂ Σ̇ of z with Z+ = [0,∞)×S1 or Z− = (−∞, 0]×S1 respectively,
and a trivial cylinder uγz : R× S1 → R×M such that

u(s, t) = expuγz (s,t) hz(s, t) for |s| sufficiently large,

where hz(s, t) is a vector field along uγz satisfying |hz(s, ·)| → 0 uniformly as s →
±∞. As usual, both the norm |hz(s, t)| and the exponential map here are assumed
to be defined with respect to a translation-invariant choice of Riemannian metric
on R × M . The vector fields hz along uγz for each z ∈ Γ are sometimes called
asymptotic representatives of u near z.

Asymptotic representatives satisfy a regularity estimate that will be important to
know about, though its proof (given originally in [HWZ96]) would be too lengthy to
present here. The methods behind the following statement involve a combination of
nonlinear regularity arguments as in Lecture 2 with the asymptotic elliptic estimates
from Lecture 4. To prepare for the statement, note that H induces a splitting of
complex vector bundles

(6.4) T (R×M) = ǫ⊕ ξ,
where ǫ denotes the trivial complex line bundle generated by the vector field ∂r, or
equivalently, the Reeb vector field. It follows that if γ : S1 → M is a Reeb orbit
and uγ : R × S1 → R ×M is the corresponding trivial cylinder, then any unitary
trivialization τ of the Hermitian bundle (γ∗ξ, J,Ω) naturally induces a trivialization
of u∗γT (R×M).

Proposition 6.13 ([HWZ96]). Assume J ∈ J (H), u : (Σ̇, j) → (R ×M,J)
is J-holomorphic and asymptotically cylindrical, and its asymptotic orbit γz at z ∈
Γ± is nondegenerate. Let h(s, t) ∈ Cn denote the asymptotic representative of u
near z expressed via the trivialization induced by a choice of unitary trivialization
for (γ∗zξ, J,Ω). If δ > 0 is small enough so that the asymptotic operator Aγz has no
eigenvalues in the closed interval between 0 and ∓δ, then

h(s, t) = e∓δsg(s, t)

for some bounded function g(s, t) ∈ Cn whose derivatives of all orders are bounded
as s→ ±∞.

Remark 6.14. The range of δ > 0 for which Prop. 6.13 holds is open, thus by
adjusting δ slightly, one can equivalently say that h(s, t) = e∓δsg(s, t) where the
derivatives of all orders of g(s, t) decay to zero as s→ ±∞.

Exercise 6.15. Convince yourself that the analogue of Proposition 6.13 in Morse
theory is true. Namely, suppose (M, g) is a Riemannian manifold, f : M → R is
smooth and u : R → M is a solution to u̇ +∇f(u) = 0 with lims→±∞ u(s) = x± ∈
Crit(f), where x± are nondegenerate critical points. We can write u(s) asymptoti-
cally as

u(s) = expx± h±(s)
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for some functions h±(s) ∈ Tx±M that are defined for s close to ±∞ and satisfy
|h±(s)| → 0 as s → ±∞. Show that if δ > 0 is small enough so that ∇2f(x±) has
no eigenvalue in the closed interval between 0 and ±δ, then

h±(s) = e∓δsg±(s)

for some functions g±(s) with bounded derivatives of all orders as s→ ±∞.1 Hint:

fix local coordinates identifying x± with 0 ∈ Rn and first consider the case where

∇f(x) in these coordinates depends linearly on x. Then try to compare u(s) with
solutions of this idealized equation.

Example 6.16. In the setting of Example 6.6, a choice of J ∈ J (H) is equiv-
alent to a choice of smooth S1-parametrized family of compatible almost complex
structures {Jt}t∈S1 on (W,ω), and J-holomorphic curves u : (Σ̇, j) → (R ×M,J)
can be written as

u = (f, v) : Σ̇→
(
R× S1

)
×W,

where f : (Σ̇, j) → (R × S1, i) is holomorphic. In particular, if (Σ̇, j) = (R× S1, i)
and f is taken to have an extension to S2 → S2 of degree one, then u can be
reparametrized so that f is the identity map, hence u = (Id, v) : R × S1 → (R ×
S1)×W is a section of the trivial fiber bundle (R×S1)×W → R×S1, and one can
check that the equation satisfied by v : R× S1 →W is precisely the Floer equation

∂sv + Jt(v)(∂tv −Xt(v)) = 0.

6.2. Symplectic cobordisms with stable boundary

We discussed symplectic cobordisms between contact manifolds in Lecture 1.
Let us now generalize this notion in the context of stable Hamiltonian structures.

A symplectic cobordism with stable boundary is a compact symplectic
manifold (W,ω) with boundary ∂W = −M− ⊔ M+, equipped with a stabilizing
vector field V that points transversely inward at M− and outward at M+. This
induces stable Hamiltonian structures H± = (ω±, λ±) on M±, where

ω± := ω|TM±, λ± := (ιV ω)|TM±,

and observe that the orientation conventions for M+ and M− (with the latter car-
rying the opposite of the natural boundary orientation) have been chosen such that
if dimW = 2n,

λ± ∧ ωn−1
± > 0 on M±.

We can now identify neighborhoods of M± in (W,ω) symplectically with collars of
the form

([0, ǫ)×M+, d (rλ+) + ω+) ,

((−ǫ, 0]×M−, d (rλ−) + ω−) ,

see Figure 6.1.

1The apparent discrepancy in signs between this and Proposition 6.13 is due to the fact that
u(s) satisfies a negative gradient flow equation, whereas the nonlinear Cauchy-Riemann equation
in symplectizations is interpreted loosely as a positive gradient flow equation.
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((−ǫ, 0]×M+, d(rλ+) + ω+)

([0, ǫ)×M−, d(rλ−) + ω−)

(W,ω)

Figure 6.1. A symplectic cobordism with stable boundary compo-
nents ∂W = −M−⊔M+ and symplectic collar neighborhoods induced
by the stable Hamiltonian structures H± = (ω±, λ±) on M±.

Modifying (6.2) by

(6.5) T0 :=
{
ϕ ∈ C∞(R, (−ǫ, ǫ))

∣∣ ϕ′ > 0 and ϕ(r) = r for r near 0
}
,

we can use any ϕ ∈ T0 to define a symplectic completion (Ŵ , ωϕ) of (W,ω) by

Ŵ :=
(
(−∞, 0]×M−

)
∪M− W ∪M+

(
[0,∞)×M+

)
,

where the above collar neighborhoods are used to glue the pieces together smoothly
and the symplectic form is defined by

ωϕ :=





d (ϕ(r)λ−) + ω− on (−∞, 0]×M−,

ω on W,

d (ϕ(r)λ+) + ω+ on [0,∞)×M+,

see Figure 6.2. For each r0 ≥ 0, we define the compact submanifold

W r0 := ([−r0, 0]×M−) ∪M− W ∪M+ ([0, r0]×M+) ,

and observe that (W r0, ωϕ) is also a symplectic cobordism with stable boundary for
every ϕ ∈ T0.

Since Ŵ is noncompact, almost complex structures J on Ŵ will need to satisfy
conditions near infinity in order for moduli spaces of J-holomorphic curves to be well
behaved, but we would like to preserve the freedom of choosing arbitrary compatible
or tame almost complex structures in compact subsets.

Definition 6.17. Given ψ ∈ T0 and r0 ≥ 0, let

Jτ (ωψ, r0,H+,H−) ⊂ J (Ŵ )

denote the space of smooth almost complex structures J on Ŵ such that:

• J on [r0,∞)×M+ matches an element of J (H+);
• J on (−∞,−r0]×M− matches an element of J (H−);
• J on W r0 is tamed by ωψ.
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(W,ω)

((−ǫ, 0]×M+, d(rλ+) + ω+)

([0, ǫ)×M−, d(rλ−) + ω−)

([0,∞)×M+, d(ϕ(r)λ+) + ω+)

((−∞, 0]×M−, d(ϕ(r)λ−) + ω−)

Figure 6.2. The completion (Ŵ , ωϕ) of a symplectic cobordism
with stable boundary.

Let

J (ωψ, r0,H+,H−) ⊂ Jτ(ωψ, r0,H+,H−)

denote the subset for which J is additionally compatible with ωψ on W r0.

Setting

(6.6) T (ψ, r0) :=
{
ϕ ∈ T0

∣∣ ϕ ≡ ψ on [−r0, r0]
}
,

Exercise 6.12 implies that every J ∈ J (ωψ, r0,H+,H−) is tamed by ωϕ for every
ϕ ∈ T (ψ, r0). It is therefore sensible to define the energy of a J-holomorphic curve

u : (Σ, j)→ (Ŵ , J) by

E(u) := sup
ϕ∈T (ψ,r0)

∫

Σ

u∗ωϕ.

The notion of asymptotically cylindrical J-holomorphic curves extends in a straight-

forward way to the setting of (Ŵ , J): such curves are proper maps whose posi-
tive/negative punctures are asymptotic to closed orbits of the Reeb vector field R±
induced by H± on {±∞} ×M±, see Figure 6.3. The exponential decay estimate
in Proposition 6.13 is also immediately applicable in this more general setting since

asymptotically cylindrical curves in Ŵ are indistinguishable near their punctures
from curves in the symplectizations R×M±.

It is easy to check that asymptotically cylindrical J-holomorphic curves always
have finite energy. We will prove in Lecture 8 that the converse is also true whenever
the Reeb orbits are nondegenerate.
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Ŵ

Σ̇

u

Figure 6.3. An asymptotically cylindrical holomorphic curve in

(Ŵ , J) with genus 2, one positive puncture and two negative punc-
tures.

Remark 6.18. Strictly speaking, the “trivial stable cobordism”

([0, 1]×M, d(ϕ(r)Λ,Ω))

induces different stable Hamiltonian structures at M− := {0} × M and M+ :=
{1} × M , thus one cannot technically regard J (H) as contained in any space of
the form J (ωψ, r0,H+,H−) without inventing questionable new notions such as
the “infinitesimal trivial cobordism” [0, 0] × M (whose completion would be the
symplectization of (M,H)). It is nonetheless true for fairly trivial reasons that most
results about J (ω, r0,H+,H−) apply equally well to J (H), and we shall use this
fact in the following without always mentioning it.

Every asymptotically cylindrical curve u : Σ̇ → Ŵ has a well-defined relative
homology class, meaning the following. Denote the asymptotic orbits of u at
its punctures z ∈ Γ± by γz, and let γ̄

± ⊂ M± denote the closed 1-dimensional
submanifold defined as the union over z ∈ Γ± of the images of the orbits γz. Let Σ
denote the compact oriented topological surface with boundary obtained from Σ̇ by

appending {±∞} × S1 to each of its cylindrical ends, and let π : Ŵ → W denote
the retraction defined as the identity on W and π(r, x) = x ∈ M± ⊂ ∂W for (r, x)

in [0,∞) ×M+ or (−∞, 0] ×M−. Then π ◦ u : Σ̇ → W has a natural continuous
extension

ū : (Σ, ∂Σ)→ (W, γ̄+ ∪ γ̄
−)

and thus represents a relative homology class

[u] ∈ H2(W, γ̄
+ ∪ γ̄

−).
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6.3. Moduli spaces of unparametrized holomorphic curves

We continue in the setting of a completed symplectic cobordism Ŵ with fixed
choices of ψ ∈ T0, r0 ≥ 0 and J ∈ J (ωψ, r0,H+,H−). We shall denote by ξ± and
R± the hyperplane distribution and Reeb vector field respectively determined by
the stable Hamiltonian structure H± = (ω±, λ±).

Fix integers g,m, k+, k− ≥ 0 along with ordered sets of Reeb orbits

γ
± = (γ±1 , . . . , γ

±
k±
),

where each γ±i is a closed orbit of R± in M±. Denote the union of the images of the
γ±i by γ̄

± ⊂M±, and choose a relative homology class

A ∈ H2(W, γ̄
+ ∪ γ̄

−)

whose image under the boundary map H2(W, γ̄
+ ∪ γ̄

−)
∂−→ H1(γ̄

+ ∪ γ̄
−) defined

via the long exact sequence of the pair (W, γ̄+ ∪ γ̄
−) is

∂A =

k+∑

i=1

[γ+i ]−
k−∑

i=1

[γ−i ] ∈ H1(γ̄
+ ∪ γ̄

−).

The moduli space of unparametrized J-holomorphic curves of genus g with m
marked points, homologous to A and asymptotic to (γ+,γ−) is then defined
as a set of equivalence classes of tuples

Mg,m(J,A,γ
+,γ−) =

{
(Σ, j,Γ+,Γ−,Θ, u)

}/
∼,

where:

(1) (Σ, j) is a closed connected Riemann surface of genus g;
(2) Γ+ = (z+1 , . . . , z

+
k+
), Γ− = (z−1 , . . . , z

−
k−
) and Θ = (ζ1, . . . , ζm) are disjoint

ordered sets of distinct points in Σ;

(3) u : (Σ̇ := Σ \ (Γ+ ∪ Γ−), j) → (Ŵ , J) is an asymptotically cylindrical J-
holomorphic map with [u] = A, asymptotic at z±i ∈ Γ± to γ±i for i =
1, . . . , k±;

(4) Equivalence

(Σ0, j0,Γ
+
0 ,Γ

−
0 ,Θ0, u0) ∼ (Σ1, j1,Γ

+
1 ,Γ

−
1 ,Θ1, u1)

means the existence of a biholomorphic map ψ : (Σ0, j0)→ (Σ1, j1), taking
Γ±
0 to Γ±

1 and Θ0 to Θ1 with the ordering preserved, such that

u1 ◦ ψ = u0.

We shall usually abuse notation by abbreviating elements [(Σ, j,Γ+,Γ−,Θ, u)] in
this moduli space by

u ∈ Mg,m(J,A,γ
+,γ−).

The automorphism group

Aut(u) = Aut(Σ, j,Γ+,Γ−,Θ, u)

of u is defined as the group of biholomorphic maps ψ : (Σ, j) → (Σ, j) which act
as the identity on Γ+ ∪ Γ− ∪ Θ and satisfy u = u ◦ ψ. Clearly the isomorphism
class of this group depends only on the equivalence class [(Σ, j,Γ+,Γ−,Θ, u)] ∈
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Mg,m(J,A,γ
+,γ−), and we will see in §6.4 below that it is always finite unless

u : Σ̇→ Ŵ is constant. The significance of the marked points is that they determine
an evaluation map

ev :Mg,m(J,A,γ
+,γ−)→ Ŵm : [(Σ, j,Γ+,Γ−,Θ, u)] 7→ (u(ζ1), . . . , u(ζm))

where Θ = (ζ1, . . . , ζm). For most of our applications we will be free to assume
m = 0, as marked points are not needed for defining the most basic versions of
SFT; the evaluation map does play a prominent role however in more algebraically
elaborate versions of the theory, and especially in the Gromov-Witten invariants
(the “closed case” of SFT).

We will assign a topology to Mg,m(J,A,γ
+,γ−) in the next lecture by locally

identifying it with subsets of certain manifolds of maps Σ̇→ Ŵ with Sobolev-type
regularity and exponential decay conditions at the ends. In reality, this topology
admits a simpler description: one can define convergence of a sequence

[(Σν , jν ,Γ
+
ν ,Γ

−
ν ,Θν , uν)]→ [(Σ, j,Γ+,Γ−,Θ, u)]

to mean that for sufficiently large ν, the equivalence classes in the sequence admit
representatives of the form (Σ, j′ν ,Γ

+,Γ−,Θ, u′ν) such that

(1) j′ν → j in C∞;

(2) u′ν → u in C∞
loc(Σ̇, Ŵ );

(3) ū′ν → ū in C0(Σ,W ).

The proof that this topology matches what we will define in the next lecture in
terms of weighted Sobolev spaces requires asymptotic elliptic regularity arguments
along the lines of Proposition 6.13.

6.4. Simple curves and multiple covers

In Lecture 2, we proved that closed J-holomorphic curves are all either embedded
in the complement of a finite set or are multiple covers of curves with this property.
The same thing holds in the punctured case:

Theorem 6.19. Assume u : (Σ̇, j) → (Ŵ , J) is a nonconstant asymptoti-
cally cylindrical J-holomorphic curve whose asymptotic orbits are all nondegenerate,
where Σ̇ = Σ \ Γ for some closed Riemann surface (Σ, j) and finite subset Γ ⊂ Σ.
Then there exists a factorization u = v ◦ ϕ, where

• ϕ : (Σ, j) → (Σ′, j′) is a holomorphic map of positive degree to another
closed and connected Riemann surface (Σ′, j′);

• v : (Σ̇′, j′) → (Ŵ , J) is an asymptotically cylindrical J-holomorphic curve
which is embedded except at a finite set of critical points and self-intersections,
where Σ̇′ := Σ′ \ Γ′ with Γ′ := ϕ(Γ) and Γ = ϕ−1(Γ′).

As in the closed case, we call u a simple curve if the holomorphic map ϕ :
(Σ, j) → (Σ′, j′) is a diffeomorphism, and u is otherwise a k-fold multiple cover
of v with k := deg(ϕ) ≥ 2.

The proof of this theorem is an almost verbatim repeat of the proof of The-
orem 2.29 in Lecture 2, but with one new ingredient added. Recall that in the
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closed case, our proof required two lemmas which described the local picture of a J-

holomorphic curve u : Σ̇→ Ŵ near either a double point u(z0) = u(z1) for z0 6= z1 or
a critical point du(z0) = 0. Both statements were completely local and thus equally
valid for non-closed curves, but we now need similar statements to describe what
kinds of singularities can appear in the neighborhood of a puncture. The following
lemma is due to Siefring [Sie08] and follows from a “relative asymptotic formula”
analogous to Proposition 6.13.

Lemma 6.20 (Asymptotics). Assume u : (Σ̇ = Σ \ Γ, j) → (Ŵ , J) is asymptot-
ically cylindrical and is asymptotic at z0 ∈ Γ to a nondegenerate Reeb orbit. Then
a punctured neighborhood U̇z0 ⊂ Σ̇ of z0 can be identified biholomorphically with the
punctured disk Ḋ = D \ {0} such that

u(z) = v(zk) for z ∈ Ḋ = U̇z0 ,
where k ∈ N and v : (Ḋ, i) → (Ŵ , J) is an embedded and asymptotically cylindrical

J-holomorphic curve. Moreover, if u′ : (Σ̇′ = Σ′ \ Γ′, j′) → (Ŵ , J) is another
asymptotically cylindrical curve with a puncture z′0 ∈ Γ′, then the images of u near
z0 and u′ near z′0 are either identical or disjoint. �

Exercise 6.21. With Lemma 6.20 in hand, adapt the proof of Theorem 2.29 in
Lecture 2 to prove Theorem 6.19. If you get stuck, see [Nel15, §3.2].

Proposition 6.22. If [(Σ, j,Γ+,Γ−,Θ, u)] ∈ Mg,m(J,A,γ
+,γ−) is represented

by a simple curve, then Aut(u) is trivial. If it is represented by a k-fold cover of a
simple curve, then |Aut(u)| ≤ k. In particular, Aut(u) is always finite unless u is
constant.

Proof. If u is simple, then it is a diffeomorphism onto its image in a small
neighbourhood of some point, and any map ϕ satisfying u = u ◦ ϕ would be the
identity on such a neighbourhood. By unique continuation, we conclude that Aut(u)
is trivial. In general if u = v ◦ ϕ for some simple

v : Σ′ →W

and
ϕ : Σ→ Σ′

a k-fold branched cover, we have

Aut(u) = {f : Σ→ Σ | v ◦ ϕ ◦ f = v ◦ ϕ}.
By a similar argument as in the previous case, knowing that v is simple implies we
only need to look at solutions to

ϕ ◦ f = ϕ.

Remove the set of branch points B from Σ′ together with the set ϕ−1(B) from
Σ, so that ϕ becomes an honest covering map. Any ϕ ∈ Aut(u) then defines a
biholomorphic deck transformation of the cover, so it remains to argue that there
are at most k of them. In fact, there is at most one transformation that takes w1 to
w2 for any two given points w1, w2 ∈ ϕ−1(x). If there were two such transformations
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f and g, then f ◦ g−1 would be the identity on an open neighbourhood and would
thus be globally the identity by unique continuation. �

6.5. A local structure result

The following statement, which we will prove in the next lecture, is the main
goal of most of the analysis we have discussed recently. It is essentially an appli-
cation of the implicit function theorem for a smooth nonlinear Fredholm section
of a Banach space bundle. The implicit function theorem (see [Lan93]) implies in
particular that if F is a smooth map between Banach spaces such that F (x0) = 0
and dF (x0) is a surjective Fredholm operator, then F−1(0) is a smooth manifold
near x0 with its dimension equal to the Fredholm index of dF (x0). Surjectivity is
an extra hypothesis, referred to in the statement below as “Fredholm regularity,”
a notion that we will define precisely in the next lecture. The dimension formula
should look familiar, but is only an indirect consequence of the index formula for
Cauchy-Riemann type operators that we proved in Lecture 5; one also needs to ac-
count for the fact that in defining our moduli spaceMg,m(J,A,γ

+,γ−), we did not
fix the complex structures on our domain curves, hence they are free to move about
in the moduli space of Riemann surfaces, whose dimension therefore plays a role in
determining the dimension ofMg,m(J,A,γ

+,γ−).

Theorem 6.23. The set of Fredholm regular curves forms an open subset

Mreg
g,m(J,A,γ

+,γ−) ⊂Mg,m(J,A,γ
+,γ−)

which naturally admits the structure of a smooth finite-dimensional orbifold of di-
mension

dimMreg
g,m(J,A,γ

+,γ−) = (n− 3)(2− 2g − k+ − k−) + 2cτ1(A)

+

k+∑

i=1

µτCZ(γ
+
i )−

k−∑

i=1

µτCZ(γ
−
i ) + 2m,

where dimW = 2n, τ is a choice of unitary trivialization for (ξ±, J, ω±) along each
of the asymptotic orbits γ±i , and c

τ
1(A) denotes the normal first Chern number of the

complex vector bundle (u∗TŴ , J) → Σ̇ with respect to the asymptotic trivialization
determined by τ and the splitting T (R×M±) = ǫ⊕ ξ± (cf. (6.4)). The local isotropy
group of Mreg

g,m(J,A,γ
+,γ−) at u is Aut(u), hence the moduli space is a manifold

near any regular element with trivial automorphism group.

Exercise 6.24. Verify that the number in the above index formula is inde-

pendent of the choice of trivializations τ , and that cτ1(u
∗TŴ ) depends only on the

relative homology class A.
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In this lecture, we continue the study of the moduli space

M(J) :=Mg,m(J,A,γ
+,γ−).

We assume as before that (W,ω) is a 2n-dimensional symplectic cobordism with
stable boundary ∂W = −M− ⊔M+ inheriting stable Hamiltonian structures H± =
(ω±, λ±) with induced Reeb vector fields R± and hyperplane distributions ξ± =
ker λ±, g,m, k+, k− ≥ 0 are integers, γ± = (γ±1 , . . . , γ

±
k±) are ordered sets of peri-

odic R±-orbits in M±, and A ∈ H2(W, γ̄
+ ∪ γ̄

−) is a relative homology class with
∂A =

∑
i[γ

+
i ]−

∑
i[γ

−
i ] ∈ H1(W, γ̄

+∪ γ̄−). The noncompact completion of (W,ω) is

denoted by (Ŵ , ωψ) for some fixed function ψ : R→ (−ǫ, ǫ) that scales the symplec-
tic form on the cylindrical ends, and r0 ≥ 0 is a fixed constant which determines the
size of the ends [r0,∞)×M+ and (−∞,−r0]×M− on which we require our almost
complex structures J ∈ J (ωψ, r0,H+,H−) to be R-invariant. The complement of
these ends has closure

W r0 := ([−r0, 0]×M−) ∪M− W ∪M+ ([0, r0]×M+) .

We will often make use of the fact that since J matches translation-invariant almost
complex structures in J (H±) outside of W r0, there are natural complex vector
bundle splittings

T (R×M±) = ǫ⊕ ξ±,
where ǫ denotes the canonically trivial line bundle spanned by ∂r and the Reeb
vector field.

7.1. Transversality theorems in cobordisms

We concluded the previous lecture with the statement of the following theorem.

121



122 Chris Wendl

Theorem 7.1. If the orbits γ±i are all nondegenerate and J ∈ J (ωψ, r0,H+,H−),
then the moduli spaceM(J) contains an open subset

Mreg(J) ⊂M(J)

consisting of so-called Fredholm regular curves, which naturally admits the structure
of a smooth finite-dimensional orbifold of dimension

dimMreg(J) = (n− 3)(2− 2g − k+ − k−) + 2cτ1(A)

+

k+∑

i=1

µτ
CZ
(γ+i )−

k−∑

i=1

µτ
CZ
(γ−i ) + 2m,

where dimW = 2n, τ is a choice of unitary trivialization for (ξ±, J, ω±) along each
of the asymptotic orbits γ±i , and c

τ
1(A) denotes the normal first Chern number of the

complex vector bundle (u∗TŴ , J) → Σ̇ with respect to the asymptotic trivialization
determined by τ and the splitting T (R ×M±) = ǫ ⊕ ξ±. The local isotropy group
of Mreg(J) at u is Aut(u), hence the moduli space is a manifold near any regular
element with trivial automorphism group.

The integer in the above dimension formula is often called the virtual dimen-
sion ofM(J) and denoted by

vir-dimM(J) := (n− 3)(2− 2g − k+ − k−) + 2cτ1(A)

+

k+∑

i=1

µτCZ(γ
+
i )−

k−∑

i=1

µτCZ(γ
−
i ) + 2m.

Ignoring the marked points, the virtual dimension of a space Mg,0(J,A,γ
+,γ−)

containing a curve u : (Σ̇, j) → (Ŵ , J) with punctures z ∈ Γ± and nondegenerate
asymptotic orbits {γz}z∈Γ± is sometimes also called the index of u,

ind(u) := (n− 3)χ(Σ̇) + 2cτ1(u
∗TŴ ) +

∑

z∈Γ+

µτCZ(γz)−
∑

z∈Γ−

µτCZ(γz) ∈ Z,

and we will see that it is in fact the Fredholm index of an operator closely related
to the linearized Cauchy-Riemann operator Du at u. The word “virtual” refers to
the fact that in general, the regularity condition may fail and thusM(J) might not
be smooth, or if it is, it might actually be of a different dimension (see Example 7.5
below), but in an ideal world where transversality is always satisfied, its dimension
would be vir-dimM(J). This notion makes sense in finite-dimensional contexts as
well: if f : Rn → Rm is a smooth map, then we would say that f−1(0) has virtual
dimension n−m, even though f−1(0) might in general be all sorts of strange things
other than a smooth (n − m)-dimensional manifold. In particular, n − m could
be negative, in which case f−1(0) would be empty if transversality were satisfied,
but in general this need not be the case. It is true however that f can always be
perturbed to a map whose zero set is an (n − m)-dimensional manifold (or empty
if n − m < 0). The same is true in principle of the nonlinear Cauchy-Riemann
equation, but in general it is a formidably difficult problem to find perturbations
that respect all symmetries inherent in the setup as well as the extra structure
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provided by the compatification of M(J), which is usually crucial for meangingful
applications. Such issues require more sophisticated methods than we will discuss
here, but a good place to read about them is [FFGW].

The first goal of this lecture is to define the notion “Fredholm regular” and prove
Theorem 7.1. In practice, however, Fredholm regularity is a technical condition that
can rarely be directly checked. To remedy this, we will also prove a genericity result

for somewhere injective J-holomorphic curves. A smooth map u : Σ̇→ Ŵ is said to
have an injective point z ∈ Σ̇ if

du(z) : TzΣ̇→ Tu(z)Ŵ is injective and u−1(u(z)) = {z}.
If u is a proper map, then it is easy to see that the set of injective points is open in Σ̇,
though in general it could also be empty; this is the case e.g. for multiply covered J-
holomorphic curves. We say u is somewhere injective if its set of injective points is
nonempty; for asymptotically cylindrical J-holomorphic curves with nondegenerate
asymptotic orbits, Theorem 6.19 implies that somewhere injectivity is equivalent to
being simple, i.e. not multiply covered.

Recall that if X is a topological space, a subset Y ⊂ X is called comeager if it
contains a countable intersection of open and dense sets.1 If X is complete, then the
Baire category theorem implies that comeager subsets are always dense; moreover,
any countable intersection of comeager subsets is also comeager and therefore dense.
Comeager subsets often play the role in infinite dimensions that the term “almost
everywhere” plays in finite dimensions. Informally, we often say that a given state-
ment dependent on a choice of auxiliary data (living in a complete metric space)
is true generically, or “for generic choices,” if it is true whenever the data are
chosen from some comeager subset of the space of all possible data.

Theorem 7.2. Fix the same data as in Theorem 7.1, an almost complex struc-
ture Jfix ∈ J (ωψ, r0,H+,H−) and an open subset

U ⊂ W r0.

Then there exists a comeager subset

J reg
U ⊂

{
J ∈ J (ωψ, r0,H+,H−)

∣∣ J = Jfix on Ŵ \ U
}
,

such that for every J ∈ J reg
U , every curve u ∈ M(J) that has an injective point

mapped into U is Fredholm regular. In particular, the curves with this property
define an open subset of M(J) that is a smooth manifold with dimension equal to
its virtual dimension.

Remark 7.3. Since U ⊂ Ŵ has compact closure, the set
{
J ∈ J (ωψ, r0,H+,H−)

∣∣ J = Jfix on Ŵ \ U
}

1Elsewhere in the symplectic literature, comeager subsets are sometimes referred to as “sets
of second category,” which is unfortunately slightly at odds with the standard meaning of “second
category,” though it is accurate to say that the complement of a comeager subset (also known as
a “meager” subset) is a set of first category. The term Baire subset is also sometimes used as a
synonym for “comeager subset”.
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has a natural C∞-topology that makes it a Fréchet manifold and thus a complete
metric space, hence comeager subsets of it are dense.

Remark 7.4. Both of the above theorems admit easy extensions to the study
of moduli spaces dependent on finitely many parameters. Concretely, suppose P
is a smooth finite-dimensional manifold and {Js}s∈P is a smooth family of almost
complex structures satisfying the usual conditions. One can then define a parametric
moduli space

M({Js}s∈P ) =
{
(s, u)

∣∣ s ∈ P, u ∈M(Js)
}

and a notion of parametric regularity for pairs (s, u) ∈ M({Js}), which is again an
open condition, such that the spaceMreg({Js}) of parametrically regular elements
will be an orbifold of dimension

dimMreg({Js}) = vir-dimM(J) + dimP.

Similarly, one can show that if the family {Js}s∈P is allowed to vary on an open
subset U ⊂ W r0 for s lying in some precompact open subset V ⊂ P , then all
elements (s, u) for which s ∈ V and u has an injective point mapping to U will
be parametrically regular. See [Wend, §4.5] for details in the closed case, which
is not fundamentally different from the punctured case. The standard and most
important example is P = [0, 1] with V = (0, 1), so we consider generic homotopies
of almost complex structures. Here it is important to observe that while regularity
in the sense of Theorem 7.1 always implies parametric regularity, the converse is
false: there can exist parametrically regular pairs (s, u) ∈ M({Js}) for which u is
not a Fredholm regular element of M(Js), hence M({Js}) may be smooth even if
M(Js) is not smooth for some s ∈ P . This can happen in particular whenever s is
a critical value of the projection map

M({Js})→ P : (s, u) 7→ s,

see Figure 7.1. In general these cannot be excluded by making generic choices of the
homotopy, though it is possible in certain cases using “automatic” transversality re-
sults, which guarantee regularity for all Js with no need for genericity (cf. [Wen10]).

Example 7.5. It is not hard to imagine situations in which transversality must
fail generically for multiply covered curves. Suppose for instance that (W,ω) is an
8-dimensional symplectic manifold with compatible almost complex structure J0,
and u0 : S2 → W is a simple J0-holomorphic sphere with no punctures and [u0] =
A ∈ H2(W ), where c1(A) = −1. This means u0 represents an element of a moduli
spaceM0,0(J0, A) with

vir-dimM0,0(J0, A) = 2− 2g + 2c1(A) = 0.

In particular if u0 is regular and {Js ∈ J (ω)}s∈Rk is a smooth k-parameter family
of compatible almost complex structures including J0, then Remark 7.4 implies that
a neighborhood of (0, u0) in the parametric moduli space M({Js}) = {(s, u) | s ∈
P, u ∈ M0,0(Js, A)} is a smooth k-dimensional manifold, and this will be true no
matter how the family {Js} is chosen. But for each of the elements (s, u) ∈ M({Js})
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0 1
s

M(J0)
M(J1)

Figure 7.1. The picture shows a smooth parametric moduli space
M({Js}s∈[0,1]) and its projection M({Js}) → [0, 1] : (s, u) 7→ s in a
case where vir-dimM(Js) = 0. The parametric moduli space is 1-
dimensional and the spacesM(Js) are regular and 0-dimensional for
almost every s ∈ [0, 1], but this need not hold when s is a critical
value of the projection; in the picture, one such spaceM(Js) contains
a 1-dimensional component consisting of non-regular curves, so its
dimension differs from its virtual dimension.

parametrized by a J-holomorphic map u : (S2 = C ∪ {∞}, i) → (W,Js), there is
also a double cover

u′ : S2 →W : z 7→ u(z2),

with [u′] = 2A, so u′ ∈M0,0(Js, 2A) and

vir-dimM0,0(Js, 2A) = 2− 2g + 2c1(2A) = −2.
Negative virtual dimension means that M0,0(J0, 2A) should be empty whenever
Fredholm regularity is achieved, but this is clearly impossible, even generically, since
elements ofM0,0(Js, A) always have double covers belonging toM0,0(Js, 2A).

Remark 7.6. The most common way to apply Theorem 7.2 is by setting U
equal to the interior of W r0 , so generic perturbations of J are allowed everywhere
except on the regions where it is required to be R-invariant. The theorem then
achieves transversality for all simple curves that are not confined to the R-invariant
regions. We will show in the next lecture that transversality for all curves of the
latter type can also be achieved by generic perturbations within the spaces J (H±) of
compatible R-invariant almost complex structures on the symplectizations R×M±,
hence generic choices in J (ωψ, r0,H+,H−) do achieve transversality for all simple
curves.

Our proofs of Theorems 7.1 and 7.2 will mostly follow the same line of argument
that is carried out for the closed case in [Wend, Chapter 4], thus we will not discuss
every detail but will instead emphasize aspects which are unique to the punctured
case.
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7.2. Functional analytic setup

Fix k ∈ N and p ∈ (1,∞) with kp > 2, a small number δ ≥ 0, and a Riemannian

metric on Ŵ that is translation-invariant in the cylindrical ends. Fix also a closed
connected surface Σ of genus g, and disjoint finite ordered sets of distinct points

Γ± = (z±1 , . . . , z
±
k±
), Θ = (ζ1, . . . , ζm)

in Σ, together with disjoint neighborhoods

U±
j ⊂ Σ

of each z±j ∈ Γ± with complex structures jΓ and biholomorphic identifications of

(U±
j , jΓ, zj) with (D, i, 0) for each j = 1, . . . , k±. This determines holomorphic cylin-

drical coordinates identifying each of the punctured neighborhoods

U̇±
j ⊂ Σ̇ := Σ \ (Γ+ ∪ Γ−)

biholomorphically with the half-cylinder Z±.
For reasons that will become clear when we study the linearized Cauchy-Riemann

operator in the punctured setting, we will need to consider exponentially weighted
Sobolev spaces. Suppose E → Σ̇ is an asymptotically Hermitian vector bundle:
then the Banach space

W k,p,δ(E) ⊂W k,p
loc (E)

is defined to consist of sections η ∈ W k,p
loc (E) whose representatives f : Z± → Cm in

cylindrical coordinates (s, t) ∈ Z± and asymptotic trivializations at the ends satisfy

(7.1) ‖e±δsf‖W k,p(Z±) <∞.
The norm of a section η ∈ W k,p,δ(E) is defined by adding the W k,p-norm of η over a

large compact subdomain in Σ̇ to the weighted norms (7.1) for each cylindrical end.
If δ = 0, this just produces the usual W k,p(E), but for δ > 0, sections in W k,p,δ(E)
are guaranteed to have exponential decay at infinity.

Remark 7.7. It is occasionally useful to observe that the definition ofW k,p,δ(E)

also makes sense when δ < 0. In this case, sections in W k,p,δ(E) are of class W k,p
loc

but need not be globally in W k,p(E), as they are also allowed to have exponential
growth at infinity.

We now want to define a Banach manifold of maps u : Σ̇→ Ŵ that will contain
all the asymptotically cylindrical J-holomorphic curves with our particular choice
of asymptotic orbits. Recall that the asymptotically cylindrical condition means

(7.2) u(s, t) = exp(T±
j s,γ

±
j (t)) h(s, t) for sufficiently large |s|

in suitable cylindrical coordinates (s, t) ∈ Z± near each puncture z±j ∈ Γ±, where

T±
j > 0 is the period of the orbit γ±j : S1 →M± and h(s, t) is a vector field along the

trivial cylinder that decays as s → ±∞. The catch is that this definition was not
formulated with respect to a fixed choice of the holomorphic cylindrical coordinates
(s, t); in general the coordinates in which (7.2) is valid may depend on u, and different
choices of coordinates might be required for different maps. One can show however
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that any two distinct choices of holomorphic cylindrical coordinates are related to
each other by a transformation that converges asymptotically to a constant shift,
which implies that for our fixed choice of coordinates (s, t), every asymptotically
cylindrical map can be assumed to satisfy

u(s, t) = exp(T±
j s+a,γ

±
j (t+b)) h(s, t), lim

s→±∞
h(s, t) = 0

for some constants a ∈ R and b ∈ S1. We therefore define the space

Bk,p,δ := W k,p,δ(Σ̇, Ŵ ; γ+,γ−) ⊂ C0(Σ̇, Ŵ )

to consist of all continuous maps u : Σ̇→ Ŵ of the form

u = expf h,

where:

• f : Σ̇ → Ŵ is smooth and, in our fixed cylindrical coordinates (s, t) ∈ Z±
on neighborhoods of the punctures z±j ∈ Γ±, takes the form

f(s, t) = (T±
j s + a, γ±j (t+ b)) for |s| sufficiently large,

where a ∈ R and b ∈ S1 are arbitrary constants and T±
j > 0 is the period

of the Reeb orbit γ±j : S1 →M±;

• h ∈ W k,p,δ(f ∗TŴ ).

Though it is not immediate since Σ̇ is noncompact, one can generalize the ideas
in [El̆ı67] to give Bk,p,δ the structure of a smooth, separable and metrizable Banach
manifold. The key point is the condition kp > 2, which guarantees the continuous

inclusion W k,p,δ(f ∗TŴ ) →֒ C0(f ∗TŴ ) as well as Banach algebra and Ck-continuity
properties, cf. Propositions 2.4, 2.7 and 2.8 in Lecture 2. These properties are
needed in order to show that the transition maps between pairs of charts of the
form expf h 7→ h are smooth.

The tangent space to Bk,p,δ at u ∈ Bk,p,δ can be written as

TuBk,p,δ =W k,p,δ(u∗TŴ )⊕ VΓ,
where VΓ ⊂ Γ(u∗TŴ ) is a non-canonical choice of a 2(k+ + k−)-dimensional vector
space of smooth sections asymptotic at the punctures to constant linear combina-
tions of the vector fields spanning the canonical trivialization of the first factor in
T (R ×M±) = ǫ ⊕ ξ±, i.e. they point in the R- and R±-directions. The space VΓ
appears due to the fact that two distinct elements of Bk,p,δ are generally asymptotic
to collections of trivial cylinders that differ from each other by k+ + k− pairs of
constant shifts (a, b) ∈ R× S1.

Fix J ∈ J (ωψ, r0,H+,H−) and a smooth complex structure j on Σ that matches
jΓ in the neighborhoods U±

j of the punctures. The nonlinear Cauchy-Riemann op-
erator is then defined as a smooth section

∂̄j,J : Bk,p,δ → Ek−1,p,δ : u 7→ Tu+ J ◦ Tu ◦ j
of a Banach space bundle

Ek−1,p,δ → Bk,p,δ
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with fibers
Ek−1,p,δ
u =W k−1,p,δ(HomC(T Σ̇, u

∗TŴ )).

The zero set of ∂̄j,J is the set of all maps u ∈ Bk,p,δ that are pseudoholomorphic

from (Σ̇, j) to (Ŵ , J). Note that the smoothness of ∂̄j,J depends mainly on the fact
that J is smooth. Indeed, in local coordinates ∂̄j,J looks like u 7→ ∂su+ (J ◦ u)∂tu,
in which the most obviously nonlinear ingredient is u 7→ J ◦ u. If J were only of
class Ck, then the Ck-continuity property would imply that the map u 7→ J ◦ u
sends maps of class W k,p continuously to maps of class W k,p, and one can use an
inductive argument to show that this map then becomes r-times differentiable if J
is of class Ck+r, see [Wend, Lemma 2.12.5]. Moreover, the fact that ∂̄j,Ju satisfies
the same exponential weighting condition as u at the cylindrical ends depends on
the fact that J is R-invariant near infinity.

For u ∈ ∂̄−1
j,J (0), the linearization D∂̄j,J(u) : TuBk,p,δ → Ek−1,p,δ

u defines a bounded
linear operator

Du : W
k,p,δ(u∗TŴ )⊕ VΓ → W k−1,p,δ(HomC(T Σ̇, u

∗TŴ )).

We derived a formula for this operator in Lecture 2 and showed that it is of Cauchy-
Riemann type. Since VΓ is finite dimensional, Du will be Fredholm if and only if its
restriction to the first factor is Fredholm; denote this restriction by

Dδ : W
k,p,δ(u∗TŴ )→ W k−1,p,δ(HomC(T Σ̇, u

∗TŴ )),

where we’ve chosen the notation to emphasize the dependence of this operator on
the choice of exponential weight δ ≥ 0 in the definition of our Banach space. We
will see presently why it’s important to pay attention to this detail.

To see whether Dδ is Fredholm, consider first the special case where u is a trivial
cylinder

uγ : R× S1 → R×M : (s, t) 7→ (Ts, γ(t))

over some Reeb orbit γ : S1 →M with period T > 0 in M with stable Hamiltonian
structure H = (ω, λ) on M . In this case, there is a more convenient way to write
down Duγ than the formula from Lecture 2. To start with, we use the splitting
T (R ×M) = ǫ ⊕ ξ to decompose u∗γT (R ×M) = u∗γǫ ⊕ u∗γξ and thus write Duγ in
block form

Duγ =

(
Dǫ
uγ Dǫξ

uγ

Dξǫ
uγ Dξ

uγ

)
.

Exercise 7.8. Suppose D : Γ(E) → Ω0,1(Σ̇, E) is a linear Cauchy-Riemann
type operator on a vector bundle E with a complex-linear splitting E = E1 ⊕ E2,
and

D =

(
D11 D12

D21 D22

)

is the resulting block decomposition of D. Use the Leibniz rule satisfied by D
to show that D11 and D22 are also Cauchy-Riemann type operators on E1 and
E2 respectively, while the off-diagonal terms are tensorial, i.e. they commute with
multiplication by smooth real-valued functions and thus define bundle maps D12 :
E2 → Λ0,1T ∗Σ̇⊗E1 and D21 : E1 → Λ0,1T ∗Σ̇⊗ E2.



Lectures on Symplectic Field Theory 129

Now observe that if u = (uR, uM) : R×S1 → R×M is another cylinder near uγ,
the nonlinear operator (∂̄j,Ju)∂s = ∂su + J ∂tu ∈ Γ(u∗T (R ×M)) = Γ(u∗ǫ ⊕ u∗ξ)
takes the form

(∂̄j,Ju)∂s =

(
∂suR − λ(∂tuM) + i (∂tuR + λ(∂tuM))

πξ ∂suM + Jπξ ∂tuM

)
,

where we are using the canonical trivialization of u∗ǫ via ∂r and R to express the top
block as a complex-valued function. As we observed in Lecture 3, the bottom block of
this expression can be interpreted in terms of the gradient flow of an action functional
AH : C∞(S1) → R, with ∇AH(γ) = −Jπξ ∂tγ. Linearizing in the direction of a
section ηξ ∈ Γ(u∗γξ) and taking the ξ component thus yields an expression involving
the Hessian of AH at the critical point γ, namely

(Dξ
uγη

ξ)∂s = (∂s −Aγ)η
ξ.

To compute the blocksDǫ
uγ andDξǫ

uγ , notice thatDuγη
ǫ = 0 whenever ηǫ is a constant

linear combination of ∂r and R, as ηǫ is then the derivative of a smooth family of
J-holomorphic reparametrizations of uγ. This is enough to prove Dξǫ

uγ = 0 since
the latter is tensorial by Exercise 7.8, and expressing arbitrary sections of u∗γǫ as
f∂r + gR, we can apply the Leibniz rule for Dǫ

uγ and conclude

(Dǫ
uγη

ǫ)∂s = (∂s + i ∂t)η
ǫ

in the canonical trivialization. To compute the remaining off-diagonal term, one
needs to compute dr(Duγη

ξ) and λ(Duγη
ξ) for an arbitrary section ηξ ∈ Γ(u∗γξ),

e.g. by picking a smooth family uρ : R × S1 → R ×M with ∂ρuρ|ρ=0 = ηξ and a
connection ∇ and computing

dr
(
∇ρ(∂̄j,Juρ)

∣∣
ρ=0

)
and λ

(
∇ρ(∂̄j,Juρ)

∣∣
ρ=0

)
.

This calculation is straightforward but unenlightening, so I will leave it as an exercise
for now—in the next lecture we’ll derive a general formula (see Lemma 8.10), which
implies that since πξ ∂suγ ≡ πξ ∂tuγ ≡ 0 in the present setting, Dǫξ

uγ = 0. All this
leads to the formula

(Duγη)∂s =

(
∂s −

(
−i∂t 0
0 Aγ

))
η.

Here the upper left block is the “trivial” asymptotic operator acting on the trivial
line bundle over S1. Since every asymptotically cylindrical curve approximates a
trivial cylinder near infinity, one can deduce from this calculuation the following:

Proposition 7.9. The Cauchy-Riemann type operator Du on u∗TŴ is as-
ymptotic at its punctures z±j ∈ Γ± for j = 1, . . . , k± to the asymptotic operators

(−i∂t)⊕Aγ±j
on (γ±j )

∗(ǫ⊕ ξ±).
Perhaps you can now see a problem: even if the orbits γ±j are all nondegenerate,

the asymptotic operators (−i∂t)⊕Aγ are degenerate, as they have nontrivial kernel
consisting of constant sections in the first (trivial) factor of (γ±j )

∗(ǫ ⊕ ξ±). This
implies in particular that

D0 :W
k,p(u∗TŴ )→W k−1,p(HomC(T Σ̇, u

∗TŴ ))
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is not Fredholm, except of course in the special case where there are no punctures.
The situation is saved by the exponential weight:

Lemma 7.10. For every δ > 0 sufficiently small, the operator Dδ is Fredholm
and has index

ind(Dδ) = nχ(Σ)− (n+ 1)#Γ + 2cτ1(u
∗TŴ ) +

k+∑

j=1

µτ
CZ
(γ+j )−

k−∑

j=1

µτ
CZ
(γ−j ).

Moreover, every element ofM(J) can be represented by a map u ∈ Bk,p,δ.
Proof. The second claim follows from the exponential decay estimate of Hofer-

Wysocki-Zehnder [HWZ96] mentioned in the previous lecture, see Proposition 6.13.
To see that Dδ : W k,p,δ → W k−1,p,δ is Fredholm and to compute its index, we

can identify it with a Cauchy-Riemann type operator from W k,p to W k−1,p. Indeed,
pick any smooth function f : Σ̇ → R with f(s, t) = ∓δs on the cylindrical ends
near Γ±, define Banach space isomorphisms

Φδ : W
k,p →W k,p,δ : η 7→ efη,

Ψδ :W
k−1,p →W k−1,p,δ : θ 7→ efθ,

and consider the bounded linear map

D′
δ := Ψ−1

δ DδΦδ :W
k,p(u∗TŴ )→W k−1,p(HomC(T Σ̇, u

∗TŴ )).

Using the Leibniz rule for Dδ, it is straightforward to show that D′
δ is also a linear

Cauchy-Riemann type operator. Moreover, suppose Dδ takes the form ∂̄+S(s, t) in
coordinates and trivialization on the cylindrical end near z±j , where S(s, t)→ S∞(t)
as s→ ±∞ and Aγ±j

= −i∂t − S∞(t). Then D′
δ on this same end takes the form

D′
δη = e±δs(∂̄ + S(s, t))(e∓δsη) = ∂̄η + (S(s, t)∓ δ)η

and is therefore asymptotic to the perturbed asymptotic operator

Ã±
j :=

(
(−i∂t)⊕Aγ±j

)
± δ.

The latter is the direct sum of two asymptotic operators −i∂t ± δ on the trivial
line bundle and Aγ±j

± δ on (γ±j )
∗ξ± respectively. Since γ±j is nondegenerate by

assumption and the spectrum ofAγ±j
is discrete, we can assume ker(Aγ±j

±δ) remains

trivial if δ > 0 is sufficiently small, and the Conley-Zehnder index of this perturbed
operator will be the same as without the perturbation. On the other hand, the
spectrum of −i∂t consists of the integer multiples of 2π, thus −i∂t ± δ also becomes
nondegenerate for any δ > 0 small. Its Conley-Zehnder index can be deduced from
the winding numbers of its eigenfunctions using Theorem 3.36 in Lecture 3: −i∂t
has a 2-dimensional nullspace consisting of sections with winding number 0, and
this becomes an eigenspace for the smallest positive eigenvalue if the puncture is
positive or the largest negative eigenvalue if the puncture is negative. Theorem 3.36
thus gives

µCZ(−i∂t ± δ) = ∓1,
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and therefore,

µτCZ(Ã
±
j ) = ∓1 + µτCZ(γ

±
j ).

Plugging this into the general index formula from Lecture 5 then gives the stated
result. �

Putting back the missing 2(#Γ) dimensions in the domain of Du, we have:

Corollary 7.11. For all δ > 0 sufficiently small, the linearized Cauchy-Riemann
operator Du : TuBk,p,δ → Ek−1,p,δ

u is Fredholm with index

ind(Du) = nχ(Σ)− (n− 1)#Γ + 2cτ1(u
∗TŴ ) +

k+∑

j=1

µτ
CZ
(γ+j )−

k−∑

j=1

µτ
CZ
(γ−j ).

7.3. Teichmüller slices

Since the moduli spaceM(J) is not defined with reference to any fixed complex

structure on the domains Σ̇, we must build this freedom into the setup. For a more
detailed version of the following discussion, see [Wend, §4.2.1].

For any integers g, ℓ ≥ 0, the moduli space of Riemann surfaces of genus g
with ℓ marked points is a space of equivalence classes

Mg,ℓ = {(Σ, j,Θ)}
/
∼

where (Σ, j) is a compact connected surface with genus g, Θ ⊂ Σ is an ordered
set of ℓ points and equivalence is defined via biholomorphic maps that preserve
the marked points with their ordering. This space has been studied extensively in
algebraic geometry, though it can also be understood using the same global analytic
methods that we have been applying forM(J). It is known in particular thatMg,ℓ

is always a smooth orbifold, and for any [(Σ, j,Θ)] ∈Mg,ℓ, it satisfies

(7.3) dimAut(Σ, j,Θ)− dimMg,ℓ = 3χ(Σ)− 2ℓ,

where Aut(Σ, j,Θ) is the group of biholomorphic transformations of (Σ, j) that
fix the points in Θ. This group is finite whenever (Σ, j,Θ) is stable, meaning
χ(Σ \Θ) < 0, and in that case (7.3) turns into the well-known dimension formula

dimMg,ℓ = −3χ(Σ) + 2ℓ = 6g − 6 + 2ℓ.

This is also the dimension of the Teichmüller space

T (Σ,Θ) := J (Σ)/Diff0(Σ,Θ),

where J (Σ) denotes the space of all smooth complex structures on Σ compatible
with its orientation, and Diff0(Σ,Θ) is the identity component of the group of dif-
feomorphisms that fix Θ. It is a classical result that T (Σ,Θ) is a smooth manifold of
the same dimension asMg,ℓ, and indeed, the latter can be presented as the quotient
of the former by the discrete action of the mapping class group of (Σ,Θ).

Equation (7.3) is actually a formula for a Fredholm index. To see how this works,
consider first the case ℓ = 0. The right hand side is then χ(Σ) + 2c1(TΣ), which
is, according to Riemann-Roch, the index of the natural Cauchy-Riemann operator
on TΣ that defines its holomorphic structure. This operator can also be interpreted
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as the linearization at the identity map of the nonlinear Cauchy-Riemann opera-
tor for holomorphic maps (Σ, j) → (Σ, j), so its kernel is naturally isomorphic to
TId Aut(Σ, j). Similarly, one can show that the cokernel of this operator is naturally
isomorphic to T[j]T (Σ). This discussion remains valid if marked points are included:
the main difference is then that the Cauchy-Riemann operator on TΣ should be
restricted to a space of vector fields that vanish at Θ, defining a 2ℓ-codimensional
subspace as the domain and thus reducing the index by 2ℓ.

For a proof of the following, see [Wend, Chapter 4] and [Wen10, §3.1].
Proposition 7.12. Given a closed Riemann surface (Σ, j) with a finite ordered

set Θ ⊂ Σ, there exists a smooth finite-dimensional submanifold T ⊂ J (Σ) with the
following properties:

(1) The map T → T (Σ,Θ) : j′ 7→ [j′] is bijective onto a neighborhood of [j] in
T (Σ,Θ);

(2) The subspace TjT ⊂ Γ(EndC(TΣ)) is complementary inW k−1,p(EndC(TΣ))
to the image of the standard Cauchy-Riemann operator of TΣ acting on the
domain {X ∈ W k,p(TΣ) | X|Θ = 0};

(3) Every j′ ∈ T equals j near Θ and is invariant under the action of Aut(Σ, j,Θ)
by diffeomorphisms on Σ.

�

We will refer to the family T ⊂ J (Σ) in this proposition as a Teichmüller slice
through j.

7.4. Fredholm regularity and the implicit function theorem

We are now in a position to define the necessary regularity condition and prove
that a neighborhood of any given regular element [(Σ, j0,Γ

+,Γ−,Θ, u0)] inM(J) is
an orbifold of the stated dimension. After reparametrizing, we can assume without
loss of generality that Σ, Γ± and Θ are precisely the data that were fixed in §7.2,
and j0 ∈ J (Σ) matches jΓ on our fixed coordinate neighborhoods of Γ±. We can
then choose a Teichmüller slice

T ⊂ J (Σ)
through j0 as provided by Prop. 7.12, but with j in that statement replaced by j0
and Θ replaced by Γ+ ∪ Γ− ∪ Θ. In particular, T is invariant under the action of
the group

G0 := Aut(Σ, j0,Γ
+ ∪ Γ− ∪Θ),

and (7.3) now becomes

(7.4) dimG0 − dim T = 3χ(Σ)− 2(k+ + k− +m).

There is a natural extension of the nonlinear operator ∂̄j,J in §7.2 to a smooth
section

∂̄J : T × Bk,p,δ → Ek−1,p,δ : (j, u) 7→ Tu+ J ◦ Tu ◦ j
of a Banach space bundle Ek−1,p,δ → T × Bk,p,δ with fibers

Ek−1,p,δ
(j,u) =W k−1,p,δ

(
HomC((T Σ̇, j), (u

∗TŴ , J))
)
.
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The zero set ∂̄−1
J (0) ⊂ T ×Bk,p,δ consists of pairs (j, u) for which u : (Σ̇, j)→ (Ŵ , J)

is pseudoholomorphic, and it contains (j0, u0) by construction. It also admits a
natural action of the automorphism group G0,

G0 × ∂̄−1
J (0)→ ∂̄−1

J (0) : (ϕ, (j, u)) 7→ (ϕ∗j, u ◦ ϕ),
whose stabilizer at (j0, u0) is Aut(u0), a finite group whenever u0 is not constant.
Observe that any two elements in the same G0-orbit of ∂̄−1

J (0) define equivalent
elements of the moduli spaceM(J), as they are related to each other by a biholo-
morphic reparametrization that fixes the punctures and marked points.

Lemma 7.13. The map

∂̄−1
J (0)

/
G0 →M(J) : [(j, u)] 7→ [(Σ, j,Γ+,Γ−,Θ, u)]

is a homeomorphism between open neighborhoods of [(j0, u0)] and [(Σ, j0,Γ
+,Γ−,Θ, u0)].

Proof. This depends fundamentally on the same fact underlying the smooth-
ness of Teichmüller space: the action of Diff0(Σ,Γ

+ ∪ Γ− ∪Θ) on J (Σ) is free and
proper.2 See the proof of [Wend, Theorem 4.3.6]. �

Definition 7.14. We say that [(Σ, j0,Γ
+,Γ−,Θ, u0)] is Fredholm regular if

there exists a choice of Teichmüller slice T through j0 such that the linearization

D∂̄J(j0, u0) : Tj0T ⊕ Tu0Bk,p,δ → Ek−1,p,δ
(j0,u0)

is surjective.

One can show that the surjectivity condition in this definition does not actually
depend on the choice of Teichmüller slice. This follows from the identification of
Tj0T with the cokernel of the natural Cauchy-Riemann operator on T Σ̇; see [Wend,
Lemma 4.3.2].

Proof of Theorem 7.1. The fact that M(J) is an orbifold in a neighbor-
hood of [(Σ, j0,Γ

+,Γ−,Θ, u0)] with isotropy group Aut(u0) follows from Lemma 7.13
and the implicit function theorem, which gives ∂̄−1

J (0) the structure of a finite-
dimensional manifold near (j0, u0) if Fredholm regularity is satisfied. There is a bit
of work to be done in showing that transition maps relating any two overlapping
charts that arise in this way from the implicit function theorem are smooth; for this,
we refer again to the proof of Theorem 4.3.6 in [Wend] and merely comment that
the key ingredient is elliptic regularity.

The dimension ofM(J) is

dimM(J) = dim ∂̄−1
J (0)− dimG0 = indD∂̄J(j0, u0)− dimG0.

The restriction of D∂̄J(j0, u0) to Tu0Bk,p,δ is the operator Du0 that we studied in
§7.2, hence

indD∂̄J(j0, u0) = dim T + indDu0.

2This is true at least in the stable case, i.e. when χ(Σ̇ \Θ) < 0. There are finitely many cases
not satisfying this hypothesis, for which the lemma can be proved by more direct arguments since
explicit descriptions of both Teichmüller space and the automorphism groups of Riemann surfaces
are available; see [Wen10, §3.1 and §3.2] for more details.
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Using (7.4) to replace dim T − dimG0 and combining this with Corollary 7.11 now
gives the stated formula for dimM(J). �

7.5. A universal moduli space

The remainder of this lecture is devoted to the proof of Theorem 7.2. The main
tool for this purpose is the Sard-Smale theorem [Sma65], an infinite-dimensional
version of Sard’s theorem stating that the regular values of a smooth nonlinear
Fredholm map between separable Banach spaces (i.e. a smooth map whose deriv-
ative at every point is a Fredholm operator) form a comeager subset of the target
space. In order to incorporate perturbations of the almost complex structure into
our functional analytic setup, we need to choose a suitable Banach manifold of al-
most complex structures. All known ways of doing this are in some sense non-ideal,
e.g. one could take almost complex structures of class Ck or W k,p, but this neces-
sarily introduces non-smooth almost complex structures into the picture, with the
consequence that the nonlinear Cauchy-Riemann operator has only finitely many
derivatives. That is not the end of the world, and indeed, this is the approach taken
in [MS04], but I will instead present an approach that was introduced by Floer in
[Flo88b], in terms of what is now called the “Floer Cε space”. The idea is to work
with a Banach manifold that continuously embeds into the space of smooth almost
complex structures, so that the nonlinear Cauchy-Riemann operator will always be
smooth. It’s a nice trick, but the catch is that we obtain a space that is strictly
smaller than the actual space of smooth almost complex structures we’re interested
in, and has a much stronger topology. The Cε space should be viewed as a useful
tool but not a deeply meaningful object—you might notice that while some of the
intermediate results stated below depend on its (somewhat ad hoc) definition, The-
orem 7.2 does not. This is due to a general trick described in §7.7 below for turning
results about Cε into results about C∞.

As in the statement of Theorem 7.2, assume U ⊂ W r0 is open and Jfix ∈
J (ωψ, r0,H+,H−). Let

JU :=
{
J ∈ J (ωψ, r0,H+,H−)

∣∣∣ J = Jfix on Ŵ \ U
}
,

and choose any almost complex structure

J ref ∈ JU .

We can regard JU as a smooth Fréchet manifold with tangent spaces

TJrefJU =
{
Y ∈ Γ

(
EndC(TŴ , J ref)

) ∣∣∣ Y |Ŵ\U ≡ 0 and ωψ(·, Y ·) + ωψ(Y ·, ·) ≡ 0
}
,

where the antilinearity of Y ∈ TJrefJU means that Y is tangent to the space almost
complex structures, and the condition relating it to ωψ means that these structures
are compatible with ωψ. One can check that the map

Y 7→ JY :=

(
1+

1

2
J refY

)
J ref

(
1+

1

2
J refY

)−1



Lectures on Symplectic Field Theory 135

maps a neighborhood of 0 ∈ TJrefJU bijectively to a neighborhood of J ref in JU .
We thus fix a sufficiently small constant c > 0 and define the space of “Cε-small
perturbations of J ref” by

J ε
U :=

{
JY ∈ JU

∣∣∣∣ Y ∈ TJrefJU with
∞∑

ℓ=0

εℓ‖Y ‖Cℓ(U) < c

}
,

where ε := (εℓ)
∞
ℓ=0 is a fixed sequence of positive numbers with εℓ → 0 as ℓ → ∞.

The sum

‖Y ‖Cε :=
∞∑

ℓ=0

εℓ‖Y ‖Cℓ(U)

defines a norm, and the space of smooth sections Y ∈ TJrefJU for which this norm is
finite is then a separable Banach space; see Appendix B for a proof of this statement.
This makes J ε

U a separable and metrizable Banach manifold, as the map JY 7→ Y
can be viewed as a chart identifying it with an open subset of the aforementioned
Banach space. Not every J ∈ JU near J ref belongs to J ε

U , but there is a continuous
inclusion

J ε
U →֒ JU ,

where the latter carries its usual C∞-topology and J ε
U carries the topology induced

by the Cε-norm. By a lemma due to Floer, choosing a sequence εℓ that decays
sufficiently fast makes J ε

U large enough to contain perturbations in arbitrary direc-
tions with arbitrarily small support near arbitrary points in U ; see Theorem B.6 in
Appendix B for a precise version of this statement and its proof. We will assume
from now on that a suitably fast decaying sequence has been fixed.

We now define a universal moduli space

M∗(J ε
U) :=

{
(u, J)

∣∣ J ∈ J ε
U , u ∈M(J) and

u has an injective point mapped into U
}
.

The terminology is somewhat unfortunate, asM∗(J ε
U) depends on many auxiliary

choices such as J ref and (εℓ)
∞
ℓ=0 and thus should not really be thought of as a “uni-

versal” object. Nonetheless:

Lemma 7.15. The universal moduli spaceM∗(J ε
U) is a smooth separable Banach

manifold, and the projectionM∗(J ε
U)→ J ε

U : (u, J) 7→ J is smooth.

Proof. As in the proof of Theorem 7.1, one can identifyM∗(J ε
U) locally with

the zero set of a smooth section of a Banach space bundle. Suppose J0 ∈ J ε
U and

[(Σ, j0,Γ
+,Γ−,Θ, u0)] ∈ M(J0) where u0 : Σ̇ → Ŵ has an injective point z0 with

u0(z0) ∈ U . Choose a Teichmüller slice T through j0 as in Proposition 7.12 and
consider the smooth section

∂̄ : T × Bk,p,δ × J ε
U → Ek−1,p,δ : (j, u, J) 7→ Tu+ J ◦ Tu ◦ j,

where Ek−1,p,δ is the obvious extension of our previous Banach space bundle to a
bundle over T × Bk,p,δ × J ε

U . We’re assuming as before that k ∈ N, 1 < p < ∞,
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kp > 2, and δ > 0 is small. A neighborhood of (u0, J0) in M∗(J ε
U) can then be

identified with a neighborhood of [(j0, u0, J0)] in

∂̄−1(0)
/
G0,

where G0 := Aut(Σ, j0,Γ
+∪Γ− ∪Θ) acts on ∂̄−1(0) by ϕ · (j, u, J) := (ϕ∗j, u ◦ϕ, J).

Since u0 has an injective point, Aut(u0) is trivial and the G0-action at (j0, u0, J0)
is therefore free; hence it suffices to show that ∂̄−1(0) is a smooth Banach manifold
near (j0, u0, J0). This follows from the implicit function theorem if we can show that

D∂̄(j0, u0, J0) : Tj0T ⊕ Tu0Bk,p,δ ⊕ TJ0J ε
U → Ek−1,p,δ

(j0,u0,J0)

is surjective; indeed, the infinite-dimensional implicit function theorem (see [Lan93])
requires the additional hypothesis that D∂̄(j0, u0, J0) has a bounded right inverse,
but this is immediate since the restriction of this operator to the factor Tu0Bk,p,δ is
Fredholm (see Exercise 7.17 below). We claim in fact that

Tu0Bk,p,δ ⊕ TJ0J ε
U → Ek−1,p,δ

(j0,u0,J0)

(η, Y ) 7→ D∂̄(j0, u0, J0)(0, η, Y ) = Du0η + Y ◦ Tu0 ◦ j0
is surjective. Consider first the case k = 1,3 so we are looking at a bounded linear
map

W 1,p,δ(u∗0TŴ )⊕ VΓ ⊕ TJ0J ε
U → Lp,δ(HomC(T Σ̇, u

∗
0TŴ )).

Note that the dual of any space of sections of class Lp,δ can be identified with
sections of class Lq,−δ for 1

p
+ 1

q
= 1 (recall Remark 7.7). Indeed, choosing a suitable

L2-pairing defines a bounded bilinear map

(7.5) 〈 , 〉L2 : Lp,δ × Lq,−δ → R,

and one can use isomorphisms of the form Lp → Lp,δ : η 7→ efη as in the proof
of Lemma 7.10 to prove (Lp,δ)∗ ∼= Lq,−δ as a corollary of the standard fact that
(Lp)∗ ∼= Lq. With this understood, observe that since Du0 : W 1,p,δ ⊕ VΓ → Lp,δ

is Fredholm, we know by Exercise 7.16 below that the map under consideration
has closed range. Thus if it is not surjective, the Hahn-Banach theorem provides

a nontrivial element θ ∈ Lq,−δ(HomC(T Σ̇, u
∗
0TŴ )) that annihilates its image under

the pairing (7.5), which amounts to the two conditions

〈Du0η, θ〉L2 = 0 for all η ∈ W 1,p,δ(u∗0TŴ )⊕ VΓ,
〈Y ◦ Tu0 ◦ j0, θ〉L2 = 0 for all Y ∈ TJ0J ε

U .
(7.6)

The first relation is valid in particular for all smooth sections η with compact support
and thus means that θ is a weak solution to the formal adjoint equation D∗

u0
θ = 0;

applying elliptic regularity and the similarity principle, θ is therefore smooth and has
only isolated zeroes. We will see however that this contradicts the second relation
as long as there exists an injective point z0 ∈ Σ̇ with u0(z0) ∈ U . Indeed, since the
set of injective points with this property is open and zeroes of θ are isolated, let
us assume without loss of generality that θ(z0) 6= 0. Then by a standard lemma
in symplectic linear algebra (see [Wend, Lemma 4.4.12]), one can find a smooth

3Since the present discussion is purely linear, it does not require the assumption kp > 2.
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section Y ∈ TJ0JU whose value at u0(z0) is chosen such that Y ◦ Tu0 ◦ j0 = θ at
z0, so their pointwise inner product is positive in some neighborhood of z0. But
by Theorem B.6, one can multiply a small perturbation of Y by a bump function
to produce a section (still denoted by Y ) of class Cε so that the pointwise inner
product of Y ◦ Tu0 ◦ j0 with θ is positive near z0 but vanishes everywhere else; note
that this requires the assumption u−1

0 (u0(z0)) = {z0}, so that the value of Y near
u0(z0) affects the value of Y ◦ Tu0 ◦ j0 near z0 but nowhere else. This violates the
second condition in (7.6) and thus completes the proof for k = 1. In the general

case, suppose θ ∈ W k−1,p,δ(HomC(T Σ̇, u
∗
0TŴ )). Then θ is also of class Lp,δ, so

surjectivity in the k = 1 case implies the existence of η ∈ W 1,p,δ and Y ∈ TJ0J ε
U

with Du0η + Y ◦ Tu0 ◦ j0 = θ. Since Y ◦ Tu0 ◦ j0 is smooth with compact support,
one can then use elliptic regularity to show η ∈ W k,p,δ, and this proves surjectivity
for arbitrary k ∈ N and p ∈ (1,∞).

The implicit function theorem now implies that whenever kp > 2 so that Bk,p,δ
is a well-defined Banach manifold, ∂̄−1(0) is a smooth Banach submanifold of T ×
Bk,p,δ ×J ε

U in a neighborhood of (j0, u0, J0). The projection map

∂̄−1(0)→ J ε
U : (j, u, J) 7→ J

is also smooth since it is the restriction to a smooth submanifold of the obviously
smooth projection map T × Bk,p,δ × J ε

U → J ε
U . Since G0 acts freely and properly

on ∂̄−1(0), the quotient ∂̄−1/G0 then inherits a smooth Banach manifold structure
for which the projection is still smooth, and this quotient is identified locally with
M∗(J ε

U). Smoothness of transition maps is shown via the same regularity arguments
as in the proof of Theorem 7.1. �

Exercise 7.16. Show that if X , Y and Z are Banach spaces, T : X → Y is a
Fredholm operator and A : Z → Y is a bounded linear operator, then the linear
map

L : X ⊕ Z → Y : (x, z) 7→ Tx+Az

has closed range. Hint: it might help to write X = V ⊕ kerT and Y =W ⊕ cokerC

so that C ∼= cokerT and V
T−→W is an isomorphism.

Exercise 7.17. Under the same assumptions as in Exercise 7.16, show that if
T is surjective, then L has a bounded right inverse.

7.6. Applying the Sard-Smale theorem

We claim now that the smooth map

(7.7) M∗(J ε
U)→ J ε

U : (u, J) 7→ J

is a nonlinear Fredholm map, i.e. its derivative at every point is a Fredholm oper-
ator. Using the local identification of M∗(J ε

U) with ∂̄−1(0)/G0 as in the proof of
Lemma 7.15 and lifting the projection to ∂̄−1(0), the derivative of ∂̄−1(0) → J ε

U at
(j0, u0, J0) takes the form

kerD∂̄(j0, u0, J0)→ TJ0J ε
U : (y, η, Y ) 7→ Y.
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The Fredholm property for this projection is a consequence of the Fredholm property
for Du0 via the following general lemma, whose proof is a routine matter of linear
algebra (cf. [Wend, Lemma 4.4.13]):

Lemma 7.18. Under the assumptions of Exercise 7.16, suppose L is surjective.
Then the projection

Π : kerL→ Z : (x, z) 7→ z

has kernel and cokernel isomorphic to the kernel and cokernel respectively of T :
X → Y . �

By the Sard-Smale theorem, the set of regular values of the projection (7.7) is a
comeager subset

J ε,reg
U ⊂ J ε

U ,

and by Lemma 7.18, every (u0, J0) ∈ M∗(J ε
U) with J ∈ J ε,reg

U then has the property
that

D∂̄J0(j0, u0) : Tj0T ⊕ Tu0Bk,p,δ → Ek−1,p,δ
(j0,u0)

is surjective, which means u0 represents a Fredholm regular element ofM(J0).

7.7. From Cε to C∞

The arguments above would constitute a proof of Theorem 7.2 if we were allowed
to replace the space of smooth almost complex structures JU with the space J ε

U of
Cε-small perturbations of J ref . Let us define

J reg
U ⊂ JU

to be the space of all J ∈ JU with the property that all curves inM(J) that have
injective points mapping to U are Fredholm regular. The theorem claims that this
set is comeager in JU . We can already see at this point that it is dense: indeed, the
Baire category theorem implies that J ε,reg

U is dense in J ε
U , so in particular there exists

a sequence Jν ∈ Jε,regU that converges in to J ref in the Cε-topology and therefore also
in the C∞-topology. The choice of J ref ∈ JU in this discussion was arbitrary, so this
proves density.

To prove that J reg
U is not only dense but also contains a countable intersection of

open and dense sets in JU , we can adapt an argument originally due to Taubes. The
idea is to present the sets of somewhere injective curves inM(J) as countable unions
of compact subsets M∗

N(J) for N ∈ N, and thus present J reg
U as a corresponding

countable intersection of spaces J reg,N
U that achieve regularity only for the elements

inM∗
N(J). The compactness ofM∗

N(J) will then permit us to prove that J reg,N
U is

not only dense but also open.
The definition ofM∗

N(J) is motivated in part by the knowledge that spaces of
J-holomorphic curves have natural compactifications. We have not yet discussed
the compactificationM(J) ofM(J), but we have covered enough of the analytical
techniques behind this construction to suffice for the present discussion. Recall first
that the moduli space of Riemann surfaces Mg,ℓ of genus g with ℓ marked points
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also has a natural compactification whenever 2g + ℓ ≥ 3, known as the Deligne-
Mumford compactification

Mg,ℓ ⊃Mg,ℓ.

The spaceMg,ℓ consists of “nodal” Riemann surfaces, which can be understood as
objects that arise from smooth Riemann surfaces with pair-of-pants decompositions
in the limit where some of the lengths of the circles separating two pairs of pants
from each other may degenerate to 0 (see e.g. [SS92]). We will discuss this in a
bit more detail in Lecture 9; for now, all you really need to know is that Mg,ℓ is
a compact and metrizable topological space that containsMg,ℓ as an open subset.
Let us fix a metric onMg,ℓ and denote the distance function by dist( , ).

Similarly, fix Riemannian metrics on Ŵ and Σ̇ with translation-invariance on
the cylindrical ends and use dist( , ) to denote the distance functions. For N ∈ N

and J ∈ JU , we define
M∗

N(J) ⊂M(J)

to be the set of equivalence classes admitting representatives (Σ, j,Γ+,Γ−,Θ, u) with
the following properties:

• The equivalence class inMg,k++k−+m represented by (Σ, j,Γ+∪Γ−∪Θ) lies

at a distance of at most 1/N fromMg,k++k−+m \Mg,k++k−+m;
4

• supz∈Σ̇ |du(z)| ≤ N ;

• There exists z0 ∈ Σ̇ such that

dist(u(z0), Ŵ \ U) ≥
1

N
, |du(z0)| ≥

1

N
,

and

inf
z∈Σ̇\{z0}

dist(u(z0), u(z))

dist(z0, z)
≥ 1

N
.

We observe that every element ofM∗
N(J) has an injective point mapped into U , and

conversely, every asymptotically cylindrical J-holomorphic curve with that property
belongs toM∗

N(J) for N ∈ N sufficiently large. It is crucial to observe that all three
conditions in this definition are closed conditions: morally, we are definingM∗

N(J)
to be a closed subset in the compactification of M(J), and it will therefore be
compact.

Define
J reg,N

U ⊂ JU

as the set of all J ∈ JU for which every element ofM∗
N(J) is Fredholm regular.

Lemma 7.19. For every N ∈ N, J reg,N
U is open and dense.

Proof. Density is immediate, since we’ve seen already that every J ∈ JU admits
a C∞-small perturbation that achieves regularity for all curves in

⋃
N∈NM∗

N(J).

For openness, suppose the contrary: then there exists J∞ ∈ J reg,N
U and a sequence

4If the stability condition 2g + k+ + k− + m ≥ 3 is not satisfied, one should amend this by
asking for the distance condition to hold for some tuple (Σ, j,Γ+ ∪ Γ−,Θ′), where Θ′ is the union
of Θ with enough extra marked points to achieve stability.
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Jν ∈ JU\J reg,N
U with Jν → J∞ in the C∞-topology. There must also exist a sequence

of curves uν ∈M∗
N(Jν) that are not Fredholm regular. By the definition ofM∗

N(Jν),
they have domains that are uniformly bounded away from the singular part of the
Deligne-Mumford space of Riemann surfaces, so we can extract a subsequence for
which these domains converge. Similarly, the first derivatives of uν are uniformly
bounded, implying in particular a uniform W 1,p-bound locally for some p > 2, and
elliptic regularity (Theorem 2.22 in Lecture 2) turns this into uniform C∞-bound
and thus a C∞-convergent subsequence uν → u∞ ∈ M∗

N(J∞). But u∞ must then
be Fredholm regular, which is an open condition, implying that uν is also regular
for ν sufficiently large, and this is a contradiction. �

Proof of Theorem 7.2. Since the space of all curves inM(J) with injective
points mapped into U is the union of the spacesM∗

N(J) for N ∈ N, we have

J reg
U =

⋂

N∈N
J reg,N

U ,

which is a countable intersection of open and dense sets. �
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This lecture is an addendum to the transversality discussion in Lecture 7: we
need to prove that Fredholm regularity can also be achieved for generic translation-
invariant almost complex structures on symplectizations.

8.1. Statement of the theorem and discussion

Theorem 7.2 in the previous lecture stated that generic perturbations of J in a
precompact open subset U of a completed symplectic cobordism suffice to achieve
regularity for all simple holomorphic curves that pass through that subset. In the
more specialized setting of a symplectization R × M with an R-invariant almost
complex structure J ∈ J (H), we need a more specialized transversality result, as
the generic perturbation from Theorem 7.2 cannot be expected to stay in the space
J (H), in particular it will usually not be R-invariant. The following statement refers
to a stable Hamiltonian structure H = (ω, λ) with induced hyperplane distribution
ξ = ker λ and Reeb vector field R, and we denote by

πξ : T (R×M)→ ξ

the projection along the trivial subbundle generated by ∂r and R. We assume as
usual thatM(J) denotes a moduli space of asymptotically cylindrical J-holomorphic
curves with a fixed genus and number of marked points, representing a fixed relative
homology class and asymptotic to fixed sets of nondegenerate Reeb orbits at its
positive and negative punctures.

Theorem 8.1. Suppose M is a closed (2n− 1)-dimensional manifold carrying a
stable Hamiltonian structure H = (ω, λ), Jfix ∈ J (H), and

U ⊂M

is an open subset. Then there exists a comeager subset

J reg
U ⊂

{
J ∈ J (H)

∣∣ J = Jfix on R× (M \ U)
}

such that for every J ∈ J reg
U , every curve u ∈ M(J) with a representative u : Σ̇ →

R×M that has an injective point z ∈ Σ̇ satisfying

141
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(i) u(z) ∈ R× U ,
(ii) πξ ◦ du(z) 6= 0, and
(iii) im (πξ ◦ du(z)) ∩ ker (dλ|ξ) = {0}

is Fredholm regular.

This result is applied most frequently with U = M , in which case the condition
u(z) ∈ R× U is vacuous. The second and third conditions on the injective point z
can be rephrased by asking for the linear map

dλ(πξ Tu(X), ·)|ξu(z) : ξu(z) → R

to be nontrivial for every nonzero X ∈ TzΣ̇. If λ is contact, then this is immediate
whenever πξ Tu(X) 6= 0 since dλ|ξ is nondegenerate, and the condition πξ Tu(X) 6= 0
is also easy to achieve:

Proposition 8.2. If J ∈ J (H), then for any connected J-holomorphic curve

u : (Σ̇, j)→ (R×M,J), the section

πξ ◦ du ∈ Γ(HomC(T Σ̇, u
∗ξ))

either is identically zero or has only isolated zeroes.

As you might guess, this result is a consequence of the similarity principle; see
§8.2 for a proof. Notice that if πξ ◦ du ≡ 0, then u is everywhere tangent to the
vector fields ∂r and R, so if it is asymptotically cylindrical, then it can only be a
trivial cylinder or a cover thereof.

Proposition 8.3. All trivial cylinders over nondegenerate Reeb orbits have in-
dex 0 and are Fredholm regular.

Proof. Let uγ : R × S1 → R × M denote the trivial cylinder over an orbit
γ : S1 → M . The virtual dimension formula proved in Lecture 7 gives

ind(uγ) = (n− 3)χ(R× S1) + 2cτ1(u
∗
γT (R×M)) + µτCZ(γ)− µτCZ(γ)

= 2cτ1(u
∗
γT (R×M)) = 0

since the asymptotic trivialization τ has an obvious extension to a global trivial-
ization of u∗γξ, and u∗γT (R ×M) is globally the direct sum of the latter with the
trivial line bundle spanned by ∂r and R. Using this splitting, the linearized Cauchy-
Riemann operator Duγ can be identified with ∂̄ ⊕ (∂s −Aγ), where

∂̄ = ∂s + i∂t : W
k,p,δ(R× S1,C)⊕ VΓ →W k−1,p,δ(R× S1,C)

and
∂s −Aγ :W

k,p,δ(u∗γξ)→W k−1,p,δ(u∗γξ).

Here we are assuming without loss of generality that VΓ is a complex 2-dimensional
space of smooth sections of the trivial line bundle spanned by ∂r and R that are
constant near infinity, and we are identifying this with a space of smooth complex-
valued functions on R × S1. Nondegeneracy implies that ∂s −A : W k,p → W k−1,p

is an isomorphism, recall Theorem 4.11 in Lecture 4. Using weight functions as
in the proof of Lemma 7.10 to define isomorphisms between W k,p,δ and W k,p, one
can identify ∂s − Aγ : W k,p,δ → W k−1,p,δ with a small perturbation of the same
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operator W k,p → W k−1,p, hence it is also an isomorphism for δ > 0 sufficiently
small. To see that ∂̄ : W k,p,δ ⊕ VΓ → W k−1,p,δ is also surjective, observe first that
its index is 2; this follows from our calculation of ind(uγ) and corresponds to the
fact that dimAut(R × S1, i) = 2. The kernel of this operator consists of bounded
holomorphic C-valued functions on R× S1, so it is precisely the real 2-dimensional
space of constant functions, implying

dimR coker(∂̄) = dimR ker(∂̄)− indR(∂̄) = 2− 2 = 0,

so Duγ is surjective. �

Corollary 8.4. For any contact form α on a closed manifold M , there exists
a comeager subset J reg(α) ⊂ J (α) such that for every J ∈ J reg(α), all somewhere
injective asymptotically cylindrical J-holomorphic curves in R × M are Fredholm
regular. �

Note that in the setting of Corollary 8.4, a curve that is not a cover of a trivial
cylinder always belongs to a smooth 1-parameter family of curves related to each
other by R-translation, so that the kernel of the linearized Cauchy-Riemann operator
automatically has kernel of dimension at least 1. This precludes Fredholm regularity
for curves of index 0, thus:

Corollary 8.5. If α is a contact form and J ∈ J reg(α), then all simple asymp-

totically cylindrical J-holomorphic curves u : (Σ̇, j)→ (R×M,J) other than trivial
cylinders satisfy

ind(u) ≥ 1.

�

The following example shows that the third condition on the injective point in
Theorem 8.1 cannot be fully removed in general.

Example 8.6 (cf. Examples 6.6 and 6.16 in Lecture 6). Assume (W,ω) is a closed
symplectic manifold of dimension 2n−2 with a periodic time-dependent Hamiltonian
H : S1 ×W → R, and M := S1 ×W is assigned the stable Hamiltonian structure
(Ω,Λ) := (ω + dt ∧ dH, dt). A choice of J ∈ J (H) is then equivalent to a choice of
t-dependent family of ω-compatible almost complex structures {Jt ∈ J (W,ω)}t∈S1,
and for any t ∈ S1 and s ∈ R, Jt-holomorphic curves u : (Σ, j) → (W,Jt) give rise
to J-holomorphic curves

ū : (Σ, j)→ (R×M,J) : z 7→ (s, t, u(z)).

In particular, when n = 2 one can consider the example where W = Σ is a closed
surface, so curves of this form exist for any choice of J ∈ J (H), no matter how
generic (remember that the domain complex structure j is arbitrary, it is not fixed
in advance). If Σ has genus g and the map u : Σ → Σ has degree 1, then since ū
has no punctures and satisfies c1([ū]) = c1(ū

∗T (R× S1 ×Σ)) = c1(TΣ) = χ(Σ), the
index of ū is

ind(ū) = (n− 3)χ(Σ) + 2χ(Σ) = χ(Σ) = 2− 2g.

This shows that ū cannot be Fredholm regular unless g = 0.
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Theorem 8.1 appeared for the first time in the contact case in [Dra04], and
alternative proofs have since appeared in the appendix of [Bou06] (for cylinders in
the contact case) and in [Wena] (under slightly different assumptions in the stable
Hamiltonian setting). What I will describe below is a generalization of Bourgeois’s
proof.

8.2. Injective points of the projected curve

One point of difficulty in proving transversality in R×M is that in contrast to
the setting of Theorem 7.2, generic perturbations within J (H) can never be truly
local, i.e. if you perturb J near a point (r, x) ∈ R×M , then you are also perturbing it
in a neighborhood of the entire line R×{x}. We therefore need to know that we can

find a point z ∈ Σ̇ that is the only point where u : Σ̇→ R×M passes through such
a line; put another way, we need to know that not only u = (uR, uM) : Σ̇→ R×M
but also the projected map uM : Σ̇ → M is somewhere injective. The first step in
showing this is Proposition 8.2 above, as the zeroes of the section

πξ ◦ du ∈ Γ(HomC(T Σ̇, u
∗ξ))

are precisely the critical points of uM : Σ̇→M ; everywhere else, uM is an immersion
transverse to the Reeb vector field. To prove Proposition 8.2, we shall use the fact
that the vector fields ∂r and R generate an integrable J-invariant distribution on
R×M . Indeed, the zeroes of πξ◦du are the points of tangency with this distribution,
hence the result is an immediate consequence of the following statement:

Lemma 8.7. Suppose (W,J) is an almost complex manifold, Ξ ⊂ TW is a smooth
integrable J-invariant distribution and u : (Σ, j) → (W,J) is a connected pseudo-
holomorphic curve whose image is not contained in a leaf of the foliation generated
by Ξ. Then all points z ∈ Σ with im du(z) ⊂ Ξ are isolated in Σ.

Proof. Statement is local, so assume (Σ, j) = (D, i) with coordinates s + it,
W = Cn, and u(0) = 0. Let 2m denote the real dimension of Ξ, and observe that
since Ξ is integrable, we can change coordinates near 0 and assume without loss of
generality that at every point p ∈ Cn near 0, Ξp = Cm ⊕ {0} ⊂ Cn = TpC

n. The
J-invariance of Ξ then implies that in coordinates (w, ζ) ∈ Cm ×Cn−m, J takes the
form

J(w, ζ) =

(
J1(w, ζ) Y (w, ζ)

0 J2(w, ζ)

)
,

where J2
1 and J2

2 are both −1, and J1Y + Y J2 = 0. Writing u(z) = (f(z), v(z)) ∈
Cm ×Cn−m, the Cauchy-Riemann equation ∂su+ J(u)∂tu = 0 is then equivalent to
the two equations

∂sf + J1(f, v) ∂tf + Y (f, v) ∂tv = 0,

∂sv + J2(f, v) ∂tv = 0.
(8.1)

We have im du(z) ⊂ Ξ wherever ∂sv = ∂tv = 0; notice that it suffices to consider
the condition ∂sv = 0 since ∂tv = J2(f, v) ∂sv. Differentiating the second equation
in (8.1) with respect to s gives

∂s(∂sv) + J2(f, v) ∂t(∂sv) + ∂s [J2(f, v)] J2(f, v) ∂sv = 0,
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where in the last term we’ve substituted J2(f, v) ∂sv for ∂tv. Setting J̄(z) :=
J2(f(z), v(z)) and A(z) := ∂s [J2(f(z), f(z)] J2(f(z), v(z)), this becomes a linear
Cauchy-Riemann type equation ∂s(∂sv) + J̄ ∂t(∂sv) + A(∂sv) = 0, so the similarity
principle implies that zeroes of ∂sv are isolated unless it is identically zero. The
latter would mean v is constant, so u is contained in a leaf of Ξ. �

Lemma 8.8. Suppose J ∈ J (H), γ : S1 → M is a closed Reeb orbit, and
u = (uR, uM) : (Σ̇, j) → (R ×M,J) is an asymptotically cylindrical J-holomorphic
curve that is not a cover of a trivial cylinder. Then all intersections of the map
uM : Σ̇→M with the image of the orbit γ are isolated.

Proof. The trivial cylinder over γ is a J-holomorphic curve, so the statement
follows from the fact that two asymptotically cylindrical J-holomorphic curves can
only have isolated intersections unless both are covers of the same simple curve. �

We can now prove the statement we need about somewhere injectivity for uM :
Σ̇→ M . This result first appeared in [HWZ99, Theorem 1.13].

Proposition 8.9. Suppose J ∈ J (H) and
u = (uR, uM) : (Σ̇, j)→ (R×M,J)

is a simple asymptotically cylindrical J-holomorphic curve which is not a trivial
cylinder and has only nondegenerate asymptotic orbits. Then the set of injective
points z ∈ Σ̇ of the map uM : Σ̇ → M for which uM(z) is not contained in any of
the asymptotic orbits of u is open and dense.

Proof. Openness is clear, so our main task is to prove density. The idea is
first to show via elementary topological arguments that if the set of injective points
is not dense, then Σ̇ contains two disjoint open sets on which uM is an embedding
with identical images. We will then conclude from this that if u is simple, it must
be equivalent to one of its nontrivial R-translations, and the latter is impossible for
an asymptotically cylindrical curve.

Step 1: We begin by harmlessly removing some discrete sets of points in Σ̇ that
would make the subsequent arguments more complicated. Let

P ⊂M

denote the union of the images of the asymptotic orbits of u, a finite disjoint union of
circles. Lemma 8.8 implies that u−1

M (P ) is a discrete subset of Σ̇. By Proposition 8.2,

there is also a discrete set Z ⊂ Σ̇ \ u−1
M (P ) containing all points z 6∈ u−1

M (P ) where
πξ ◦ du(z) = 0, and we claim that

Z ′ := u−1
M (uM(Z))

is a discrete subset of Σ̇ \ u−1
M (P ). Indeed, uM(Z) is a discrete subset of M \ P

since the points in Z can only accumulate at infinity,1 hence accumulation points of
uM(Z) ⊂M can occur only in P . For each individual point p ∈ uM(Z), the fact that
p 6∈ P implies u−1

M (p) is compact, and it consists of a discrete (and therefore finite)

1Actually the asymptotic formula of [HWZ96] implies that both Z and u−1

M (P ) are always
finite for curves that are not covers of trivial cylinders, but we do not need to use that here.
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set of points with πξ◦du(z) = 0, plus possibly some other points where πξ◦du(z) 6= 0,
but uM is an embedding near each point of the latter type, so that these points of
u−1
M (p) must always be isolated and are therefore also finite in number. This proves

the claim, and we conclude that

Σ̈ := Σ̇ \
(
u−1
M (P ) ∪ Z ′)

an open and dense subset of Σ̇, as it is obtained by removing a discrete subset from
the open and dense subset Σ̇ \ u−1

M (P ). To prove the proposition, it will now suffice

to prove that the set of points z ∈ Σ̈ which are injective points of uM : Σ̇ → M is
dense in Σ̈. We shall argue by contradiction and assume from now on that density
fails.

Step 2: We will find two open subsets U ,V ⊂ Σ̇ such that uM restricts to an
embedding on both, but

U ∩ V = ∅ and uM(U) = uM(V).
Indeed, assume the set of injective points of uM lying in Σ̈ is not dense in Σ̈. Then
there exists a point z0 ∈ Σ̈ with a closed neighborhood D(z0) ⊂ Σ̈ such that no

z ∈ D(z0) is an injective point. Since z ∈ Σ̈ implies πξ ◦ du(z) 6= 0, this means that

for every z ∈ D(z0), there exists ζ ∈ Σ̇\{z} with uM(z) = uM(ζ), and the definition

of Σ̈ implies ζ is also in Σ̈, hence πξ ◦du(ζ) 6= 0 and uM is a local embedding near ζ .

Since u(z) 6∈ P and uM maps Σ̇ \ u−1
M (P ) properly to M \ P , we also conclude that

u−1
M (uM(z)) is finite. Now suppose u−1

M (uM(z0)) = {z0, ζ1, . . . , ζm}, and let D(ζj) ⊂ Σ̈
for j = 1, . . . , m denote closed neighborhoods on which uM is an embedding. We
claim that after possibly shrinking D(z0), we can assume

uM(D(z0)) ⊂
m⋃

j=1

uM(D(ζj).

Let us first shrink D(z0) so that uM is an embedding on D(z0), which is possible
since πξ ◦du(z0) 6= 0. Then if the claim is false, there exists a sequence zν ∈ D(z0) of
noninjective points with zν → z0, hence there is also a sequence z′ν ∈ Σ̈ \D(z0) with
uM(zν) = uM(z′ν) but z′ν not converging to any of ζ1, . . . , ζm. But since uM(z′ν) →
uM(z0) 6∈ P , the points z′ν are confined to a compact subset of Σ̇ and therefore have

a subsequence z′ν → z′∞ ∈ Σ̇ with uM(z′∞) = uM(z0). The limit cannot be z0 itself
since z′ν 6∈ D(z0), thus z′∞ must be one of the ζ1, . . . , ζm, and we have a contradiction.
We claim next that at least one of the sets uM(D(z0)) ∩ uM(D(ζj)) has nonempty
interior. This is a simple exercise in metric space topology: it can be reduced to
the fact that if X is a metric space with closed subsets V,W ⊂ X that both have
empty interior (meaning no open subset of X is contained in V or W ), then V ∪W
also has empty interior. Since the subsets uM(D(z0)) ∩ uM(D(ζj)) ⊂ uM(D(z0)) for
j = 1, . . . , m are all closed but their union is uM(D(z0)), they cannot all have empty
interior. This achieves the goal of Step 2.

Step 3: We show that u is biholomorphically equivalent to one of itsR-translations

τ · u := (uR + τ, uM) : Σ̇→ R×M
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for τ ∈ R\{0}. To see this, note that for J ∈ J (H), the nonlinear Cauchy-Riemann
equation Tu ◦ j = J(u) ◦ Tu is equivalent to the two equations

duR = u∗Mλ ◦ j,
πξ ◦ TuM ◦ j = J(uM) ◦ πξ ◦ TuM .

(8.2)

Since πξ◦TuM : Σ̇→ u∗Mξ is injective everywhere on the neighborhoods U and V, the
second equation determines j in terms of J on each of these regions; in particular,
the identification of uM(U) with uM(V) provides a biholomorphic map of V to U
so that u|U and u|V may be regarded as two J-holomorphic maps from the same
Riemann surface which differ only in the R-factor. But with j and uM both fixed,
the first equation in (8.2) determines duR and thus determines uR up to the addition
of a constant τ ∈ R. If τ = 0, this means u has two disjoint regions on which its
images are identical, contradicting the assumption that u is simple. Thus τ 6= 0,
and since two distinct simple curves can only intersect each other at isolated points,
we conclude u = τ · u up to parametrization.

Step 4: We now derive a contradiction. The relation u = τ · u implies that in
fact u = kτ · u for every k ∈ Z, so we obtain a diverging sequence of R-translations
τk → ∞ such that u and τk · u always have identical images in R ×M . It follows
that for some point z ∈ Σ̇ with u(z) = (r, x) where x is not contained in any of the
asymptotic orbits of u, the points (r − τk, x) are all in the image of u as τk → ∞.
But this contradicts the asymptotically cylindrical behavior of u. �

8.3. Smoothness of the universal moduli space

The overall outline of the proof of Theorem 8.1 is the same as for Theorem 7.2:
one needs to define a suitable space J ε

U of perturbed almost complex structures,
giving rise to a universal moduli spaceM∗(J ε

U) that is a smooth Banach manifold,
and then apply the Sard-Smale theorem to conclude that generic elements of J ε

U
are regular values of the projection M∗(J ε

U) → J ε
U : (u, J) 7→ J . If J ε

U is a space
of Cε-perturbed almost complex structures, then in the final step one can use the
Taubes trick as in §7.7 to transform the genericity result in J ε

U into a genericity
result within the space J (H) of smooth almost complex structures. The only step
that differs meaningfully from what we’ve already discussed is the smoothness of
the universal moduli space, so let us focus on this detail.

Assume J ref ∈ J (H) with J ref = Jfix outside R×U , and J ε
U is a Banach manifold

of Cε-small perturbations of J ref in J (H) that are also fixed outside of R×U . The
relevant universal moduli space is then defined by

M∗(J ε
U) :=

{
(u, J)

∣∣ J ∈ J ε
U , u ∈M(J) and

u : Σ̇→ R×M has an injective point z ∈ Σ̇ with

u(z) ∈ R× U and im (πξ ◦ du(z)) ∩ ker (dλ|ξ) = {0}
}
.

Notice that both of the constraints satisfied by u at the injective point are open.
The local structure of M∗(J ε

U) near an element (u0, J0) with representative u0 :
(Σ̇, j0)→ (R×M,J0) can again be described via the zero set of a smooth section

∂̄ : T × Bk,p,δ × J ε
U → Ek−1,p,δ : (j, u, J) 7→ Tu ◦ J ◦ Tu ◦ j,
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where T is a Teichmüller slice through j0, and it suffices to show that the lineariza-
tion

L : Tu0Bk,p,δ ⊕ TJ0J ε
U → Ek−1,p,δ

(j0,u0,J0)
: (η, Y ) 7→ Du0η + Y ◦ Tu0 ◦ j0

is always surjective. As usual, here we’re assuming k ∈ N, 1 < p < ∞, and the
exponential weight δ > 0 is small but positive so that Du0 is Fredholm. The image
of L is then closed, and focusing on the k = 1 case, if L is not surjective then there
exists a nontrivial element θ ∈ Lq,−δ(HomC(T Σ̇, u

∗
0T (R×M))) such that

〈Du0η, θ〉L2 = 0 for all η ∈ W 1,p,δ(u∗0T (R×M))⊕ VΓ,
〈Y ◦ Tu0 ◦ j0, θ〉L2 = 0 for all Y ∈ TJ0J ε

U .
(8.3)

The first condition implies via elliptic regularity and the similarity principle that θ
is smooth and has only isolated zeroes. So far this is all the same as in the proof
of Theorem 7.2, but the next step is trickier: since perturbing J0 within J (H)
only changes the action of the almost complex structure on ξ but not on the trivial
subbundle generated by ∂r and R, it is not clear whether the range of values allowed
for Y is large enough to force 〈Y ◦ Tu0 ◦ j0, θ〉L2 > 0.

To overcome this, let us decompose everything in this picture with respect to
the natural splitting

T (R×M) = ǫ⊕ ξ,
where ǫ denotes the trivial line bundle spanned by ∂r and R. In particular, the
domain and target bundles of the Cauchy-Riemann type operator Du0 now split as

u∗0T (R×M) = u∗0ǫ⊕ u∗0ξ,
HomC(T Σ̇, u

∗
0T (R×M)) = HomC(T Σ̇, u

∗
0ǫ)⊕ HomC(T Σ̇, u

∗
0ξ),

and we shall write η = (ηǫ, ηξ) and θ = (θǫ, θξ) accordingly. This gives a block
decomposition of Du0 as

Du0η =

(
(Du0η)

ǫ

(Du0η)
ξ

)
=

(
Dǫ
u0

Dǫξ
u0

Dξǫ
u0

Dξ
u0

)(
ηǫ

ηξ

)
.

It is easy to verify that Dǫ
u0

and Dξ
u0

each satisfy suitable Leibniz rules and are thus
Cauchy-Riemann type operators on u∗0ǫ and u

∗
0ξ respectively, while the off-diagonal

terms are both tensorial, i.e. zeroth-order operators. Since perturbations of J0 in
J (H) only change its action on ξ, Y ∈ TJ0J ε

U now takes the block form

Y =

(
0 0
0 Y ξ

)
,

where Y ξ is a Cε-small section of the bundle EndC(ξ, J0) over M . Assuming the L2-
pairings are defined so as to respect these splittings, the second condition in (8.3)
now becomes

〈Y ξ ◦ πξ ◦ Tu0 ◦ j0, θξ〉L2 = 0,

and given any injective point z0 ∈ Σ̇ of (u0)M : Σ̇→M satisfying u0(z0) ∈ R×U , we
have enough freedom to choose Y ξ near R×{u0(z0)} such that this pairing becomes
positive unless

θξ = 0 near z0.
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It remains to show that θǫ also vanishes near z0, which will contradict the fact that θ
only has isolated zeroes. To this end, notice that the first condition in (8.3) implies
via separate choices of the components ηǫ and ηξ with support near z0 that

〈Dǫ
u0η

ǫ, θǫ〉L2 = 0 for all ηǫ supported near z0,

〈Dǫξ
u0
ηξ, θǫ〉L2 = 0 for all ηξ supported near z0.

(8.4)

The first of these two conditions gives no new information, since we already know
that θ = (θǫ, 0) solves an anti-Cauchy-Riemann equation. To get some information
out of the second condition, we will need an explicit formula for Dǫξ

u0
.

Lemma 8.10. The tensorial operator Dǫξ
u0

: u∗0ξ → HomC(T Σ̇, u
∗
0ǫ) takes the form

Dǫξ
u0
ηξ =

[
−dλ

(
ηξ, Jξ0 ◦ πξ ◦ Tu(·)

)]
∂r +

[
dλ
(
ηξ, πξ ◦ Tu(·)

)]
R.

Proof. As a preliminary step, notice that −dr ◦ J = λ for any J ∈ J (H);
indeed, the conditions J(ξ) = ξ ⊂ ker dr and J∂r = R imply that these two 1-forms
have matching values on ∂r, R and ξ. As a consequence, λ◦J0 = dr, so in particular
λ ◦ J0 is closed.

Choosing local holomorphic coordinates (s, t) in an arbitrary neighborhood in
Σ̇, we have

(Dǫξ
u0η

ξ)∂s = dr
(
(Du0η

ξ)∂s
)
∂r + λ

(
(Du0η

ξ)∂s
)
R.

Extend u0 : Σ̇ → R × M to a smooth 1-parameter family of maps {uρ : Σ̇ →
R ×M}ρ∈R with ∂ρuρ|ρ=0 = ηξ ∈ Γ(u∗0ξ). Then by the definition of the linearized
Cauchy-Riemann operator,

(Du0η
ξ)∂s = ∇ρ (∂suρ + J0(uρ)∂tuρ)|ρ=0 ,

for any choice of connection ∇ on R×M . Since ∂su0 + J0(u0)∂tu0 = 0, we find

λ
(
(Du0η

ξ)∂s
)
= λ

(
∇ρ (∂suρ + J0(uρ)∂tuρ)|ρ=0

)
= ∂ρ [λ(∂suρ + J0(uρ)∂tuρ)]|ρ=0

= ∂ρ [λ(∂suρ)]|ρ=0 + ∂ρ [(λ ◦ J0)(∂tuρ)]|ρ=0

= dλ(ηξ, ∂su) + d(λ ◦ J0)(ηξ, ∂tu)
= dλ(ηξ, πξ∂su),

where we’ve used the formula

dλ(X, Y ) = LX [λ(Y )]− LY [λ(X)]− λ([X, Y ])

and eliminated several terms using the fact that λ(ηξ) = λ(J0η
ξ) = 0 since ηξ is

valued in ξ, plus d(λ ◦ J0) = 0. A similar computation gives

dr
(
(Du0η

ξ)∂s
)
= −dλ(ηξ, πξ∂tu) = −dλ(ηξ, J0 ◦ πξ∂su),

so removing the local coordinates from the picture produces the stated formula. �

The following exercise in symplectic linear algebra shows that this bundle map
u∗0ξ → HomC(T Σ̇, u

∗
0ǫ) is surjective on any fiber over a point z with πξ ◦ du0(z) 6=

0. (If you have no patience for the exercise, just convince yourself that it’s true
whenever dλ|ξ is nondegenerate and tames J |ξ, i.e. the contact case.)
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Exercise 8.11. Assume V is a finite-dimensional vector space, X, Y ⊂ V are
linearly independent vectors, and Ω is an alternating bilinear form on V . Show that
the real-linear map

A : V → C : v 7→ Ω(v,X) + iΩ(v, Y )

is surjective if and only if Span(X, Y ) ∩ ker Ω = {0}.
Hint: Under the latter condition, one loses no generality by replacing V with a

subspace that is complementary to ker Ω and contains Span(X, Y ), in which case

(V,Ω) becomes a symplectic vector space. Now consider the restriction of A to a

2-dimensional subspace transverse to the symplectic complement of Span(X, Y ).

The conclusion of this discussion is that unless θǫ vanishes near z0, η
ξ can be

chosen with support near z0 so that 〈Du0η
ξ, θǫ〉L2 > 0, violating the second condi-

tion in (8.4). This proves that θ vanishes altogether near z0 and thus, by unique
continuation, θ ≡ 0, a contradiction.

We’ve proved that the universal moduli space is smooth as claimed. Since the
rest of the proof of Theorem 8.1 is the same as in the non-R-invariant case, we leave
those details to the reader.

Remark 8.12. You may have noticed that in both this and the previous lecture,
our proof that the universal moduli space is smooth relied on a surjectivity result
that was actually stronger than needed: in both cases, we needed to prove that an
operator of the form

Tj0T ⊕ Tu0Bk,p,δ ⊕ TJ0J ε
U

L−→ Ek−1,p,δ
(j0,u0,J0)

was surjective, but we ended up proving that its restriction to the smaller domain
Tu0Bk,p,δ⊕TJ0J ε

U is already surjective. This technical detail hints at a stronger result
that can be proved using these methods: one can show that not only is M∗(J ε

U)
smooth but also the forgetful map

M∗(J ε
U)→Mg,k++k−+m

([(Σ, j,Γ+,Γ−,Θ, u)], J) 7→ [(Σ, j,Γ+ ∪ Γ− ∪Θ)]

sending a J-holomorphic curve to its underlying domain in the moduli space of
Riemann surfaces is a submersion, cf. the blog post [Wenb] and its sequel. One can
use this to prove generic transversality results for spaces of J-holomorphic curves
whose domains are constrained within the moduli space of Riemann surfaces, which
can be used to define more elaborate algebraic structures on SFT, e.g. this idea
plays a very prominent role in the study of Gromov-Witten invariants.
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Moduli spaces of pseudoholomorphic curves are generally not compact, but they
have natural compactifications, obtained by allowing certain types of curves with
singular behavior. For closed holomorphic curves, this fact is known as Gromov’s
compactness theorem, and our main goal in this lecture is to state its generalization
to punctured curves, which is usually called the SFT compactness theorem. The the-
orem was first proved in [BEH+03] (see also [CM05] for an alternative approach),
and we do not have space here to present a complete proof, but we can still describe
the main geometric and analytical ideas behind it.

The overarching theme of this lecture is the notion of bubbling, of which we will
see several examples. Bubbling arises in a natural way from elliptic regularity: recall
that in Lecture 2, we proved that whenever kp > 2, any uniformly W k,p-bounded
sequence uν of holomorphic curves is also uniformly Cm

loc-bounded for every m ≥ N

(cf. Theorem 2.22). The Arzelà-Ascoli theorem implies that such sequences have
C∞

loc-convergent subsequences, and this is true in particular whenever uν is uniformly
C1-bounded, as a C1-bound implies a W 1,p-bound with p > 2. Let us take note of
this fact for future use:

Proposition 9.1. If (W,Jν) is a sequence of almost complex manifolds with
Jν → J in C∞, then any uniformly C1-bounded sequence of Jν-holomorphic maps
uν : D→W has a subsequence convergent in C∞

loc on D̊.

If one wants to prove compactness for a moduli space of J-holomorphic curves,
it therefore suffices in general to establish a C1-bound. The catch is, of course,
that the first derivatives of uν might not be uniformly bounded, and this is when

151
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interesting things are seen to happen: while the sequence uν is not compact, it
turns out that it becomes compact after removing finitely many points from its
domain, and near those points one can take a sequence of reparametrizations to find
additional nontrivial holomorphic curves in the limit, the so-called “bubbles”. This
is one of the ways that the “nodal” curves in Gromov’s compactness theorem can
arise, and we will see the same phenomenon at work in several other contexts as
well.

9.1. Removal of singularities

As an important tool for use in the rest of this lecture, we begin with the following
result from [Gro85]:

Theorem 9.2 (Gromov’s removable singularity theorem). Assume (W,ω) is a
symplectic manifold with a tame almost complex structure J , and u : D \ {0} → W
is a J-holomorphic curve that has its image contained in a compact subset of W and
satisfies ∫

D\{0}
u∗ω <∞.

Then u admits a smooth extension to D.

We will prove the slightly weaker statement that u has a continuous extension.
If dimRW = 2, then the smooth extension follows from this by classical complex
analysis; in higher dimensions, one can instead apply results on local elliptic regu-
larity, see e.g. [MS04]. We will use as a black box the following additional result
from [Gro85], which is closely related to a standard result about minimal surfaces:

Theorem (Gromov’s monotonicity lemma [Gro85]). Suppose (W,ω) is a com-
pact symplectic manifold (possibly with boundary), J is an ω-tame almost complex
structure, and Br(p) ⊂ W denotes the open ball of radius r > 0 about p ∈ W with
respect to the Riemannian metric g(X, Y ) := 1

2
ω(X, JY ) + 1

2
ω(Y, JX). Then there

exist constants c, R > 0 such that for all r ∈ (0, R) and p ∈ W with Br(p) ⊂W , ev-
ery proper non-constant J-holomorphic curve u : (Σ, j)→ (Br(p), J) passing through
p satisfies ∫

Σ

u∗ω ≥ cr2.

In the above statement, (Σ, j) is assumed to be an arbitrary (generally noncom-
pact) Riemann surface without boundary. In applications, one typically has a larger
(e.g. closed or punctured) domain Σ′ in the picture, and Σ is defined to be the con-
nected component of u−1(Br(p)) ⊂ Σ′ containing some point z ∈ u−1(p). The main
message of the theorem is that u must use up at least a certain amount of energy
for every ball whose center it passes through, so e.g. the portion of the curve passing
through Br(p) cannot become arbitrarily “thin” as in Figure 9.1.

Returning to the removable singularity theorem, we shall use the biholomorphic
map

Z+ := [0,∞)× S1 → D \ {0} : (s, t) 7→ e−2π(s+it)
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((−

Br(p)

p

u(Σ)

u(Σ′)

Figure 9.1. The intersection of a J-holomorphic curve u with an
open ball Br(p) defines a proper map Σ → Br(p). The monotonicity
lemma prevents this map from having arbitrarily small area if it passes
through p.

to transform J-holomorphic maps D \ {0} → W into maps Z+ → W , and the goal
will be to show that whenever such a map u has precompact image and satisfies∫
Z+
u∗ω <∞, there exists a point p ∈ W such that

(9.1) u(s, ·)→ p in C∞(S1,W ) as s→∞.
Fix the obvious flat metric on Z+ and any Riemannian metric on W in order to
define norms such as |du(s, t)| for (s, t) ∈ Z+.

Lemma 9.3. There exists a constant C > 0 such that |du(s, t)| ≤ C for all
(s, t) ∈ Z+.

Proof, part 1. Arguing by contradiction, suppose there exists a sequence zk =
(sk, tk) ∈ Z+ with |du(zk)| =: Rk → ∞. Choose a sequence of positive numbers
ǫk > 0 that converge to zero but not too fast, so that ǫkRk →∞. We then consider
the sequence of reparametrized maps

vk : DǫkRk
→W : z 7→ u(zk + z/Rk).

These are also J-holomorphic since z 7→ zk + z/Rk is holomorphic, and the values
of vk depend only on the values of u over the ǫk-disk about zk. Notice that since
sk → ∞ and ǫk → 0, we are free to assume that all of these ǫk-disks are disjoint;
moreover, tameness of J implies u∗ω ≥ 0 and v∗kω ≥ 0, thus

∑

k

∫

DǫkRk

v∗kω =
∑

k

∫

Dǫk
(zk)

u∗ω ≤
∫

Z+

u∗ω <∞,

implying

(9.2)

∫

DǫkRk

v∗kω → 0 as k →∞.

We would now like to say something about a limit of the maps vk as k →∞, but this
will require a brief pause in the proof, as we don’t yet have quite enough information
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to do so. We know that the vk are uniformly C0-bounded since u(Z+) is contained
in a compact subset. It would be ideal if we also had a uniform C1-bound, as then
elliptic regularity (Prop. 9.1) would give a C∞

loc convergent subsequence on the union
of all the domains DǫkRk

, i.e. on the entire plane. We have

dvk(z) =
1

Rk
du(zk + z/Rk),

hence |dvk(0)| = 1, but we will need to know more about |du| on the rest of Dǫk(zk)
in order to deduce a C1-bound for vk on all of DǫkRk

. We’ll come back to this in a
moment. proof to be continued. . .

Here is the auxiliary lemma that is needed to complete the above proof:

Lemma 9.4 (Hofer). Suppose (X, d) is a complete metric space, g : X → [0,∞)
is continuous, x0 ∈ X and ǫ0 > 0. Then there exist x ∈ X and ǫ > 0 such that,

(a) ǫ ≤ ǫ0,
(b) g(x)ǫ ≥ g(x0)ǫ0,
(c) d(x, x0) ≤ 2ǫ0, and

(d) g(y) ≤ 2g(x) for all y ∈ Bǫ(x).

Proof. If there is no x1 ∈ Bǫ0(x0) such that g(x1) > 2g(x0), then we can
set x = x0 and ǫ = ǫ0 and are done. If such a point x1 does exist, then we set
ǫ1 := ǫ0/2 and repeat the above process for the pair (x1, ǫ1): that is, if there is

no x2 ∈ Bǫ1(x1) with g(x2) > 2g(x1), we set (x, ǫ) = (x1, ǫ1) and are finished, and
otherwise define ǫ2 = ǫ1/2 and repeat for (x2, ǫ2). This process must eventually
terminate, as otherwise we obtain a Cauchy sequence xn with g(xn)→∞, which is
impossible if X is complete. �

Proof of Lemma 9.3, part 2. Applying Lemma 9.4 to X = Z+ with g(z) =
|du(z)|, we can replace the original sequences ǫk and zk with new sequences for which
all the previously stated properties still hold, but additionally,

|du(z)| ≤ 2|du(zk)| for all z ∈ Dǫk(zk).

Our sequence of reparametrizations vk then satisfies

|dvk(z)| ≤ 2 for all z ∈ DǫkRk
,

so by elliptic regularity, vk has a subsequence convergent in C
∞
loc(C) to a J-holomorphic

map
v∞ : C→ W

which is not constant since |dv∞(0)| = limk→∞ |dvk(0)| = 1. Informally, we say that
the blow-up of the derivatives at zk has caused a plane to “bubble off”. However,
(9.2) implies that for every R > 0, one can write ǫkRk ≥ R for k sufficiently large
and thus ∫

DR

v∗∞ω = lim
k→∞

∫

DR

v∗kω ≤ lim
k→∞

∫

DǫkRk

v∗kω = 0,

implying
∫
C
v∗∞ω = 0. It follows that v∞ must be constant, so we have a contradic-

tion. �
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To obtain the uniform limit of u(s, ·) as s → ∞, we now pick any sequence of
nonnegative numbers sk → ∞ and consider the sequence of J-holomorphic half-
cylinders

uk : [−sk,∞)× S1 →W : (s, t) 7→ u(s+ sk, t).

By Lemma 9.3, these maps are uniformly C1-bounded, so elliptic regularity gives a
subsequence converging in C∞

loc on R× S1 to a J-holomorphic cylinder

u∞ : R× S1 →W.

Observe that for any c > 0, we can write −sk/2 ≤ −c for sufficiently large k and
thus compute

∫

[−c,c]×S1

u∗∞ω = lim
k→∞

∫

[−c,c,]×S1

u∗kω ≤ lim
k→∞

∫

[−sk/2,∞)×S1

u∗kω

= lim
k→∞

∫

[sk/2,∞)×S1

u∗ω = 0

since
∫
Z+
u∗ω < ∞. This implies

∫
R×S1 u

∗
∞ω = 0, so u∞ is a constant map to some

point p ∈ W , hence after replacing sk with a subsequence,

u(sk, ·) = uk(0, ·)→ p in C∞(S1,W ) as k →∞.
To finish the proof of (9.1), we need to show that one cannot find two sequences

sk → ∞ and s′k → ∞ such that u(sk, ·) → p and u(s′k, ·) → p′ for distinct points
p 6= p′ ∈ W . This is an easy consequence of the monotonicity lemma: indeed,
if two such sequences exist, then we can find a sequence s′′k → ∞ for which the
loops u(s′′k, ·) alternate between arbitrarily small neighborhoods of p and p′. Since
u is continuous, it must then pass through ∂B2r(p) infinitely many times for r > 0
sufficiently small, and in fact there exists an infinite sequence of pairwise disjoint
neighborhoods Uk ⊂ Z+ such that each

u|Uk
: Uk → Br(qk)

is a proper map passing through some point qk ∈ ∂B2r(p). The monotonicity lemma
then implies ∫

Z+

u∗ω ≥
∑

k

∫

Uk

u∗ω ≥
∑

k

cr2 =∞,

a contradiction.

Exercise 9.5. Given an area form ω on S2 = C∪{∞} and a finite subset Γ ⊂ S2,
show that a holomorphic function f : S2 \Γ→ C has an essential singularity at one
of its punctures if and only if

∫
C
f ∗ω =∞.

9.2. Finite energy and asymptotics

As further preparation for the compactness discussion, we now prove the long-
awaited converse of the fact that asymptotically cylindrical curves have finite en-
ergy. We work in the setting described in §6.2: (W,ω) is a symplectic cobordism
with stable boundary ∂W = −M− ⊔ M+ carrying stable Hamiltonian structures
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H± = (ω±, λ±) with induced hyperplane distributions ξ± = ker λ± and Reeb vector

fields R±. The completion (Ŵ , ωh) carries the symplectic structure

ωh :=





d (h(r)λ+) + ω+ on [0,∞)×M+

ω on W,

d (h(r)λ−) + ω− on (−∞, 0]×M−,

for some C0-small smooth function h(r) with h′ > 0 that is the identity near r = 0,
and for a fixed constant r0, we define a compact subset

W r0 := ([−r0, 0]×M−) ∪M− W ∪M+ ([0, r0]×M+) ⊂ Ŵ ,

outside of which our ωh-tame almost complex structures J ∈ Jτ (ωh, r0,H+,H−)
are required to be translation-invariant and compatible with H±. The energy of a

J-holomorphic curve u : (Σ̇, j)→ (Ŵ , J) is defined by

E(u) := sup
f∈T (h,r0)

∫

Σ̇

u∗ωf ,

where

T (h, r0) :=
{
f ∈ C∞(R, (−ǫ, ǫ))

∣∣ f ′ > 0 and f ≡ h near [−r0, r0]
}
.

The constant ǫ > 0 should always be assumed sufficiently small so that if J± ∈
J (H±) and X ∈ ξ±,
(9.3) (ω± + κ dλ±)(X, J±X) > 0 whenever X 6= 0 and κ ∈ (−2ǫ, 2ǫ).
This condition implies that every J ∈ Jτ (ωh, r0,H+,H−) is tamed by every ωf for
every f ∈ T (h, r0), thus all J-holomorphic curves satisfy E(u) ≥ 0, with equality if
and only if u is constant.

Theorem 9.6. Assume all closed Reeb orbits in (M+,H+) and (M−,H−) are
nondegenerate, J ∈ Jτ(ωh, r0,H+,H−), (Σ, j) is a closed Riemann surface with

Σ̇ = Σ \Γ for some finite subset Γ ⊂ Σ, and u : (Σ̇, j)→ (Ŵ , J) is a J-holomorphic
curve such that none of the singularities in Γ are removable and E(u) < ∞. Then
u is asymptotically cylindrical.

Remark 9.7. The theorem also holds in the setting of a symplectization (R ×
M,J) with J ∈ J (H) for a stable Hamiltonian structure H = (ω, λ) on M . The
only real difference in this case is the slightly simpler definition of energy,

E(u) = sup
f∈T

∫

Σ̇

u∗ωf ,

where ωf := d
(
f(r)λ

)
+ ω and

T =
{
f ∈ C∞(R, (−ǫ, ǫ))

∣∣ f ′ > 0
}
.

This change necessitates a few trivial modifications to the proof of Theorem 9.6
given below.
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Like removal of singularities, Theorem 9.6 is really a local result, so let us for-
mulate a more precise and more general statement in these terms. Let

Ḋ := D \ {0} ⊂ C

and define the two biholomorphic maps

ϕ+ : Z+ := [0,∞)× S1 → Ḋ : (s, t) 7→ e−2π(s+it)

ϕ− : Z− := (−∞, 0]× S1 → Ḋ : (s, t) 7→ e2π(s+it).
(9.4)

Theorem 9.8. Suppose J ∈ Jτ (ωh, r0,H+,H−) and u : Ḋ → Ŵ is a J-
holomorphic map with E(u) <∞. Then either the singularity at 0 ∈ D is removable
or u is a proper map. In the latter case the puncture is either positive or negative,
meaning that u maps neighborhoods of 0 to neighborhoods of {±∞} ×M±, and the
puncture has a well-defined charge, defined as

Q = lim
ǫ→0+

∫

∂Dǫ

u∗λ±,

which satisfies ±Q > 0. Moreover, the map

(uR(s, t), uM(s, t)) := u ◦ ϕ±(s, t) ∈ R×M± for (s, t) ∈ Z± near infinity

satisfies
uR(s, ·)− Ts→ c in C∞(S1) as s→ ±∞

for T := |Q| and a constant c ∈ R, while for every sequence sk → ±∞, one can
restrict to a subsequence such that

uM(sk, ·)→ γ(T ·) in C∞(S1,M±) as k →∞
for some T -periodic Reeb orbit γ : R/TZ → M±. If γ is nondegenerate or Morse-
Bott, then in fact

uM(s, ·)→ γ(T ·) in C∞(S1,M±) as s→ ±∞
We will not prove this result in its full strength, as in particular the last step

(when γ is nondegenerate or Morse-Bott) requires some asymptotic elliptic regularity
results that we do not have space to explain here. Note however that most of the
above statement does not require any nondegeneracy assumption at all. The price
for this level of generality is that if sk, s

′
k → ±∞ are two distinct sequences, then

we have no guarantee in general that the two Reeb orbits obtained as limits of
subsequences of uM(sk, ·) and uM(s′k, ·) will be the same; at present, neither an
example of this rather unpleasant possibility nor any general argument to rule it
out is known. If one of these orbits is assumed to be isolated, however—which is
always true when the Reeb vector field is nondegenerate—then we will be able to
show that both are the same up to parametrization, hence geometrically, uM(s, t)
lies in arbitrarily small neighborhoods of the orbit γ as s→ ±∞. This turns out to
be also true in the more general Morse-Bott setting, though it is then much harder
to prove since γ need not be isolated. Once uM(s, ·) is localized near γ, one can
use the nondegeneracy condition as we did in the Fredholm theory of Lecture 4 to
develop asymptotic regularity results that give much finer control over the behavior
of uM as s → ±∞, implying in particular that uM(s, ·) → γ(T ·) in C∞(S1,M±).
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For details on this step, we refer to the original sources: [HWZ96,HWZ01] for the
nondegenerate case, and [HWZ96,Bou02] when the Reeb vector field is Morse-
Bott. Those papers deal exclusively with the contact case, but the setting of general
stable Hamiltonian structures is also dealt with in [Sie08].

Ignoring the final step for now, the proof of Theorem 9.8 will reuse most of the
techniques that we already saw in our proof of removal of singularities in §9.1. The
main idea is to use a combination of the monotonicity lemma and bubbling analysis
to show that unless u has a removable singularity, it is a proper map, and for any
sequence sk → ±∞, the holomorphic half-cylinders defined by

uk(s, t) = u ◦ ϕ±(s+ sk, t)

on a sequence of increasingly large half-cylinders must have a subsequence converging
in C∞

loc(R×S1) to either a constant map or a trivial cylinder. The first case will turn
out to mean (as in Theorem 9.2) that the puncture is removable, and the second
implies asymptotic convergence to a closed Reeb orbit.

One major difference between the proof of Theorem 9.8 and removal of singu-

larities is that since Ŵ is noncompact, sequences of curves in Ŵ with uniformly
bounded first derivatives need not be locally C0-bounded. This issue will arise both
in the bubbling argument to prove |duk(s, t)| ≤ C and in the analysis of the sequence
uk itself. In such cases, one can use the R-translation action

(9.5) τc : R×M± → R×M± : (r, x) 7→ (r + c, x) for c ∈ R

on suitable subsets of the cylindrical ends to replace unbounded sequences with
uniformly C1-bounded sequences of curves mapping into R×M+ or R×M−. These
R-translations are the reason why our definition of energy needs to be something
slightly more complicated than just the symplectic area

∫
Σ̇
u∗Ω for a single choice

of symplectic form. To understand bubbling in the presence of arbitrarily large
R-translations, we will need the following lemma.

Lemma 9.9. Suppose J ∈ J (H) for some stable Hamiltonian structure H =

(ω, λ) on an odd-dimensional manifold M , and u : (Σ̇, j) → (R × M,J) is a J-
holomorphic curve satisfying

E(u) <∞ and

∫

Σ̇

u∗ω = 0.

If Σ̇ = C, then u is constant. If Σ̇ = R × S1, then u either is constant or is
biholomorphically equivalent to a trivial cylinder over a closed Reeb orbit.

Proof. Denote ξ = ker λ and let

πξ : T (R×M)→ ξ

denote the projection along the subbundle spanned by ∂r (the unit vector field in
the R-direction) and the Reeb vector field R. Then since ω annihilates both ∂r and
R, for any local holomorphic coordinates (s, t) on a subset of Σ̇, the compatibility
of J |ξ with ω|ξ implies

u∗ω(∂s, ∂t) = ω(∂su, ∂tu) = ω(∂su, J∂su) = ω(πξ∂su, Jπξ∂su) ≥ 0,
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hence
∫
Σ̇
u∗ω ≥ 0 for every J-holomorphic curve, and equality means that u is

everywhere tangent to the subbundle spanned by ∂r and R. This implies that im u
is contained in the image of some J-holomorphic plane of the form

uγ : C→ R×M : s+ it 7→ (s, γ(t)),

where γ : R → M is a (not necessarily periodic) orbit of R. If γ is not periodic,
then uγ is embedded, hence there exists a unique (and necessarily holomorphic) map

Φ : (Σ̇, j) → (C, i) such that u = uγ ◦ Φ. If on the other hand γ is periodic with
minimal period T > 0, then uγ descends to an embedding of the cylinder

ûγ : C/iTZ→ R×M,

and we can view uγ as a covering map to this embedded cylinder. Now there exists

a unique holomorphic map Φ : Σ̇ → C/iTZ such that u = ûγ ◦ Φ. If Σ̇ = C, then
since π1(C) = 0 implies that Φ can be lifted to a (necessarily holomorphic) map

Φ̃ : C → C with uγ ◦ Φ̃ = u. Relabeling symbols, we conclude that in general if

Σ̇ = C, then u = uγ ◦ Φ for a holomorphic map Φ : C→ C.
Let us consider all cases in which the factorzation u = uγ ◦ Φ exists, where

Φ : (Σ̇, j) → (C, i) is holomorphic and Σ̇ = Σ \ Γ for a closed Riemann surface
(Σ, j). We will now use the removable singularity theorem for Φ : Σ̇→ S2 \ {0} to
show that unless Φ is constant,

∫
Σ̇
u∗ωf = ∞ for suitable choices of f ∈ T . This

integral can be rewritten as

(9.6)

∫

Σ̇

u∗ωf =

∫

Σ̇

Φ∗u∗γωf =

∫

Σ̇

Φ∗d (f(s) dt) =

∫

Σ̇

Φ∗ (f ′(s) ds ∧ dt)

since ωf = d
(
f(r) λ

)
+ω and uγ(s, t) = (s, γ(t)). Since f ′ > 0, f ′(s) ds∧dt is an area

form on C with infinite area. We claim now that for suitable choices of f ∈ T , one
can find an area form Ω on S2 = C ∪ {∞} such that Ω ≤ f ′(s) ds ∧ dt. To see this,
let us change coordinates so that ∞ becomes 0: setting Ψ : C∗ → C∗ : z 7→ 1/z, a
slightly tedious but straightforward computation gives

Ψ∗ (f ′(s) ds ∧ dt) = f ′(s/|z|2) 1

|z|4
(
1 +

(2st)2

|z|4
)
ds ∧ dt

≥ f ′(s/|z|2) 1

|z|4 ds ∧ dt for z = s+ it ∈ C \ {0}.
(9.7)

We need to show that this 2-form can be bounded away from 0 as z → 0. Let us
choose f ∈ T such that

(9.8) f(r) = ±
(
ǫ− ǫ

2r

)
for ± r ≥ 1

and extend f arbitrarily to [−1, 1] such that f ′ > 0. We can then find a constant
c > 0 such that f ′ satisfies

f ′(r) > min
{
c,

ǫ

2r2

}
for all r ∈ R.
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Plugging this into (9.7) gives

Ψ∗ (f ′(s) ds ∧ dt) ≥ min

{
c

|z|4 ,
ǫ

2s2

}
ds ∧ dt,

which clearly blows up as |z| → 0. With this established, we observe that for any
number C > 0, the fact that f ′(s) ds∧ dt has infinite area implies we can choose an
area form Ω on S2 with

Ω ≤ f ′(s) ds ∧ dt on S2 \ {∞} and

∫

S2

Ω > C.

We now have two possibilities:

(1) If
∫
Σ̇
Φ∗Ω <∞, then Theorem 9.2 implies that the singularities of Φ : Σ̇→

C at Γ are all removable, i.e. Φ extends to a holomorphic map (Σ, j) →
(S2, i), which has a well-defined mapping degree k ≥ 0. Then
∫

Σ̇

u∗ωf =

∫

Σ̇

Φ∗ (f ′(s) ds ∧ dt) ≥
∫

Σ̇

Φ∗Ω =

∫

Σ

Φ∗Ω = k

∫

S2

Ω > kC.

Since C > 0 can be chosen arbitrarily large, this implies
∫
Σ̇
u∗ωf = ∞

unless k = 0, meaning Φ is constant.
(2) If

∫
Σ̇
Φ∗Ω =∞ (meaning there is an essential singularity, cf. Exercise 9.5),

then since Φ∗ (f ′(s) ds ∧ dt) ≥ Φ∗Ω, (9.6) implies
∫
C
u∗ωf =∞.

Since u is constant whenever Φ is, this completes the proof for Σ̇ = C.
If Σ̇ = R × S1, then it remains to deal with the case where the factorization

u = uγ ◦Φ does not exist because γ is periodic. If the minimal period is T > 0, then
let us in this case redefine uγ as an embedded J-holomorphic trivial cylinder

uγ : R× S1 : (s, t) 7→ (Ts, γ(T t)).

Since the new uγ is embedded, we can now write u = uγ◦Φ for a unique holomorphic
map Φ : R× S1 → R× S1. Identifying R× S1 biholomorphically with S2 \ {0,∞},
we claim that Φ extends to a holomorphic map S2 → S2. Indeed, by the removable
singularity theorem, this is true if and only if

∫
R×S1 Φ

∗Ω < ∞ for some area form

Ω on S2. Notice that u∗γωf = T 2 · f ′(Ts) ds ∧ dt, defines an area form on R × S1

with finite area for any f ∈ T since
∫∞
−∞ f ′(s) ds < ∞; this is equivalent to the

observation that trivial cylinders always have finite energy. Using the biholomorphic
map (s, t) 7→ e2π(s+it) to identify R×S1 with C∗ = S2\{0,∞} and using coordinates
z = x+ iy on the latter, another tedious but straightforward computation gives

u∗γωf =
T 2

4π2

f ′ ( T
2π

log |z|
)

|z|2 dx ∧ dy for z = x+ iy ∈ C∗.

Now suppose f ∈ T is chosen as in (9.8). Then one can check that the positive
function in front of dx∧ dy in the above formula goes to +∞ as |z| → 0; this means
that one can find an area form Ω on C with Ω ≤ u∗γωf on C∗. The singularity at

+∞ ∈ S2 can be handled in a similar way, thus we can find an area form Ω on S2
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such that Ω ≤ u∗γωf on R× S1. Now since E(u) <∞, we have
∫

R×S1

Φ∗Ω ≤
∫

R×S1

Φ∗u∗γωf =

∫

R×S1

u∗ωf <∞,

so by Theorem 9.2, Φ has a holomorphic extension S2 → S2, which is then a map
of degree k ≥ 0 with Φ−1({0,∞}) ⊂ {0,∞}. If k = 0 then Φ is constant, and so
is u. Otherwise, Φ is surjective and thus hits both 0 and ∞, but it can only do this
at either 0 or ∞, thus it either fixes both or interchanges them. After composing
with a biholomorphic map of S2 preserving R× S1, we may assume without loss of
generality that Φ(0) = 0 and Φ(∞) =∞. This makes Φ a polynomial with only one
zero, hence as a map on C∪{∞}, Φ(z) = czk for some c ∈ C∗. Up to biholomorphic
equivalence, Φ(z) is then zk, which appears in cylindrical coordinates as the map
(s, t) 7→ (ks, kt), so u is now the trivial cylinder

u(s, t) = uγ(ks, kt) = (kTs, γ(kT t))

over the k-fold cover of γ. �

Remark 9.10. It may be useful for some applications to observe that Lemma 9.9
does not require M to be compact. In contrast, the compactness arguments in this
lecture almost always depend on the assumption that W and M± are compact—
without this, one would need add some explicit assumption to guarantee local C0-
bounds on sequences of holomorphic curves, e.g. the assumption in Theorem 9.2
that u(D \ {0}) is contained in a compact subset.

Before continuing, it is worth noting that neither of the two definitions of energy

stated above (one for curves in Ŵ and the other for symplectizations) is unique,
i.e. each can be tweaked in various ways such that the results of this section still
hold. Indeed, the original definitions appearing in [Hof93,BEH+03] are slightly
different, but equivalent to these. The next lemma illustrates one further example
of this freedom, which will be useful in some of the arguments below.

Lemma 9.11. Given a stable Hamiltonian structure H = (ω, λ) on M , a suffi-
ciently small constant ǫ > 0 as in (9.3), and J ∈ J (H), consider the alternative
notion of energy for J-holomorphic curves u : (Σ̇, j)→ (R×M,J) defined by

E0(u) = sup
f∈T0

∫

Σ̇

u∗ωf

where ωf = d (f(r) λ) + ω and

T0 =
{
f ∈ C∞(R, (a, b))

∣∣ f ′ > 0
}

for some constants −ǫ ≤ a < b ≤ ǫ. Then if E(u) denotes the energy as written in
Remark 9.7, there exists a constant c > 0, depending on the data a, b, ǫ and H but
not on u, such that

cE(u) ≤ E0(u) ≤ E(u).
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Proof. The second of the two inequalities is immediate since T0 ⊂ T . For the
first inequality, note that since ǫ > 0 is small, we can assume there exists a constant
c > 1 such that for every X ∈ T (R×M) and every κ ∈ [−ǫ, ǫ],

(9.9)
1

c
(ω + κ dλ)(X, JX) ≤ ω(X, JX) ≤ c(ω + κ dλ)(X, JX).

This uses (9.3) and the fact that dλ annihilates kerω. Now suppose f ∈ T , choose
a constant δ ∈ (0, b− a] and define f̃ ∈ T0 by

f̃(r) =
δ

2ǫ
f(r) +

a+ b

2
.

Then f̃ ′(r) = δ
2ǫ
f ′(r), and given a J-holomorphic curve u : Σ̇ → R ×M , we can

write ωf = ω + f(r) dλ+ f ′(r) dr ∧ λ and use (9.9) to estimate
∫

Σ̇

u∗ωf =

∫

Σ̇

u∗ (ω + f(r) dλ) +

∫

Σ̇

u∗ (f ′(r) dr ∧ λ)

≤ c

∫

Σ̇

u∗ω +
2ǫ

δ

∫

Σ̇

u∗
(
f̃ ′(r) dr ∧ λ

)

≤ c2
∫

Σ̇

u∗
(
ω + f̃(r) dλ

)
+

2ǫ

δ

∫

Σ̇

u∗
(
f̃ ′(r) dr ∧ λ

)
.

If c2 ≥ 2ǫ
b−a , then we can choose δ := 2ǫ/c2 ≤ b−a and rewrite the last expression as

c2
∫

Σ̇

u∗
(
ω + f̃(r) dλ

)
+

2ǫ

δ

∫

Σ̇

u∗
(
f̃ ′(r) dr ∧ λ

)

= c2
∫

Σ̇

u∗
(
ω + f̃(r) dλ+ f̃ ′(r) dr ∧ λ

)
= c2

∫

Σ̇

u∗ωf̃ ≤ c2E0(u).

On the other hand if c2 < 2ǫ
b−a , we can set δ := b− a and write

c2
∫

Σ̇

u∗
(
ω + f̃(r) dλ

)
+

2ǫ

δ

∫

Σ̇

u∗
(
f̃ ′(r) dr ∧ λ

)

≤ 2ǫ

b− a

∫

Σ̇

u∗
(
ω + f̃(r) dλ+ f̃ ′(r) dr ∧ λ

)

=
2ǫ

b− a

∫

Σ̇

u∗ωf̃ ≤
2ǫ

b− aE0(u).

�

With this preparation out of the way, we now begin in earnest with the proof

of Theorem 9.8. Assume u : Ḋ → Ŵ is a J-holomorphic punctured disk satisfying
E(u) <∞. Using the maps ϕ± : Z± → Ḋ defined in (9.4), we shall write

u± := u ◦ ϕ± : Z± → Ŵ

and observe that these reparametrizations have no impact on the energy, i.e.

E(u±) = sup
f∈T (h,r0)

∫

Z±

(u ◦ ϕ±)
∗ωf = sup

f∈T (h,r0)

∫

Ḋ

u∗ωf = E(u).
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Fix a Riemannian metric on Ŵ that is translation-invariant on the cylindrical ends,
and fix the standard metric on the half-cylinders Z±. We will use these metrics
implicitly whenever referring to quantities such as |du±(z)|.

Lemma 9.12. There exists a constant C > 0 such that |du+(s, t)| ≤ C for all
(s, t) ∈ Z+.

Proof. We use a bubbling argument as in the proof of Lemma 9.3. Suppose the
contrary, so there exists a sequence zk = (sk, tk) ∈ Z+ with Rk := |du+(zk)| → ∞.
Choose a sequence ǫk > 0 with ǫk → 0 but ǫkRk → ∞, and using Lemma 9.4,
assume without loss of generality that

|du+(z)| ≤ 2Rk for all z ∈ Dǫk(zk).

Define a rescaled sequence of J-holomorphic disks by

vk : DǫkRk
→ Ŵ : z 7→ u ◦ ϕ+(zk + z/Rk).

These satisfy |dvk| ≤ 2 on their domains, but they are not necessarily C1-bounded
since their images may escape to infinity. We distinguish three possibilities, at least
one of which must hold:

Case 1: vk(0) has a bounded subsequence.

Then the corresponding subsequence of vk : DǫkRk
→ Ŵ is uniformly C1-bounded

on every compact subset and thus (by elliptic regularity) has a further subsequence
convergent in C∞

loc(C) to a J-holomorphic plane

v∞ : C→ Ŵ

with |dv∞(0)| = limk→∞ |dvk(0)| = 1. But by the same argument we used in the
proof of Lemma 9.3, the fact that

∫
Z+
u∗+ωf < ∞ for any choice of f ∈ T (h, r0)

implies ∫

C

v∗∞ωf = 0,

hence v∞ is constant, and this is a contradiction.
Case 2: vk(0) has a subsequence diverging to {+∞}×M+.

Restricting to this subsequence, suppose

vk(0) ∈ {rk} ×M+,

so rk → ∞, and assume without loss of generality that rk > r0 for all k. Let
R̃k ∈ (0, ǫkRk] for each k denote the largest radius such that vk(DR̃k

) ⊂ (r0,∞)×M+.

Then R̃k →∞ since |dvk| is bounded. Now using the R-translation maps τr defined
in (9.5), define

ṽk := τ−rk ◦ vk|DR̃k
: DR̃k

→ R×M+.

Since we’re using a translation-invariant metric on [r0,∞) ×M+, ṽk is now a uni-
formly C1

loc-bounded sequence of maps into R×M+. Elliptic regularity thus provides
a subsequence convergent in C∞

loc(C) to a plane

v∞ : C→ R×M+,
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which is J+-holomorphic, where J+ ∈ J (H+) denotes the restriction of J to [r0,∞)×
M+, extended over R×M+ by R-invariance. We claim,

(9.10) E(v∞) <∞ and

∫

C

v∗∞ω+ = 0,

where E(v∞) is now defined as in Remark 9.7. By Lemma 9.11, the first part of the
claim will follow if we can fix a constant a ∈ (−ǫ, ǫ) and establish a uniform bound

∫

C

v∗∞Ω+
f ≤ C,

with Ω+
f := ω+ + d

(
f(r) λ+

)
, for all smooth and strictly increasing functions f :

R → (a, ǫ). For convenience in the following, we shall assume a > h(r0). Now if f
is such a function, then for any R > 0,∫

DR

v∗∞Ω+
f = lim

k→∞

∫

DR

v∗kτ
∗
−rkΩ

+
f = lim

k→∞

∫

DR

v∗kΩ
+
fk
,

where fk(r) := f(r − rk). Notice that the dependence of the last integral on fk is
limited to the interval (r0,∞) since vk(DR) ⊂ (r0,∞) ×M+. Then since f > a >
h(r0) by assumption, there exists for each k a function hk ∈ T (h, r0) that matches
fk outside some neighborhood of (−∞, r0] and thus satisfies∫

DR

v∗kΩ
+
fk

=

∫

DR

v∗kωhk ≤
∫

DǫkRk

v∗kωhk =

∫

Dǫk
(zk)

u∗+ωhk ≤
∫

Z+

u∗+ωhk ≤ E(u).

This is true for every R > 0 and thus proves the first part of (9.10). To establish the
second part, fix R > 0 again and pick any f ∈ T (h, r0). Observe that since we can
assume (after perhaps passing to a subsequence) the disks Dǫk(zk) are all disjoint,

0 = lim
k→∞

∫

Dǫk
(zk)

u∗+ωf = lim
k→∞

∫

DǫkRk

v∗kωf = lim
k→∞

∫

DǫkRk

ṽ∗kτ
∗
rk
ωf

≥ lim
k→∞

∫

DR

ṽ∗kτ
∗
rk
ωf = lim

k→∞

∫

DR

ṽ∗kΩ
+
fk
,

where now fk(r) := f(r + rk). Writing Ω+
fk

= ω+ + d
(
fk(r) λ+

)
= ω+ + fk(r) dλ+ +

f ′
k(r) dr ∧ λ+, we can choose f such that f ′(r) = f ′(r + rk) → 0 as k → ∞,
so the third term contributes nothing to the integral. For the second term, let
f+ := limk→∞ fk(r) = limr→∞ f(r), so the calculation above becomes

0 ≥
∫

DR

v∗∞ (ω+ + f+ dλ+) .

Now observe that since f+ ∈ [−ǫ, ǫ], condition (9.3) implies that the 2-form ω+ +
f+ dλ+ is nondegenerate on ξ+, and it also annihilates ∂r and R+, so the vanishing
of this integral implies that v∞ is everywhere tangent to ∂r and R+ over DR. But
R > 0 was arbitrary, so this is true on the whole plane, which is equivalent to∫
C
v∗∞ω+ = 0. With the claim established, we apply Lemma 9.9 and conclude that

v∞ is constant, contradicting the fact that |dv∞(0)| = 1.
Case 3: vk(0) has a subsequence diverging to {−∞} ×M−.

This is simply the mirror image of case 2: writing the restriction of J to (−∞,−r0]×



Lectures on Symplectic Field Theory 165

M− as J−, one can follow the same bubbling argument but translate up and instead
of down, giving rise to a limiting nonconstant J−-holomorphic plane v∞ : C →
R×M− that has finite energy but

∫
C
v∗∞ω− = 0, in contradiction to Lemma 9.9. �

Consider now a sequence sk →∞ and construct the J-holomorphic half-cylinders

uk : [−sk,∞)× S1 → Ŵ : (s, t) 7→ u+(s+ sk, t).

The derivatives |duk| are uniformly bounded due to Lemma 9.12, though again, uk
might fail to be uniformly bounded in C0. We distinguish three cases.

Case 1: uk(0, 0) has a bounded subsequence.

Then the corresponding subsequence of uk is uniformly C1-bounded on compact
subsets and thus has a further subsequence converging in C∞

loc(R × S1) to a J-
holomorphic cylinder

u∞ : R× S1 → Ŵ .

For any f ∈ T (h, r0) and any c > 0, we have
∫

[−c,c]×S1

u∗∞ωf = lim
k→∞

∫

[−c,c]×S1

u∗kωf ≤ lim
k→∞

∫

[−sk/2,∞)×S1

u∗kωf

= lim
k→∞

∫

[sk/2,∞)×S1

u∗+ωf = 0

(9.11)

since
∫
Z+
u∗+ωf < ∞. It follows that

∫
R×S1 u

∗
∞ωf = 0, so u∞ is a constant map to

some point p ∈ Ŵ , implying that after passing to a subsequence of sk,

u+(sk, ·)→ p in C∞(S1, Ŵ ) as k →∞.
Case 2: uk(0, 0) has a subsequence diverging to {+∞}×M+.

Passing to the corresponding subsequence of uk, suppose

uk(0, 0) ∈ {rk} ×M+,

so rk → ∞. Since the derivatives |duk| are uniformly bounded, we can then find a
sequence of intervals [−R−

k , R
+
k ] ⊂ [−sk,∞) such that

uk([−R−
k , R

+
k ]× S1) ⊂ [r0,∞)×M+ and R±

k →∞.
Now the translated sequence

τ−rk ◦ uk|[−R−
k ,R

+
k ]×S1 : [−R−

k , R
+
k ]× S1 → R×M+

is uniformly C1-bounded on compact subsets and thus has a subsequence coverging
in C∞

loc to a J+-holomorphic cylinder

u∞ : R× S1 → R×M+,

where J+ again denotes the restriction of J to [r0,∞)×M+, extended over R×M+

by R-translation. We claim that this cylinder satisfies

E(u∞) <∞ and

∫

R×S1

u∗∞ω+ = 0.
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The proof of this should be an easy exercise if you understood the proofs of (9.10)
and (9.11) above, so I will leave it as such. Lemma 9.9 now implies that u∞ is either
constant or is a reparametrization of a trivial cylinder

uγ : R× S1 → R×M+ : (s, t) 7→ (Ts, γ(T t))

for some Reeb orbit γ : R/TZ → M+ with period T > 0. More precisely, all the
biholomorphic reparametrizations of R× S1 are of the form (s, t) 7→ (±s + a,±t +
b), thus after shifting the parametrization of γ, we can write u∞ without loss of
generality in the form

(9.12) u∞(s, t) = (±Ts+ a, γ(±T t))
for some constant a ∈ R and a choice of signs to be determined below (see Lemma 9.16).

Case 3: uk(0, 0) has a subsequence diverging to {−∞}×M−.
Writing J− := J |(−∞,−r0]×M− ∈ J (H−) and imitating the argument for case 2, we
suppose uk(0, 0) ∈ {−rk} ×M− with rk → ∞ and obtain a subsequence for which
τrk ◦ uk converges in C∞

loc(R × S1) to a J−-holomorphic cylinder u∞ : R × S1 →
R×M−, where u∞ is either a constant or takes the form (9.12) for some orbit Reeb
γ : R/TZ→M− of period T > 0.

Here is one easy consequence of the discussion so far. Use the Riemannian metric

on Ŵ to define a metric distC0(·, ·) on the space of continuous loops S1 → Ŵ .

Lemma 9.13. Given δ > 0, there exists s0 ≥ 0 such that for every s ≥ s0, the

loop u+(s, ·) : S1 → Ŵ satisfies

distC0(u+(s, ·), ℓ) < δ,

where ℓ : S1 → Ŵ either is constant or is a loop of the form ℓ(t) = (r, γ(±T t)) in
[r0,∞)×M+ or (−∞, r0]×M− for some constant r ∈ R and Reeb orbit γ : R/TZ→
M± of period T > 0.

Proof. If not, then there exists a sequence sk →∞ such that each of the loops
u+(sk, ·) lies at C0-distance at least δ away from any loop of the above form. How-
ever, the preceding discussion then gives a subsequence for which u(sk, ·) becomes
arbitrarily C∞-close to such a loop, so this is a contradiction. �

Lemma 9.14. If u : Ḋ→ Ŵ is not bounded, then it is proper.

Proof. We use the monotonicity lemma. Suppose there exists a sequence
(sk, tk) ∈ Z+ such that u+(sk, tk) diverges to {+∞} ×M+. This implies sk → ∞,
and we claim then that for every R ≥ r0, there exists s0 ≥ 0 such that

u+((s0,∞)× S1) ⊂ (R,∞)×M+.

If not, then we find R ≥ r0 and a sequence (s′k, t
′
k) ∈ Z+ with s′k → ∞ such

that u+(s
′
k, t

′
k) 6∈ (R,∞) ×M+ for every k. By continuity, we are free to suppose

u+(s
′
k, t

′
k) ∈ {R}×M+ for all k since Lemma 9.13 implies u+({sk}×S1) ⊂ (2R,∞)×

M+ for k sufficiently large. Using Lemma 9.13 again, we also have

u+({s′k} × S1) ⊂ (R− 1, R+ 1)×M+
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for all k large. Assuming 2R > R + 2 without loss of generality, we can therefore
find infinitely many pairwise disjoint annuli of the form [s′k, sj]×S1 ⊂ Z+ containing
open sets that u maps properly to small balls centered at points in {R + 2} ×M+.
Choosing any f ∈ T (h, r0), the monotonicity lemma implies that each of these
contributes at least some fixed amount to

∫
Z+
u∗+ωf , contradicting the assumption

that E(u) <∞.1

A similar argument works if u+(sk, tk) diverges to {−∞}×M−, proving that for
every R ≥ r0, there exists s0 ≥ 0 with

u+((s0,∞)× S1) ⊂ (−∞,−R)×M−.

�

If u is bounded, then the singularity at 0 is removable by Theorem 9.2. If not,
then Lemma 9.14 implies that it maps neighborhoods of the puncture to neighbor-
hoods of either {+∞}×M+ or {−∞}×M−, and we shall refer to the puncture as
positive or negative accordingly.

Lemma 9.15. If the puncture is positive/negative, then the limit

Q := lim
s→∞

∫

S1

u+(s, ·)∗λ± ∈ R

exists.

Proof. If the puncture is positive, fix s0 ≥ 0 such that u+([s0,∞) × S1) ⊂
[r0,∞) × M+. Then by Stokes’ theorem, it suffices to show that the integral∫
[s0,∞)×S1 u

∗
+dλ+ exists, which is true if

(9.13)

∫

[s0,∞)×S1

∣∣u∗+dλ+
∣∣ <∞.

We claim first that
∫
[s0,∞)×S1 u

∗
+ω+ < ∞. Indeed, for any s > s0 and f ∈ T (h, r0),

we have

E(u) ≥
∫

[s0,s]×S1

u∗+ωf =

∫

[s0,s]×S1

u∗+ω+ +

∫

[s0,s]×S1

u∗+d (f(r) λ+) .

Applying Stokes’ theorem, the second term becomes the sum of some number not
dependent on s and the integral

∫

S1

u+(s, ·)∗ (f(r) λ+) =
∫

S1

[f ◦ u+(s, ·)] u+(s, ·)∗λ+,

which is bounded as s→∞ since f and |du+| are both bounded. This proves that∫
[s0,s]×S1 u

∗
+ω+ is also bounded as s → ∞, and since u∗+ω+ ≥ 0, the claim follows.

Now observe that since dλ+ annihilates the kernel of ω+ and the latter tames J
on ξ+, there exists a constant c > 0 such that |u∗+dλ+| ≤ c|u∗+ω+|, implying (9.13).

An analogous argument works if the puncture is negative. �

1The fact that Ŵ is noncompact is not a problem for this application of the monotonicity

lemma, as we are only using it in the compact subset W 2R ⊂ Ŵ .
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The number Q ∈ R defined in the above lemma matches what we referred to in
the statement of Theorem 9.8 as the charge of the puncture.

Lemma 9.16. If the puncture is nonremovable and Q 6= 0, then the puncture is
positive/negative if and only if Q > 0 or Q < 0 respectively. In either case, given any
sequence sk →∞ with u+(sk, 0) ∈ {±rk}×M±, one can find a sequence Rk ∈ [0, sk]
with Rk → ∞ such that u+ maps [sk − Rk,∞) × S1 into the positive/negative
cylindrical end for every k, and the sequence of half-cylinders

uk : [−Rk,∞)× S1 → R×M+ or uk : (−∞, Rk]× S1 → R×M−

defined by uk(s, t) = τ∓rk ◦u±(s±sk, t) has a subsequence convergent in C∞
loc(R×S1)

to a J±-holomorphic cylinder of the form

u∞ : R× S1 → R×M± : (s, t) 7→ (Ts+ a, γ(T t))

for some constant a ∈ R and Reeb orbit γ : R/TZ→M± with period T := ±Q.
Proof. Assume the puncture is either positive or negative and Q 6= 0. In the

discussion preceding Lemma 9.13, we showed that the sequence u′(s, t) := τ∓rk ◦
u+(s + sk, t) defined on [−Rk,∞) × S1 has a subsequence convergent in C∞

loc to a
J±-holomorphic cylinder u′∞ : R× S1 → R×M± which is either constant or of the
form

(9.14) u′∞(s, t) = (σTs+ a, γ(σT t))

for some a ∈ R, σ = ±1 and a Reeb orbit γ : R/TZ → M± of period T > 0. We
then have

0 6= Q = lim
s→∞

∫

S1

u+(s, ·)∗λ± = lim
k→∞

∫

S1

u′k(0, ·)∗λ± =

∫

S1

u′∞(0, ·)∗λ±,

so u′∞ cannot be constant, and from (9.14) we deduce Q = σT , hence u′∞(s, t) =
(Qs + a, γ(Qt)). Writing u+(s, t) = (uR(s, t), uM(s, t)) ∈ R ×M± for s sufficiently
large, it follows that every sequence sk →∞ admits a subsequence for which

∂suR(sk, ·)→ Q in C∞(S1,R),

and consequently ∂suR(s, ·)→ Q in C∞(S1,R) as s→∞. This proves that the sign
of Q matches the sign of the puncture whenever Q 6= 0. The stated formula for u∞
now follows by adjusting all the appropriate signs in the case Q < 0. �

Lemma 9.17. If the puncture is nonremovable, then Q 6= 0.

Proof. Assume on the contrary that u is a proper map, say with a positive
puncture, but Q = 0. In this case, the argument of the previous lemma shows that
the limiting map u∞ : R × S1 → R ×M+ will always be constant, thus for every
sequence sk → ∞, there exists a point p ∈ M+ such that u+(sk, 0) ∈ {rk} ×M+

with rk →∞ and

τ−rk ◦ u+(sk, ·)→ (0, p) ∈ R×M+ in C∞(S1,R×M+) as k →∞.
In particular, this implies that all derivatives of u+ decay to 0 as s→∞. Intuitively,
this should suggest to you that portions of u+ near infinity will have improbably
small symplectic area, perhaps violating the monotonicity lemma—this will turn out
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to be true, but we have to be a bit clever with our argument since u+ is unbounded.
We will make this argument precise by translating pieces of u+ downward so that
we only compute its symplectic area in [0, 2]×M+. Fix a function f : R→ (−ǫ, ǫ)
with f ′ > 0 and set Ω+

f = ω+ + d (f(r) λ+).
Given a small number δ > 0, we can find s0 ≥ 0 such that |du+(s, t)| < δ for all

s ≥ s0 and each of the loops u+(s, ·) for s ≥ s0 is δ-close to a constant in C1(S1).
Assume u+(s0, 0) ∈ {R}×M+ and choose s1 > s0 such that u+(s1, 0) ∈ {R+2}×M+,
which is possible since u+(s, t) → {+∞} ×M+ as s → ∞. Now consider the J+-
holomorphic annulus

vδ := τ−R ◦ u+|[s0,s1]×S1 : [s0, s1]× S1 → R×M+.

We claim that
∫
[s0,s1]×S1 v

∗
δΩ

+
f can be made arbitrarily small by choosing δ suitably

small. Indeed, we can use Stokes’ theorem to write this integral as
∫

[s0,s1]×S1

v∗δΩ
+
f =

∫

[s0,s1]×S1

v∗δω+ +

∫

[s0,s1]×S1

v∗δd (f(r) λ+)

=

∫

[s0,s1]×S1

v∗δω+ +

∫

S1

[vδ(s1, ·)∗ (f(r) λ+)− vδ(s0, ·)∗ (f(r) λ+)] .

The second term is small because f(r) is bounded and |vδ(s, ·)∗λ+| is small in pro-
portion to |dvδ(s, t)| = |du+(s, t)| for s ≥ s0. For the first term, observe that since
both of the loops vδ(si, ·) for i = 0, 1 are nearly constant, they are contractible and
can be filled in with disks v̄i : D → R ×M+ for which

∣∣∫
D
v̄∗i ω+

∣∣ may be assumed
arbitrarily small. Moreover, since all of the loops vδ(s, ·) are similarly contractible,
the union of these two disks with the annulus vδ defines a closed cycle in M+ that is
trivial in H2(M+), hence the integral of the closed 2-form ω+ over this cycle vanishes,
implying ∫

[s0,s1]×S1

v∗δω+ =

∫

D

v̄∗1ω+ −
∫

D

v̄∗0ω+,

which is therefore arbitrarily small, and this proves the claim.
To finish, notice that since vδ maps its boundary components to small neighbor-

hoods of {0} ×M+ and {2} ×M+, one can fix a suitable choice of radius r1 > 0
such that vδ must pass through a point in p ∈ {1} ×M+ for which the boundary of
vδ is outside the ball Br1(p). The monotonicity lemma then bounds the symplectic
area of vδ from below by a constant times r21, but since we can also make this area
arbitrarily small by choosing δ smaller, this is a contradiction.

As usual, the case of a negative puncture can be handled similarly. �

We’ve now proved every statement in Theorem 9.8 up to the final detail about
the case where the asymptotic orbit is nondegenerate or Morse-Bott. The com-
plete proof of this part requires delicate analytical results from [HWZ96,HWZ01,
HWZ96,Bou02], but we can explain the first step for the nondegenerate case.
In the following, we say that a closed Reeb orbit γ : R/TZ → M± is isolated if,
after rescaling the domain to write it as an element of C∞(S1,M±), there exists
a neighborhood γ ∈ U ⊂ C∞(S1,M±) such that all closed Reeb orbits in U are
reparametrizations of γ.
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Lemma 9.18. Suppose the puncture is nonremovable, write

u+(s, t) = (uR(s, t), uM(s, t)) ∈ R×M±

for s ≥ 0 sufficiently large, and suppose sk →∞ is a sequence and γ : R/TZ→M±
is a Reeb orbit such that

uM(sk, ·)→ γ(T ·) in C∞(S1,M±).

If γ is isolated, then for every neighborhood U ⊂ C∞(S1,M±) of the set of parametriza-
tions {γ(·+ θ) | θ ∈ S1}, we have uM(s, ·) ∈ U for all sufficiently large s.

Proof. Note first that if γ is isolated, then its image admits a neighborhood
im γ ⊂ V ⊂ M± such that no point in V \ im γ is contained in another Reeb
orbit of period T . Indeed, we could otherwise find a sequence of T -periodic Reeb
orbits passing through a sequence of points in V \ im γ that converge to a point
in im γ. Since their derivatives are determined by the Reeb vector field and are
therefore bounded, the Arzelà-Ascoli theorem then gives a subsequence of these
orbits converging to a reparametrization of γ, contradicting the assumption that γ
is isolated.

Arguing by contradiction, suppose now that there exists a sequence s′k → ∞
with uM(sk, ·) 6∈ U for all k. We can nonetheless restrict to a subsequence for which
uM(s′k, ·) converges to some Reeb orbit γ̃ : R/TZ → M±. Then γ̃ is disjoint from
γ, and by continuity, one can find a sequence s′′k → ∞ for which each uM(s′′k, 0)
lies in the region V some fixed distance away from im γ. There must then be a
subsequence for which uM(s′′k, ·) converges to another T -periodic orbit, but this is
impossible since no such orbits exist in V \ im γ. �

9.3. Degenerations of holomorphic curves

To motivate the SFT compactness theorem, we shall now discuss three examples
of phenomena that can prevent a sequence of holomorphic curves from having a
compact subsequence. The theorem will then tell us that these three things are, in
essence, the only things that can go wrong.

Throughout this section and the next, assume Jk → J ∈ Jτ (ωh, r0,H+,H−)
is a C∞-convergent sequence of tame almost complex structures on the completed

cobordism Ŵ . More generally, one can also allow the data ω, h and H± to vary
in C∞-convergent sequences, but let’s not clutter the notation too much. We shall
denote the restrictions of J to the cylindrical ends by

J+ := J |[r0,∞)×M+ ∈ J (H+), J− := J |(−∞,−r0]×M− ∈ J (H−).

Suppose
uk := [(Σk, jk,Γ

+
k ,Γ

−
k ,Θk, uk)] ∈Mg,m(Jk, Ak,γ

+,γ−)

is a sequence of Jk-holomorphic curves in Ŵ with fixed genus g ≥ 0 and m ≥ 0
marked points, varying relative homology classes Ak ∈ H2(W, γ̄

+ ∪ γ̄
−) and fixed

collections of asymptotic orbits γ
± = (γ±1 , . . . , γ

±
m±). Observe that the energies

E(uk) depend only on the orbits γ± and relative homology classes Ak, so in partic-
ular, E(uk) is uniformly bounded whenever the relative homology class is also fixed.
The fundamental question of this section is:
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Question. If E(uk) is uniformly bounded and no subsequence of uk converges to
an element ofMg,m(J,A,γ

+,γ−) for any A ∈ H2(W, γ̄
+ ∪ γ̄

−), what can happen?

9.3.1. Bubbling. Suppose (Σk, jk,Γ
+
k ,Γ

−
k ,Θk) = (Σ, j,Γ+,Γ−, θ) is a fixed se-

quence of domains, and choose Riemannian metrics on Σ̇ = Σ \ Γ and Ŵ that are
translation-invariant on the cylindrical ends of both. Suppose there exists a point
ζ0 ∈ Σ̇ such that uk(ζ0) is contained in a compact subset for all k. Suppose also

that the maps uk : Σ̇→ Ŵ are locally C1-bounded outside some finite subset

Γ′ = {ζ1, . . . , ζN} ⊂ Σ̇,

i.e. for every compact set K ⊂ Σ̇ \ Γ′, there exists a constant CK > 0 independent
of k such that

|duk| ≤ CK on K.

Then elliptic regularity gives a subsequence that converges in C∞
loc(Σ̇ \ Γ′) to a J-

holomorphic curve

u∞ : Σ̇ \ Γ′ → Ŵ

with E(u∞) ≤ lim supE(uk) < ∞, thus all the punctures Γ+ ∪ Γ− ∪ Γ′ of u∞ are
either removable or positively or negatively asymptotic to Reeb orbits. We cannot
be sure that the asymptotic behavior of u∞ at Γ± is the same as for uk, but let’s
assume this for now (§9.3.2 below discusses some things that can happen if this does
not hold). Then to complete the picture, we need to understand not only what u∞
is doing at the additional punctures Γ′, but also what is happening to uk near these
points as its first derivative blows up. For this we can apply the familiar rescaling
trick: choose for each ζi a sequence zik → ζi such that |duk(zik)| =: Rk → ∞, along
with a sequence ǫk → 0 with ǫkRk →∞, and using Lemma 9.4, assume without loss
of generality that |duk(z)| ≤ 2Rk for all z in the ǫk-ball about z

i
k. For convenience,

we can choose a holomorphic coordinate system identifying a neighborhood of ζi
with D ⊂ C and placing ζi at the origin, so zik → 0 in these coordinates, and
assume without loss of generality that they identify our chosen metric near ζi with
the Euclidean metric. Now setting

vik(z) = u(zik + z/Rk) for z ∈ DǫkRk

gives a sequence of Jk-holomorphic maps vik : DǫkRk
→ Ŵ whose energies and first

derivatives are both uniformly bounded. As in the arguments of §2, we now have
three possibilities:

• If uik(z
i
k) has a bounded subsequence, then the corresponding subsequence

of vik converges in C
∞
loc(C) to a J-holomorphic plane vi∞ : C→ Ŵ with finite

energy.
• If uk(z

i
k) has a subsequence diverging to {±∞} × M±, then translating

vik by the R-action produces a limiting finite-energy plane vi∞ in the posi-
tive/negative symplectization R×M±.

Viewing C as the punctured sphere S2 \ {∞}, the singularity of vi∞ at ∞ may be
removable, in which case vi∞ extends to a J-holomorphic sphere and we say that uk
has “bubbled off a sphere” at ζi. Alternatively, v

i
∞ may be positively or negatively

asymptotic to a Reeb orbit at ∞.
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Figure 9.2 shows two scenarios that could occur for a sequence in which |duk|
blows up at three points Γ′ = {ζ1, ζ2, ζ3}. Both scenarios show u∞ with ζ1 and ζ2
as removable singularities and ζ3 as a negative puncture, but the behavior of the
various vi∞ reveals a wide spectrum of possibilities. In the lower-left picture, the

points uk(z
1
k) are bounded and bubble off a sphere v1∞ : S2 → Ŵ . The picture shows

that v1∞ passes through u∞(ζ1) at some point; this does not follow from our argument
so far, but in this situation one can use a more careful analysis of uk near ζ1 to show
that it must be true, i.e. “bubbles connect”. At ζ3, we have uk(z

3
k)→ {−∞} ×M−

and v3∞ is a plane in R×M− with a positive puncture asymptotic to the same orbit
as ζ3; the coincidence of these orbits is another detail that does not follow from the
analysis above but turns out to be true in the general picture. The situation at
ζ2 allows two different interpretations: v2∞ could be the plane with negative end in
R×M+, meaning uk(z

2
k)→ {+∞}×M+, and the picture then shows an additional

plane in Ŵ with a positive end approaching the same asymptotic orbit as v2∞ as well
as a point passing through u∞(ζ2). One would need to choose a different rescaled
sequence near ζ2 to find this extra plane, but as we will see, the SFT compactness
theorem dictates that some such object must be there. Alternatively, uk(z

2
k) could

also be bounded at ζ2, in which case v2∞ must be the plane in Ŵ with positive
end, and the extra plane above this is something that one could find via a different
choice of rescaled sequence. In general, the range of actual possibilities can involve
arbitrarily many additional curves that could be discovered via different choices of
rescaled sequences: e.g. there could be entire “bubble trees” as shown in the lower-
right picture, where each vi∞ is only one of several curves that arise as limits of
different parametrizations of uk near ζi. One good place to read about the analysis
of bubble trees is [HWZ03, §4].

9.3.2. Breaking. Figure 9.2 already shows some phenomena that could be in-
terpreted as “breaking” in the Floer-theoretic sense, but breaking can also happen
when no derivatives are blowing up, simply due to the fact that our domains are non-
compact. Figures 9.3 and 9.4 show three such scenarios, where we assume again that
(Σk, jk,Γ

+
k ,Γ

−
k ,Θk) = (Σ, j,Γ+,Γ−,Θ) is a fixed sequence of domains, and Σ̇ = Σ\Γ

and Ŵ carry Riemannian metrics that are translation-invariant on the cylindrical
ends such that

|duk| ≤ C everywhere on Σ̇

for some constant C > 0 independent of k. This is a stronger condition than we had
in §9.3.1, and if there exists a point ζ0 ∈ Σ̇ such that uk(ζ0) is bounded, it implies
that u∞ converges in C∞

loc(Σ̇) to a J-holomorphic map

u∞ : Σ̇→ Ŵ

with E(u∞) ≤ lim supE(uk) <∞. Convergence in C∞
loc is, however, not very strong:

there may in general be no relation between the asymptotic behavior of u∞ and uk
at corresponding punctures, e.g. the top scenario in Figure 9.3 shows a case in
which a negative puncture of uk becomes a removable singularity of u∞. Whenever
this happens, there must be more to the story: in this example, one can choose
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Figure 9.2. Two possible pictures of spheres and/or planes that
can bubble off when the first derivative blows up near three points.

holomorphic cylindrical coordinates (s, t) ∈ (−∞, 0] × S1 ⊂ Σ̇ near the negative
puncture of uk and find a sequence sk →∞ such that the sequence of half-cylinders

(−∞, sk]× S1 → Ŵ : (s, t) 7→ uk(s− sk, t)
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is uniformly C1-bounded and thus converges in C∞
loc(R × S1) to a finite-energy J-

holomorphic cylinder v− : R × S1 → Ŵ . In the picture, v− turns out to have a
removable singularity at +∞mapping to the same point as the removable singularity
of u∞, and its negative puncture approaches the same orbit as the negative puncture
of uk.

More complicated things can happen in general: the bottom scenario in this same
figure shows a case where all three singularities of u∞ are removable, thus it extends
to a closed curve, while at one of the positive cylindrical ends [0,∞) × S1 ⊂ Σ̇ of
uk, we can find a sequence sk →∞ such that the half-cylinders

[−sk,∞)× S1 → Ŵ : (s, t) 7→ uk(s+ sk, t)

are uniformly C1-bounded and converge in C∞
loc(R×S1) to a J-holomorphic cylinder

v1+ : R × S1 → Ŵ with one removable singularity and one positive puncture. At
the other positive end, we can perform the same trick in two distinct ways for two
sequences sk → ∞, one diverging faster than the other: the result is a pair of J-

holomorphic cylinders v2+, v
3
+ : R × S1 → Ŵ , the former with both singularities

removable (thus forming a holomorphic sphere in the picture), and the latter with
one removable singularity and one positive puncture.

It can get weirder. Remember that Ŵ is also noncompact!
In each of the above scenarios, we tacitly assumed that all of the various se-

quences obtained by reparametrizing portions of uk were locally C0-bounded, thus

all of the limits were curves in Ŵ . But it may also happen that some of these se-
quences are C0

loc-bounded while others locally diverge toward {±∞}×M±; in fact,
two such sequences that both diverge toward, say, {+∞}×M+, might even locally
diverge infinitely far from each other, meaning one of them approaches {+∞}×M+

quantitatively faster than the other. This phenomenon leads to the notion of limiting
curves with multiple levels.

In Figure 9.4, we see a scenario in which uk satisfies the same conditions as above,
except that instead of uk(ζ0) being bounded, it diverges to {+∞}×M+. It follows
that after applying suitable R-translations, a subsequence converges in C∞

loc(Σ̇) to a
J+-holomorphic curve

u∞ : Σ̇→ R×M+

with finite energy. In the example, all three of its punctures are nonremovable, but
two of them approach orbits that have nothing to do with the asymptotic orbits
of uk. Now observe that since uk has a negative cylindrical end (−∞, 0]× S1 ⊂ Σ̇,
one can necessarily find a sequence sk → ∞ such that uk(−sk, 0) is bounded, and
the sequence of half-cylinders

(−∞, sk]× S1 → Ŵ : (s, t) 7→ uk(s− sk, t)
is then uniformly C1-bounded and thus has a subsequence convergent in C∞

loc(R×S1)

to a finite-energy J-holomorphic cylinder v0 : R × S1 → Ŵ . In the picture, v0 has
both a positive and a negative puncture, but its negative end again approaches a
different Reeb orbit from the negative ends of uk, so one can deduce that there
must be still more happening near −∞: there exists another sequence s′k →∞ with
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u∞

v1+ v2+

v3+

v−
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Figure 9.3. Even with fixed conformal structures on the domains
and without bubbling, a sequence of punctured holomorphic curves in

Ŵ can break to produce multiple curves in Ŵ with extra removable
punctures. The picture shows two such scenarios.

s′k − sk →∞ such that suitable R-translations of the half-cylinders

(−∞, sk]× S1 → (−∞,−r0]×M− : (s, t) 7→ uk(s− s′k, t)
define uniformly C1-bounded maps into R×M−, giving a subsequence that converges
in C∞

loc(R× S1) to a finite-energy J−-holomorphic cylinder

v− : R× S1 → R×M−.

Finally, the fact that u∞ has a positive asymptotic orbit different from those of uk
indicates that something more must also be happening near +∞: in the example,
one of the positive ends [0,∞) × S1 ⊂ Σ̇ admits a sequence sk → ∞ such that
uk(sk, 0) ∈ {rk} ×M+ for some rk →∞, and suitable R-translations of

[−sk,∞)× S1 → [r0,∞)×M+ : (s, t) 7→ uk(s+ sk, t)

become a uniformly C1-bounded sequence of half-cylinders in R×M+, with a sub-
sequence converging in C∞

loc(R× S1) to a finite-energy J+-holomorphic cylinder

v2+ : R× S1 → R×M+

that connects the errant asymptotic orbit of u∞ to the corresponding orbit of uk. One
can now perform the same trick at the other positive end of Σ̇, as there necessarily
also exists a sequence s′k → ∞ in this end such that uk(s

′
k, 0) ∈ {rk} × M+ for

the same sequence rk → ∞ as in the above discussion. The resulting limit curve
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v1+ v2+
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Figure 9.4. Different portions of a breaking sequence of curves may

also become infinitely far apart in the limit, so that some live in Ŵ
while others live in the symplectization of M+ or M−.

v1+ : R× S1 → R×M+ however is not guaranteed to be interesting: in the picture,
it turns out to be a trivial cylinder.

The type of degeneration shown in Figure 9.4 happens whenever the sequence uk
does interesting things in multiple regions of its domain that are sent increasingly

far away from each other in the image. The usual picture of Ŵ that collapses
the cylindrical ends to a finite size therefore becomes increasingly inadequate for
visualizing uk as k → ∞: the middle picture in Figure 9.4 deals with this by
expanding the scale of the cylindrical ends so that the convergence to upper and
lower levels becomes visible.

9.3.3. The Deligne-Mumford space of Riemann surfaces. We next need
to relax the assumption that the Riemann surfaces (Σk, jk,Γ

+
k ⊔ Γ−

k ⊔Θk) are fixed.
Recall that for integers g ≥ 0 and ℓ ≥ 0, the moduli space of pointed Riemann
surfaces is the space of equivalence classes

Mg,ℓ = {(Σ, j,Θ)}
/
∼,

where (Σ, j) is a closed connected Riemann surface of genus g, Θ ⊂ Σ is an or-
dered set of ℓ distinct points, and (Σ, j,Θ) ∼ (Σ′, j′,Θ′) whenever there exists a
biholomorphic map ϕ : (Σ, j)→ (Σ′, j′) taking Θ to Θ′ with the ordering preserved.
This space is fairly easy to understand in the finitely many cases with 2g + ℓ < 3,
e.g.M0,ℓ is a one-point space for each ℓ ≤ 3. We say that (Σ, j,Θ) is stable when-
ever χ(Σ \ Θ) < 0, which means 2g + ℓ ≥ 3. In the stable case, one can show
that every pointed Riemann surface has a finite automorphism group, andMg,ℓ is a
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smooth orbifold of dimension 6g− 6+2ℓ. It is generally not compact, but it admits
a natural compactification

Mg,ℓ ⊃Mg,ℓ,

known as the Deligne-Mumford compactification. We shall now give a sketch
of this construction from the perspective of hyperbolic geometry; for more details,
see [Hum97,SS92].

We recall first the following standard result.

Theorem (Uniformization theorem). Every simply connected Riemann surface
is biholomorphically equivalent to either the Riemann sphere S2 = C ∪ {∞}, the
complex plane C or the upper half plane H = {Im z > 0} ⊂ C.

The uniformization theorem implies that every Riemann surface can be presented
as a quotient of either (S2, i), (C, i) or (H, i) by some freely acting discrete group

of biholomorphic transformations. The only punctured surface Σ̇ = Σ \Θ that has
S2 as its universal cover is S2 itself. It is almost as easy to see which surfaces are
covered by C, as the only biholomorphic transformations on (C, i) with no fixed
points are the translations, so every freely acting discrete subgroup of Aut(C, i) is
either trivial, a cyclic group of translations or a lattice. The resulting quotients are,
respectively, (C, i), (R × S1, i) ∼= (C \ {0}, i) and the unpunctured tori (T 2, j). All
stable pointed Riemann surfaces are thus quotients of (H, i).

Proposition 9.19. There exists on (H, i) a complete Riemannian metric gP of
constant curvature −1 that defines the same conformal structure as i and has the
property that all conformal transformations on (H, i) are also isometries of (H, gP ).

Proof. We define gP at z = x+ iy ∈ H by

gP =
1

y2
gE,

where gE is the Euclidean metric. The conformal transformations on (H, i) are given
by fractional linear transformations

Aut(H, i) =

{
ϕ(z) =

az + b

cz + d

∣∣∣ a, b, c, d ∈ R, ad− bc = 1

}/
{±1}

= SL(2,R)/{±1} =: PSL(2,R),

and one can check that each of these defines an isometry with respect to gP . One
can also compute that gP has curvature −1, and the geodesics of gP are precisely
the lines and semicircles that meet R orthogonally, parametrized so that they exist
for all forward and backward time, thus gP is complete. For more details on all of
this, the book by Hummel [Hum97] is highly recommended. �

By lifting to universal covers, this implies the following.

Corollary 9.20. For every pointed Riemann surface (Σ, j,Θ) such that χ(Σ \
Θ) < 0, the punctured Riemann surface (Σ \ Θ, j) admits a complete Riemannian
metric gj of constant curvature −1 that defines the same conformal structure as j,
and has the property that all biholomorphic transformations on (Σ \ Θ, j) are also
isometries of (Σ \Θ, gj).
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Figure 9.5. Two distinct pair-of-pants decompositions for the same
genus 1 Riemann surface with three marked points. The decomposi-
tions are shown from two perspectives: the pictures at the right are
meant to give a more accurate impression of the Poincaré metric,
which becomes singular and forms a cusp at each marked point.

The metric gj in this corollary is often called thePoincaré metric. It is uniquely
determined by j.

Every class in π1(Σ̇) contains a unique geodesic for gj. Now suppose C ⊂ Σ̇ is a

union of disjoint embedded geodesics such that each connected component of Σ̇ \C
has the homotopy type of a disk with two holes. The components are then called
singular pairs of pants, and the result is called a pair-of-pants decomposition
of (Σ̇, j). Two examples for the case g = 1 and ℓ = 3 are shown in Figure 9.5.

A pair-of-pants decomposition for (Σ, j,Θ) gives rise to a local parametrization
of Mg,ℓ near [(Σ, j,Θ)], known as the Fenchel-Nielsen coordinates. These consist
of two parameters that can be associated to each of the geodesics γ ⊂ Σ in the
decomposition, namely the length ℓ(γ) > 0 of the geodesic and a twist parameter
θ(γ) ∈ S1, which describes how the two neighboring pairs of pants are glued together
along γ. Note that by computing Euler characteristics, there are always exactly
−χ(Σ \Θ) = 2g− 2 + ℓ pairs of pants in a decomposition, so that the total number
of geodesics involved is [3(2g − 2 + ℓ)− ℓ] /2 = 3g− 3+ ℓ, thus one can read off the
formula dimMg,ℓ = 6g − 6 + 2ℓ from this geometric picture.

One can also see the noncompactness of Mg,ℓ in this picture quite concretely:
the twist parameters belong to a compact space, but each length parameter can
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potentially shrink to 0 or blow up to ∞ as j (and hence gj) is deformed. It turns
out that the latter possibility is an illusion, but one may need to switch to a different
pair-of-pants decomposition to see why:

Theorem. For every pair of integers g ≥ 0 and ℓ ≥ 0 with 2g + ℓ ≥ 3, there
exists a constant C = C(g, ℓ) > 0 such that every [(Σ, j,Θ)] ∈ Mg,ℓ admits a pair-
of-pants decomposition in which all geodesics bounding the pairs of pants have length
at most C.

This theorem implies that from a hyperbolic perspective, the only meaningful
way for stable pointed Riemann surfaces to degenerate is when some of the bounding
geodesics in a pair-of-pants decomposition shrink to length zero. Figure 9.6 shows
several examples of degenerate Riemann surfaces that can arise in this way for g = 1
and ℓ = 3, giving elements of the space that we will now define asM1,3.

Definition 9.21. A nodal Riemann surface with ℓ ≥ 0 marked points and
N ≥ 0 nodes is a tuple (S, j,Θ,∆) consisting of:

• A closed but not necessarily connected Riemann surface (S, j);
• An ordered set of ℓ points Θ ⊂ S;
• An unordered set of 2N points ∆ ⊂ S \ Θ equipped with an involution
σ : ∆→ ∆. Each pair {z, σ(z)} for z ∈ ∆ is referred to as a node.

Let Ŝ denote the closed surface obtained by performing connected sums on S at
each node {z+, z−} ⊂ ∆. We then say that (S, j,Θ,∆) is connected if and only if

Ŝ is connected, and the genus of Ŝ is called the arithmetic genus of (S, j,Θ,∆).
We say that (S, j,Θ,∆) is stable if every connected component of S \ (Θ ∪ ∆)
has negative Euler characteristic. Finally, two nodal Riemann surfaces (S, j,Θ,∆)
and (S ′, j′,Θ′,∆′) are considered equivalent if there exists a biholomorphic map
ϕ : (S, j)→ (S ′, j′) taking Θ to Θ′ with the ordering preserved and taking ∆ to ∆′

such that nodes are mapped to nodes.

The nodes {z+, z−} ⊂ ∆ are typically represented in pictures as self-intersections
of S, cf. Figure 9.6. We can think of the stable nodal surfaces as precisely those
which admit (possibly singular) pair-of-pants decompositions. All nodal Riemann
surfaces we consider will be assumed connected in the sense defined above unless
otherwise noted; note that S itself can nonetheless be disconnected, as is the case
in four out of the six nodal surfaces shown in Figure 9.6.

We now introduce some further terminology and notation that will be useful
in the next section as well. Whenever Σ̇ = Σ \ Γ is obtained by puncturing a
Riemann surface (Σ, j) at finitely many points Γ ⊂ Σ, we shall define the circle
compactification

Σ := Σ̇ ∪
⋃

z∈Γ
δz,

where for each z ∈ Γ, the circle δz is defined as a “half-projectivization” of the
tangent space at z:

δz := (TzΣ \ {0})
/
R∗

+,
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Figure 9.6. Starting from each of the pair-of-pants decompositions
for the g = 1 and ℓ = 3 case from Figure 9.5, shrinking geodesic
lengths to zero produces various examples of stable nodal Riemann
surfaces belonging toM1,3.

with the positive real numbers R∗
+ acting by scalar multiplication. To understand

the topology of Σ, one can equivalently define it by choosing holomorphic cylindrical
coordinates [0,∞)× S1 ⊂ Σ̇ near each z, and replacing the open half-cylinder with
[0,∞]× S1, where δz is now the circle at infinity {∞} × S1. There is no natural
choice of global smooth structure on Σ, but it is homeomorphic to an oriented surface
with boundary and carries both smooth and conformal structures on its interior, due
to the obvious identification

Σ̇ = Σ \
⋃

z∈Γ
δz ⊂ Σ.
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The conformal structure of Σ at each z ∈ Γ does induce on each of the circles δz an
orthogonal structure, meaning a preferred class of homeomorphisms to S1 that
are all related to each other by rotations. One can therefore speak of orthogonal
maps δz → δz′ for z, z′ ∈ Γ, which are always homeomorphisms and can either
preserve or reverse orientation.

Now if (S, j,Θ,∆) is a nodal Riemann surface, we let Ṡ = S \ ∆ and form the
circle compactification S, which has the topology of a compact oriented surface with
boundary. Given a node {z+, z−} ⊂ ∆, a decoration for {z+, z−} is a choice of
orientation reversing orthogonal map

Φ : δz+ → δz− .

We say that (S, j,Θ,∆) is a decorated nodal surface if it is equipped with a
choice of decoration Φ for every node, or partially decorated if Φ is defined for
some subset of the nodes. A partial decoration Φ gives rise to another compact
oriented surface

ŜΦ := S
/
∼,

where the equivalence relation identifies δz+ with δz− via Φ for each decorated node

{z+, z−} ⊂ ∆. Note that if every node is decorated, then ŜΦ has the topology of a
closed connected and oriented surface whose genus defines the arithmetic genus of
(S, j,Θ,∆) according to Definition 9.21. We shall denote the collection of special

circles in ŜΦ where boundray components δz+ , δz− ⊂ ∂S have been identified by

CΦ ⊂ ŜΦ.

Since ŜΦ \ (∂ŜΦ ∪ CΦ) has a natural identification with Ṡ, it inherits smooth and

conformal structures which degenerate along CΦ and ∂ŜΦ. We will say that two
partially decorated nodal Riemann surfaces (S, j,Θ,∆,Φ) and (S ′, j′,Θ′,∆′,Φ′) are
equivalent if (S, j,Θ,∆) and (S ′, j′,Θ′,∆′) are equivalent via a biholomorphic map
ϕ : (S, j) → (S ′, j′) that extends continuously from Ṡ → Ṡ ′ to a homeomorphism

ŜΦ → Ŝ ′
Φ′ .

Now if 2g + ℓ ≥ 3, define Mg,ℓ as the set of equivalence classes of stable nodal
Riemann surfaces with ℓ marked points and arithmetic genus g. There is a natural
inclusion

Mg,ℓ ⊂Mg,ℓ

by regarding each pointed Riemann surface (Σ, j,Θ) as a nodal Riemann surface
(Σ, j,Θ,∆) with ∆ = ∅. The most important property of Mg,ℓ is that it admits
the structure of a compact metrizable topological space for which the inclusion
Mg,ℓ →֒ Mg,ℓ is continuous onto an open subset. Rather than formulating all of
this in precise terms, let us state the main corollary that is important to know in
practice.

Theorem 9.22. Fix g ≥ 0 and ℓ ≥ 0 with 2g + ℓ ≥ 3. Then for any sequence
[(Σk, jk,Θk)] ∈ Mg,ℓ, there exists a stable nodal Riemann surface [(S, j,Θ,∆)] ∈
Mg,ℓ such that after restricting to a subsequence,

[(Σk, jk,Θk)]→ [(S, j,Θ,∆)]
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in the following sense: (S, j,Θ,∆) admits a decoration Φ such that for sufficiently
large k, there are homeomorphisms

ϕ : ŜΦ → Σk,

smooth outside of CΦ, which map Θ to Θk preserving the ordering and satisfy

ϕ∗jk → j in C∞
loc(ŜΦ \ C∆).

As one might gather from the above statement, one could just as well define a
compact metrizable topology on the space of equivalence classes of decorated nodal
Riemann surfaces and then characterize the topology of Mg,ℓ via the natural pro-
jection that forgets the decorations.

Exercise 9.23. The spaceM0,4 has a natural identification with S2 \{0, 1,∞},
defined by choosing the unique identification of any 4-pointed Riemann sphere
(S2, j, (z1, z2, z3, z4)) with C ∪ {∞} such that z1, z2, z3 are identified with 0, 1,∞
respectively, while z4 is sent to some point in S2 \ {0, 1,∞}. Show that this extends
continuously to an identification ofM0,4 with S2. What do the three nodal curves
inM0,4 \M0,4 look like in terms of pair-of-pants decompositions?

9.4. The SFT compactness theorem

We now introduce the natural compactification ofMg,m(J,A,γ
+,γ−).

9.4.1. Nodal curves. A punctured J-holomorphic nodal curve in (Ŵ , J)
with m ≥ 0 marked points consists of the data (S, j,Γ+,Γ−,Θ,∆, u), where

• (S, j,Γ+ ⊔ Γ− ⊔Θ,∆) is a nodal Riemann surface, with |Θ| = m;

• u : (Ṡ, j)→ (Ŵ , J) for Ṡ := S \ (Γ+ ∪ Γ−) is an asymptotically cylindrical
J-holomorphic map with positive punctures Γ+ and negative punctures Γ−

such that for each node {z+, z−} ⊂ ∆, u(z+) = u(z−).

Equivalence of two nodal curves

(S0, j0,Γ
+
0 ,Γ

−
0 ,Θ0,∆0, u0) ∼ (S1, j1,Γ

+
1 ,Γ

−
1 ,Θ1,∆1, u1)

is defined as the existence of an equivalence of nodal Riemann surfaces ϕ : (S0, j0,Γ
+
0 ⊔

Γ−
0 ⊔ Θ0,∆0) → (S1, j1,Γ

+
1 ⊔ Γ−

1 ⊔ Θ1,∆1) such that u0 = u1 ◦ ϕ. We say that
(S, j,Γ+,Γ−,Θ,∆, u) is connected if and only if the nodal Riemann surface (S, j,Γ+⊔
Γ− ⊔Θ,∆) is connected, and its arithmetic genus is then defined to be the arith-
metic genus of the latter. We say that (S, j,Γ+,Γ−,Θ,∆, u) is stable if every con-
nected component of S \(Γ+∪Γ−∪Θ∪∆) on which u is constant has negative Euler
characteristic. Note that the underlying nodal Riemann surface (S, j,Γ+⊔Γ−⊔Θ,∆)
need not be stable in general.

Nodal curves are sometimes also referred to as holomorphic buildings of height 1.
These are the objects that form the Gromov compactification ofMg,m(J,A) whenW
is a closed symplectic manifold. One can now roughly imagine how the compactness
theorem in that setting is proved: given a converging sequence of almost complex
structures Jk → J and a sequence [(Σk, jk,Θk, uk)] ∈ Mg,m(Jk, Ak) with uniformly
bounded energy, we can first add some auxiliary marked points if necessary to assume
that 2g+m ≥ 3. Now a subsequence of the domains [(Σk, jk,Θk)] ∈Mg,m converges
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to an element of the Deligne-Mumford space [(S, j,Θ,∆)] ∈ Mg,m. Concretely,
this means that for large k, our sequence in Mg,m(Jk, Ak) admits representatives
(Σ, j′k,Θ, u

′
k), with Σ a fixed surface with fixed marked points Θ ⊂ Σ, and (S, j,Θ,∆)

admits decorations Φ so that one can identify ŜΦ with Σ and find

j′k → j in C∞
loc(Σ \ C)

for some collection of disjoint circles C ⊂ Σ. The connected components of (Σ\C, j)
are then biholomorphically equivalent to the connected components of (S \ ∆, j),
and if the newly reparametrized maps u′k : Σ → W are uniformly C1

loc-bounded on
Σ \ C, then a subsequence converges in C∞

loc(Σ \ C) to a limiting finite-energy J-
holomorphic map u∞ : (S \∆, j)→ (W,J), whose singularities at ∆ are removable.
In particularly nice cases, this may be the end of the story, and our subsequence
of [(Σk, jk,Θk, uk)] ∈ Mg,m(Jk, Ak) converges to the nodal curve [(S, j,Θ,∆, u∞)];
in particular the domain [(S, j,Θ,∆)] in this case is stable and is thus an element
of Mg,m. But more complicated things can also happen, e.g. u′k might not be
C1-bounded, in which case there is bubbling. The bubbles that arise will be either
planes or spheres, so they produce extra domain components with nonnegative Euler
characteristic, but since they are never constant, the limiting nodal curve is still
considered stable. Similarly, since Σ\C is not compact, there can also be breaking as
in Figure 9.3, producing more non-stable domain components which can be cylinders
in addition to planes and spheres—but again, the limiting map on these components
will never be constant.

9.4.2. Holomorphic buildings. Only a small subset of the phenomena ob-
served in §9.3 can be described via nodal curves: we’ve seen that in general, we also
have to allow “broken” curves with multiple “levels”. This notion can be formalized
as follows.

Given integers g,m,N+, N− ≥ 0, a holomorphic building of height N−|1|N+

with arithmetic genus g and m marked points is a tuple

u = (S, j,Γ+,Γ−,Θ,∆nd,∆br, L,Φ, u),

with the various data defined as follows:

• The domain (S, j,Γ+⊔Γ−⊔Θ,∆nd⊔∆br) is a connected but not necessarily
stable nodal Riemann surface of arithmetic genus g, where |Θ| = m, and
the involution on ∆nd⊔∆br is assumed to preserve the subsets ∆nd and ∆br.
Matched pairs in these subsets are called the nodes and breaking pairs
respectively of u. The marked points of u are the points in Θ, while Γ+

and Γ− are its positive and negative punctures respectively.
• The level structure is a locally constant function

L : S → {−N−, . . . ,−1, 0, 1, . . . , N+}
that attains every value in {−N−, . . . , N+} except possibly 0, and satisfies:
(1) L(z+) = L(z−) for each node {z+, z−} ⊂ ∆nd;
(2) Each breaking pair {z+, z−} ⊂ ∆br can be labelled such that L(z+)−

L(z−) = 1;
(3) L(Γ+) = {N+} and L(Γ−) = {−N−}.
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• The decoration is a choice of orientation-reversing orthogonal map

δz+
Φ−→ δz−

for each breaking pair {z+, z−} ⊂ ∆br.
• The map is an asymptotically cylindrical pseudoholomorphic curve

u : (Ṡ := S \ (Γ+ ∪ Γ− ∪∆br), j)→
⊔

N∈{−N−,...,N+}
(ŴN , JN),

where

(ŴN , JN) :=





(R×M+, J+) for N ∈ {1, . . . , N+},
(Ŵ , J) for N = 0,

(R×M−, J−) for N ∈ {−N−, . . . ,−1},

and u sends Ṡ ∩ L−1(N) into ŴN for each N , with positive punctures at
Γ+ and negative punctures at Γ−. Moreover,

u(z+) = u(z−) for every node {z+, z−} ⊂ ∆nd,

and for each breaking pair {z+, z−} ⊂ ∆br labelled with L(z+)−L(z−) = 1,
u has a positive puncture at z− and a negative puncture at z+ asymptotic
to the same orbit, such that if u+ : δz+ → M± and u− : δz− → M± denote
the induced asymptotic parametrizations of the orbit, then

u+ = u− ◦ Φ : δz+ → M±.

The following additional notation and terminology for the building u will be
useful to keep in mind. For each N ∈ {−N−, . . . , 0, . . . , N+}, denote

ṠN :=
(
S \ (Γ+ ∪ Γ− ∪∆br)

)
∩ L−1(N),

and denote the restriction of u to this subset by

uN : ṠN →





R×M+ if N > 0,

Ŵ if N = 0,

R×M− if N < 0.

Including Θ∩L−1(N) and ∆nd ∩L−1(N) in the data defines uN as a (generally dis-
connected) nodal curve with marked points, whose positive punctures are in bijective
correspondence with the negative punctures of uN+1 if N < N+. We call uN the
Nth level of u, and all it an upper or lower level if N > 0 or N < 0 respectively,

and the main level if N = 0. By convention, every holomorphic building in Ŵ has

exactly one main level (which lives in Ŵ itself) and arbitrary nonnegative numbers
of upper and lower levels (which live in the symplectizations R×M±). One slightly
subtle detail is that it is possible for the main level to be empty, meaning 0 is not in
the image of the level function L. The requirement that L should attain every other
value from −L− to L+ is a convention to ensure that upper and lower levels are not
empty, so e.g. if a building has an empty main level and no lower levels, then the
lowest nonempty upper level is always labelled 1 instead of something arbitrary.
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The positive punctures of the topmost level of u are Γ+, and the negative punc-
tures of the bottommost level are Γ−, so these give rise to lists of positive/negative
asymptotic orbits γ± = (γ±1 , . . . , γ

±
k±
) inM±. There is also a relative homology class

[u] ∈ H2(W, γ̄
+ ∪ γ̄

−).

To define this, recall from §6.2 how it was defined for smooth curves u : Σ̇→ Ŵ : we

considered the retraction π : Ŵ → W that collapses each cylindrical end to M± ⊂
∂W , and noted that since u is asymptotically cylindrical, the map π ◦ u : Σ̇ → W
extends to a continuous map on the circle compactification,

ū : Σ→W,

whose relative homology class gives the definition of [u]. The conditions on nodes
and breaking orbits allow us to perform a similar trick for the building u, using the
map

π :
⊔

N∈{−N−,...,N+}
ŴN →W

which acts as the identity on W but collapses cylindrical ends of Ŵ to ∂W and
similarly collapses each copy of R × M± to M± ⊂ ∂W . Extending the decora-
tions Φ arbitrarily to decorations of the nodes ∆nd, one can then take the circle
compactification of Ṡ := S \ (Γ+ ∪ Γ− ∪ ∆nd ∪ ∆br) and glue matching boundary
components together along Φ to form a compact surface with boundary SΦ such
that π ◦ u : Ṡ →W extends to a continuous map

ū : SΦ →W.

Its relative homology class defines [u] ∈ H2(W, γ̄
+ ∪ γ̄

−).
We say that the building u is stable if two properties hold:

(1) Every connected component of S \ (Γ+ ∪Γ− ∪Θ∪∆nd ∪∆br) on which the
map u is constant has negative Euler characteristic;

(2) There is no N ∈ {−N−, . . . , N+} for which the Nth level consists entirely
of a disjoint union of trivial cylinders without any marked points or nodes.

An equivalence between two holomorphic buildings

ui = (Si, ji,Γ
+
i ,Γ

−
i ,Θi,∆

nd
i ,∆

br
i , Li,Φi, ui), i = 0, 1

is defined as an equivalence of partially decorated nodal Riemann surfaces

(S0, j0,Γ
+
0 ⊔ Γ+

0 ⊔Θ0,∆
nd
0 ⊔∆br

0 ,Φ0)
ϕ−→ (S1, j1,Γ

+
1 ⊔ Γ+

1 ⊔Θ1,∆
nd
1 ⊔∆br

1 ,Φ1)

such that ϕ(Γ±
0 ) = Γ±

1 , ϕ(Θ0) = Θ1, ϕ(∆
nd
0 ) = ∆nd

1 , ϕ(∆br
0 ) = ∆br

1 , L1 ◦ϕ = L0, and

u01 ◦ ϕ = u00,

while

uN1 ◦ ϕ = uN0 up to R-translation for each N 6= 0.

Given lists of orbits γ± and a relative homology class A, the set of equivalence

classes of stable holomorphic buildings in (Ŵ , J) with arithmetic genus g and m
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marked points, positively/negatively asymptotic to γ
± and homologous to A will be

denoted by

Mg,m(J,A,γ
+,γ−).

Observe that for any A 6= 0, there is a natural inclusion Mg,m(J,A,γ
+,γ−) ⊂

Mg,m(J,A,γ
+,γ−) defined by regarding J-holomorphic curves inMg,m(J,A,γ

+,γ−)
as buildings with no upper or lower levels and no nodes. Such buildings are always
stable if A 6= 0 because they are not constant.

9.4.3. Convergence. For a general definition of the topology ofMg,m(J,A,γ
+,γ−)

and the proof that it is both compact and metrizable, we refer to [BEH+03] or the
more comprehensive treatment in [Abb14]. The following statement contains all
the details about the topology that one usually needs to know in practice (see Fig-
ure 9.7).

Theorem 9.24. Fix integers g ≥ 0 and m ≥ 0, and assume all Reeb orbits in
(M,H+) and (M,H−) are nondegenerate. Then for any sequence

[(Σk, jk,Γ
+
k ,Γ

−
k ,Θk, uk)] ∈Mg,m(Jk, Ak,γ

+,γ−)

of nonconstant Jk-holomorphic curves in Ŵ with uniformly bounded energy E(uk),
there exists a stable holomorphic building

[u∞] = [(S, j,Γ+,Γ−,Θ,∆nd,∆br, L,Φ, u∞)] ∈Mg,m(J,A,γ
+,γ−)

such that after restricting to a subsequence, [(Σk, jk,Γ
+
k ,Γ

−
k ,Θk, uk)] → [u∞] in the

following sense. The decorations Φ at ∆br can be extended to decorations at ∆nd

so that if ŜΦ denotes the closed oriented topological 2-manifold obtained from S \
(∆nd ∪∆br) by gluing circle compactifications along Φ, then for k sufficiently large,
there exist homeomorphisms

ϕk : ŜΦ → Σk

that are smooth outside of CΦ, map Γ+ ⊔ Γ− ⊔Θ to Γ+
k ⊔ Γ−

k ⊔Θk with the ordering
preserved, and satisfy

ϕ∗
kjk → j in C∞

loc(ŜΦ \ CΦ).

Moreover for N = {−N−, . . . , 0, . . . , N}, let

vNk := uk ◦ ϕk|S̈N
: S̈N → Ŵ ,

with S̈N :=
(
S \ (Γ+ ∪ Γ− ∪∆nd ∪∆br)

)
∩ L−1(N) regarded as a subset of ŜΦ \ CΦ.

Then:

(1) v0k → uN∞ in C∞
loc(S̈N , Ŵ );

(2) For each ±N > 0, vNk has image in the positive/negative cylindrical end for
all k sufficiently large, and there exists a sequence rNk → ±∞ such that the
resulting R-translations converge:

τ−rNk ◦ v
N
k → uN∞ in C∞

loc(S̈N ,R×M±).
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The rates of divergence of the sequences rNk → ±∞ are related by

rN+1
k − rNk → +∞ for all N < N+.

Finally, let SΦ denote the compact topological surface with boundary defined as the

circle compactification of ŜΦ\(Γ+∪Γ−), and let Σk denote the circle compactification

of Σ̇k := Σk \ (Γ+
k ∪ Γ−

k ). Then for all k large, ϕk extends to a continuous map

ϕ̄k : SΦ → Σk

such that
ūk ◦ ϕ̄k → ū∞ in C0(SΦ,W ).

Remark 9.25. The theorem is also true under the more general hypothesis
that the Reeb vector fields are Morse-Bott. In this case, one can also allow the
asymptotic Reeb orbits of the sequence to vary, as long as the sum of their periods is
uniformly bounded—such a bound plays the role of an energy bound and guarantees
a convergent subsequence of orbits via the Arzelà-Ascoli theorem.

Remark 9.26. Stability of the limit in Theorem 9.24 is guaranteed for the same
reasons as in our discussion of Gromov compactness in §9.4.1: stable domains de-
generate to stable nodal domains as geodesics in pair-of-pants decompositions shrink
to zero length, while bubbling and breaking produce additional domain components
that are not stable but on which the maps are never trivial. Moreover, stability guar-
antees the uniqueness of the limiting building for any convergent sequence, i.e. it is
the reason whyMg,m(J,A,γ

+,γ−) is a Hausdorff space. Indeed, if uk converges to a
stable building u∞, then under the notion of convergence described in the theorem,
it will also converge to a building u′

∞ constructed out of u∞ by adding to S an extra
spherical component, attaching it to the rest by a single node and extending the map
u∞ to be constant on the extra component. One can also insert extra levels into
u∞ that consist only of trivial cylinders, and uk will still converge to the resulting
building. But these modifications produce buildings that are not stable and thus
are not elements ofMg,m(J,A,γ

+,γ−).

9.4.4. Symplectizations, stretching and so forth. A few minor modifica-
tions to the above discussion are necessary to compactify the moduli space of curves
in a symplectization (R×M,J) for J ∈ J (H). It is possible to view this as a special
case of a completed symplectic cobordism, but this perspective produces a certain
amount of extraneous data that is not meaningful. The key observation is that in
the presence of an R-action, one should really compactify Mg,m(J,A,γ

+,γ−)
/
R

instead ofMg,m(J,A,γ
+,γ−). The compactificationMg,m(J,A,γ

+,γ−) then con-
sists of holomorphic buildings as defined in §9.4.2, but since all levels live in the
same symplectization R ×M , there is no longer a distinguished main level or any
meaningful notion of upper vs. lower levels; the level structure is simply a function
L : S → {1, . . . , N} for some N ∈ N, and equivalence of buildings must permit
R-translations within each level. For these reasons, the SFT compactness theorem
in symplectizations has a few qualitative differences, but is still very much analogous
to Theorem 9.24.
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Ŵ Ŵ

R×M+

R×M−

R×M−

R×M−

M+

M−

Figure 9.7. Convergence to a building with arithmetic genus 2, one
upper level and three lower levels.

To complete the picture, we should mention one more type of compactness theo-
rem that appears in [BEH+03], which is colloquially described as stretching the
neck. The geometric idea is as follows: suppose (W,ω) is a closed symplectic
manifold and M ⊂ W is a stable hypersurface that separates W into two pieces
W = W− ∪M W+, with an induced stable Hamiltonian structure H = (ω, λ) that
orients M as the boundary of W−.

2 A neighborhood of M in (W,ω) can then be
identified symplectically with

(Nǫ, ωǫ) := ((−ǫ, ǫ)×M, d(rλ) + ω)

for sufficiently small ǫ > 0. The idea now is to replace Nǫ with larger collars of the
form

((−T, T )×M, d (f(r)λ) + ω) ,

with C0-small functions f chosen with f ′ > 0 so that the collar can be glued in
smoothly to replace (Nǫ, ωǫ). This collar looks like a piece of the symplectization of
(M,H), thus we are free to choose tame almost complex structures whose restrictions
to the inserted collar belong to J (H). Symplectic manifolds constructed in this

2The assumption that M ⊂ W separates W is inessential, but makes certain details in this
discussion more convenient.
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way are all symplectomorphic, but their almost complex structures degenerate as
one takes T → ∞. Given a sequence Tk → ∞ and a corresponding degenerating
sequence Jk, a sequence uk of Jk-holomorphic curves with bounded energy converges
to yet another form of holomorphic building, this time involving a bottom level in

Ŵ− := W−∪M ([0,∞)×M) with positive punctures approaching orbits inM , some
finite number of middle levels that live in the symplectization of M , and a top level

that lives in Ŵ+ := ((−∞, 0]×M)∪MW+ with negative punctures approaching M .
A very popular example for applications arises from Lagrangian submanifolds

L ⊂ W . By the Weinstein neighborhood theorem, L always has a neighborhood
W− symplectomorphic to a neighborhood of the zero-section in T ∗L, so M := ∂W−
is a contact-type hypersurface contactomorphic to the unit cotangent bundle of L.
Stretching the neck then yields T ∗L as the completion ofW−, andW \L as the com-

pletion of W+ :=W \ W̊−. This construction has often been used in order to study
Lagrangian submanifolds via SFT-type methods, see e.g. [EGH00, Theorem 1.7.5]
and [Eva10,CM].
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We’ve now developed enough of the technical machinery of holomorphic curves
to be able to give a rigorous construction of the most basic version of SFT and apply
it to a problem in contact topology.

10.1. Contact structures on T3 and Giroux torsion

As a motivating goal in this lecture, we will prove a result about the classification
of contact structures on T3 = S1 × S1 × S1. Denote the three global coordinates
on T3 valued in S1 = R/Z by (ρ, φ, θ), and for any k ∈ N, consider the contact
structure

ξk := kerαk, where αk := cos(2πkρ) dθ + sin(2πkρ) dφ.

It is an easy exercise to verify that these all satisfy the contact condition αk∧dαk > 0;
see Figure 10.1 for a visual representation. The following result is originally due to
Giroux [Gir94] and Kanda [Kan97].

Theorem 10.1. For each pair of positive integers k 6= ℓ, the contact manifolds
(T3, ξk) and (T3, ξℓ) are not contactomorphic.

One of the reasons this result is interesting is that it cannot be proved using
any so-called “classical” invariants, i.e. invariants coming from algebraic topology.
An example of a classical invariant would be the Euler class of the oriented vector
bundle ξk → T3, or anything else that depends only on the isomorphism class of this

191
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ρ

φ

θ

Figure 10.1. The contact structures ξk on T3 can be constructed
by gluing k copies of the same model [0, 1]×T2 to each other cyclically.

bundle. The following observation shows that such invariants will never distinguish
ξk from ξℓ.

Proposition 10.2. For every k, ℓ ∈ N, ξk and ξℓ are homotopic through a
smooth family of oriented 2-plane fields on T3.

Proof. In fact, all the ξk can be deformed smoothly to ker dρ, via the homotopy

ker [(1− s)αk + s dρ] , s ∈ [0, 1].

�

Remark 10.3. One can check in fact that the 1-form in the homotopy given
above is contact for every s ∈ [0, 1), so Gray’s stability theorem implies that every
ξk is isotopic to an arbitrarily small perturbation of the foliation ker dρ. In [Gir94],
Giroux used this observation to show that all of them are what we now call weakly
symplectically fillable. If ker dρ were also contact, then Gray’s theorem would imply
that ξk and ξℓ are always isotopic. Thus Theorem 10.1 indicates the impossibility
of modifying a homotopy from ξk to ξℓ into one that passes only through contact
structures.

Let us place this discussion in a larger context. Using the coordinates (ρ, φ, θ)
on R× T2, a pair of smooth functions f, g : R→ R gives rise to a contact form

α = f(ρ) dθ + g(ρ) dφ

whenever the function D(ρ) := f(ρ)g′(ρ)−f ′(ρ)g(ρ) is everywhere positive. Indeed,
we have α∧ dα = D(ρ) dρ∧ dφ∧ dθ, and one easily derives a similar formula for the
Reeb vector field,

Rα =
1

D(ρ)
[g′(ρ) ∂θ − f ′(ρ) ∂φ] .

The condition D > 0 means geometrically that the path (f, g) : R → R2 winds
counterclockwise around the origin with its angular coordinate strictly increasing.
The simplest special case is the contact form

αGT := cos(2πρ) dθ + sin(2πρ) dφ,
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which matches the formula for α1 on T3 given above. Let ξGT := kerαGT on R×T2.

Definition 10.4. The Giroux torsion GT(M, ξ) ∈ N ∪ {0,∞} of a contact
3-manifold (M, ξ) is the supremum of the set of positive integers k such that there
exists a contact embedding

(
[0, k]× T2, ξGT

)
→֒ (M, ξ).

We write GT(M, ξ) = 0 if no such embedding exists for any k, and GT(M, ξ) =∞
if it exists for all k.

Example 10.5. The tori (T3, ξk) for k ≥ Z are contactomorphic to (R×T2, ξGT)/kZ,
with kZ acting by translation of the ρ-coordinate. Thus GT(T3, ξk) ≥ k − 1.

A 2-torus T ⊂ (M, ξ) embedded in a contact 3-manifold is called pre-Lagrangian
if a neighborhood of T in (M, ξ) admits a contactomorphism to a neighborhood of
{0}×T2 in (R×T2, ξGT), identifying T with {0}×T2. The neighborhood in R×T2

can be arbitrarily small, thus the existence of a pre-Lagrangian torus does not imply
GT(M, ξ) > 0; in fact, pre-Lagrangian tori always exist in abundance, e.g. as bound-
aries of neighborhoods of transverse knots (using the contact model provided by the
transverse neighborhood theorem). But given any pre-Lagrangian torus T ⊂ (M, ξ),
one can make a local modification of ξ near T to produce a new contact structure (up
to isotopy) with positive Giroux torsion. Define (M ′, ξ′) from (M, ξ) by replacing
the small neighborhood ((−ǫ, ǫ)×T2, ξGT) with ((−ǫ, 1+ ǫ)×T2, ξGT), then identify
M ′ withM by a choice of compactly supported diffeomorphism (−ǫ, 1+ǫ)→ (−ǫ, ǫ).
There is now an obvious contact embedding of ([0, 1]× T2, ξGT) into (M, ξ′), hence
GT(M, ξ′) ≥ 1. Moreover, one can adapt the proof of Prop. 10.2 above to show
that ξ′ is homotopic to ξ through a smooth family of oriented 2-plane fields. The
operation changing ξ to ξ′ is known as a Lutz twist along T . In this language, we
see that for each k ∈ N, (T3, ξk+1) is obtained from (T3, ξk) by performing a Lutz
twist along {0} × T2.

The invariant GT(M, ξ) is easy to define, but hard to compute in general. The
natural guess,

GT(T3, ξk) = k − 1,

turns out to be correct, as was shown in [Gir00], so this is one way to prove
Theorem 10.1, but not the approach we will take. The following example shows
that one must in any case be careful with such guesses.

Example 10.6. For each k ∈ N, define a model of S1 × S2 by

S1 × S2 ∼=
(
[0, k + 1/2]× T2

) /
∼

where the equivalence relation identifies (ρ, φ, θ) ∼ (ρ, φ′, θ) for ρ ∈ {0, k+1/2} and
every θ, φ, φ′ ∈ S1. Near ρ = 0 and ρ = k+1/2, this means thinking of (ρ, φ) as polar
coordinates, so the two subsets {ρ = 0} and {ρ = k + 1/2} become circles of the
form S1×{const} embedded in S1×S2. Since the φ-coordinate is singular at these
two circles, the contact form αGT needs to be modified slightly in this region before
it will descend to a smooth contact form on S1×S2: this can be done by a C0-small
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modification of the form f(ρ) dθ + g(ρ) dφ, and the resulting contact structure is
then uniquely determined up to isotopy. We shall call this contact manifold

(S1 × S2, ξk).

Now observe that for each k ∈ N, (S1 × S2, ξk+1) is obtained from (S1 × S2, ξk) by
a Lutz twist. However, both contact manifolds are also overtwisted: recall that a
contact 3-manifold (M, ξ) is overtwisted whenever it contains an embedded closed
2-disk D ⊂M such that T (∂D) ⊂ ξ but TD|∂D ⋔ ξ. (Exercise: find a disk with this
property in (S1 × S2, ξk)!) Eliashberg’s flexibility theorem for overtwisted contact
structures [Eli89] implies that whenever ξ and ξ′ are two contact structures on a
closed 3-manifold that are both overtwisted and are homotopic as oriented 2-plane
fields, they are actually isotopic. As a consequence, the contact structures ξk on
S1× S2 defined above for every k ∈ N are all isotopic to each other. As tends to be
the case with most interesting h-principles, the isotopy is very hard to see concretely,
but it must exist.

Exercise 10.7. Show that if (M, ξ) is a closed overtwisted contact 3-manifold,
then GT(M, ξ) =∞.

In contrast to the S1×S2 example above, the contact manifolds (T3, ξk) are not
overtwisted, they are tight—in fact, the classification of contact structures on T3

by Giroux [Gir94,Gir99,Gir00] and Kanda [Kan97] states that these are all of
the tight contact structures on T3 up to contactomorphism. We will use cylindrical
contact homology to show that they are not contactomorphic to each other. The
reader should keep Example 10.6 in mind and try to spot the reason why the same
argument cannot work for (S1 × S2, ξk).

Remark 10.8. It has been conjectured that the converse of Exercise 10.7 might
also hold, so every closed tight contact 3-manifold would have finite Giroux torsion.
This conjecture is wide open.

10.2. Definition of cylindrical contact homology

10.2.1. Preliminary remarks. Cylindrical contact homology is the natural
“first attempt” at using holomorphic curves in symplectizations to define a Floer-
type invariant of contact manifolds (M, ξ). The idea is to define a chain complex
generated by Reeb orbits inM and a differential ∂ that counts holomorphic cylinders
in R ×M . We already know some pretty good reasons why this idea cannot work
in general: in order to prove ∂2 = 0, we need to be able to identify the space of
rigid “broken” holomorphic cylinders (these are what is counted by ∂2) with the
boundary of the compactified 1-dimensional space of index 2 cylinders (up to R-
translation). But this compactified boundary has more than just broken cylinders
in it, see Figure 10.2. In order to define cylindrical contact homology, one must
therefore restrict to situations in which complicated pictures like Figure 10.2 cannot
occur. The first useful remark in this direction is that since we are working with
a stable Hamiltonian structure of the form (dα, α) for a contact form α, a certain
subset of the scenarios allowed by the SFT compactness theorem can be excluded
immediately. Indeed:
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Figure 10.2. A family of holomorphic cylinders can converge in
the SFT topology to buildings that include more complicated curves
than cylinders—this is why cylindrical contact homology is not well
defined for all contact manifolds.

Proposition 10.9. If J ∈ J (α) and u : (Σ̇, j)→ (R×M,J) is an asymptotically
cylindrical J-holomorphic curve, then u has at least one positive puncture.

Let us give two proofs of this result, since both contain useful ideas. As prepara-
tion for the first proof, recall the definition of energy for curves in symplectizations
of contact manifolds that we wrote down in Lecture 1:

E(u) := sup
f∈T

∫

Σ̇

u∗d(ef(r) α),

where

T :=
{
f ∈ C∞(R, (−1, 1))

∣∣ f ′ > 0
}
.

This formula is not identical to the definition of energy used in Lecture 9, but it
is equivalent in the sense that any uniform bounds on one imply similar uniform
bounds on the other.

First proof of Proposition 10.9. Denote the positive and negative punc-
tures of u : Σ̇ → R ×M by Γ+ and Γ− respectively, and suppose u is asymptotic
at z ∈ Γ± to the orbit γz with period Tz > 0. Choose any f ∈ T and denote
f± := limr→±∞ f(r) ∈ [−1, 1]. Since d(ef(r) α) tames J ∈ J (α), Stokes’ theorem
gives

(10.1) 0 ≤ E(u) = ef+
∑

z∈Γ+

Tz − ef−
∑

z∈Γ−

Tz,

hence Γ+ cannot be empty. �

Remark 10.10. The proof via Stokes’ theorem works just as well if instead of
R × M , u lives in the completion of an exact symplectic cobordism (W,ω) with
concave boundary (M−, ξ− = kerα−) and convex boundary (M+, ξ+ = kerα+).
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Recall that this means ∂W = −M− ⊔M+, and ω = dλ for a 1-form λ that restricts
to positive contact forms λ|TM± = α±. As in Lecture 1, we will write

J (W,ω, α+, α−) ⊂ J (Ŵ )

for the space of almost complex structures J on Ŵ := ((−∞, 0]×M−)∪M− W ∪M+

([0,∞)×M+) that are compatible with ω on W and belong to J (α±) on the cylin-

drical ends. The energy of a J-holomorphic curve u : (Σ̇, j)→ (Ŵ , J) is then

E(u) := sup
f∈T

∫

Σ̇

u∗dλf ,

where T := {f ∈ C∞(R, (−1, 1)) | f ′ > 0 and f(r) = r near r = 0} and

λf :=





ef(r)α+ on [0,∞)×M+,

λ on W,

ef(r)α− on (−∞, 0]×M−.

The above proof now generalizes verbatim to show that umust always have a positive
puncture. Notice that in both settings, the argument also gives a uniform bound
for the energy in terms of the periods of the positive asymptotic orbits.

Remark 10.11. We can also prove Prop. 10.9 using the fact that u∗dα ≥ 0 for
any u : (Σ̇, j)→ (R×M,J) with J ∈ J (α). Indeed, Stokes’ theorem then gives

(10.2) 0 ≤
∫

Σ̇

u∗dα =
∑

z∈Γ+

Tz −
∑

z∈Γ−

Tz.

The quantity
∫
Σ̇
u∗dα is sometimes called the contact area of u. This version of

the argument however does not easily generalize to arbitrary exact cobordisms.

The second proof is based on the maximum principle for subharmonic functions.

Proposition 10.12. Suppose J ∈ J (α) and u = (uR, uM) : (Σ̇, j)→ (R×M,J)

is J-holomorphic, where Σ̇ has no boundary. Then uR : Σ̇→ R has no local maxima.

Proof. In any local holomorphic coordinates (s, t) on a region in Σ̇, the non-
linear Cauchy-Riemann equation for u is equivalent to the system of equations

∂suR − α(∂tuM) = 0,

∂tuR + α(∂suM) = 0,

πξ ∂suM + Jπξ ∂tuM = 0,

where πξ : TM → ξ denotes the projection along the Reeb vector field. This gives

−∆uR = −∂2suR − ∂2t uR = −∂s [α(∂tuM)] + ∂t [α(∂suM)]

= −dα(∂suM , ∂tuM) = −dα(πξ∂suM , Jπξ∂suM) ≤ 0

since J |ξ is tamed by dα|ξ, hence uR is subharmonic. The result thus follows from
the maximum principle, see e.g. [Eva98]. �



Lectures on Symplectic Field Theory 197

Second proof of Proposition 10.9. If u = (uR, uM) : Σ̇ → R × M has

no positive puncture then uR : Σ̇ → R is a proper function bounded above, and
therefore has a local maximum, contradicting Proposition 10.12. �

Remark 10.13. The proof via the maximum principle does not generalize to
arbitrary exact cobordisms (W, dλ), but it does work in Stein cobordisms, i.e. if λf
and J are related by λf = −dF ◦J for some plurisubharmonic function F : Ŵ → R,

then F ◦ u : Σ̇→ R is subharmonic (cf. [CE12]).

With these preliminaries understood, the next two exercises reveal one natural
setting in which breaking of cylinders can be kept under control. Both exercises are
essentially combinatorial.

Exercise 10.14. Suppose u is a stable J-holomorphic building in a completed

symplectic cobordism Ŵ with the following properties:

(1) u has arithmetic genus 0 and exactly one positive puncture;
(2) every connected component of u has at least one positive puncture.

Show that u has no nodes, and all of its connected components have exactly one
positive puncture.

Exercise 10.15. Suppose that in addition to the conditions of Exercise 10.14,
u has exactly one negative puncture and no connected component of u is a plane.
Show that every level of u then consists of a single cylinder with one positive and
one negative end.

Exercise 10.15 makes it reasonable to define a Floer-type theory counting only
cylinders in any setting where planes can be excluded, for instance because the Reeb
vector field has no contractible orbits. This is not always possible, e.g. Hofer [Hof93]
proved that on overtwisted contact manifolds, there is always a plane (which is why
the Weinstein conjecture holds). So the invariant we construct will not be defined
in such settings, but it happens to be ideally suited to the study of (T3, ξk).

10.2.2. A compactness result for cylinders. Fix a closed contact manifold
(M, ξ) of dimension 2n−1 and a primitive homotopy class of loops h ∈ [S1,M ]. By
primitive, we mean that h is not equal to Nh′ for any h′ ∈ [S1,M ] and an integer
N > 1, and this assumption will be crucial for technical reasons in the following.1

Given a contact form α for ξ, let
Ph(α)

denote the set of closed Reeb orbits homotopic to h, where two Reeb orbits are
identified if they differ only by parametrization.

Definition 10.16. Given a contact manifold (M, ξ) and a primitive homotopy
class h ∈ [S1,M ], we will say that a contact form α for ξ is h-admissible if:

(1) All orbits in Ph(α) are nondegenerate;

1It is to be expected that cylindrical contact homology can be defined also for non-primitive
homotopy classes, but this would require more sophisticated methods to address transversality
problems. The assumption that h is primitive allows us to assume that all holomorphic curves in
the discussion are somewhere injective, hence they are always regular if J is generic.
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(2) There are no contractible closed Reeb orbits.

Similarly, we will say that (M, ξ) is h-admissible if a contact form with the above
properties exists.

Definition 10.17. Given h ∈ [S1,M ] and an h-admissible contact form α on
(M, ξ), we will say that an almost complex structure J ∈ J (α) is h-regular if every
J-holomorphic cylinder in R×M with a positive and a negative end both asymptotic
to orbits in Ph(α) is Fredholm regular.

Proposition 10.18. If h ∈ [S1,M ] is a primitive homotopy class of loops and
α is h-admissible on (M, ξ), then the space of h-regular almost complex structures
is comeager in J (α).

Proof. Since h is primitive, the asymptotic orbits for the relevant holomorphic
cylinders cannot be multiply covered, hence all of these cylinders are somewhere
injective. The result therefore follows from the standard transversality results proved
in Lecture 8 for somewhere injective curves in symplectizations. �

Proposition 10.19. Given an h-admissible contact form α, an h-regular almost
complex structure J ∈ J (α) and an orbit γ ∈ Ph(α), suppose uk is a sequence of
J-holomorphic cylinders in R×M with one positive puncture at γ and one negative
puncture. Then uk has a subsequence convergent in the SFT topology to a broken
J-holomorphic cylinder, i.e. a stable building u∞ whose levels u1∞, . . . , u

N+
∞ are each

cylinders with one positive and one negative puncture. Moreover, each level satisfies
ind(uN∞) ≥ 1, thus for large k in the convergent subsequence,

ind(uk) =

N+∑

N=1

ind(uN∞) ≥ N+.

Proof. Let’s start with some bad news: the standard SFT compactness the-
orem is not applicable in this situation, because we have not assumed that α is
nondegenerate, nor even Morse Bott—there is no assumption at all about Reeb or-
bits in homotopy classes other than h and 0. This fairly loose set of hypotheses is
very convenient in applications, as nondegeneracy of a contact form is generally a
quite difficult condition to check. The price we pay is that we will have to prove
compactness manually instead of applying the big theorem (see Remark 10.20). For-
tunately, it is not that hard: the crucial point is that in the situation at hand, there
can be no bubbling at all.

Indeed, we claim that the given sequence uk : (R × S1, i) → (R ×M,J) must
satisfy a uniform bound

|duk| ≤ C

with respect to any translation-invariant Riemannian metrics on R×S1 and R×M .
To see this, note first that since all the uk have the same positive asymptotic orbit γ,
their energies are uniformly bounded via (10.1). Thus if |duk(zk)| → ∞ for some
sequence zk ∈ R× S1, we can perform the usual rescaling trick from Lecture 9 and
deduce the existence of a nonconstant finite-energy plane v∞ : C → R × M . Its
singularity at ∞ cannot be removable since this would produce a nonconstant J-
holomorphic sphere, violating Proposition 10.9. It follows that v∞ is asymptotic to a
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Reeb orbit at∞, but this is also impossible since α does not admit any contractible
orbits, and the claim is thus proved.

Suppose now that γ has period T+ > 0, and observe that by nondegeneracy, the
set

Ph(α, T+) :=
{
γ ∈ Ph(α)

∣∣ γ has period at most T+
}

is finite. Let

Ah(α),Ah(α, T+) ⊂ (0,∞)

denote the set of all periods of orbits in Ph(α) and Ph(α, T+) respectively. By
(10.2), the negative asymptotic orbit of each uk is in Ph(α, T+), so we can take a
subsequence and assume that these are all the same orbit; call it γ− ∈ Ph(α, T+)
and its period T− ∈ Ah(α, T+). If T− = T+ then u∗kdα ≡ 0 for all k, implying that
all uk are the trivial cylinder over γ and thus trivially converge. Assume therefore
T− < T+. Then since u∗kdα ≥ 0, Stokes’ theorem implies that for each k, the function

R→ R : s 7→
∫

S1

uk(s, ·)∗α

is increasing and is a surjective map onto (T−, T+). The uniform bound on the
derivatives implies that for any sequences sk, rk ∈ R with uk(sk, 0) ∈ {rk} ×M , the
sequence2

vk : R× S1 → R×M : (s, t) 7→ τ−rk ◦ uk(s+ sk, t)

has a subsequence convergent in C∞
loc(R× S1) to some finite-energy J-holomorphic

cylinder

v∞ : R× S1 → R×M,

which necessarily satisfies
∫

S1

v∞(s, ·)∗α = lim
k→∞

∫

S1

uk(s+ sk, ·)∗α ∈ [T−, T+]

for every s ∈ R. This proves that v∞ is nonconstant, with a positive puncture at
s = ∞ and negative puncture at s = −∞, and both of its asymptotic orbits are
in Ph(α, T+).3 If v∞ is not a trivial cylinder, then it therefore satisfies

∫

R×S1

v∗∞dα ≥ δ,

where δ is any positive number less than the smallest distance between neighboring
elements of Ah(α, T+).

Let us call a sequence sk ∈ R nontrivial whenever the limiting cylinder v∞
obtained by the above procedure is not a trivial cylinder, and call two such sequences
sk and s′k compatible if sk − s′k is not bounded. We claim now that if s1k, . . . , s

m
k is a

collection of nontrivial sequences that are all compatible with each other, then

m <
2(T+ − T−)

δ
.

2Recall from Lecture 9 that we denote the R-translation action on R×M by τc(r, x) := (r+c, x).
3For an alternative argument that v∞ must have a positive puncture at s = ∞ and negative

at s = −∞, see Figure 10.3.
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Indeed, we can assume after ordering our collection appropriately and restricting
to a subsequence that sN+1

k − sNk → ∞ for each N = 1, . . . , m − 1, and let vN∞ :
R × S1 → R ×M denote the limits of the corresponding convergent subsequences.
Then we can find R > 0 such that∫

[−R,R]×S1

(vN∞)∗dα >
δ

2

and thus ∫

[sNk −R,sNk +R]×S1

u∗kdα >
δ

2

for each N = 1, . . . , m for sufficiently large k. But these domains are also all disjoint
for sufficiently large k, implying

T+ − T− =

∫

R×S1

u∗kdα ≥
m∑

N=1

∫

[sNk −R,sNk +R]×S1

u∗kdα >
δm

2
.

We’ve shown that there exists a maximal collection of nontrivial sequences
s1k, . . . , s

N+

k ∈ R satisfying sN+1
k − sNk → ∞ for each N , such that if uk(s

N
k , 0) ∈

{rNk } ×M , then after restricting to a subsequence, the cylinders

vNk (s, t) := τ−rNk ◦ uk(s+ sNk , t)

each converge in C∞
loc(R × S1) as k → ∞ to a nontrivial J-holomorphic cylinder

uN∞ : R× S1 → R×M . Let γ±N denote the asymptotic orbit of uN∞ at s = ±∞. We
claim,

γ+N = γ−N+1 for each N = 1, . . . , N+ − 1.

If γ+N 6= γ−N+1 for some N , choose a neighborhood U ⊂ M of the image of γ+N that
does not intersect any other orbit in Ph(α, T+). Then since each uk is continuous,
there must exist a sequence s′k ∈ R with

s′k − sNk →∞ and sN+1
k − s′k →∞

such that uk(s
′
k, 0) lies in U for all k but stays a positive distance away from the

image of γ+N . A subsequence of (s, t) 7→ uk(s + s′k, t) then converges after suitable
R-translations to a cylinder u′∞ : R × S1 → R × M that cannot be trivial since
u′∞(0, 0) is not contained in any orbit in Ph(α, T+). This contradicts the assumption

that our collection s1k, . . . , s
N+

k is maximal. A similar argument shows

γ−1 = γ− and γ+N+
= γ,

so the curves u1∞, . . . , u
N+
∞ form the levels of a stable holomorphic building u∞. A

similar argument by contradiction also shows that the sequence uk must converge
in the SFT topology to u∞.

Finally, note that since all the breaking orbits in u∞ are homotopic to h and J
is h-regular, the levels uN∞ are Fredholm regular. Since all of them also come in 1-
parameter families of distinct curves related by the R-action, this implies ind(uN∞) ≥
1 for each N = 1, . . . , N+. �
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Figure 10.3. A degenerating sequence of holomorphic cylinders
uk : R× S1 → R×M cannot have a limiting level with a puncture of
the “wrong” sign unless uk violates the maximum principle for large k.

Remark 10.20. Nondegeneracy or Morse-Bott conditions are required for sev-
eral reasons in the proof of SFT compactness, and indeed, the theorem is not true
in general without some such assumption. One can see this by considering what
happens to a sequence uk of Jk-holomorphic curves where Jk → J∞ is compati-
ble with a sequence of nondegenerate contact forms αk converging to one that is
only Morse-Bott. A compactness theorem for this scenario is proved in [Bou02],
but it requires more general limiting objects than holomorphic buildings. On the
other hand, it is useful for certain kinds of applications to know when one can do
without nondegeneracy assumptions and prove compactness anyway. There are two
main advantages to knowing that all Reeb orbits are nondegenerate or belong to
Morse-Bott families:

(1) It implies that the set of all periods of closed orbits, the so-called action
spectrum of α, is a discrete subset of (0,∞); in fact, for any T > 0, the
set of all periods less than T is finite. Using the relations (10.1) and (10.2),
this implies lower bounds on the possible energies of limiting components
and thus helps show that only finitely many such components can arise.

(2) Curves asymptotic to nondegenerate or Morse-Bott orbits also satisfy ex-
ponential convergence estimates proved in [HWZ96,HWZ01,HWZ96,
Bou02], and similar asymptotic estimates yield a result about “long cylin-
ders with small area” (see [HWZ02] and [BEH+03, Prop. 5.7]) which
helps in proving that neighboring levels connect to each other along break-
ing orbits.

Our situation in Proposition 10.19 was simple enough to avoid using the “long
cylinder” lemma, and we did use the discreteness of the action spectrum, but only
needed it for orbits in Ph(α) since we were able to rule out bubbling in the first
step. An alternative would have been to assume that all orbits (in all homotopy
classes) with period up to the period of γ are nondegenerate: then (10.2) implies
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that degenerate orbits never play any role in the main arguments of [BEH+03], so
the big theorem becomes safe to use.

10.2.3. The chain complex. We now define a Z2-graded chain complex with
coefficients in Z2 and generators 〈γ〉 for γ ∈ Ph(α), i.e.

CCh
∗ (M,α) :=

⊕

γ∈Ph(α)

Z2.

The degree of each generator 〈γ〉 ∈ CCh
∗ (M,α) is defined by

|〈γ〉| = n− 3 + µCZ(γ) ∈ Z2,

where µCZ(γ) ∈ Z2 denotes the parity of the Conley-Zehnder index with respect to
any choice of trivialization. The choice to write n−3 in front of this is a convention
that will make no difference at all in this lecture, but it is consistent with a Z-
grading that we will be able to define under suitable assumptions in Lecture 12. To
define the differential on CCh

∗ (M,α), choose an h-regular almost complex structure
J ∈ J (α). Given Reeb orbits γ+, γ− ∈ Ph(α) and a number I ∈ Z, let

MI(J, γ+, γ−)

denote the space of all R-equivalence classes of index I holomorphic cylinders in (R×
M,J) asymptotic to γ± at±∞, i.e. the union of all componentsM0,0(J,A, γ

+, γ−)/R
for which vir-dimM0,0(J,A, γ

+, γ−) = I. Since J is h-regular, all the curves in
MI(J, γ+, γ−) are Fredholm regular, so if I ≥ 1, MI(J, γ+, γ−) is a smooth mani-
fold with

dimMI(J, γ+, γ−) = I − 1.

Similarly, M0(J, γ+, γ−) only contains trivial cylinders and is thus empty unless
γ+ = γ−, andMI(J, γ+, γ−) is always empty for I < 0. In particular,M1(J, γ+, γ−)
is a discrete set whenever γ+ 6= γ−, and by Proposition 10.19, it is also compact,
hence finite. We can therefore define

∂〈γ〉 =
∑

γ′∈Ph(α)

#2M1(J, γ, γ′)〈γ′〉,

where for any set X , we denote by #2X the cardinality ofX modulo 2. The operator
∂ has odd degree with respect to the grading since every index 1 holomorphic cylinder
u with asymptotic orbits γ+ and γ− satisfies

ind(u) = 1 = µτCZ(γ
+)− µτCZ(γ

−)

for suitable choices of the trivialization τ .

10.2.4. The homology. Following the standard Floer theoretic prescription,

the relation ∂2 = 0 should arise by viewing the compactification M2
(J, γ+, γ−) for

each γ+, γ− ∈ Ph(α) as a compact 1-manifold whose boundary is identified with the

set of rigid broken cylinders, as these are what is counted by ∂2. HereM2
(J, γ+, γ−)
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is defined as the closure ofM2(J, γ+, γ−) in the space of all J-holomorphic buildings
in R×M modulo R-translation. Proposition 10.19 gives a natural inclusion

M2
(J, γ+, γ−) \M2(J, γ+, γ−) ⊂

⊔

γ0∈Ph(α)

M1(J, γ+, γ0)×M1(J, γ0, γ
−).

We therefore need an inclusion in the other direction, and for this we need to say
a word about gluing. We have not had time to discuss gluing in earnest in these
notes, and we will not do so now either, but the basic idea should be familiar from
Floer homology: given u+ ∈ M1(J, γ+, γ0) and u− ∈ M1(J, γ0, γ

−), one would
like to show that there exists a unique (up to R-translation) one-parameter family
{uR ∈ M2(J, γ+, γ−)}R∈[R0,∞) such that uR converges as R → ∞ to the building
u∞ with bottom level u− and top level u+. One starts by constructing a family of
preglued maps

ũR : R× S1 → R×M,

meaning a smooth family of maps which converge in the SFT topology as R→∞ to
u∞ but are only approximately J-holomorphic. More precisely, fix parametrizations
of u− and u+ and a parametrization of the orbit γ0 : R/TZ→M such that

u+(s, t) = exp(Ts,γ0(Tt)) h+(s, t) for s≪ 0,

u−(s, t) = exp(Ts,γ0(Tt)) h−(s, t) for s≫ 0,

where h± are vector fields along the trivial cylinder satisfying lims→∓∞ h±(s, t) = 0.
By interpolating between suitable reparametrizations of h+ and h−, one can now
define ũR such that

ũR(s, t) = τ2RT ◦ u+(s− 2R, t) for s ≥ R,

ũR(s, t) ≈ (Ts, γ0(T t)) for s ∈ [−R,R],
ũR(s, t) = τ−2RT ◦ u−(s+ 2R, t) for s ≤ −R,

∂̄J ũR → 0 as R→∞.
Given regularity of u+ and u−, one can now use a quantitative version of the implicit
function theorem (cf. [MS04, §3.5]) to show that a distinguished J-holomorphic
cylinder uR close to ũR exists for all R sufficiently large. For a more detailed synopsis
of the analysis involved, see [Nel13, Chapter 7], and [AD14, Chapters 9 and 13]
for the analogous story in Floer homology. The result is:

Proposition 10.21. For an h-admissible α, an h-regular J ∈ J (α) and any two

orbits γ+, γ− ∈ Ph(α), the space M2
(J, γ+, γ−) admits the structure of a compact

1-dimensional manifold with boundary, where its boundary points can be identified
naturally with

⊔
γ0∈Ph(α)

M1(J, γ+, γ0)×M1(J, γ0, γ
−). �

Corollary 10.22. The homomorphism ∂ : CCh
∗ (M,α) → CCh

∗−1(M,α) satis-
fies ∂2 = 0. �

We shall denote the homology of this chain complex by

HCh
∗ (M,α, J) := H∗

(
CCh

∗ (M,α), ∂
)
.
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The goal of the rest of this section is to prove that up to natural isomorphisms,
HCh

∗ (M,α, J) depends on (M, ξ) and h but not on the auxiliary data α and J .

10.2.5. Chain maps. For any constant c > 0, there is an obvious bijection
between the generators of CCh

∗ (M,α) and CCh
∗ (M, cα), as the rescaling changes

periods of orbits but not the set of closed orbits itself. Moreover, if J ∈ J (α) and
Jc ∈ J (cα) are defined to match on ξ, then there is a biholomorphic diffeomorphism

(R×M,J)→ (R×M,Jc) : (r, x) 7→ (cr, x),

thus giving a bijective correspondence between the moduli spaces of J-holomorphic
and Jc-holomorphic curves. It follows that our bijection of chain complexes is also
a chain map and therefore defines a canonical isomorphism

(10.3) HCh
∗ (M,α, J) = HCh

∗ (M, cα, Jc).

Next suppose α− and α+ are two distinct contact forms for ξ, hence

α± = ef±α

for some fixed contact form α and a pair of smooth functions f± : M → R. After
rescaling α+ by a constant, we are free to assume f+ > f− everywhere. Fix h-regular
almost complex structures J± ∈ J (α±) and let

∂± : CCh
∗ (M,α±)→ CCh

∗−1(M,α±)

denote the resulting differentials on the two chain complexes. The region

W :=
{
(r, x) ∈ R×M

∣∣ f−(x) ≤ r ≤ f+(x)
}

now defines an exact symplectic cobordism from (M, ξ) to itself: more precisely,
setting

M± :=
{
(f±(x), x) ∈ W

∣∣ x ∈M
}

gives ∂W = −M− ⊔ M+, and the Liouville form λ := erα satisfies λ|TM± = α±.

Choose a generic dλ-compatible almost complex structure J on the completion Ŵ
that restricts to J± on the cylindrical ends. Now given γ+ ∈ Ph(α+) and γ− ∈
Ph(α−) and a number I ∈ Z, we shall denote by

MI(J, γ+, γ−)

the union of all componentsM0,0(J,A, γ
+, γ−) that have virtual dimension I. Note

that we are not dividing by any R-action here since J need not be R-invariant.
Since γ± are still guaranteed to be simply covered, curves in MI(J, γ+, γ−) are
again always somewhere injective and therefore regular, hence MI(J, γ+, γ−) is a
smooth manifold with

dimMI(J, γ+, γ−) = I

if I ≥ 0, and MI(J, γ+, γ−) = ∅ for I < 0. The compactification MI
(J, γ+, γ−) is

described via the following straightforward generalization of Proposition 10.19:
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Proposition 10.23. For J as described above, suppose uk is a sequence of J-

holomorphic cylinders in Ŵ with one positive puncture at an orbit γ ∈ Ph(α+) and
one negative puncture. Then uk has a subsequence convergent in the SFT topology
to a broken J-holomorphic cylinder, i.e. a stable building u∞ whose levels uN∞ for
N = −N−, . . . ,−1, 0, 1, . . . , N+ are each cylinders with one positive and one negative

puncture, living in R ×M± for ±N > 0 and Ŵ for N = 0. Moreover, the levels
satisfy ind(u0∞) ≥ 0 and ind(uN∞) ≥ 1 for N 6= 0, thus for large k in the convergent
subsequence,

ind(uk) =

N+∑

N=−N−

ind(uN∞) ≥ N− +N+.

�

It follows that the setM0(J, γ+, γ−) is always finite, and we use this to define a
map

ΦJ : CCh
∗ (M,α+)→ CCh

∗ (M,α−) : 〈γ〉 7→
∑

γ′∈Ph(α−)

#2M0(J, γ, γ′)〈γ′〉.

This map preserves degrees since it counts index 0 curves, and we claim that it is a
chain map:

ΦJ ◦ ∂+ = ∂− ◦ ΦJ .
This follows from the fact that by Proposition 10.23 (in conjunction with a corre-

sponding gluing theorem),M1
(J, γ+, γ−) is a compact 1-manifold whose boundary

consists of two types of broken cylinders, depending whether the index 1 curve
appears in an upper or lower level:

∂M1
(J, γ+, γ−) =

⊔

γ0∈Ph(α+)

(
M1(J+, γ

+, γ0)×M0(J, γ0, γ
−)
)

∪
⊔

γ0∈Ph(α−)

(
M0(J, γ+, γ0)×M1(J−, γ0, γ

−)
)
.

Counting broken cylinders of the first type gives the coefficient in front of 〈γ−〉 in
ΦJ ◦ ∂+(〈γ+〉), and the second type gives ∂− ◦ ΦJ(〈γ+〉).

It follows that ΦJ descends to a homomorphism

(10.4) ΦJ : HCh
∗ (M,α+, J+)→ HCh

∗ (M,α−, J−).

10.2.6. Chain homotopies. We claim that the map ΦJ in (10.4) does not
depend on J . To see this, suppose J0 and J1 are two generic choices of compatible

almost complex structures on Ŵ that both match J± on the cylindrical ends. The
space of almost complex structures with these properties is contractible, so we can
find a smooth path

{Js}s∈[0,1]
connecting them. For I ∈ Z, consider the parametric moduli space

MI({Js}, γ+, γ−) :=
{
(s, u)

∣∣ s ∈ [0, 1], u ∈MI(Js, γ
+, γ−)

}
.
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As we observed in Remark 7.4, a generic choice of the homotopy {Js} makes
MI({Js}) a smooth manifold with

dimMI({Js}, γ+, γ−) = I + 1

whenever I ≥ −1, and MI({Js}, γ+, γ−) = ∅ when I < −1. Adapting Proposi-
tion 10.23 to allow for a converging sequence of almost complex structures, it im-
plies thatM−1({Js}, γ+, γ−) is compact and thus finite, so we can use it to define
a homomorphism of odd degree by

H : CCh
∗ (M,α+)→ CCh

∗+1(M,α−) : 〈γ〉 7→
∑

γ′∈Ph(α−)

#M−1({Js}, γ, γ′)〈γ′〉.

We claim that this is a chain homotopy between ΦJ0 and ΦJ1 , i.e.

ΦJ1 − ΦJ0 = ∂− ◦H +H ◦ ∂+.
This follows by looking at the boundary of the compactified 1-dimensional space

M0
({Js}, γ+, γ−), which consists of four types of objects:

(1) Pairs (0, u) with u ∈M0(J0, γ
+, γ−), which are counted by ΦJ0 .

(2) Pairs (1, u) with u ∈M0(J1, γ
+, γ−), which are counted by ΦJ1 .

(3) Pairs (s,u) with u a broken cylinder with upper level u+ ∈M1(J+, γ
+, γ0)

and main level u0 ∈ M−1(Js, γ0, γ
−) for some s ∈ (0, 1); these are counted

by H ◦ ∂+.
(4) Pairs (s,u) with u a broken cylinder with lower level u− ∈ M1(J−, γ0, γ

−)
and main level u0 ∈ M−1(Js, γ

+, γ0) for some s ∈ (0, 1); these are counted
by ∂− ◦H .

The sum ΦJ0 + ΦJ1 + ∂− ◦ H + H ◦ ∂+ therefore counts (modulo 2) the boundary
points of a compact 1-manifold, so it vanishes.

Since the action of ΦJ on homology no longer depends on J , we will denote it
from now on by

Φ : HCh
∗ (M,α+, J+)→ HCh

∗ (M,α−, J−).

It is well defined for any pair of h-admissible contact forms α± and h-regular J± ∈
J (α±) since one can first rescale α+ to assume α± = ef±α with f+ > f−, using the
canonical isomorphism (10.3).

10.2.7. Proof of invariance. We claim that for any h-admissible α and h-
regular J ∈ J (α), the cobordism map

Φ : HCh
∗ (M,α, J)→ HCh

∗ (M,α, J)

is the identity. Indeed, the literal meaning of this statement is that for any c > 1,
the composition of the canonical isomorphism (10.3) with the map

Φ : HCh
∗ (M, cα, Jc)→ HCh

∗ (M,α, J)

defined by counting index 0 cylinders in a trivial cobordism from (M,α, J) to
(M, cα, Jc) is the identity. Writing c = ea for a > 0, the Liouville cobordism in
question is simply

(W, dλ) = ([0, a]×M, d(erα)),



Lectures on Symplectic Field Theory 207

and one can choose a compatible almost complex structure on this which matches
J and Jc on ξ while taking ∂r to g(r)Rα for a suitable function g with g(r) = 1
near r = 0 and g(r) = 1/c near r = a. The resulting almost complex manifold
is biholomorphically diffeomorphic to the usual symplectization (R×M,J), so our
count of index 0 cylinders is equivalent to the count of such cylinders in (R×M,J).
The latter are simply the trivial cylinders, all of which are Fredholm regular, so
counting these defines the identity map on the chain complex.

Finally, we need to show that for any three h-admissible pairs (αi, Ji) with i =
0, 1, 2, the cobordism maps Φij : HC

h
∗ (M,αj, Jj)→ HCh

∗ (M,αi, Ji) satisfy

(10.5) Φ21 ◦ Φ10 = Φ20.

We will only sketch this part: the idea is to use a stretching construction. After
rescaling, suppose without loss of generality that αi = efiα with f2 > f1 > f0. Then
the cobordism

W20 :=
{
(r, x)

∣∣ f0(x) ≤ r ≤ f2(x)
}

contains a contact-type hypersurface

M1 :=
{
(f1(x), x)

∣∣ x ∈M
}
⊂W20.

As described at the end of Lecture 9, one can now choose a sequence of compatible

almost complex structures {JN20}N∈N on Ŵ20 that are fixed outside a neighborhood
of M1 but degenerate in this neighborhood as N → ∞, equivalent to replacing a
small tubular neighborhood of M1 with increasingly large collars [−N,N ] ×M in
which JN20 belongs to J (α1). The resulting chain maps

ΦJN
20
: CCh

∗ (M,α2, J2)→ CCh
∗ (M,α0, J0)

are chain homotopic for all N , but as N → ∞, the index 0 cylinders counted by
these maps converge to buildings with two levels, the top one an index 0 cylinder
in the completion of a cobordism from (M,α1, J1) to (M,α2, J2), while the bottom
one also has index 0 and lives in a cobordism from (M,α0, J0) to (M,α1, J1). The
composition Φ21 ◦ Φ10 counts these broken cylinders, so this proves (10.5).

In particular, we conclude now that each of the cobordism maps

Φ : HCh
∗ (M,α+, J+)→ HCh

∗ (M,α−, J−)

is an isomorphism, since composing it with a cobordism map in the opposite di-
rection must give the identity. The isomorphism class of HCh

∗ (M,α, J) is therefore
independent of the auxiliary data (α, J), and will be denoted by

HCh
∗ (M, ξ).

This is the cylindrical contact homology of (M, ξ) in the homotopy class h. It
is defined for any primitive homotopy class h ∈ [S1,M ] and closed contact manifold
that is h-admissible in the sense of Definition 10.16. It is also invariant under
contactomorphisms in the following sense:

Proposition 10.24. Suppose ϕ : (M0, ξ0) → (M1, ξ1) is a contactomorphism
with ϕ∗h0 = h1, where h0 ∈ [S1,M ] is a primitive homotopy class of loops, and
(M1, ξ1) is h1-admissible. Then (M0, ξ0) is h0-admissible, and HCh0

∗ (M0, ξ0) ∼=
HCh1

∗ (M1, ξ1).
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Proof. Given an h1-admissible contact form α1 on (M1, ξ1) and an h1-regular
J1 ∈ J (α1), the contact form α0 := ϕ∗α1 on M0 is h0-admissible since ϕ defines a
bijection from Ph0(α0) to Ph1(α1) and also a bijection between the sets of contractible
Reeb orbits for α0 and α1. Since ϕ∗ξ0 = ξ1, α0 is a contact form for (M0, ξ0), hence
the latter is h0-admissible. The diffeomorphism ϕ̃ := Id × ϕ : R ×M0 → R ×M1

then maps ∂r to ∂r, Rα0 to Rα1 and ξ0 to ξ1, thus J0 := ϕ̃∗J1 ∈ J (α0), so ϕ̃ defines
a biholomorphic map (R ×M0, J0) → (R ×M1, J1) and thus a bijection between
the sets of holomorphic cylinders in each. It follows that J0 is h0-regular, and the
bijection Ph0(α0) → Ph1(α1) defines an isomorphism between the chain complexes
defining HCh0

∗ (M0, α0, J0) and HC
h1
∗ (M1, α1, J1). �

10.3. Computing HC∗(T
3, ξk)

10.3.1. The Morse-Bott setup. The contact form αk on T3 defined at the
beginning of this lecture has Reeb vector field

Rk(ρ, φ, θ) = cos(2πkρ) ∂θ + sin(2πkρ) ∂φ.

Its Reeb orbits therefore preserve and define linear foliations on each of the tori
{ρ} × T2. In particular, none of the closed orbits are contractible, though all of
them are also degenerate, as they all come in S1-parametrized families foliating
{const} × T2. For certain homotopy classes h ∈ [S1,T3], this yields a very easy
computation of HCh

∗ (T
3, ξk), namely whenever h contains no periodic orbits:

Theorem 10.25. Suppose h ∈ [S1,T3] is any primitive homotopy class of loops
such that the projection p : T3 → S1 : (ρ, φ, θ) 7→ ρ satisfies p∗h 6= 0 ∈ [S1, S1]. Then
αk is h-admissible and the resulting contact homology HCh

∗ (T
3, ξk) is trivial. �

Now for the interesting part. Every primitive class h ∈ [S1,T3] not covered
by Theorem 10.25 contains closed orbits of Rk, all of them degenerate since they
come in S1-parametrized families foliating the tori {const} × T2. This makes it not
immediately clear whether (T3, ξk) is h-admissible, though the following observation
in conjunction with Proposition 10.24 shows that if HCh

∗ (T
3, ξk) can be defined, it

will be the same for all the homotopy classes under consideration.

Lemma 10.26. Suppose h0, h1 ∈ [S1,T3] are primitive homotopy classes that are
both mapped to the trivial class under the projection T3 → S1 : (ρ, φ, θ) 7→ ρ. Then
there exists a contactomorphism ϕ : (T3, ξk)→ (T3, ξk) satisfying ϕ∗h0 = h1.

Proof. We can represent hi for i = 0, 1 by loops of the form γi(t) = (0, βi(t)) ∈
S1 × T2, where the loops βi : S

1 → T2 are embedded and thus represent generators

of π1(T
2) = Z2. One can thus find a matrix

(
m n
p q

)
∈ SL(2,Z) such that the

diffeomorphism

ϕ : T3 → T3 : (ρ, φ, θ) 7→ (ρ,mφ+ nθ, pφ+ qθ)

satisfies ϕ∗h0 = h1. We have

ϕ∗αk = [q cos(2πkρ) + n sin(2πkρ)] dθ + [p cos(2πkρ) +m sin(2πkρ)] dφ

=: F (ρ) dθ +G(ρ) dφ.
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The loop (F,G) : S1 → R2 satisfies
(
F (ρ)
G(ρ)

)
=

(
q n
p m

)(
cos(2πkρ)
sin(2πkρ)

)
,

where

(
q n
p m

)
∈ SL(2,Z), thus (F,G) winds k times about the origin. Any choice

of homotopy from (F,G) to (cos(2πkρ), sin(2πkρ)) through loops (Fs, Gs) : S
1 → R2

winding k times about the origin with positive rotational velocity then gives rise to
a homotopy from ϕ∗αk to αk through contact forms Fs(ρ) dθ + Gs(ρ) dφ. Gray’s
stability theorem therefore yields a contactomorphism ψ : (T3, ξk)→ (T3, kerϕ∗αk)
with ψ smoothly isotopic to the identity. The map ϕ◦ψ is thus a contactomorphism
of (T3, ξk) with (ϕ ◦ ψ)∗h0 = ϕ∗ψ∗h0 = ϕ∗h0 = h1. �

In light of the lemma, we are free from now on to restrict our attention to the
particular homotopy class

h := [t 7→ (0, 0, t)],

which is the homotopy class of the 1-periodic orbits foliating the k tori

Tm := {m/k} × T2, m = 0, . . . , k − 1

since Rk(m/k, φ, θ) = ∂θ. Though the orbits on these tori are degenerate, it is not
hard to show that they all satisfy the Morse-Bott condition; in fact, αk is a Morse-
Bott contact form. We will explain a self-contained computation of HCh

∗ (T
3, ξk) in

the next two sections without using the Morse-Bott condition—but first, it seems
worthwhile to sketch how one can guess the answer using Morse-Bott data.

Bourgeois’s thesis [Bou02] gives a prescription for calculating contact homology
in Morse-Bott settings, i.e. for deducing what orbits and what holomorphic curves
will appear under certain standard ways of perturbing the Morse-Bott contact form
to make it nondegenerate. Notice first that the only orbits in Ph(αk) are the ones
that foliate the k tori T0, . . . , Tk−1, and they all have period 1. By (10.2), it follows
that for any J ∈ J (αk), there can be no nontrivial J-holomorphic cylinders connect-
ing two orbits in Ph(αk). This makes the calculation of HCh

∗ (T
3, ξk) sound trivial,

but of course there is more to the story since αk is not admissible; indeed, the chain
complex CC∗(T

3, αk) is not even well defined. The prescription in [Bou02] now
gives the following. Each of the families of orbits in T0, . . . , Tk−1 is parametrized
by S1, and by a standard perturbation technique, any choice of a Morse function
fm : S1 → R for m = 0, . . . , k − 1 yields a contact form α′

k that is C∞-close to αk,
matches it outside a neighborhood of Tm, but has a nondegenerate Reeb orbit on Tm
for each critical point of fm, while every other closed orbit in the perturbed region
can be assumed to have arbitrarily large period. Moreover, there is a corresponding
perturbation from J ∈ J (αk) to J ′ ∈ J (α′

k) such that every gradient flow line of the
function fm : S1 → R gives rise to a J ′-holomorphic cylinder in R× T3 connecting
the corresponding nondegenerate Reeb orbits along Tm. In the present situation,
since no J-holomorphic cylinders of the relevant type exist before the perturbation,
the only ones after the perturbation are those that come from gradient flow lines.

Now imagine performing a similar perturbation near every T0, . . . , Tk−1, using
Morse functions f0, . . . , fk−1 : S1 → R that each have exactly two critical points.
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For the perturbed contact form α′
k, Ph(α′

k) now consists of exactly 2k orbits

γ±0 , . . . , γ
±
k−1 ∈ Ph(α′

k),

where we denote by γ+m and γ−m the orbits on Tm corresponding to the maximum
and minimum of fm respectively. For the obvious choice of trivialization τ for the
contact bundle along γ±m, one can relate the Conley-Zehnder indices to the Morse
indices of the corresponding critical points, giving

µτCZ(γ
+
m) = 0, µτCZ(γ

−
m) = 1, m = 0, . . . , k − 1.

Moreover, the two gradient flow lines connecting maximum and minimum for each
fm give rise two exactly two holomorphic cylinders inM1(J ′, γ−m, γ

+
m) for each m =

0, . . . , k − 1, and these are all the curves that are counted for the differential on
CCh

∗ (T
3, α′

k, J
′). Counting modulo 2, we thus have

∂〈γ±m〉 = 0 for all m = 0, . . . , k − 1,

implying

HCh
∗ (T

3, α′
k, J

′) =

{
Zk2 ∗ = odd,

Zk2 ∗ = even.

Let us state this as a theorem.

Theorem 10.27. Suppose h ∈ [S1,T3] is a primitive homotopy class that maps
to the trivial class under the projection T3 → S1 : (ρ, φ, θ) 7→ ρ. Then (T3, ξk) is
h-admissible and

HCh
∗ (T

3, ξk) ∼=
{
Zk2 ∗ = odd,

Zk2 ∗ = even.

Theorem 10.1 is an immediate corollary of this: indeed, if ϕ : (T3, ξk)→ (T3, ξℓ)
is a contactomorphism, choose any h ∈ [S1,T3] for which Theorem 10.27 applies,
and let h0 := ϕ∗h ∈ [S1,T3]. Then HCh

∗ (T
3, ξℓ) ∼= Z2ℓ

2 implies via Proposition 10.24
that HCh0

∗ (T3, ξk) ∼= Z2ℓ
2 . But Theorems 10.25 and 10.27 imply that the latter is

also either 0 or Z2k
2 , hence k = ℓ.

10.3.2. A digression on the Floer equation. In preparation for giving a self-
contained proof of Theorem 10.27, we now explain a general procedure for relating
holomorphic cylinders in a symplectization to solutions of the Floer equation. This
idea is loosely inspired by arguments in [EKP06].

To motivate what follows, notice that on a neighborhood of T0 = {0} × T2 ⊂
(T3, ξk), we can write

αk = cos(2πkρ) (dθ + β) ,

where β := tan(2πkρ) dφ defines a Liouville form on the annulus A := [−1/8, 1/8]×
S1 with coordinates (ρ, φ). This makes the neighborhood A×S1 ⊂ (T3, ξk) a special
case of the following general construction.
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Definition 10.28. Suppose V is a 2n-dimensional manifold with an exact sym-
plectic form dβ. The contact manifold (V × S1, ker(dθ + β)) is then called the
contactization of (V, β).4 Here θ denotes the coordinate on the S1 factor.

It’s easy to check that dθ + β is indeed a contact form on V × S1 whenever dβ
is symplectic on V : the latter means (dβ)n > 0 on V , so

(dθ + β) ∧ [d(dθ + β)]n = (dθ + β) ∧ (dβ)n = dθ ∧ (dβ)n > 0.

Now here’s a cute trick one can play with contactizations. For the rest of this
subsection, assume

(V, dβ)

is an arbitrary compact 2n-dimensional exact symplectic manifold with boundary.
Fix a smooth function

H : V × S1 → R,

which we shall think of in the following as a time-dependent Hamiltonian Hθ :=
H(·, θ) : V → R on (V, dβ). The 2-form on V × S1 defined by

Ω = dβ + dθ ∧ dH = d(β −H dθ)

is then fiberwise symplectic, meaning its restriction to each of the fibers of the
projection map V ×S1 → S1 is symplectic. We claim that for every ǫ > 0 sufficiently
small,

λǫ := dθ + ǫ(β −H dθ)

defines a contact form on V × S1. This is a variation on the construction that was
used by Thurston and Winkelnkemper [TW75] to define contact forms out of open
book decompositions, and the proof is simple enough: since dλǫ = ǫΩ, we just need
to check that λǫ ∧ Ωn > 0 for ǫ > 0 sufficiently small, and indeed,

λǫ ∧ Ωn = dθ ∧ (dβ)n + ǫ(β −H dθ) ∧ Ωn > 0

since the first term is a volume form and ǫ is small. To see the relation between λǫ
and the contactization, we can write

λǫ = (1− ǫH) dθ + ǫβ = (1− ǫH)

(
dθ +

ǫ

1− ǫH β

)

and observe that ǫ
1−ǫHβ is also a Liouville form on V whenever H is θ-independent

and ǫ > 0 is sufficiently small.
The Reeb vector fields Rǫ for λǫ vary with ǫ, but their directions do not, since

dλǫ = ǫΩ has the same kernel for every ǫ. Moreover, while λǫ ceases to be a contact
form when ǫ→ 0, the Reeb vector fields still have a well-defined limit: they converge
as ǫ→ 0 to the unique vector field R0 satisfying

dθ(R0) ≡ 1 and Ω(R0, ·) ≡ 0.

The latter can be written more explicitly as

R0 = ∂θ +Xθ,

4Elsewhere in the literature, the contactization is also often defined as V ×R instead of V ×S1.
The usage here is consistent with [MNW13].
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where Xθ is the time-dependent Hamiltonian vector field determined by Hθ, i.e. via
the condition

dβ(Xθ, ·) = −dHθ.

As one can easily compute, the reason for this nice behavior as ǫ→ 0 is that the Rǫ

are also the Reeb vector fields for a smooth family of stable Hamiltonian structures:

Proposition 10.29. The pairs Hǫ := (Ω, λǫ) for ǫ ≥ 0 sufficiently small define a
smooth family of stable Hamiltonian structures whose Reeb vector fields are Rǫ. �

We shall write the hyperplane distributions induced by Hǫ as

Ξǫ := ker λǫ ⊂ T (V × S1).

These are contact structures for ǫ > 0 small, and the space J (Hǫ) of R-invariant
almost complex structures on R × (V × S1) compatible with Hǫ is then identical
to J (λǫ). On the other hand for ǫ = 0, Ξ0 = ker dθ is a foliation, namely it is the
vertical subbundle of the trivial fibration V ×S1 → S1. To interpret H0, notice that
its closed Reeb orbits in the homotopy class of γ : S1 → V × S1 : t 7→ (const, t) are
all of the form γ(t) = (x(t), t) where x : S1 → V is a contractible 1-periodic orbit
of Xθ. Moreover, suppose J ∈ J (H0), which is equivalent to a choice of compatible
complex structure on the symplectic bundle (Ξ0,Ω|Ξ0), or in other words, an S1-
parametrized family of dβ-compatible almost complex structures {Jθ}θ∈S1 on V .
Then if

u = (f, v, g) : R× S1 → R× (V × S1)

is a J-holomorphic cylinder asymptotic at {±∞} × S1 to two orbits of the form
described above, the nonlinear Cauchy-Riemann equation for u turns out to imply
that (f, g) : R×S1 → R×S1 is a holomorphic map with degree 1 sending {±∞}×S1

to {±∞}×S1, and we can therefore choose a unique biholomorphic reparametriza-
tion of u so that (f, g) becomes the identity map. Having done this, the equation
satisfied by v : R× S1 → V is now

∂sv + Jt(v)(∂tv −Xt(v)) = 0,

in other words, the Floer equation for the data {Jθ}θ∈S1 and {Hθ}θ∈S1.
To complete the analogy, notice that since Ω is exact, we can write down a

natural symplectic action functional with respect to each Hǫ as

Aǫ : C∞(S1, V × S1)→ R : γ 7→
∫

S1

γ∗(β −H dθ).

For loops of the form γ(t) = (x(t), t) with x : S1 → V contractible, this reduces
(give or take a sign—see Remark 10.32) to the usual formula for the Floer action
functional

(10.6) AH(γ) =
∫

S1

x∗β −
∫

S1

H(x(t)) dt =

∫

D

x̄∗dβ −
∫

S1

H(x(t)) dt,

where x̄ : D → V is any map satisfying x̄|∂D = x. Stokes’ theorem gives an easy
relation between the action and the so-called Ω-energy if u : R×S1 → R× (V ×S1)
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is a J-holomorphic curve for J ∈ J (Hǫ) and is positively/negatively asymptotic to
orbits γ± : S1 → V × S1 at s = ±∞: we have

0 ≤
∫

R×S1

u∗Ω = Aǫ(γ+)−Aǫ(γ−).

If u(s, t) = (s, v(s, t), t), then the left hand side is identical to the definition of energy
in Floer homology, namely

EH(v) :=

∫

R×S1

dβ(∂sv, ∂tv −Xt(v)) ds ∧ dt =
∫

R×S1

dβ(∂sv, Jt(v)∂sv) ds ∧ dt,

thus giving the familiar relation

(10.7) EH(v) = AH(γ+)−AH(γ−).
To relate this to the usual notion of energy with respect to a stable Hamiltonian
structure, we write the usual formula

Eǫ(u) := sup
ϕ∈T

∫

Σ̇

u∗
[
d
(
ϕ(r)λǫ

)
+ Ω

]
,

with T :=
{
ϕ ∈ C∞(R, (−ǫ0, ǫ0))

∣∣ ϕ′ > 0
}

for some constant ǫ0 > 0 sufficiently
small. Notice first that for any fixed ǫ, Stokes’ theorem gives a bound for Eǫ(u) in
terms of the asymptotic orbits of u since Ω is exact. Finally, in the case ǫ = 0 with
u(s, t) = (s, v(s, t), t), we find

E0(u) = sup
ϕ∈T

∫

R×S1

ϕ′(s) ds ∧ dt +
∫

R×S1

u∗Ω = 2ǫ0 + EH(v),

so bounds on E0(u) are equivalent to bounds on the Floer homological energy EH(v).
The basic fact that Floer trajectories v : R× S1 → V with EH(v) <∞ are asymp-
totic to contractible 1-periodic Hamiltonian orbits can now be regarded as a corollary
of our Theorem 9.6.

The above discussion gives a one-to-one correspondence between a certain mod-
uli space of unparametrized J-holomorphic cylinders in R× (V × S1) and the mod-
uli space of Floer trajectories between contractible 1-periodic orbits in (V, dβ) with
Hamiltonian function H . If we can adequately understand the moduli space of Floer
trajectories—in particular if we can classify them and prove that they are regular—
then the idea will be to extend this classification via the implicit function theorem to
any Jǫ ∈ J (λǫ) sufficiently close to J for ǫ > 0 small. As the reader may be aware,
classifying Floer trajectories is also not easy in general, but it does become easy
under certain conditions. Simple examples of contractible 1-periodic Hamiltonian
orbits are furnished by the constant loops γ(t) = x at critical points x ∈ Crit(H),
and for each such orbit, γ∗Ξ0 has a canonical homotopy class of unitary trivializa-
tions, the so-called constant trivialization. The following fundamental result is
commonly used in proving the isomorphism from Hamiltonian Floer homology to
singular homology.

Theorem 10.30. Suppose H : V → R is a smooth Morse function with no
critical points on the boundary, J is a fixed dβ-compatible almost complex structure
on V , and the gradient flow of H with respect to the metric dβ(·, J ·) is Morse-Smale
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and transverse to ∂V . Given δ > 0, let Hδ := δH : V → R, with Hamiltonian vector
field XHδ = δXH , and consider the stable Hamiltonian structure

Hδ
0 := (dβ + dθ ∧ dHδ, dθ)

on V × S1 with induced Reeb vector field Rδ
0 = ∂θ + XHδ . Then for all δ > 0

sufficiently small, the following statements hold.

(1) The 1-periodic Rδ
0-orbit γx : S1 → V × S1 : t 7→ (x, t) arising from any

critical point x ∈ Crit(H) is nondegenerate, and its Conley-Zehnder index
relative to the constant trivialization τ is related to the Morse index ind(x) ∈
{0, . . . , 2n} by

(10.8) µτ
CZ
(γx) = n− ind(x).

(2) Any trajectory γ : R → V satisfying the negative gradient flow question
γ̇ = −∇Hδ(γ) gives rise to a Fredholm regular solution v : R × S1 → V :
(s, t) 7→ γ(s) of the time-independent Floer equation

(10.9) ∂sv + J(v)(∂tv −XHδ(v)) = 0,

and the virtual dimensions of the spaces of Floer trajectories near v and
gradient flow trajectories near γ are the same.

(3) Every 1-periodic orbit of XHδ in V̊ is a constant loop at a critical point
of H.

(4) Every finite-energy solution v : R×S1 → V̊ of (10.9) is of the form v(s, t) =
γ(s) for some negative gradient flow trajectory γ : R→ V .

Proof. The following proof is based on arguments in [SZ92], see in particular
Theorem 7.3.

For the first statement, let γ(t) = (x, t) for x ∈ Crit(H) and recall from Lecture 3
the formula for the asymptotic operator of a 1-periodic orbit,

Aγ : Γ(γ
∗Ξ0)→ Γ(γ∗Ξ0) : η 7→ −J

(
∇tη −∇ηR

δ
0

)
,

where ∇ is any symmetric connection on V ×S1. Identifying Γ(γ∗Ξ0) in the natural
way with C∞(S1, TxV ), using the trivial connection and writing Rδ

0(z, θ) = ∂θ +
XHδ(z) = ∂θ + δJ(z)∇H(z), Aγ becomes the operator

Aγ = −J∂t − δ∇2H(x)

on C∞(S1, TxV ), where ∇2H(x) : TxV → TxV denotes the Hessian of H at x.
Choosing a unitary basis for TxV identifies this with −J0∂t−δS for some symmetric

2n-by-2n matrix S and the standard complex structure J0 =

(
0 −1
1 0

)
, so kerAγ

corresponds to the space of 1-periodic solutions to η̇ = δJ0Sη. The Morse condition
implies that S is nonsingular, so the eigenvalues of δJ0S are all nonzero, but they
are also small since δ is small. It follows that nontrivial solutions of η̇ = δJ0Sη
cannot be 1-periodic if S is nonsingular and δ is sufficiently small, thus proving that
kerAγ is trivial, hence γ is nondegenerate.
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To calculate µτCZ(γ), note that λ ∈ σ(Aγ) if and only if there exists a nontrivial
1-periodic solution η to the equation

η̇ = J0(δS + λ)η.

If δ and λ are both close to 0, then the same argument again implies that no such
solution exists unless δS + λ is singular, meaning λ ∈ σ(−δS). On the other hand,
any constant loop η(t) ∈ ker(λ+δS) furnishes an element of the λ-eigenspace of Aγ,
so we obtain a bijection between the spectra of Aγ and −δS in some neighborhood
of 0. It follows that if S± denotes a pair of nonsingular symmetric matrices defining
asymptotic operators A± = −J0∂t − δS±, then the spectral flows are related by

µspec(A−,A+) = −µspec(S−, S+)

when δ > 0 is sufficiently small. Denoting the maximal negative-definite subspace
of S± by E−(S±), this relation implies

dimE−(S+)− dimE−(S−) = µCZ(A−)− µCZ(A+).

Now suppose S+ is a coordinate expression for the Hessian∇2H(x), hence dimE−(S+) =

ind(x) and µCZ(A+) = µτCZ(γ). Choosing S− =

(
1 0
0 −1

)
then gives dimE−(S−) =

n and µCZ(A−) = 0 by definition, so µτCZ(γ) = n− ind(x) follows.
The second statement follows in a similar manner by writing down and compar-

ing the linearized operators for the Floer equation and the negative gradient flow
equation. Let’s leave this as an exercise.

For the third statement, suppose we have a sequence δk → 0 and a sequence of
loops xk : S1 → V̊ satisfying ẋk = XHδk (xk) = δkXH(xk). Pick a number c > 0
small enough for part (1) of the theorem to hold with δ = c, choose a sequence of
integers Nk ∈ N such that

Nkδk → c,

and consider the loops yk : S
1 → V̊ : t 7→ xk(Nkt). These satisfy

ẏk = NkδkXH(yk),

and since XH is C∞-bounded on V and Nkδk is also bounded, the Arzelà-Ascoli
theorem provides a subsequence with

yk → y∞ in C∞(S1, V ),

where y∞ : S1 → V satisfies ẏ∞ = XHc(y∞) for Hc := cH : V → R. But y∞ is
also constant: indeed, since yk(t+ 1/Nk) = yk(t) and Nk →∞, we can find for any
t ∈ S1 a sequence qk ∈ Z satisfying qk/Nk → t, so

(10.10) y∞(t) = lim
k→∞

yk(qk/Nk) = lim
k→∞

yk(0) = y∞(0).

Since the constant orbit y∞ is nondegenerate by part (1) of the theorem, there can
only be one sequence of solutions to ẏk = XHNkδk (yk) converging to y∞, and we
conclude that yk is also constant for all k sufficiently large.

We will now use a similar trick to prove the fourth statement in the theorem.
We shall work under the additional assumption that

(10.11) | ind(x)− ind(y)| ≤ 1 for all pairs x, y ∈ Crit(H),
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which suffices for the application in §10.3.3 below.5

Suppose to the contrary that there exists a sequence of positive numbers δk → 0
with finite-energy solutions vk : R × S1 → V̊ of the equation ∂svk + J(vk)(∂tvk −
XHδk (vk)) = 0, where each vk(s, t) is not t-independent. By part (3) of the theorem,
we can restrict to a subsequence and assume each vk for large k is asymptotic to
a fixed pair of critical points x± = lims→±∞ vk(s, ·) ∈ Crit(H), and x+ 6= x− since
vk would otherwise by constant and therefore t-independent. Choose a sequence
Nk ∈ N with

Nk →∞ and Nkδk → c,

where c > 0 is chosen sufficiently small for the first three statements in the theorem
to hold with δ = c. Define wk : R× S1 → V by

wk(s, t) = vk(Nks,Nkt).

Then wk satisfies another time-independent Floer equation,

(10.12) ∂swk + J(wk) (∂twk −XHNkδk (wk)) = 0,

where the Hamiltonian functions HNkδk converge to Hc. The standard compactness
theorem for Floer trajectories should now imply that a subsequence of wk converges
to a broken Floer trajectory whose levels will be t-independent. Since the setting
may seem a bit nonstandard, here are some details.

The sequence wk is uniformly C0-bounded since V is compact. We claim that
it is also C1-bounded. If not, then there is a sequence zk = (sk, tk) ∈ R × S1 with
|dwk(zk)| =: Rk → ∞, and we can use the usual rescaling trick from Lecture 9 to
define a sequence

fk : DǫkRk
→ V : z 7→ wk(zk + z/Rk)

for a suitable sequence ǫk → 0 with ǫkRk → ∞ and |dwk(z)| ≤ 2Rk for all z ∈
Dǫk(zk). The latter implies that fk satisfies a local C1-bound independent of k, and
since

∂sfk + J(fk)

(
∂tfk −

1

Rk

J(fk)XHNkδk (fk)

)
,

elliptic regularity (see Remark 10.31 below) provides a subsequence for which fk
converges in C∞

loc(C, V ) to a J-holomorphic plane f∞ : C→ V , which is nonconstant
since

|df∞(0)| = lim
k→∞
|dfk(0)| = 1.

Since vk and therefore wk are all asymptotic to fixed constant orbits x±, we have a
uniform bound on the Floer energies of wk,

EHNkδk (wk) = AHNkδk (x+)−AHNkδk (x−) = Nkδk [H(x−)−H(x+)] ,(10.13)

5Lifting this assumption requires gluing, whereas we shall only need the usual implicit function
theorem for Fredholm regular solutions of the Floer equation.
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where the right hand side is bounded since Nkδk → c. Using change of variables and
the fact that dβ(∂sfk, J(fk) ∂sfk) ≥ 0, this implies a uniform bound

∫

DǫkRk

dβ(∂sfk,J(fk) ∂sfk) ds ∧ dt =
∫

Dǫk(zk)

dβ(∂svk, J(vk) ∂svk) ds ∧ dt

≤
∫

R×S1

dβ(∂svk, J(vk) ∂svk) ds ∧ dt = EHNkδk (wk) ≤ C,

thus∫

C

f ∗
∞dβ =

∫

C

dβ(∂sf∞, ∂tf∞) ds ∧ dt =
∫

C

dβ(∂sf∞, J(f∞) ∂sf∞) ds ∧ dt <∞.

The removable singularity theorem now extends f∞ to a nonconstant J-holomorphic
sphere f∞ : S2 → V , but this violates Stokes’ theorem since J is tamed by an exact
symplectic form.

We’ve now shown that the sequence wk : R× S1 → V is uniformly C1-bounded,
and it has bounded energy due to (10.13). Pick any sequence sk ∈ R and consider
the sequence of translated Floer trajectories

w̃k(s, t) := wk(s+ sk, t).

These are also uniformly C1-bounded, so by elliptic regularity (see Remark 10.31
again), a subsequence converges in C∞

loc(R×S1) to a map w∞ : R×S1 → V satisfying

∂sw∞ + J(w∞) (∂tw∞ −XHc(w∞)) = 0,

and it has finite energy EHc(w∞) <∞ due to (10.13), implying that w∞ is asymp-
totic to a pair of 1-periodic orbits of XHc as s→ ±∞. By the same argument used
in (10.10) above, w∞ is also t-independent. It follows that w∞(s, t) = γ∞(s) for

some nonconstant gradient flow trajectory γ∞ : R→ V̊ . Depending on the choice of
sequence sk, this trajectory may or may not be constant, but we can always choose
sk to guarantee that γ∞ is not constant: indeed, since each wk is asymptotic to two
separate critical points at ±∞, sk ∈ R can be chosen such that wk(sk, 0) stays a
fixed distance away from every critical point of H , and then

w∞(0, 0) = lim
k→∞

wk(sk, 0) 6∈ Crit(Hc).

One can now adapt the argument of Proposition 10.19 to find various sequences sk ∈
R that yield potentially separate limiting trajectories forming the levels of a broken
trajectory, which is the limit of wk in the Floer topology. But since all the levels
are t-independent and the gradient flow of Hc is Morse-Smale, condition (10.11)
implies that the most complicated (and therefore the only) limit possible involves
a single level w∞(s, t) = γ(s), which is a gradient flow trajectory between critical
points whose Morse indices differ by 1. This trajectory is Fredholm regular and has
index 1 due to part (2) of the theorem, thus by the implicit function theorem, the
only solutions to (10.12) that can converge to w∞ are the obvious reparametrizations
of γ, i.e. they are also t-independent. This is a contradiction. �

Remark 10.31. In previous lectures we’ve used the theorem that “C1-bounds
imply C∞-bounds” to prove compactness for J-holomorphic curves, but not for
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solutions of inhomogeneous Cauchy-Riemann type equations such as the Floer tra-
jectories wk and rescalings fk in the above proof. There is an easy trick to reduce
these to our standard setup: as we’ve already seen, solutions of the Floer equation
are equivalent to honest pseudoholomorphic curves in the symplectization of a cer-
tain stable Hamiltonian structure, which is a manifold of two dimensions higher.
A similar trick can be used for any inhomogeneous Cauchy-Riemann type equa-
tion ∂̄Jf = ν, reducing it to an honest Cauchy-Riemann type equation at the cost of
adding two dimensions. This trick was used already by Gromov, see [Gro85, 1.4.C].

Remark 10.32. You may notice with some horror that (10.8) differs by a sign
from what is stated in [SZ92]. As far as I can tell, the discrepancy arises from
the fact that while Floer homology is traditionally defined in terms of a negative
gradient flow for the action functional, SFT is based on a positive gradient flow—
this is also why the action functional in (10.6) differs by a sign from what we saw
in Lecture 1. If one takes as an axiom that the Conley-Zehnder index should serve
as a “relative Morse index” for the action functional, then changing the sign of the
functional also reverses the signs of Conley-Zehnder indices, so as a result there
appear to be two parallel sign conventions for Conley-Zehnder indices in different
sectors of the literature. I’m sorry. It’s not my fault.

Returning now to the family Hǫ, choose δ > 0 sufficiently small for Theo-
rem 10.30 to hold and define a modified family of stable Hamiltonian structures
on V × S1 by

Hδ
ǫ = (Ωδ, λδǫ),

where
Ωδ := dβ + dθ ∧ dHδ and λδǫ := dθ + ǫ(β −Hδ dθ).

Denote the induced hyperplane distributions and Reeb vector fields by Ξδǫ and Rδ
ǫ

respectively. We have only changed the Hamiltonian H by rescaling, so all previous
statements aboutHǫ also apply toHδ

ǫ , in particular λδǫ is contact and J (Hδ
ǫ) = J (λδǫ)

for all ǫ > 0 sufficiently small, though the upper bound for the allowed range of ǫ
may now depend on δ. Once δ > 0 is fixed by the requirements of Theorem 10.30,
we are still free to take ǫ > 0 is small as we like.

Theorem 10.33. Assume the same hypotheses as in Theorem 10.30, including
(10.11), and denote the unique extension of J to an R-invariant almost complex
structure in J (Hδ

0) by J0. Given δ sufficiently small and any smooth family of
compatible R-invariant almost complex structures Jǫ ∈ J (Hδ

ǫ) matching J0 at ǫ = 0,
there exists ǫ0 > 0 such that every critical point x ∈ Crit(H) gives rise to a smooth
family of nondegenerate closed Rδ

ǫ -orbits

xǫ : S1 → V × S1 ǫ ∈ [0, ǫ0]

with x0(t) = (x, t), and every gradient flow trajectory γ : R→ V for H gives rise to
a smooth family of Fredholm regular Jǫ-holomorphic cylinders

uǫγ : R× S1 → R× (V × S1) ǫ ∈ [0, ǫ0]

with u0γ(s, t) = (s, γ(δs), t). Moreover, for all ǫ ∈ [0, ǫ0], every closed Rδ
ǫ -orbit homo-

topic to t 7→ (const, t) belongs to one of the families xǫ up to parametrization, and
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every Jǫ-holomorphic cylinder with a positive and a negative end asymptotic to orbits
of this type belongs to one of the families uǫγ, up to biholomorphic parametrization.

Proof. The first part is immediate from the implicit function theorem since the
orbits x0(t) = (x, t) are nondegenerate and the curves u0γ(s, t) = (s, γ(δs), t) are Fred-
holm regular by Theorem 10.30. For the uniqueness statement, observe that if ǫk → 0
and γk is a sequence of Rδ

ǫk
-orbits in the relevant homotopy class, then their periods

are uniformly bounded, so Arzelà-Ascoli gives a subsequence convergent to a closed
Rδ

0-orbit, which is a nondegenerate orbit of the form x0(t) = (x, t) for x ∈ Crit(H)
by Theorem 10.30, so sequences converging to this orbit are unique by the implicit
function theorem. A similar argument proves uniqueness of Jǫ-holomorphic cylin-
ders: if ǫk → 0 and uk is a Jǫk-holomorphic sequence, then first by the uniqueness
of the orbits, we can extract a subsequence for which all uk are asymptotic at both
ends to orbits in fixed families xǫk± converging to x0±(t) = (x±, t) as k → ∞. Since
Ω is exact, Stokes’ theorem then gives a uniform bound on the energies Eǫk(uk).
Since all Rδ

0-orbits in the relevant homotopy class are nondegenerate and none are
contractible, one can now prove as in Proposition 10.19 that uk has a subsequence
convergent to a finite-energy stable J0-holomorphic building u∞ consisting only of
cylinders. Its levels are asymptotic to orbits of the form x(t) = (x, t) for x ∈ Crit(H),
thus they can be parametrized as (s, t) 7→ (s, v(s, t), t) for v : R×S1 → V satisfying
the Hδ-Floer equation, hence v(s, t) = γ(δs) by Theorem 10.30. Now since ∇H is
Morse-Smale and indices of critical points can only differ by at most 1, the building
u∞ can have at most one nontrivial level u∞(s, t) = (s, γ(δs), t), implying uk → u∞.
Since u∞ is Fredholm regular, the implicit function theorem does the rest. �

10.3.3. Admissible data for (T3, ξk). We now complete the computation of
the cylindrical contact homology HCh

∗ (T
3, ξk). We can assume via Lemma 10.26

that h is the homotopy class of the orbits in the special set of tori

Tm = {m/k} × T2 ⊂ T3, m = 0, . . . , k − 1.

Let’s focus for now on the case k = 1, as the general case will simply be a k-fold
cover of this. Thanks to the Morse-Bott discussion in §10.3.1, we know what we’re
looking for: we want an h-admissible contact form α for (T3, ξ1) such that Ph(α)
contains exactly two orbits, both in T0 ⊂ T3, along with an h-regular J ∈ J (α) such
that the differential on CCh

∗ (T
3, α) counts exactly two J-holomorphic cylinders that

connect the two orbits in T0. Let A denote the annulus

A = [−1, 1]× S1

with coordinates (ρ, φ). This will play the role of the Liouville manifold (V, dβ) from
the previous section, and we set

β := ρ dφ.

For the Hamiltonian H : A → R, choose a Morse function with the following
properties:

(1) H has a minimum at x0 = (0, 0), an index 1 critical point at x1 = (0, 1/2),
and no other critical points;

(2) H(ρ, φ) = |ρ| for 1/2 ≤ |ρ| ≤ 1;
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(3) The gradient flow of H with respect to the standard Euclidean metric on
[−1, 1]× S1 is Morse-Smale.

Fix a number δ > 0 sufficiently small so that Theorem 10.30 applies for Floer
trajectories of Hδ := δH in A, and since it will turn out to be useful in Lemma 10.34
below, assume without loss of generality

δ ∈ Q.

Then following the prescription described above, we consider the family of stable
Hamiltonian structures Hδ

ǫ = (Ωδ, λδǫ) on A× S1 for ǫ ≥ 0 small, where

λδǫ = (1− ǫδH) dθ + ǫρ dφ, Ωδ = dρ ∧ dφ+ δ dθ ∧ dH,
with induced Reeb vector fields Rδ

ǫ and hyperplane distributions Ξδǫ := ker λδǫ .
Choose Jǫ ∈ J (Hδ

ǫ) to be any smooth family such that J0|Ξδ
0
matches the stan-

dard complex structure on A defined by J0∂ρ = ∂φ. Then for all ǫ > 0 sufficiently
small, Theorems 10.30 and 10.33 give a complete classification of all closed Rδ

ǫ-orbits
in A× S1 homotopic to t 7→ (0, 0, t), as well as a classification of all Jǫ-holomorphic
cylinders asymptotic to them. Up to parametrization, there are exactly two such
orbits,

γǫi : S
1 → A× S1, i = 0, 1,

which correspond to the Morse critical points x0 and x1 and thus by (10.8) have
Conley-Zehnder indices

µτCZ(γ
ǫ
i ) = 1− ind(xi) = 1− i ∈ {0, 1}

relative to the constant trivialization τ . There are also exactly two Jǫ-holomorphic
cylinders

uǫ± : R× S1 → R× (A× S1),

corresponding to the two negative gradient flow lines that descend from x1 to x0,
thus the uǫ± are index 1 curves with a negative end approaching γǫ1 and a positive
end approaching γǫ0. If we can suitably embed this model into (T3, ξ1) and show that
all the orbits and curves needing to be counted are contained in the model, then we
will have a complete description of HCh

∗ (T
3, ξ1), with two generators 〈γǫ0〉 and 〈γǫ1〉,

of even and odd degree respectively, satisfying

∂〈γǫ0〉 = 2〈γǫ1〉 = 0 and ∂〈γǫ1〉 = 0

since the former counts two curves and the latter counts none.

Lemma 10.34. For any ǫ > 0 sufficiently small, there exists a contact embedding
of

(A× S1, ker λδǫ) →֒ (T3, ξ1)

identifying the homotopy class of the loops t 7→ (0, 0, t) in A×S1 with h. Moreover,
the contact form λδǫ and almost complex structure Jǫ ∈ J (Hδ

ǫ) can then be extended to
an h-admissible contact form α on (T3, ξ1) and an h-regular almost complex structure
J ∈ J (α) such that γǫ0 and γǫ1 are the only orbits in Ph(α), and all J-holomorphic
cylinders with a positive and a negative end asymptotic to either of these orbits are
contained in the interior of A× S1.
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Proof. We’ve chosen β and H so that in the region 1/2 ≤ |ρ| ≤ 1,

α := λδǫ = (1− ǫδ|ρ|) dθ + ǫρ dφ =: f(ρ) dθ + g(ρ) dφ,

so the Reeb vector field on this region has the form 1
D(ρ)

(g′(ρ) ∂θ − f ′(ρ) ∂φ). Notice

that
f ′(ρ)

g′(ρ)
= ∓ǫδ

ǫ
= ∓δ,

and we assumed δ ∈ Q, so the Reeb orbits in this region are all periodic. Next, pick
a large number N ≫ 1 and extend α to a contact form on [−N,N ] × S1 × S1 via
the same formula. Now extend the path (f, g) : [−N,N ]→ R2 to R such that it has
period 2N + 2 and winds once around the origin over the interval [−N − 1, N + 1],
with positive angular velocity. This produces a contact form α on

T3
N :=

(
R

/
(2N + 2)Z

)
× S1 × S1

which takes the form f(ρ) dθ + g(ρ) dφ outside of |ρ| ≤ 1/2. We claim in fact that
α is homotopic through contact forms to one that takes this form globally, where
(f, g) may be assumed to be a smooth loop winding once around the origin. To see
this, one need only homotop H in the region |ρ| ≤ 1/2 to a Morse-Bott function that
depends only on the ρ-coordinate; the contact condition holds for all Hamiltonians
in this homotopy as long as ǫ > 0 is sufficiently small. With this understood, the
obvious diffeomorphism

T3
N → T3 : (ρ, φ, θ) 7→

(
ρ

2N + 2
, φ, θ

)

pushes kerα forward to a contact structure isotopic to one of the form F (ρ) dθ +
G(ρ) dφ for a loop (F,G) : S1 → R2 winding once around the origin, so taking a
homotopy of this loop to (cos(2πρ), sin(2πρ)) and applying Gray’s stability theorem
produces a contactomorphism

(T3
N , kerα)→ (T3, ξ1)

that is isotopic to the above diffeomorphism.
The construction clearly guarantees that no closed Reeb orbit of α outside A×S1

is homotopic to the preferred class h, and there are also no contractible orbits, so
α is an h-admissible contact form on T3

N . Choose any extension of Jǫ to some
J ∈ J (α) on T3

N . We claim now that if N is chosen sufficiently large, then no
J-holomorphic cylinder in R × T3

N with one positive end at either of the orbits γǫi
can ever venture outside the region R × (−1/2, 1/2) × T2. Suppose in particular
that u is such a curve and its image intersects R × {1/2} × T2. Since the entire
region [1/2, N ]× T2 is foliated by closed Reeb orbits, we can define Υ to be the set
of Reeb orbits γ in that region for which the image of u intersects R× γ. This is a
closed subset of the connected topological space of all Reeb orbits in [1/2, N ]× T2:
indeed, if γk ∈ Υ is a sequence converging to some orbit γ∞, then u(zk) ∈ R × γk
for some sequence zk ∈ R× S1, which must be contained in a compact subset since
the asymptotic orbits of u lie outside of [1/2, N ] × T2, hence zk has a convergent
subsequence zk → z∞ ∈ R× S1 with u(z∞) ∈ R × γ∞, proving γ∞ ∈ Υ. We claim
that Υ is also an open subset of the space of orbits in [1/2, N ] × T2. This follows
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from positivity of intersections, as every R × γ is also a J-holomorphic curve: if
u(z) ∈ R× γ, then for every other closed orbit γ′ close enough to γ, there is a point
z′ ∈ R× S1 near z with u(z′) ∈ R× γ′. This proves that, in fact, u passes through
R × γ for every orbit γ in the region [1/2, N ] × T2. We will now use this to show
that if N is sufficiently large, the contact area of u will be larger than is allowed by
Stokes’ theorem.

Let us write

u(s, t) = (r(s, t), ρ(s, t), φ(s, t), θ(s, t)) ∈ R×
(
R
/
(2N + 2)Z

)
× S1 × S1

and choose two points ρ1 ∈ [1/2, 1] and ρ2 ∈ [N − 1, N ] which are both regular
values of the function ρ : R × S1 → R/(2N + 2)Z. The intersections of u with the
orbits in [1/2, N ]×T2 imply that the function ρ(s, t) attains every value in [1/2, N ],
and since the asymptotic limits of u lie outside this region,

U := ρ−1([ρ1, ρ2]) ⊂ R× S1

is then a nonempty and compact smooth submanifold with boundary

∂U = −C1 ⊔ C2,

where Ci := ρ−1(ρi) for i = 1, 2. Restricting u to the multicurves Ci then gives a
pair of smooth maps

wi : Ci → T2 : (s, t) 7→ (φ(s, t), θ(s, t)), i = 1, 2,

which are homologous to each other. Denote the generators of H1(T
2) corresponding

to the φ- and θ-coordinates by ℓφ and ℓθ respectively, and suppose [wi] = mℓφ +nℓθ
for m,n ∈ Z. The key observation now is that the restriction of α to each of the
tori {ρi} × T2 is a closed 1-form, thus for each i = 1, 2,

∫
Ci
u∗α depends only on

the homology class mℓφ + nℓθ ∈ H1(T
2) and not any further on the maps wi. In

particular, ∫

Ci

u∗α = f(ρi)n+ g(ρi)m

for i = 1, 2. We now compute,∫

U
u∗dα =

∫

C2

u∗α−
∫

C1

u∗α = n[f(ρ2)− f(ρ1)] +m[g(ρ2)− g(ρ1)]

= n[(1− ǫδρ2)− (1− ǫδρ1)] +m[ǫρ2 − ǫρ1]
= ǫ(ρ2 − ρ1)(m− nδ)

This integral has to be positive since u∗dα ≥ 0 and u is not a trivial cylinder, thus
m− nδ > 0. Moreover, δ was assumed rational, so if δ = p/q for some p, q ∈ N, we
have

m− nδ = 1

q
(mq − np) ≥ 1

q
,

implying ∫

R×S1

u∗dα ≥
∫

U
u∗dα ≥ ǫ

q
(ρ2 − ρ1) ≥

ǫ(N − 2)

q
.

Having chosen δ (which determines q) and ǫ in advance, we are free to make N as
large as we like. But by (10.2),

∫
R×S1 u

∗dα cannot be any larger than the period
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of its positive asymptotic orbit, which does not depend on N . So this gives a
contradiction, proving that u cannot touch the region {ρ ≥ 1/2}. The mirror image
of this argument shows that u also cannot touch the region {ρ ≤ −1/2}. �

With Lemma 10.34 in hand, the calculation of HCh
∗ (T

3
N , α, J) for sufficiently

large N is straightforward: there is one odd generator and one even generator, with
a trivial differential, giving

HCh
∗ (T

3, ξ1) ∼=
{
Z2 ∗ = odd,

Z2 ∗ = even.

This calculation can now be extended to (T3, ξk) by a cheap trick: using the contac-
tomorphism (T3

N , kerα) → (T3, ξ1), let us identify T3
N with T3 and write α = Fα1

for some function F : T3 → (0,∞). Then the k-fold covering map

Φk : T
3 → T3 : (ρ, φ, θ) 7→ (kρ, φ, θ)

maps the homotopy class h to itself and pulls back ξ1 to ξk, so Φ∗
kα is a contact form

for ξk. It is also h-admissible: indeed, Φ∗
kα admits no contractible orbits since they

would project down to contractible orbits on (T3, α), and every orbit in Ph(Φ∗
kα)

projects to one in Ph(α), hence they are all nondegenerate. The almost complex
structure Φ∗

kJ ∈ J (Φ∗
kα) then makes the map Id×Φk : (R×T3,Φ∗

kJ)→ (R×T3, J)
holomorphic, so every Φ∗

kJ-holomorphic cylinder counted by HCh
∗ (T

3,Φ∗
kα,Φ

∗
kJ)

projects to a J-holomorphic cylinder counted by HCh
∗ (T

3, α, J), and conversely,
each orbit in Ph(α) and each J-holomorphic cylinder has exactly k lifts to the cover.
The generators of CCh

∗ (T
3,Φ∗

kα) thus consist of 2k orbits, k odd and k even, with
2k connecting Φ∗

kJ-holomorphic cylinders that cancel each other in pairs, giving a
trivial differential. In summary:

HCh
∗ (T

3, ξk) ∼=
{
Zk2 ∗ = odd,

Zk2 ∗ = even.
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11.1. Gluing maps and coherence

This lecture will be concerned with orienting the moduli spaces

M(J) :=Mg,m(J,A,γ
+,γ−)

of J-holomorphic curves in a completed symplectic cobordism Ŵ , in cases where
they are smooth. We assume as usual that all Reeb orbits are nondegenerate so
that the usual linearized Cauchy-Riemann operators are Fredholm.

For SFT and other Floer-type theories, it is not enough to know that each
component of M(J) is orientable—relations like ∂2 = 0 rely on having certain
compatibility conditions between the orientations on different components. The
point is that whenever a space of broken curves is meant to be interpreted as the
boundary of some other compactified moduli space, we need to make sure that it
carries the boundary orientation. This compatibility is what is known as coherence,
and in order to define it properly, we need to return to the subject of gluing.

Our discussion of gluing in Lecture 10 was fairly simple because it was limited
to somewhere injective holomorphic cylinders that could only break along simply
covered Reeb orbits. Recall however that more general holomorphic buildings carry
a certain amount of extra structure that was not relevant in that simple case. Even
in a building u that has only two nontrivial levels u− and u+, the breaking punctures
carry decorations : i.e. if {z+, z−} is a breaking pair in u, then the decoration defines
an orientation-reversing orthogonal map

δz+
Φ−→ δz−

between the two “circles at infinity” δz± associated to the punctures z± (see §9.3.3).
This extra information is uniquely determined if the breaking orbit is simply covered,
but at a multiply covered breaking orbit there is ambiguity, and the decoration

225
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cannot be deduced from knowledge of u− and u+ alone. We therefore need to
consider moduli spaces of curves with a bit of extra structure.

For each Reeb orbit γ in M+ or M−, choose a point on its image

pγ ∈ im γ ⊂M±.

For a J-holomorphic curve u : (Σ̇ = Σ \ (Γ+ ∪ Γ−), j) → (Ŵ , J) with a puncture
z ∈ Γ± asymptotic to γ, an asymptotic marker is a choice of a ray ℓ ⊂ TzΣ such
that

lim
t→0+

u(c(t)) = (±∞, pγ)

for any smooth path c(t) ∈ Σ with c(0) = z and 0 6= ċ(0) ∈ ℓ. If γ has covering
multiplicity m ∈ N, then there are exactly m choices of asymptotic markers at z,
related to each other by the action on TzΣ by the mth roots of unity. We shall
denote

M$(J) :=M$
g,m(J,A,γ

+,γ−) :=
{
(Σ, j,Γ+,Γ−,Θ, u, ℓ)

}/
∼,

where (Σ, j,Γ+,Γ−,Θ, u) represents an element ofMg,m(J,A,γ
+,γ−), ℓ denotes an

assignment of asymptotic markers to every puncture z ∈ Γ±, and

(Σ0, j0,Γ
+
0 ,Γ

−
0 ,Θ0, u0, ℓ0) ∼ (Σ1, j1,Γ

+
1 ,Γ

−
1 ,Θ1, u1, ℓ1)

means the existence of a biholomorphic map ψ : (Σ0, j0) → (Σ1, j1) which defines
an equivalence of (Σ0, j0,Γ

+
0 ,Γ

−
0 ,Θ0, u0) with (Σ1, j1,Γ

+
1 ,Γ

−
1 ,Θ1, u1) and satisfies

ψ∗ℓ0 = ℓ1. There is a natural surjection

M$(J)→M(J)

defined by forgetting the markers. We will say that an element u ∈ M$(J) is
Fredholm regular whenever its image under the map toM(J) is regular. Let

M$,reg(J) =M$,reg
g,m (J,A,γ+,γ−) ⊂M$(J)

denote the open subset consisting of Fredholm regular curves with asymptotic mark-
ers. Note that components of M(J) and M$(J) consisting of closed curves are
identical spaces; components with punctures have the following simple relationship
to each other.

Proposition 11.1. Each component of M$,reg(J) consisting of curves with at
least one puncture admits the structure of a smooth manifold, whose dimension on
each connected component matches that ofMreg(J). Moreover, the natural map

M$,reg(J)→Mreg(J)

is smooth, and the preimage of a curve u ∈Mreg(J) with asymptotic orbits {γz}z∈Γ
of covering multiplicities {κz}z∈Γ contains exactly

∏
z∈Γ κz

|Aut(u)|
distinct elements.
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Proof. The smooth structure of M$,reg(J) arises from the same argument we
used in Lecture 7 for Mreg(J), supplemented by the following remarks: first, ev-
ery nontrivial automorphism ψ ∈ Aut(u) for u ∈ M(J) acts nontrivially on the
asymptotic markers. Indeed, ψ is required to fix each of the punctures and is a bi-
holomorphic map with ψk ≡ Id for some k ∈ N, thus it takes the form z 7→ e2πim/k in
suitable holomorphic coordinates near each puncture for suitable integers m, k ∈ Z.
If m = 0, then unique continuation implies ψ ≡ Id, and otherwise ψ changes the
asymptotic marker at every puncture. With this understood, one can define as
in §7.4 a local identification ofM$(J) with ∂̄−1

J (0)/Aut(Σ, j0,Γ∪Θ), where ∂̄−1
J (0)

includes information about asymptotic markers and is a smooth manifold by the im-
plicit function theorem, but Aut(Σ, j0,Γ∪Θ) acts on it freely, producing a quotient
with no isotropy.

Finally, if (Σ, j,Γ∪Θ, u) represents an element ofM(J) with asymptotic orbits
{γz}z∈Γ, then the number of possible choices of asymptotic markers is precisely∏

z∈Γ κz. However, not all of these produce inequivalent elements ofM$(J): indeed,
the previous paragraph shows that Aut(u) acts freely on the set of all choices of
markers, so that the total number of inequivalent choices is as stated. �

Suppose u+ and u− are two (possibly disconnected and/or nodal) holomorphic
curves, with asymptotic markers, such that the number of negative punctures of u+
equals the number of positive punctures of u−, and the asymptotic orbit of u+ at
its ith negative puncture matches that of u− at its ith positive puncture for every i.
Then the pair (u−, u+) naturally determines a holomorphic building: indeed, the
breaking punctures admit unique decorations determined by identifying the markers
on u+ with the markers at corresponding punctures of u−.

Let us now consider a concrete example of a gluing scenario. Figure 11.1 shows
the degeneration of a sequence of curves in M3,4(J,Ak, (γ4, γ5),γ

−) to a building
u ∈ M3,4(J,A + B + C, (γ4, γ5),γ

−) with one main level and one upper level. The
main level is a connected curve uA ∈M1,2(J,A, (γ1, γ2, γ3),γ

−), and the upper level
consists of two connected curves

uB ∈M1,1(J+, B, γ4, (γ1, γ2)), uC ∈M0,1(J+, C, γ5, γ3).

One can endow each of these curves with asymptotic markers compatible with the
decoration of u; this is a non-unique choice, but e.g. if one chooses markers for uA
arbitrarily, then the markers at the negative punctures of uB and uC are uniquely
determined. Now if all three curves are Fredholm regular, then a substantial general-
ization of the gluing procedure outlined in Lecture 10 provides open neighborhoods
U$
A and U$

BC ,

uA ∈ U$
A ⊂M$

1,2(J,A, (γ1, γ2, γ3)),

[(uB, uc)] ∈ U$
BC ⊂

(
M$

1,1(J+, B, γ4, (γ1, γ2))×M$
0,1(J+, C, γ5, γ3)

)/
R

which are smooth manifolds of dimensions

dimU$
A = vir-dimM1,2(J,A, (γ1, γ2, γ3)),

dimU$
BC = vir-dimM1,1(J+, B, γ4, (γ1, γ2)) + vir-dimM0,1(J+, C, γ5, γ3)− 1,
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uA

uB

uC

γ
−

γ
−

γ1 γ2 γ3

γ4 γ4γ5 γ5

Ŵ
Ŵ

R×M+

Figure 11.1. The degeneration scenario behind the gluing map (11.1)

along with a smooth embedding

(11.1) Ψ : [R0,∞)× U$
A × U$

BC →֒ M$
3,4(J,A+B + C, (γ4, γ5),γ

−),

defined for R0 ≫ 1. This is an example of a gluing map: it has the property that
for any u ∈ U$

A and v ∈ U$
BC , Ψ(R, u, v) converges in the SFT topology as R → ∞

to the unique building (with asymptotic markers) having main level u and upper
level v, and moreover, every sequence of smooth curves degenerating in this way is
eventually in the image of Ψ.

In analogous ways one can define gluing maps for buildings with a main level and
a lower level, or more than two levels, or multiple levels in a symplectization (always
dividing symplectization levels by the R-action). It’s important to notice that in all
such scenarios, the domain and target of the gluing map have the same dimension,
e.g. the dimension of both sides of (11.1) is the sum of the virtual dimensions of the
three moduli spaces concerned.

Definition 11.2. A set of orientations for the connected components ofM$(J)
andM$(J±) is called coherent if all gluing maps are orientation preserving.

Stated in this way, this definition is based on the pretense that we never have to
worry about non-regular curves in any components ofM$(J), and that is of course
false—sometimes regularity cannot be achieved, in particular for multiply covered
curves. As we’ll see though in §11.4, the question of orientations can be reframed in
a way that completely disjoins it from the question of regularity, thus we will later
be able to state a more general version of the above definition that is independent



Lectures on Symplectic Field Theory 229

of regularity (see Definition 11.14). The main result whose proof we will outline in
the next few sections is then:

Theorem 11.3. Coherent orientations exist.

But there is also some bad news. The space M$(J) with asymptotic markers
is not actually the space we want to orient. In fact, even the usual moduli space
M(J) has a certain amount of extra information in it that we’d rather not keep
track of when we don’t have to, for instance the ordering of the punctures. Can we
forget this information without forgetting the orientation of the moduli space? Not
always:

Proposition 11.4. Suppose γ̂+ = (γ+1 , . . . , γ
+
k+
), and γ̌

+ is a similar ordered list

of Reeb orbits obtained from γ̂
+ by exchanging γ+j with γ+k for some 1 ≤ j < k ≤ k+.

Then for any choice of coherent orientations, the natural map

M$
g,m(J,A, γ̂

+,γ−)→M$
g,m(J,A, γ̌

+,γ−)

defined by permuting the corresponding punctures z+j , z
+
k ∈ Γ+ along with their as-

ymptotic markers is orientation reversing if and only if the numbers

n− 3 + µCZ(γ
+
i )

for i = j, k are both odd. A similar statement holds for permutations of negative
punctures.

This result is the reason for the super-commutative algebra that we will see in
the next lecture. What about forgetting the markers? It turns out that we can
sometimes do that as well, but again not always.

Proposition 11.5. Suppose M$
g,m(J,A,γ

+,γ−) → M$
g,m(J,A,γ

+,γ−) is the

map defined by multiplying the asymptotic marker by e2πi/m at one of the punctures
for which the asymptotic orbit is an m-fold cover γm of a simple orbit γ. For any
choice of coherent orientations, this map reverse orientation if and only if m is even
and µCZ(γ

m)− µCZ(γ) is odd.

Note that in both of the above propositions, only the odd/even parity of the
Conley-Zehnder indices matters, so there is no need to choose trivializations. Propo-
sition 11.5 motivates one of the more mysterious technical definitions in SFT.

Definition 11.6. A closed nondegenerate Reeb orbit γ is called a bad orbit if
it is an m-fold cover of some simple orbit γ′ where m is even and µCZ(γ)− µCZ(γ

′)
is odd. Orbits that are not bad are called good.

The upshot is that coherent orientations can be defined on the union of all
componentsMg,m(J,A,γ

+,γ−) for which all of the orbits in the lists γ+ and γ
− are

good. This does not mean that moduli spaces involving bad orbits cannot be dealt
with—in fact, such moduli spaces have the convenient property that the number of
distinct choices of asymptotic markers is always even, and every such choice can be
cancelled by an alternative choice that induces the opposite orientation. For this
reason, while bad orbits certainly can appear in breaking of holomorphic curves, we
will see that they do not need to serve as generators of SFT.
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11.2. Permutations of punctures and bad orbits

Before addressing the actual construction of coherent orientations, we can al-
ready give heuristic proofs of Propositions 11.4 and 11.5. They are not fully rigor-
ous because they are based on the same pretense as Definition 11.2, namely that
all curves we ever have to worry about (including multiple covers) are regular. But
we will be able to turn these into precise arguments in §11.7, after discussing the
determinant line bundle.

Heuristic proof of Proposition 11.4. To simplify the notation, suppose
γ̂
+ consists of only two orbits, so γ̂

+ = (γ1, γ2) and γ̌
+ = (γ2, γ1). Consider the

gluing scenario shown in Figure 11.2, where u ∈ M$
g,m(J,A, (γ1, γ2),γ

−) needs to
be glued to a disjoint union of two planes

uB ∈M$
0,0(J+, B, ∅, γ1), uC ∈M$

0,0(J+, C, ∅, γ2).
You might object that there’s no guarantee that such planes must exist in R×M+,
e.g. the orbits γ1 and γ2 might not even be contractible. This concern is valid so
far as it goes, but it misses the point: since we’re talking about gluing rather than

compactness, we do not need any seriously global information about Ŵ and M+,
as the gluing process doesn’t depend on anything outside a small neighborhood of
the curves we’re considering. Thus we are free to change the global structure of
M+ elsewhere so that the planes uB and uC will exist.1 If you still can’t imagine
how one might do this, try not to worry about it and just think of Figure 11.2 as a
thought-experiment: it’s a situation that certainly does sometimes happen, so when
it does, let’s see what it implies about orientations.

Assuming all three curves in the picture are regular, there will be smooth open
neighborhoods

u ∈ U12 ⊂M$
g,m(J,A, (γ1, γ2),γ

−)

[(uB, uC)] ∈ UBC ⊂
(
M$

0,0(J+, B, ∅, γ1)×M$
0,0(J+, C, ∅, γ2)

)/
R

and a gluing map

ΨBC : [R0,∞)× U12 × UBC →֒ M$
g,m(J,A +B + C, ∅,γ−),

which must be orientation preserving by assumption. But reversing the order of the
productM$

0,0(J+, B, ∅, γ1)×M$
0,0(J+, C, ∅, γ2) and letting u′ ∈M$

g,m(J,A, (γ2, γ1),γ
−)

denote the image of u under the map that switches the order of its positive punc-
tures, there are also smooth open neighborhoods

u′ ∈ U21 ⊂M$
g,m(J,A, (γ2, γ1),γ

−)

[(uC , uB)] ∈ UCB ⊂
(
M$

0,0(J+, C, ∅, γ2)×M$
0,0(J+, B, ∅, γ1)

)/
R

and a gluing map

ΨCB : [R0,∞)× U21 × UCB →֒ M$
g,m(J,A +B + C, ∅,γ−).

1Of course by the maximum principle, planes with only negative ends will not exist in R×M+

if this is the symplectization of a contact manifold. But we could also change the contact data to
a stable Hamiltonian structure for which such planes are allowed.
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uB uC

u

γ
−

γ
−

γ1 γ2

Ŵ

Ŵ

R×M+

Figure 11.2. The gluing thought-experiment used for proving
Propositions 11.4 and 11.5.

If both of these gluing maps preserve orientation, then the effect on orientations of
the map from M$

g,m(J,A, (γ1, γ2),γ
−) to M$

g,m(J,A, (γ2, γ1),γ
−) defined by inter-

changing the positive punctures must be the same as that of the map

M$
0,0(J+, B, ∅, γ1)×M$

0,0(J+, C, ∅, γ2)→M$
0,0(J+, C, ∅, γ2)×M$

0,0(J+, B, ∅, γ1)
(uB, uC) 7→ (uC , uB).

The latter is orientation reversing if and only if both moduli spaces of planes are
odd dimensional, which means n− 3 + µCZ(γi) is odd for i = 1, 2. �

Heuristic proof of Proposition 11.5. Let us reuse the thought-experiment
of Figure 11.2, but with different details in focus. Suppose γ1 in the picture is an
m-fold covered orbit γm, where γ is simply covered, and suppose that uB is also an
m-fold cover, taking the form

uB(z) = v(zm)

for a somewhere injective plane v ∈M0,0(J+, B0, ∅, γ). We’re going to assume again
that all curves in the discussion are regular, including the multiple cover uB; while
this doesn’t sound very plausible, we will see once the determinant line bundle enters
the picture in §11.4 that it is an irrelevant detail. Now, uB has a cyclic automorphism
group

Aut(uB) = Zm ⊂ U(1)

which acts freely on the set of m choices of asymptotic marker for uB. Then if we
act with the same element of Zm on uB and on the corresponding asymptotic marker
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for u, the building is unchanged, as it has the same decoration. Coherence therefore
implies that the effect on orientations of the map from M$

g,m(J,A, (γ1, γ2),γ
−) to

itself defined by acting with the canonical generator of Zm ⊂ U(1) on the marker at
γ1 is the same as the effect of the mapM$

0,0(J+, mB0, ∅, γm)→M$
0,0(J+, mB0, ∅, γm)

defined by composing uB : C→ R×M+ with ψ(z) := e2πi/mz.
The derivative of this map from M$

0,0(J+, mB0, ∅, γm) to itself at uB defines a
linear self-map

Ψ : TuBM0,0(J+, mB0, ∅, γm)→ TuBM0,0(J+, mB0, ∅, γm)
with Ψm = 1. The latter implies that Ψ cannot reverse orientation if m is odd. If
m is even, observe that the representation theory of Zm gives a decomposition

TuBM0,0(J+, mB0, ∅, γm) = V1 ⊕ V−1 ⊕ Vrot,
where Ψ acts on V±1 as ±1, and Vrot is a direct sum of real 2-dimensional subspaces
on which Ψ acts by rotations (and therefore preserves orientations). Thus Ψ reverses
the orientation of TuBM0,0(J+, mB0, ∅, γm) if and only if dimV−1 is odd. As we will
review in the next section, TuBM0,0(J+, mB0, ∅, γm) is a space of holomorphic sec-
tions of u∗BT (R×M+) modulo a subspace defined via the linearized automorphisms
of C, so V1 consists of precisely those sections η that satisfy η = η ◦ψ, meaning they
arem-fold covers of sections of v∗T (R×M+). This defines a bijective correspondence
between V1 and TvM0,0(J+, B0, ∅, γ), so

dimV−1 = dimM0,0(J+, mB0, ∅, γm)− dimM0,0(J+, B0, ∅, γ) (mod 2).

The result then comes from plugging in the dimension formulas for these two moduli
spaces. �

11.3. Orienting moduli spaces in general

We now discuss concretely what is involved in orienting a moduli space of J-
holomorphic curves.

Recall from Lecture 7 that whenever a curve u0 : (Σ̇ = Σ \ Γ, j0)→ (Ŵ , J) with
marked points Θ ⊂ Σ̇ is Fredholm regular, a neighborhood of u0 in M(J) can be
identified with

∂̄−1
J (0)

/
G0,

where G0 = Aut(Σ, j0,Γ ∪Θ) and ∂̄J is the smooth Fredholm section

T × Bk,p,δ → Ek−1,p,δ : (j, u) 7→ Tu+ J ◦ Tu ◦ j,
defined on the product of a G0-invariant Teichmüller slice T through j0 with a

Banach manifold Bk,p,δ of W k,p-smooth maps Σ̇ → Ŵ satisfying an exponential
decay condition at the cylindrical ends. Here G0 acts on ∂̄−1

J (0) by

(11.2) G0 × ∂̄−1
J (0)→ ∂̄−1

J (0) : (ϕ, (j, u)) 7→ (ϕ∗j, u ◦ ϕ).
Regularity means that the linearization D∂̄J(j0, u0) : Tj0T ⊕ Tu0Bk,p,δ → Ek−1,p,δ

(j0,u0)
is

surjective, and the implicit function theorem then gives a natural identification

Tu0M(J) = kerD∂̄J(j0, u0)
/
aut(Σ, j0,Γ ∪Θ),
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where aut(Σ, j0,Γ∪Θ) denotes the Lie algebra ofG0, which acts on kerD∂̄J(j0, u0) by
differentiating (11.2).2 This action actually defines an inclusion of aut(Σ, j0,Γ ∪Θ)
into kerD∂̄J(j0, u0) whenever u0 is not constant, thus we can regard aut(Σ, j0,Γ∪Θ)
as a subspace of kerD∂̄J (j0, u0).

As outlined in Proposition 11.1, the spaceM$(J) with asymptotic markers ad-
mits a similar local description: here one only needs to enhance the structure of the
Banach manifold Bk,p,δ with information about asymptotic markers at each punc-
ture, so the Banach manifold needed to describe M$(J) is a finite covering space
of Bk,p,δ. The rest of the discussion is identical, except for the fact that when markers
are included, G0 always acts freely on ∂̄−1

J (0).
We now make a useful observation about the spaces aut(Σ, j0,Γ ∪Θ) and Tj0T :

namely, they both carry natural complex structures and are thus canonically ori-
ented. This follows from the fact that both the automorphism group G0 and the
Teichmüller space T (Σ,Γ∪Θ) = J (Σ)

/
Diff0(Σ,Γ∪Θ) are naturally complex mani-

folds. On the linearized level, one way to see it is via the fact—mentioned previously
in §6.3—that aut(Σ, j0,Γ∪Θ) and T[j0]T (Σ,Γ ∪Θ) can be naturally identified with
the kernel and cokernel respectively of the natural linear Cauchy-Riemann type
operator on (Σ, j0),

(11.3) DId : W k,p
Γ∪Θ(TΣ)→W k−1,p(EndC(TΣ)),

which is the linearization at Id of the nonlinear operator that detects holomorphic
maps (Σ, j0)→ (Σ, j0). This operator is equivalent to the operator that defines the
holomorphic structure of TΣ, thus it is complex linear. To handle the punctures
and marked points, one needs to restrict the nonlinear operator to the space of
W k,p-smooth maps Σ → Σ that fix every point in Γ ∪ Θ, thus the domain of the
linearization becomes the finite-codimensional subspace

W k,p
Γ∪Θ(TΣ) :=

{
X ∈ W k,p(TΣ)

∣∣ X|Γ∪Θ = 0
}
.

This subspace is still complex, thus so is (11.3), and its kernel and cokernel inherit
natural complex structures.

The complex structure on aut(Σ, j0,Γ∪Θ) means that defining an orientation on
the tangent space Tu0M$(J) is equivalent to defining one on kerD∂̄J (j0, u0). The
latter operator takes the form

D∂̄J(j0, u0) : Tj0T ⊕ Tu0Bk,p,δ → Ek−1,p,δ
(j0,u0)

: (y, η) 7→ J ◦ Tu0 ◦ y +Du0η,

where Du0 : W k,p,δ(u∗0TŴ ) ⊕ VΓ → W k−1,p,δ(HomC(T Σ̇, u
∗
0TŴ )) is the usual lin-

earized Cauchy-Riemann operator at u0, with VΓ denoting a complex (#Γ)-dimensional
space of smooth sections that are constant near infinity.. The remarks above and
the fact that u0 is J-holomorphic imply that the first term in this operator,

Tj0T → Ek−1,p,δ
(j0,u0)

: y 7→ J ◦ Tu0 ◦ y

2The presence of aut(Σ, j0,Γ ∪ Θ) in this discussion is only relevant in the finite set of “non-

stable” cases where χ(Σ̇ \Θ) ≥ 0, since otherwise G0 is finite and thus aut(Σ, j0,Γ ∪Θ) is trivial.
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is a complex-linear map. Now if Du0 happens also to be a complex-linear map, then
we are done, because kerD∂̄J(j0, u0) will then be a complex vector space and inherit
a natural orientation.

In general, Du0 is not complex linear, though it does have a complex-linear part,

DC
u0η :=

1

2
(Du0η − JDu0(Jη)) ,

which is also a Cauchy-Riemann type operator. The space of all Cauchy-Riemann
type operators on a fixed vector bundle is affine, so one can interpolate from Du0

to DC
u0

through a path of Cauchy-Riemann type operators, though they may not all
be Fredholm—this depends on the asymptotic operators at the punctures. In the
special case however where there are no punctures, one can easily imagine making
use of this idea: if Σ̇ = Σ is a closed surface, then the obvious homotopy from Du0

to its complex-linear part yields a homotopy from D∂̄J(j0, u0) to its complex-linear
part, and if every operator along this homotopy happens to be surjective, then the
canonical orientation defined on the kernel of the complex-linear operator determines
an orientation on kerD∂̄J(j0, u0).

There are two obvious problems with the above discussion:

(1) We have no way to ensure that every operator in the homotopy from
D∂̄J (j0, u0) to its complex-linear part is surjective;

(2) If there are punctures, then we cannot even expect every operator in this
homotopy to be Fredholm.

The first problem motivates the desire to define a notion of orientations for a
Fredholm operator T that does not require T to be surjective but reduces to the
usual notion of orienting kerT whenever it is. The solution to this problem is
the determinant line bundle, which we will discuss in the next section. With this
object in hand, the above discussion for the case of closed curves can be made
rigorous, so that all smooth moduli spaces of closed J-holomorphic curves inherit
canonical orientations. One of the advantages of using the determinant line bundle
is that the question of orientations becomes entirely disjoined from the question of
transversality: if one can orient the determinant line bundle then moduli spaces of
regular curves inherit orientations, but orienting the determinant bundle does not
require knowing in advance whether the curves are regular.

The second problem is obviously significant because in the punctured case, mod-
uli spaces of J-holomorphic curves sometimes have odd real dimension, making it
clearly impossible to homotop D∂̄J(j0, u0) through Fredholm operators to one that
is complex linear. The solution in this case will be to define orientations algorithmi-
cally via the coherence condition, and we will describe a suitable algorithm for this
in §11.6.

11.4. The determinant line bundle

Fix real Banach spaces X and Y and let FredR(X, Y ) denote the space of real-
linear Fredholm operators, viewed as an open subset of the Banach space LR(X, Y )
of all bounded linear operators. We’ll use the following notation throughout: if V
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is an n-dimensional real vector space, then the top-dimensional exterior power of V
is denoted by

ΛmaxV := ΛnV.

This 1-dimensional real vector space is spanned by any wedge product of the form
v1 ∧ . . .∧ vn where (v1, . . . , vn) is a basis of V . Denoting the dual space of V by V ∗,
note that there is a canonical isomorphism (ΛmaxV )∗ = ΛmaxV ∗. If dimV = 0, then
we adopt the convention ΛmaxV = R.

Definition 11.7. Given T ∈ FredR(X, Y ), the determinant line of T is the
real 1-dimensional vector space

det(T) = (Λmax kerT)⊗ (Λmax cokerT)∗ .

Our main goal in this section is to prove:

Theorem 11.8. There exists a topological vector bundle det(X, Y )
π−→ FredR(X, Y )

of real rank 1 such that π−1(T) = det(T) for each T ∈ FredR(X, Y ).

Observe that whenever T ∈ FredR(X, Y ) is surjective, det(T) = Λmax kerT, so
an orientation of det(T) is equivalent to an orientation of kerT. More generally,
an orientation of det(T) is equivalent to an orientation for kerT⊕ cokerT. If T is
an isomorphism, then det(T) is simply R, so an orientation of det(T) amounts to a
choice of sign ±1.

To construct local trivializations of det(X, Y ) → FredR(X, Y ), we start with
the case where X and Y are both finite dimensional. Note that in this case, every
linear map is Fredholm, including the zero map, and its determinant is simply
ΛmaxX ⊗ (ΛmaxY )∗.

Lemma 11.9. Suppose X and Y are real vector spaces of finite dimensions n and
m respectively. Then for every T ∈ LR(X, Y ), there exists a canonical isomorphism

(Λmax kerT)⊗ (Λmax cokerT)∗ = (ΛmaxV )⊗ (ΛmaxW )∗.

Proof. Suppose dim kerT = k and dim cokerT = ℓ, so ind(T) = k−ℓ = n−m,
thus n− k = m − ℓ. We define a linear map Φ : (ΛnX)⊗ (ΛmY )∗ →

(
Λk kerT

)
⊗(

Λℓ cokerT
)∗

via the following procedure. Fix x ∈ ΛnX and y∗ ∈ (ΛmY )∗ and

suppose both are nontrivial. Then for any nontrivial element k ∈ Λk kerT, there
exists a unique element v ∈ Λn−k (X/ kerT) such that for any subspace V ⊂ X
complementary to kerT, the element ṽ ∈ Λn−kV ⊂ Λn−kX obtained from v by
inverting the natural isomorphism V → X/ kerT induced by the projection X →
X/ kerT satisfies

k ∧ ṽ = x.

The map T descends to an isomorphism X/ kerT→ imT and thus induces an iso-
morphism Λn−k (X/ kerT) → Λm−ℓ (imT) ⊂ Λm−ℓY , which takes v to a nontrivial
element Tv. There is then a unique element c ∈ Λℓ cokerT = Λℓ (Y/ imT) such
that for any subspace W ⊂ Y complementary to imT, the element c̃ ∈ ΛℓW ⊂ ΛℓY
obtained from c by inverting the isomorphism W → Y/ imT induced by the pro-
jection Y → Y/ imT satisfies

y∗ (c̃ ∧Tv) = 1.
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Now define Φ as the unique linear map such that

Φ(x⊗ y∗) = k⊗ c∗,

where c∗ ∈ (Λℓ cokerT)∗ is defined by c∗(c) = 1. It is straightforward to check
that this definition does not depend on any choices: indeed, if we replace k by λk
for some λ ∈ R \ {0} in the above procedure, then v is replaced by 1

λ
v, hence Tv

becomes 1
λ
Tv, c becomes λc and c∗ therefore becomes 1

λ
c∗, so that k⊗c∗ is replaced

by

(λk)⊗
(
1

λ
c∗
)

= k⊗ c∗.

�

To construct local trivializations of det(X, Y ) in the infinite-dimensional case,
recall the following construction from Lecture 3. Given T0 ∈ FredR(X, Y ), we can
write X = V ⊕K and Y = W ⊕ C where K = kerT0, C ∼= cokerT0, W = imT0

and T0|V : V → W is an isomorphism. We shall use these splittings to write any
other operator T ∈ FredR(X, Y ) as

T =

(
A B
C D

)

and let U ⊂ FredR(X, Y ) denote the open neighborhood of T0 for which the block
A : V → W is invertible. This gives rise to a pair of smooth maps

Φ : U → LR(K,C) : T 7→ D−CA−1B

and

F : U → LR(V ⊕K) = LR(X) : T 7→
(
1 −A−1B
0 1

)
,

such that F (T) is always invertible and maps {0}⊕kerΦ(T) isomorphically to kerT.
Similarly, there is a smooth map

G : U → LR(W ⊕ C) = LR(Y ) : T 7→
(

1 0
−CA−1

1

)

such that G(T) is always invertible and maps imT isomorphically to W ⊕ imΦ(T),
so it descends to an isomorphism of cokerT to coker Φ(T). Given the canonical iso-
morphism det(Φ(T)) = ΛmaxK⊗ (ΛmaxC)∗ = det(T0) from Lemma 11.9, the result-
ing smooth families of isomorphisms kerT → ker Φ(T) and cokerT → coker Φ(T)
determine a local trivialization

det(X, Y )|U → U × det(T0).

I will leave it as an exercise for the reader to check that the resulting transition
maps are continuous.3

3This detail should not be underestimated, e.g. [MW, §7.4] observes that the local trivializa-
tions constructed in [MS04, §A.2] are, unfortunately, not continuously compatible. See [Zin] for
further discussion of this point. If you discover that my local trivializations are also not continu-
ously compatible, please let me know.
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Exercise 11.10. Show that if X and Y are complex Banach spaces, then
the restriction of det(X, Y ) to the subspace of complex-linear Fredholm operators
FredC(X, Y ) ⊂ FredR(X, Y ) admits a canonical orientation compatible with the
complex structures of kerT and cokerT for each T ∈ FredC(X, Y ). Show also that
whenever T ∈ FredC(X, Y ) is an isomorphism, the canonical orientation of det(T)
agrees with the standard orientation of R.

The orientation of det(T) for T ∈ FredC(X, Y ) described in Exercise 11.10 is
called the complex orientation.

11.5. Determinant bundles of moduli spaces

Combining ideas from the previous two sections, let

det(J)→M$(J)

denote the topological line bundle that associates to any u ∈ M$
g,m(J,A,γ

+,γ−)
the determinant line of the Fredholm operator

Du : W
k,p,δ(u∗TŴ )⊕ VΓ → W k−1,p,δ(HomC(T Σ̇, u

∗TŴ )).

One can construct local trivializations for this bundle using Theorem 11.8 and any
choice of local trivializations for the Banach space bundles TBk,p,δ and Ek−1,p,δ.

Proposition 11.11. Any orientation of det(J) → M$(J) canonically deter-
mines an orientation ofMreg(J).

Proof. As explained in §11.3, an orientation ofMreg(J) near a particular curve

u0 : (Σ̇, j0) → (Ŵ , J) is equivalent to a continuously varying choice of orientations
for the kernels

kerD∂̄J (j, u) ⊂ TjT ⊕ TuBk,p,δ
for all (j, u) ∈ ∂̄−1

J (0), where T is a Teichmüller slice through j0. The operator
D∂̄J(j, u) is of the form

L(y, η) := J ◦ Tu ◦ y +Duη

and thus is homotopic through Fredholm operators to

L0(y, η) := Duη,

namely via the homotopy Ls(y, η) := sJ ◦Tu◦y+Duη for s ∈ [0, 1]. The kernel and
cokernel of L0 are TjT ⊕ kerDu and cokerDu respectively, and since TjT carries a
complex structure, the orientation of det(Du) naturally determines an orientation
of det(L0). Using the homotopy Ls, this determines orientations of det(D∂̄J(j, u))
and thus orientations of kerD∂̄J(j, u) for all (j, u) near (j0, u0), and this orientation
does not depend on the choice of Teichmüller slice since the operators Du also do
not. �

From now on, when we speak of an orientation of M$(J), we will actually
mean an orientation of the bundle det(J)→M$(J). The above proposition implies
that this is equivalent to what we want in applications, but one advantage of talking
about det(J) is that there is no need to limit the discussion to curves that are
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regular, i.e. the notion of an orientation of M$(J) now makes sense even though
M$(J) is not globally a smooth object.

Proposition 11.12. Suppose all Reeb orbits in γ
± have the property that their

asymptotic operators are complex linear. ThenM$
g,m(J,A,γ

+,γ−) admits a natural
orientation, known as the complex orientation.

Proof. Having complex-linear asymptotic operators implies that the obvious
homotopy from each Cauchy-Riemann operator Du to its complex-linear part does
not change the asymptotic operators and is therefore a homotopy through Fred-
holm operators. We therefore have a continuously varying homotopy of each of the
relevant fibers of det(J) to the determinant bundle over a family of complex-linear
operators, which inherit the complex orientation described in Exercise 11.10. �

Proposition 11.12 applies in particular to all moduli spaces of closed J-holomorphic
curves, and thus solves the orientation problem in that case.

11.6. An algorithm for coherent orientations

We now briefly describe the construction of coherent orientations due to Bour-
geois and Mohnke [BM04]. A slightly different construction is described in [EGH00],
though it appears to have minor errors in some details.

Recall from Lecture 4 the notion of an asymptotically Hermitian vector bundle
(E, J) over a punctured Riemann surface (Σ̇, j). Here (Σ̇, j) is endowed with the
extra structure of fixed cylindrical ends (U̇z, j) ∼= (Z±, i) for each puncture z ∈ Γ±,
which determines a choice of asymptotic markers. Likewise, the bundle E comes
with an asymptotic bundle (Ez, Jz, ωz)→ S1 associated to each puncture, carrying
compatible complex and symplectic structures. We shall now endow E with a bit

more structure that is always naturally present in the case E = u∗TŴ : namely,
assume each of the asymptotic bundles comes with a splitting

(11.4) (Ez, Jz, ωz) = (C⊕ Êz, i⊕ Ĵz, ω0 ⊕ ω̂z),
where ω0 is the standard symplectic structure on the trivial complex line bundle

(C, i) over S1, and (Êz, Ĵz, ω̂z) → S1 is another Hermitian bundle. Fix a choice

{Az}z∈Γ of nondegenerate asymptotic operators on each of the bundles (Êz, Ĵz, ω̂z),
and define the topological space

CR(E, {Az}z∈Γ)
to consist of all Cauchy-Riemann type operators on E that are asymptotic at the
punctures z ∈ Γ to the asymptotic operators

(−i∂t)⊕Az : Γ(C⊕ Êz)→ Γ(C⊕ Êz).
This is an affine space, so it is contractible, and if δ > 0 is sufficiently small
and VΓ ⊂ Γ(E) denotes a complex (#Γ)-dimensional space of smooth sections
that take constant values in C ⊕ {0} ⊂ Ez near each puncture z, then every
D ∈ CR(E, {Az}z∈Γ) determines a Fredholm operator

D : W k,p,δ(E)⊕ VΓ →W k−1,p,δ(HomC(TΣ, E)).
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It follows that a choice of orientation of the determinant line for any one of these
operators determines an orientation for all of them. The point of this construction
is that every u ∈ M$(J) determines an operator Du belonging to a space of this
form.

We now construct a gluing operation for Cauchy-Riemann operators that lin-
earizes the gluing maps described in §11.1. Suppose (Ei, J i)→ (Σ̇i = Σi \Γi, ji) for
i = 0, 1 is a pair of asymptotically Hermitian bundles of the same rank, endowed
with asymptotic splittings as in (11.4) and asymptotic operators {Az}z∈Γi

, and that
there exists a pair of punctures z0 ∈ Γ+

0 and z1 ∈ Γ−
1 such that some unitary bundle

isomorphism

Ê1
z1

∼=−→ Ê0
z0

identifies Az1 with Az0. Note that such an isomorphism is uniquely determined up
to homotopy whenever it exists. For R > 0, we can define a family of glued Riemann
surfaces

(Σ̇R = ΣR \ ΓR, jR)
by cutting off the ends (R,∞) × S1 ⊂ U̇z0 and (−∞,−R) × S1 ⊂ U̇z1 and gluing
{R} × S1 ⊂ Σ̇0 to {−R} × S1 ⊂ Σ̇1. The glued Riemann surface contains an
annulus biholomorphic to ([−R,R] × S1, i) in place of the infinite cylindrical ends

at the punctures z0 and z1. The unitary isomorphism Ê1
z1 → Ê0

z0 then determines
an isomorphism E1

z1
→ E0

z0
via the splitting (11.4) and hence an asymptotically

Hermitian bundle
(ER, JR)→ (Σ̇R, JR).

Using cutoff functions in the neck [−R,R] × S1, any Cauchy-Riemann operators
Di ∈ CR(Ei, {Az}z∈Γi

) for i = 0, 1 now determine a family of operators

DR ∈ CR(ER, {Az}z∈ΓR
)

uniquely up to homotopy. Analogously to the gluing maps in §11.1, one can ar-
range this construction so that the operators DR converge in some sense to the pair
(D0,D1) as R→∞, which has the following consequence:

Lemma 11.13 ([BM04, Corollary 7]). For R > 0 sufficiently large, there is a
natural isomorphism

det(D0)⊗ det(D1)→ det(DR)

that is defined up to homotopy. �

Up to some additional direct sums and quotients by finite-dimensional complex
vector spaces, this isomorphism should be understood as the linearization of a glu-
ing map between moduli spaces, generalized to a setting in which the holomorphic
curves involved need not be regular. To orientM$(J) coherently, it now suffices to
choose orientations for the operators in CR(E, {Az}z∈Γ) that vary continuously un-
der deformations of j and E and are preserved by the isomorphisms of Lemma 11.13.
This motivates the following generalization of Definition 11.2.

Definition 11.14. A system of coherent orientations is an assignment to
each asymptotically Hermitian bundle (E, J)→ (Σ̇, j) with asymptotic splittings as
in (11.4) and asymptotic operators {Az}z∈Γ of an orientation for the determinant
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line of each D ∈ CR(E, {Az}), such that these orientations vary continuously with
D as well as the data j and J , and such that the isomorphisms in Lemma 11.13 are
always orientation preserving.

The prescription of [BM04] to construct such systems is now as follows.

(1) For any trivial bundle E over Σ̇ = C with∞ as a negative puncture and any
asymptotic operator A∞, choose an arbitrary continuous family of orien-
tations for the operators in CR(E, {A∞}), subject only to the requirement
that these should match the complex orientation whenever A∞ is complex
linear.

(2) For any trivial bundle E− over Σ̇ = C with ∞ as a positive puncture, any
asymptotic operator A∞ and any D− ∈ CR(E−, {A∞}), let E+ denote the
trivial bundle over C with a negative puncture as in step (1), choose any
D+ ∈ CR(E+, {A∞}) and construct the resulting family of glued operators

DR ∈ CR(ER),

where the ER are trivial bundles over S2. Since S2 has no punctures, DR

has a natural complex orientation, so define the orientation of D− to be
the one that is compatible via Lemma 11.13 with this and the orientation
chosen for D+ in step (1).

(3) For an arbitrary (E, J)→ (Σ̇, j), glue positive and negative planes to Σ̇ to

produce a bundle over a closed surface Σ̂, and define the orientation of any
D ∈ CR(E, {Az}z∈Γ) to be compatible via Lemma 11.13 with the choices

in steps (1) and (2) and the complex orientation for operators over Σ̂.

It should be easy to convince yourself that if we now vary the bundle (E, J)→
(Σ̇, j) or the operators on this bundle (but not the asymptotic operators!) contin-
uously, the capping procedure described in step (3) above produces a continuous
family of Cauchy-Riemann type operators on bundles over closed Riemann surfaces.
Since these all carry the complex orientation, the resulting orientations of the orig-
inal operators vary continuously. It is similarly clear from the construction that
any Cauchy-Riemann operator whose asymptotic operators are all complex linear
will end up with the complex orientation. Bourgeois and Mohnke use this fact to
prove that any system of orientations constructed in this way is compatible with
all possible linear gluing maps arising from Lemma 11.13. The idea is to reduce
it to the complex-linear case by gluing cylinders to the ends of any asymptotically
Hermitian bundle so that the asymptotic operators can be changed at will; see
[BM04, Proposition 8].

11.7. Permutations and bad orbits revisited

The heuristic proofs in §11.2 can now be made precise in the following way.
Suppose D ∈ CR(E, {Az}z∈Γ), and D′ is the same operator after interchanging

two of the punctures in Γ. Imagine gluing (E, J)→ (Σ̇, j) to trivial bundles E1 and
E2 over planes in order to cap off the two punctures that are being interchanged,
and choose Cauchy-Riemann operators D1 and D2 on these planes to form a glued
operator on the capped surface. This capping procedure is done one plane at a time,
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and the order of the two punctures determines which plane is glued first. Compati-
bility with the isomorphisms of Lemma 11.13 then dictates that the orientations of
det(D) and det(D′) match if and only if the orientations of det(D1)⊗ det(D2) and
det(D2)⊗det(D1) match. Since orientations of det(Di) for i = 1, 2 are equivalent to
orientations of kerDi ⊕ cokerDi, reversing the order of the tensor product changes
orientations if and only if both of these direct sums are odd dimensional, which
means ind(D1) and ind(D2) are both odd. If the bundles have complex rank n and
the asymptotic operators are Ai for k = 1, 2, we have

ind(Di) = nχ(C)± µCZ((−i∂t ⊕Ai)± δ) = n− 1± µCZ(Ai),

which matches n− 3 + µCZ(Ai) modulo 2. This proves Proposition 11.4.
Similarly for Proposition 11.5, we consider the action of the generator ψ ∈ Zm

on det(D) where ψ rotates the cylindrical end by 1/m at some puncture where the
trivialized asymptotic operatorA is of the form −i∂t−S(mt) for a loop of symmetric
matrices S(t). Capping off this puncture with a plane carrying a Cauchy-Riemann
operator D∞, coherence dictates that the same transformation must act the same
way on the orientation of det(D∞). Since ψm = 1, ψ cannot reverse this orientation
if m is odd. To understand the case of m even, note first that we are free to
choose D∞ so that it is an m-fold cover, meaning it is related to the branched cover
ϕ : C→ C : z 7→ zm by

D∞(η ◦ ϕ) = ϕ∗D̂∞η

for some other Cauchy-Riemann operator D̂∞, which is asymptotic to Â := −i∂t −
S(t). Now the group Zm generated by ψ acts on kerD∞ and cokerD∞, so represen-
tation theory tells us

kerD∞ = V1 ⊕ V−1 ⊕ Vrot
cokerD∞ = W1 ⊕W−1 ⊕Wrot,

where ψ acts on V±1 and W±1 as ±1 and acts as orientation-preserving rotations on
Vrot and Wrot. It follows that ψ reverses the orientation of kerD∞⊕cokerD∞ if and
only if dimV−1−dimW−1 is odd. Now observe that there are natural isomorphisms

V1 = ker D̂∞, W1 = coker D̂∞,

hence
dimV−1 − dimW−1 = ind(D∞)− ind(D̂∞) (mod 2).

This difference in Fredholm indices is precisely µCZ(A)− µCZ(Â) up to a sign, and
this completes the proof of Proposition 11.5.





LECTURE 12

The generating function of SFT

Contents

12.1. Some important caveats on transversality 243

12.2. Auxiliary data, grading and supercommutativity 244

12.3. The definition of H and commutators 247

12.4. Interlude: How to count points in an orbifold 251

12.5. Cylindrical contact homology revisited 256

12.6. Combinatorics of gluing 259

12.7. Some remarks on torsion, coefficients, and conventions 263

12.7.1. What if H1(M) has torsion? 263
12.7.2. Combinatorial conventions 263
12.7.3. Coefficients: Q, Z or Z2? 264

It is time to begin deriving algebraic consequences from the analytical results of
the previous lectures. We saw the simplest possible example of this in Lecture 10,
where the behavior of holomorphic cylinders in symplectizations of contact mani-
folds without contractible Reeb orbits led to a rudimentary version of cylindrical
contact homology HC∗(M, ξ) with Z2 coefficients. Unfortunately, the condition on
contractible orbits means that this version of HC∗(M, ξ) cannot always be defined,
and even when it can, it only counts cylinders—we would only expect it to capture
a small fragment of the information contained in more general moduli spaces of
holomorphic curves. Extracting information from these general moduli spaces will
require enlarging our algebraic notion of what a Floer-type theory can look like.

12.1. Some important caveats on transversality

For this and the next lecture, we fix the following fantastically optimistic as-
sumption:

Assumption 12.1 (science fiction). One can choose suitably compatible almost
complex structures so that all pseudoholomorphic curves are Fredholm regular.

This assumption held in Lecture 10 for the curves we were interested in, because
they were all guaranteed for topological reasons to be somewhere injective. It can
also be shown to hold under some very restrictive conditions on Conley-Zehnder
indices in dimension three, see [Nel15,Nel13]. Both of those are very lucky situ-
ations, and as we’ve discussed before, the assumption cannot generally be achieved
merely by perturbing J generically—it must sometimes fail for curves that are mul-
tiply covered, and such curves always exist (see §12.4 for more on this). The only
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way in reality to ensure something like Assumption 12.1 is to perturb the nonlin-
ear Cauchy-Riemann equation more abstractly, e.g. by replacing ∂̄Ju = 0 with an
inhomogeneous equation of the form

∂̄Ju = ν

for a generic perturbation ν. This is the standard technique in certain versions of
Gromov-Witten theory, see e.g. [RT95,RT97]. Alternatively, one can allow J to
depend generically on points in the domain rather than just points in the target,
as in [MS04, §7.3]. Both approaches eliminate the initial problem with multiple
covers, but they both also run into serious and subtle difficulties concerning the re-
lationship betweenM(J) and the strata of its compactificationM(J). As observed
in [Sal99, §5], the possibility of symmetry in strata of M(J) makes it necessary
for any sufficiently general abstract perturbation scheme to involve multivalued per-
turbations, and it is important for these perturbations to be “coherent” in a sense
analogous to our discussion of orientations in the previous lecture. These notions
have not yet all been developed in a sufficiently consistent and general way to give
a rigorous definition of SFT, though there has been much progress: this is the main
objective of the long-running polyfold project by Hofer-Wysocki-Zehnder [Hof06].
Recently, a quite different and much more topological approach has been proposed
by John Pardon [Par].

For most of this lecture we will ignore these subtleties and simply adopt As-
sumption 12.1 as a convenient fiction, thus pretending that all components ofM(J)
are smooth orbifolds of the correct dimension and all gluing maps are smooth. All
“theorems” stated under this assumption should be read with the caveat that they
are only true in a fictional world in which the assumption holds. Even if it is a
fiction, one can get quite far with this point of view: it is still possible not only
to deduce the essential structure of what we assume will someday be a rigorously
defined polyfold-based SFT, but also to infer the existence of certain contact in-
variants that have interesting rigorous applications requiring only well-established
techniques, e.g. the cobordism obstructions discovered in [LW11].

12.2. Auxiliary data, grading and supercommutativity

The goal is to define an invariant of closed (2n − 1)-dimensional contact mani-
folds (M, ξ) with closed nondegenerate Reeb orbits as generators and a Floer-type
differential counting J-holomorphic curves in the symplectization (R×M, d(erα)).
The auxiliary data we choose must obviously therefore include a nondegenerate con-
tact form α and a generic J ∈ J (α), for which we shall assume Assumption 12.1
holds. For convenience, we will also assume throughout most of this lecture:

Assumption 12.2. H1(M) is torsion free.

This is needed mainly in order to be able to define an integer grading, though
without this assumption, it is still always possible to define a Z2-grading—see §12.7.1
for more on what to do when Assumption 12.2 does not hold. We now supplement
the auxiliary data (α, J) with the following additional choices:
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(1) Coherent orientations as in Lecture 11 for the moduli spaces M$(J) with
asymptotic markers.

(2) A collection of reference curves

S1 ∼= C1, . . . , Cr ⊂ M

whose homology classes form a basis of H1(M).
(3) A unitary trivialization of ξ along each of the reference curves C1, . . . , Cr,

denoted collectively by τ .
(4) A spanning surface Cγ for each periodic Reeb orbit γ: this is a smooth

map of a compact and oriented surface with boundary into M such that

∂Cγ =
∑

i

mi[Ci]− [γ]

in the sense of singular 2-chains, where mi ∈ Z are the unique coefficients
with [γ] =

∑
imi[Ci] ∈ H1(M).

These choices determine the following. To any collections of Reeb orbits γ
± =

(γ±1 , . . . , γ
±
k±) and any relative homology class A ∈ H2(M, γ̄+ ∪ γ̄

−) with ∂A =∑
i[γ

+
i ]−

∑
j[γ

−
j ], we can now associate a cycle in absolute homology,

A+
∑

i

Cγ+i
−
∑

j

Cγ−j
∈ H2(M).

Indeed, the boundary of this real 2-chain is a sum of linear combinations of the
reference curves Ci, which add up to zero because

∑
i[γ

+
i ] and

∑
j[γ

−
j ] are homolo-

gous. We shall abuse notation and use this correspondence to associate the absolute
homology class

[u] ∈ H2(M)

to any asymptotically cylindrical holomorphic curve u in R × M . Adapting the
previous notation,

Mg,m(J,A,γ
+,γ−)

for A ∈ H2(M) will now denote a moduli space of curves whose relative homology
classes glue to the chosen capping surfaces to form A.

Secondly, the chosen trivializations τ along the reference curves can be pulled
back and extended over every capping surface Cγ , giving trivializations of ξ along
every orbit γ uniquely up to homotopy. We shall define

µCZ(γ) ∈ Z

from now on to mean the Conley-Zehnder index of γ relative to this trivialization.

Exercise 12.3. Show that if H1(M) has no torsion and u : Σ̇ → R × M is
asymptotically cylindrical, then its relative first Chern number with respect to the
trivializations τ described above satisfies

cτ1(u
∗T (R×M)) = c1([u]),

where c1([u]) denotes the evaluation of c1(ξ) ∈ H2(M) on [u] ∈ H2(M).
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By Exercise 12.3, the index of a curve u : (Σ̇ = Σ \ Γ, j) → (R ×M,J) with
[u] = A ∈ H2(M) and asymptotic orbits {γz}z∈Γ± can now be written as

(12.1) ind(u) = −χ(Σ̇) + 2c1(A) +
∑

z∈Γ+

µCZ(γz)−
∑

z∈Γ−

µCZ(γz).

In order to keep track of homology classes of holomorphic curves algebraically,
we can define our theory to have coefficients in the group ring Q[H2(M)], or more
generally,

R := Q[H2(M)/G]

for a given subgroup G ⊂ H2(M). Elements of R will be written as finite sums
∑

i

cie
Ai ∈ R, ci ∈ Q, Ai ∈ H2(M)/G,

where the multiplicative structure of the group ring is derived from the additive
structure of H2(M)/G by eAeB := eA+B. The most common examples of G are
H2(M) and the trivial subgroup, giving R = Q or R = Q[H2(M)] respectively. We
will see a geometrically meaningful example in between these two extremes in the
next lecture.

Finally, we define certain formal variables which have degrees in Z or Z2N for
some N ∈ N, and will serve as generators in our graded algebra. To each closed
Reeb orbit γ we associate two variables, qγ, pγ, whose integer-valued degrees are

|qγ | = n− 3 + µCZ(γ), |pγ| = n− 3− µCZ(γ).

To remember these numbers, think of the index of a J-holomorphic plane u positively
or negatively asymptotic to γ, with [u] = 0.

We also assign an integer grading to the group ring Q[H2(M)] such that rational
numbers have degree 0 and

|eA| = −2c1(A), for A ∈ H2(M).

If c1(A) = 0 for every A ∈ G, in particular if c1(ξ) = 0, then this descends to an
integer grading on the ring R = Q[H2(M)/G]. Otherwise, R inherits a Z2N -grading,
where

N := min
{
c1(A) > 0

∣∣ A ∈ G
}
.

A Z2-grading is well defined in every case.
The algebra will include one additional formal variable ~, which is defined to

have degree

|~| = 2(n− 3).

The degrees of ~ and the pγ and qγ variables should all be interpreted modulo 2N
if c1(ξ)|G 6= 0.

The algebra of SFT uses monomials in the variables pγ and qγ respectively to
encode sets of positive and negative asymptotic orbits of holomorphic curves, while
the group ring R = Q[H2(M)/G] is used to keep track of the homology classes of
such curves, and powers of ~ are used to keep track of their genus. More precisely,
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given g ≥ 0, A ∈ H2(M) and ordered lists of Reeb orbits γ
± = (γ±1 , . . . , γ

±
k±), we

encode the moduli spaceMg,0(J,A,γ
+,γ−) formally via the product

(12.2) eA~g−1qγ
−
pγ

+

:= eA~g−1qγ−1 . . . qγ
−
k−
pγ+1 . . . pγ

+
k+

,

where we are abusing notation by identifying A with its equivalence class inH2(M)/G
if G is nontrivial. Notice that according to the above definitions, this expression has
degree

|eA~g−1qγ
−
pγ

+| = |eA|+ (g − 1)|~|+
k−∑

i=1

[
(n− 3) + µCZ(γ

−
i )
]

+

k+∑

i=1

[
(n− 3)− µCZ(γ

+
i )
]

= −2c1(A) + (2g − 2 + k+ + k−)(n− 3)−
k+∑

i=1

µCZ(γ
+
i ) +

k−∑

i=1

µCZ(γ
−
i )

= − vir-dimMg,0(J,A,γ
+,γ−),

(12.3)

interpreted modulo 2N if c1(ξ)|G 6= 0. The orientation results in Lecture 11 suggest
introducing a supercommutativity relation for the variables qγ and pγ : defining the
graded commutator bracket by

(12.4) [F,G] := FG− (−1)|F ||G|GF,

we define a relation on the set of all monomials of the form qγ
−
pγ

+
by setting

(12.5) [qγ1 , qγ2 ] = [pγ1 , pγ2 ] = 0

for all pairs of orbits γ1 and γ2. As a consequence, permuting the orbits in the lists
γ
± changes the sign of the monomial (12.2) if and only if it changes the orientation

of the corresponding moduli space. In particular, any product that includes multiple
copies of an odd generator qγ or pγ is identified with 0. This accounts for the fact that
any rigid moduli spaceMg,0(J,A,γ

+,γ−) with two copies of γ among its positive or
negative asymptotic orbits contains zero curves when counted with the correct signs:
every curve is cancelled by a curve that looks identical except for a permutation of
two of its punctures.

12.3. The definition of H and commutators

To write down the SFT generating function, let

Mσ(J) :=M(J)
/
∼

denote the space of equivalence classes where two curves are considered equivalent
if they have parametrizations that differ only in the ordering of the punctures. This
space is in some sense more geometrically natural thanM(J) orM$(J), but due to
the orientation results in the previous lecture, less convenient for technical reasons.
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Given u : (Σ̇, j) → (R ×M,J) representing a nonconstant element ofMσ(J) with
no marked points, it is natural to define

Autσ(u) ⊂ Aut(Σ, j)

as the (necessarily finite) group of biholomorphic transformations ϕ : (Σ, j)→ (Σ, j)
satisfying u = u ◦ ϕ; in particular, elements of Autσ(u) are allowed to permute the
punctures, so Autσ(u) is generally a larger group than the usual Aut(u). For k ∈ Z,
let

Mσ
k(J) ⊂Mσ(J)

denote the subset consisting of index k curves that have no marked points and whose
asymptotic orbits are all good (see Definition 11.6 in Lecture 11).

We now define the SFT generating function as a formal power series

(12.6) H =
∑

u∈Mσ
1 (J)/R

ǫ(u)

|Autσ(u)|~
g−1eAqγ

−
pγ

+

,

where the terms of each monomial are determined by u ∈Mσ
1(J) as follows:

• g is the genus of u;
• A is the equivalence class of [u] ∈ H2(M) in H2(M)/G;
• γ

± = (γ±1 , . . . , γ
±
k±) are the asymptotic orbits of u after arbitrarily fixing

orderings of its positive and negative punctures;
• ǫ(u) ∈ {1,−1} is determined by the chosen coherent orientations onM$(J).
Specifically, given the chosen ordering of the punctures and an arbitrary
choice of asymptotic markers at each puncture, u determines a 1-dimensional
connected component ofM$(J), and we define ǫ(u) = +1 if and only if the
coherent orientation of M$(J) matches its tautological orientation deter-
mined by the R-action.

Note that while both ǫ(u) and the corresponding monomial qγ
−
pγ

+
depend on a

choice of orderings of the punctures, their product does not depend on this choice.
Moreover, ǫ(u) does not depend on the choice of asymptotic markers since curves
with bad asymptotic orbits are excluded fromMσ

1(J). Since every monomial in H
corresponds to a holomorphic curve of index 1, (12.3) implies

|H| = −1.
There are various combinatorially more elaborate ways to rewrite H. For any

Reeb orbit γ, let

κγ := cov(γ) ∈ N

denote its covering multiplicity, and for a finite list of orbits γ = (γ1, . . . , γk), let

κγ :=
k∏

i=1

κγi .

Given u ∈ Mσ(J) with k± ≥ 0 positive/negative punctures asymptotic to the set

of orbits γ
± = (γ1±, . . . , γ

k±
± ), there are k+!k−!κγ+κγ− ways to order the punctures

and choose asymptotic markers, but some of them are equivalent since (by an easy
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variation on Proposition 11.1) the finite group Autσ(u) acts freely on this set of
choices. As a result, (12.6) is the same as

(12.7) H =
∑

u∈M$
1(J)/R

ǫ(u)

k+!k−!κγ+κγ−
~g−1eAqγ

−
pγ

+

,

where M$
1(J) denotes the space of all index 1 curves without marked points in

M$(J), and the rest of the mononomial is determined by the condition that u
belongs toM$

g,0(J,A,γ
+,γ−), with no need for any arbitrary choices. Another way

of writing this is

(12.8) H =
∑

g,A,γ+,γ−

#
(
M$

g,0(J,A,γ
+,γ−)

/
R
)

k+!k−!κγ+κγ−
~g−1eAqγ

−
pγ

+

,

where the sum ranges over all integers g ≥ 0, homology classes A ∈ H2(M) and
ordered tuples of Reeb orbits γ± = (γ±1 , . . . , γ

±
k±
), and #

(
M$

g,0(J,A,γ
+,γ−)

/
R
)
∈

Z is the signed count of index 1 connected components inM$
g,0(J,A,γ

+,γ−). For
fixed g and γ

±, the union of these spaces for all A ∈ H2(M) is finite due to SFT
compactness, as the energy of curves in (R×M, d(etα)) is computed by integrating
exact symplectic forms and thus (by Stokes) admits a uniform upper bound in terms
of γ+. For this reason, (12.8) defines a formal power series in the p variables and
in ~, with coefficients that are polynomials in the q variables and the group ring R.

We played a slightly sneaky trick in writing down (12.7) and (12.8): these sum-
mations to not exclude bad orbits, whereas (12.6) was a sum over curves u that are
not asymptotic to any bad orbits—a necessary exclusion in that case because ǫ(u)
would otherwise depend on choices of asymptotic markers. The reason bad orbits
are allowed in (12.8) is that their total contribution adds up to zero: indeed, bad
orbits are always multiple covers with even multiplicity, so whenever u ∈ M$(J)
has a puncture approaching a bad orbit with multiplicity 2m, there are exactly
2m − 1 other elements of M$(J) that differ only by adjustment of the marker at
that one puncture, and by Proposition 11.5, half of these cancel out the other half
in the signed count. We’ve already seen that a similar remark explains the harmless
absence from (12.8) of terms with multiple factors of any odd generator qγ or pγ.

Remark 12.4. Readers famliar with Floer homology may see a resemblance
between the group ring R = Q[H2(M)/G] and the Novikov rings that often appear
in Floer homology, though R is not a Novikov ring since it only allows finite sums.
In Floer homology, the Novikov ring sometimes must be included because counts of
curves may fail to be finite, though they only do so if the energies of those curves
blow up. The situation above is somewhat different: since the symplectization is an
exact symplectic manifold, Stokes’ theorem implies that energy cannot blow up if
the positive asymptotic orbits are fixed, and one therefore obtains well-defined curve
counts no matter the choice of the coefficient ring R. The use of the group ring is
convenient however for two reasons: first, without it one cannot always define an
integer grading, and second, different choices of coefficients can sometimes be used
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to detect different geometric phenomena via SFT. We will see an example of the
latter in Lecture 13.

The compactness and gluing theory of SFT is encoded algebraically by viewing H
as an element on a noncommutative operator algebra determined by the commutator
relations

[pγ, qγ ] = κγ~

[pγ, qγ′ ] = 0 if γ 6= γ′.
(12.9)

Here [ , ] again denotes the graded commutator (12.4), so “commuting” generators
actually anticommute whenever they are both odd. The rest of the multiplicative
structure of this algebra is determined by requiring all elements of R and powers
of ~ (all of which are even generators) to commute with everything, meaning all
operators are R[[~]]-linear.

One concrete representation of this operator algebra is as follows: let A denote
the graded supercommutative unital algebra over R generated by the set

{
qγ
∣∣ γ a good Reeb orbit

}
.

The ring of formal power series A[[~]] is then an R[[~]]-module. Define each of the
generators qγ to be R[[~]]-linear operators on A[[~]] via multiplication from the left,
and define pγ : A[[~]]→ A[[~]] by

(12.10) pγ = κγ~
∂

∂qγ
.

Here the R[[~]]-linear partial derivative operator is defined via

∂

∂qγ
qγ = 1,

∂

∂qγ
qγ′ = 0 for γ 6= γ′

and the graded Leibniz rule

∂

∂qγ
(FG) =

∂F

∂qγ
G+ (−1)|qγ ||F |F

∂G

∂qγ

for all homogeneous elements F,G ∈ A[[~]].
Exercise 12.5. Check that the operator pγ : A[[~]]→ A[[~]] defined above has

the correct degree and satisfies the commutation relations (12.5) and (12.9).

Notice that while H contains terms of order −1 in ~, every term also contains
at least one pγ variable since all index 1 holomorphic curves in (R×M, d(etα)) have
at least one positive puncture. The substitution (12.10) thus produces a differential
operator in which every term contains a nonnegative power of ~, giving a well-defined
R[[~]]-linear operator

DSFT : A[[~]] H−→ A[[~]].
The following may be regarded as the fundamental theorem of SFT.

Theorem 12.6. H2 = 0.
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We will discuss in §12.6 how this relation follows from the compactness and
gluing theory of punctured holomorphic curves, and we will use it in Lecture 13 to
define various Floer-type contact invariants. The first and most obvious of these is
the homology

HSFT
∗ (M, ξ) := H∗(A[[~]],DSFT),

which will turn out to be an invariant of (M, ξ) in the sense that any two choices
of α, J and the other auxiliary data described in §12.2 gives rise to a functorial
isomorphism between the two graded homology groups. Notice that while A[[~]] is
an algebra, its product structure does not descend to HSFT

∗ (M, ξ) since DSFT is not a
derivation—indeed, it is a formal sum of differential operators of all orders, not just
order one. In the next lecture we will discuss various ways to produce homological
invariants out of H with nicer algebraic structures.

On the other hand, it is fairly easy to understand the geometric meaning of the
complex (A[[~]],DSFT) in Floer-theoretic terms. Each individual curve u ∈ Mσ

1(J)
with genus g, homology class A ∈ H2(M) and asymptotic orbits γ± = (γ±1 , . . . , γ

±
k±)

contributes to DSFT the differential operator

ǫ(u)

|Autσ(u)|κγ+~g+k+−1eAqγ−1 . . . qγ
−
k−

∂

∂qγ+1
. . .

∂

∂qγ+k+

.

Applying this operator to a monomial qγ1 . . . qγm ∈ A[[~]] that does not contain all of
the generators qγ+1 , . . . , qγ

+
k+

will produce zero, and its effect on a product that does

contain all of these generators will be to eliminate them and multiply qγ−1 . . . qγ
−
k−

by

whatever remains, plus some combinatorial factors and signs that may arise from
differentiating by the same qγ more than once. Ignoring the combinatorics and
signs for the moment, this operation on qγ1 . . . qγm has a geometric interpretation:
it counts all potentially disconnected J-holomorphic curves of index 1 (i.e. disjoint
unions of u with trivial cylinders) that have γ1, . . . , γm as their positive asymptotic
orbits; see Figure 12.1. In other words, the action of DSFT on each monomial qγ for
γ = (γ1, . . . , γm) is determined by a formula of the form

(12.11) DSFTq
γ =

∞∑

g=0

∑

A∈H2(M)

∑

γ′

m∑

k=1

~g+k−1eAng(γ,γ
′, k)qγ

′
,

where ng(γ,γ
′, k) is a product of some combinatorial factors with a signed count of

generally disconnected index 1 holomorphic curves of genus g and homology class A
with positive ends at γ and negative ends at γ ′, such that the nontrivial connected
component has exactly k positive ends. The presence of the combinatorial factors
hidden in ng(γ,γ

′, k) is a slightly subtle point which we will try to clarify in the
following sections.

12.4. Interlude: How to count points in an orbifold

As in all versions of Floer theory, the proof that H2 = 0 is based on the fact that
certain moduli spaces are compact oriented 1-dimensional manifolds with bound-
ary, and the signed count of their boundary points is therefore zero. We must be
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γ1 γ2 γ3 γ4 γ5 γ6

γ7 γ8

u

Figure 12.1. Counting disjoint unions of index 1 curves u ∈
M2,0(J,A, (γ3, γ4, γ5), (γ7, γ8)) with some trivial cylinders contributes
a multiple of ~4eAqγ1qγ2qγ7qγ8qγ6 to DSFT(qγ1qγ2qγ3qγ4qγ5qγ6).

careful of course because, strictly speaking, M(J) is not a manifold even when
Assumption 12.1 holds—it is an orbifold, with the possibility of singularities at mul-
tiply covered curves with nontrivial automorphism groups. On the other hand, one
can show that (after excluding curves with bad asymptotic orbits) it is an oriented
orbifold, and oriented 1-dimensional orbifolds happen to be very simple objects:
since smooth finite group actions on R cannot be nontrivial without reversing ori-
entation, all oriented 1-dimensional orbifolds are actually manifolds, suggesting the
simple formula

“#∂M1(J) = 0.”

I have placed this formula in quotation marks for a reason. The reality of the
situation is somewhat more complicated.

This is in fact where it becomes important to remember that Assumption 12.1, in
the way that we stated it, really is not just science fiction but fantasy : transversality
is sometimes impossible to achieve for multiple covers, and we must therefore at least
have a sensible back-up plan for such cases. To see the problem, remember that our
local structure theorem forM(J) was proved by identifying it in a neighborhood of

any curve u0 : (Σ̇, j0)→ (R×M,J) with a set of the form

∂̄−1
J (0)

/
G,

where ∂̄J : T ×Bk,p,δ → Ek−1,p,δ is a smooth section of a Banach space bundle Ek−1,p,δ

over the product of a Teichmüller slice T through j0 with a Banach manifold Bk,p,δ
of maps Σ̇→ R×M , and G is the group of automorphisms of j0, whose action on
the base1

G× (T × Bk,p,δ)→ T × Bk,p,δ : (ψ, (j, u)) 7→ (ψ∗j, u ◦ ψ)
preserves ∂̄−1

J (0). In fact, the action of G on T ×Bk,p,δ is covered by a natural action
on the bundle Ek−1,p,δ, and the reason for it preserving the zero-set is that ∂̄J is an
equivariant section,

∂̄J(ψ
∗j, u ◦ ψ) = ψ∗∂̄J(j, u).

1As you may know if you’ve ever heard a talk about polyfolds, there are some analytical
problems with this discussion if G is a Lie group of positive dimension: its action on the infinite-
dimensional manifold Bk,p,δ of non-smooth maps cannot then be considered smooth in any con-
ventional sense. This problem leads to the introduction of sc-smooth structures, cf. [HWZ07].
There is no problem however if G is finite, e.g. if the underlying Riemann surface is stable, which
we may as well assume for this discussion.
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If G is finite, then another way to say this is that ∂̄J is a smooth Fredholm section
of the infinite-dimensional orbibundle Ek−1,p,δ/G over the orbifold (T × Bk,p,δ)/G,
whose isotropy group at (j0, u0) is Aut(u0). This section is transverse to the zero-
section if and only if the usual regularity condition holds, making ∂̄−1

J (0)/G a suborb-
ifold of (T ×Bk,p,δ)/G whose isotropy group at (j0, u0) is some quotient of Aut(u0).

Remark 12.7. Most sensible definitions of the term orbifold (cf. [ALR07,Dav,
FO99]) require local models of the form U/G, where U is a G-invariant open subset
of a vector space on which the finite group G acts smoothly and effectively—the
latter condition is necessary in order to have isotropy groups that are well-defined
up to isomorphism at every point. In the above example, G acts effectively on
T × Bk,p,δ but might have a nontrivial subgroup H ⊂ G of transformations that
fix every element of ∂̄−1

J (0), in which case the G-action on ∂̄−1
J (0) can be replaced

by an effective action of G/H . The isotropy group of (j0, u0) ∈ ∂̄−1
J (0)/G is then

Aut(u0)/(Aut(u0) ∩H).

Now to see just how unreasonably optimistic Assumption 12.1 is, notice that it’s
easy to think up examples of smooth orbibundles in which zeroes of sections can
never be regular if they have nontrivial isotropy.

Example 12.8. Let M = C/Z2 with Z2 acting as the antipodal map, and
consider the trivial complex line bundle E = M × C = (C × C)/Z2, where the Z2

action on C × C identifies (z, v) with (−z, v). A smooth function f : C → C then
represents a section of the orbibundle E →M if and only if f(z) = f(−z) for all z.
This implies that if f(0) = 0, then df(0) = 0. It is possible to perturb f generically
to a section that is transverse to the zero-section, but such a perturbation can never
have zeroes at 0.

Of course, we do know how to assign Z-valued orders to degenerate zeroes of
sections, e.g. f(z) = z2 defines a section of E → M with a zero of order 2 at 0.
Notice however that if we perturb this to fǫ(z) = z2 + ǫ for ǫ > 0 small, then fǫ has
two simple zeroes at points near the origin, but they are actually the same point in
C/Z2, giving a count of only 1 zero. This means that if we give the zero of f at the
origin its full weight, then we are counting wrongly—the resulting count will not be
homotopy invariant. The correct algebraic count of zeroes is evidently

(12.12) #f−1(0) :=
∑

z∈f−1(0)⊂M

ord(f ; z)

κz
∈ Q,

where ord(f ; z) ∈ Z is the order of the zero (computed in the usual way as a winding
number, or in higher dimensions as the degree of a map of spheres, cf. [Mil97]), and
κz ∈ N denotes the order of the isotropy group at z.

Exercise 12.9. Convince yourself that for any smooth oriented orbibundle E →
M of real rank m over a compact, smooth and oriented m-dimensional orbifold M
without boundary, the count (12.12) gives the same result for any section with
isolated zeroes.2

Hint: The space of sections of an orbibundle is still a vector space, so any two

2If you’re still not sure what an orbibundle is, a definition can be found in [FO99, Chapter 1].
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are homotopic. Since M and [0, 1] are both compact, it suffices to focus on small

perturbations of a single section on a single orbifold chart.

For a slightly different perspective on (12.12), consider the special case of a closed

orbifold that is the quotient of a closed manifold M̃ by an effective orientation-
preserving finite group action,

M = M̃/G.

Suppose Ẽ → M̃ is an oriented vector bundle with rank equal to dimM , and G also

acts on Ẽ by orientation-preserving linear bundle maps that cover its action on M̃ ,
so the quotient

E = Ẽ/G→M

is an orbibundle. A section f :M → E is then equivalent to a G-equivariant section

f̃ : M̃ → Ẽ, and the signed count of zeroes

#f̃−1(0) =
∑

z∈f̃−1(0)⊂M̃

ord(f̃ ; z) ∈ Z

is of course the same for any section that has only isolated zeroes. It can also be
expressed in terms of f since any z ∈ f−1(0) ⊂M has exactly |G|/κz lifts to points

in f̃−1(0) ⊂ M̃ , implying

#f̃−1(0) =
∑

z∈f−1(0)⊂M

|G|
κz

ord(f ; z)

and thus #f−1(0) = 1
|G|#f̃

−1(0). The invariance of (12.12) is now an immediate

consequence of the invariance of #f̃−1(0), which follows from the standard argument
as in [Mil97].

Now, if you enjoyed reading [Mil97] as much as I did, then it may seem tempting
to try proving invariance of (12.12) in general by choosing a generic homotopy
H : [0, 1] × M → E between two generic sections f0 and f1 and showing that
H−1(0) ⊂ [0, 1] ×M is a compact oriented 1-dimensional orbifold with boundary.
As we observed at the beginning of this section, H−1(0) is then actually a manifold,
so the signed count of its boundary points should be zero. But this would give
the wrong result: it would suggest that

∑
z∈f−1(0)⊂M ord(f ; z) should be homotopy

invariant, without the rational weights, and we’ve already seen that this is not true.
What is going on here? The answer is that the homogopy H cannot in general be
made transverse to the zero-section, now matter how generically we perturb it! It
is an illustration of the fundamental conflict between the notions of genericity and
equivariance.

Example 12.10. Let M = C/Z2 as in Example 12.8, but define the complex
orbibundle E →M by

E = (C× C)
/
(z, v) ∼ (−z,−v),

i.e. the Z2-action also acts antipodally on fibers. Now a smooth function f : C→ C

defines a section of E if and only if f(−z) = −f(z), hence all such sections have a
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zero at the origin. Compare the two sections

f0(x+ iy) = x+ iy, f1(x+ iy) = (x3 − x) + iy.

They have qualitatively the same behavior near infinity, meaning in particular that
they are homotopic through a family of sections whose zeroes are confined to some
compact subset, thus we expect the algebraic count of zeroes to be the same for both.
This is true if the count is defined by (12.12): we have #f−1

0 (0) = #f−1
1 (0) = 1

2
, in

particular the negative zero of f1 at the origin counts for −1/2 while the positive
zero at (1, 0) ∼ (−1, 0) counts for 1. We see that the inclusion of the rational weights
1
κx

is crucial for this result. Notice that if H : [0, 1] ×M → E is a homotopy of

sections from f0 to f1, then H(τ, 0) = 0 for all τ , thus ∂τH(τ, 0) vanishes and

dH(τ, 0) = dfτ (0)

where fτ = H(τ, ·). But dfτ (0) cannot be an isomorphism for all τ ∈ (0, 1) since
df0(0) preserves orientation while df1(0) reverses it. This is not a problem that can
be fixed by making H more generic—the homotopy will never be transverse to the
zero-section, no matter what we do.

The need to address issues of the type raised by the above examples leads natu-
rally to the notion of multisections as outlined in [Sal99, §5] and [FO99], and this
is a major feature of the analysis under development by Hofer-Wysocki-Zehnder, see
for example [HWZ10]. In Example 12.10 for instance, one can consider functions

f : C→ Sym2(C) := (C× C)
/
(z1, z2) ∼ (z2, z1),

which can be regarded as doubly-valued sections of E → M if f is Z2-equivariant
for the antipodal action of Z2 on the symmetric product Sym2(C). Such a section
is considered single-valued at any point z where f(z) is of the form [(v, v)], so one
can now imagine homotopies from f0 to f1 through doubly-valued sections. One
advantage of this generalization is that f can now take nonzero values of the form
[(v,−v)] at the origin, e.g. if g : C→ C is any odd function, then

f(z) := [(g(z) + c, g(z)− c)]
is a well-defined multisection for every c ∈ C.

Exercise 12.11. Find a homotopy between the sections f0 and f1 of Exam-
ple 12.10 through doubly-valued sections, such that the homotopy is transverse to
the zero-section.

You may notice if you work out Exercise 12.11 that the zero set of the homotopy
in [0, 1] × M is still not submanifold or suborbifold. Instead, it naturally carries
the structure of a weighted branched manifold with boundary. The rational weights
attached to every point in this object can be used to explain the weights appearing
in (12.12) and thus give a Milnor-style proof that #f−1(0) ∈ Q is invariant.

We will not discuss multisections or weighted branched manifolds any further,
but the main takeaway from this discussion should be that the “right” way to count
0-dimensional orbifolds algebraically is always some version of (12.12), and the count
in general is a rational number, not an integer. We’ve discussed this above from
the perspective of obtaining a homotopy-invariant count, but the same logic applies
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to any Floer-type theory since the relation ∂2 = 0 is typically based on similar
arguments via 1-dimensional moduli spaces with boundary. While a more simplistic
notion of counting may produce well-defined homology theories in isolated cases
where Assumption 12.1 holds (e.g. in [Nel15]), we cannot expect it to generalize
beyond these cases, due to the fundamental conflict between transversality and
equivariance. On the other hand, it will be possible in our situation to remove
isotropy from the picture by lifting to moduli spaces with asymptotic markers; the
moduli space we’re interested in is always the quotient of this larger space by a
finite group action, so the situation is analogous to replacing an orbibundle E =

Ẽ/G → M̃/G by an ordinary vector bundle Ẽ over a manifold M̃ . In the infinite-
dimensional setting, transversality is still a hard problem, but having lifted to a
manifold and thus removed the need for equivariance, there is no longer any a priori
reason why it cannot be solved by choosing sufficiently generic perturbations. This
makes counting curves with rational weights seem a much more promising method
for defining invariants, and we will adopt this perspective in the discussion to follow.

12.5. Cylindrical contact homology revisited

Under an extra assumption on the complex (A[[~]],DSFT), we can recover from
it a more general version of the cylindrical contact homology we saw in Lecture 10.
Suppose in particular that there are no index 1 holomorphic planes in R ×M , so
every term in ~H has at least one factor of either ~ or one of the qγ variables. Then

DSFT =
∑

γ,γ′,A

κγ


 ∑

u∈M0,0(J,A,γ,γ′)/R

ǫ(u)

|Aut(u)|e
Aqγ′

∂

∂qγ


 + . . . ,

where the first sum is over all pairs of good Reeb orbits γ and γ′, and the ellipsis
is a sum of terms that all include at least a positive power of ~ or two qγ variables
or two partial derivatives. Let us abbreviate the spaces M0,0(J,A, γ, γ

′)/R of R-
equivalence classes of J-holomorphic cylinders by MA(γ, γ

′), and notice that for
any u ∈ MA(γ, γ

′), the automorphism group is a cyclic group of order equal to the
covering multiplicity

|Aut(u)| = κu := cov(u) ∈ N.

Thus for any single generator qγ, we have

DSFTqγ = ∂CCHqγ +O(|q|2, ~),
where

(12.13) ∂CCHqγ := κγ
∑

γ′,A


 ∑

u∈MA(γ,γ′)

ǫ(u)

κu


 eAqγ′ .

The fact that D2
SFT = 0 thus implies

∂2CCH = 0,

and the homology of the graded R-module generated by {qγ | γ good} with differ-
ential ∂CCH is an obvious generalization of the cylindrical contact homology from
Lecture 10. What we saw there was a special case of this where the combinatorial
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factor κγ/κu did not appear because we were restricting to a homotopy class in which
all orbits were simply covered, and all holomorphic cylinders were thus somewhere
injective.

The presence of the factor κγ/κu deserves further comment. According to the
above formula, we have

∂2CCHqγ =
∑

γ′,γ′′,A,A′

∑

u∈MA(γ,γ′)

∑

v∈MA′ (γ′,γ′′)

eA+A
′ κγκγ′ǫ(u)ǫ(v)

κuκv
qγ′′ ,

hence ∂2CCH = 0 holds if and only if for all A ∈ H2(M) and all pairs of good orbits
γ+, γ−,

(12.14)
∑

γ0

∑

B+C=A


 ∑

(u,v)∈MB(γ+,γ0)×MC(γ0,γ−)

κγ0
κuκv

ǫ(u)ǫ(v)


 = 0.

If γ+ and γ− happen to be simply covered orbits, then u and v in this expression
always have trivial automorphism groups and it is clear what this sum means: every
such pair (u, v) ∈ MB(γ+, γ0)×MC(γ0, γ−) corresponds to exactly κγ0 distinct holo-
morphic buildings obtained by different choices of decoration, so (12.14) is the count
of boundary points of the compactified 1-dimensional manifold of index 2 cylinders
MA(γ+, γ−)/R. This sum skips over all bad orbits γ0, but this is fine because when-
ever the breaking orbit is bad, there are evenly many choices of decoration such that
half of these choices cancel the other half when counted with the correct signs.

To understand why this formula is still correct in the presence of automorphisms,
let us outline two equivalent approaches.

The easiest option is to instead consider moduli spaces with asymptotic markers,
which never have automorphisms: removing unnecessary factors of κγ+ and κγ− then
transforms (12.14) into

∑

γ0

∑

B+C=A

1

κγ0
#M$

B(γ+, γ0) ·#M$
C(γ0, γ−) = 0.

Now since each pair (u, v) ∈ M$
B(γ+, γ0)×M$

C(γ0, γ−) carries a canonical decoration
and thus determines a holomorphic building, the division by κγ0 accounts for the
fact that #M$

B(γ+, γ0) · #M$
C(γ0, γ−) overcounts the set of broken cylinders from

γ+ to γ− with asymptotic markers at γ± by precisely this factor, as a simultaneous
adjustment of the marker at γ0 in both u ∈ M$

B(γ+, γ0) and v ∈ M$
C(γ0, γ−)

produces the same decoration and therefore the same building.
The following alternative perspective will be more useful when we generalize

beyond cylinders in the next section. We can directly count points in ∂MA(γ+, γ−),
though as we saw in §12.4, rational weights should be included in the count whenever
there is isotropy. Let us write

MA(γ+, γ−) =M$
A(γ+, γ−)/G,

where G ∼= Zκγ+ × Zκγ− is a finite group acting by adjustment of the asymptotic

markers. SinceM$

A(γ+, γ−) is a compact oriented 1-manifold with boundary under
Assumption 12.1, the signed count of its boundary points is 0. We can ignore
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buildings broken along bad orbits in this count, since these always come in cancelling
pairs. Let us now transform this into a count of buildings (u|Φ|v) ∈ ∂MA(γ+, γ−)
broken along good orbits γ0: here u ∈ MB(γ+, γ0) and v ∈ MC(γ0, γ−) for some
homology classes with B + C = A, and Φ is a decoration which describes how to
glue the ends of u and v at γ0. The automorphism group of such a building is the
subgroup

Aut(u|Φ|v) ⊂ Aut(u)× Aut(v)

consisting of all pairs (ϕ, ψ) ∈ Aut(u)×Aut(v) that define the same rotation at the
two punctures asymptotic to γ0; note that this group does not actually depend on
the decoration Φ. Since we’re talking about cylinders, we can be much more specific:
we have Aut(u) = Zκu and Aut(v) = Zκv , and if both are regarded as subgroups of
U(1),

Aut(u|Φ|v) = Zκu ∩ Zκv = Zgcd(κu,κv),

which is injected into Aut(u)×Aut(v) by ψ 7→ (ψ, ψ). The boundary ofM$

A(γ+, γ−)
can be understood likewise as a space of equivalence classes

[(u, v)] ∈
(
M$

B(γ+, γ0)×M$
C(γ0, γ−)

) /
∼,

where two such pairs are equivalent if their asymptotic markers at the ends as-
ymptotic to γ0 determine the same decoration. Now observe that the group G ∼=
Zκγ+ ×Zκγ− also acts on buildings in ∂M$

A(γ+, γ−), and the stabilizer of this action

at (u, v) is Aut(u|Φ|v), hence each (u|Φ|v) ∈ ∂MA(γ+, γ−) gives rise to |G|
gcd(κu,κv)

terms in the count of ∂M$

A(γ+, γ−), implying

(12.15)
∑

(u|Φ|v)∈∂MA(γ+,γ−)

ǫ(u)ǫ(v)

gcd(κu, κv)
= 0.

Finally, notice that while each pair (u, v) ∈ MB(γ+, γ0) ×MC(γ0, γ−) determines
buildings with κγ0 distinct choices of decoration, some of these buildings may be
equivalent: every pair of automorphisms (ϕ, ψ) ∈ Aut(u) × Aut(v) transforms a
building (u|Φ|v) by potentially changing the decoration Φ, thus producing an equiv-
alent building. This action on buildings is trivial if and only if (ϕ, ψ) ∈ Aut(u|Φ|v),
hence every pair (u, v) ∈MB(γ+, γ0)×MC(γ0, γ−) gives rise to exactly

κγ0∣∣(Aut(u)× Aut(v))
/
Aut(u|Φ|v)

∣∣ =
κγ0 gcd(κu, κv)

κuκv

elements of ∂MA(γ+, γ−), so that (12.15) becomes

∑

γ0

∑

B+C=A


 ∑

(u,v)∈MB(γ+,γ0)×MC(γ0,γ−)

ǫ(u)ǫ(v)

gcd(κu, κv)

κγ0 gcd(κu, κv)

κuκv




=
∑

γ0

∑

B+C=A


 ∑

(u,v)∈MB(γ+,γ0)×MC(γ0,γ−)

ǫ(u)ǫ(v)κγ0
κuκv


 = 0,

reproducing (12.14).
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12.6. Combinatorics of gluing

Now let’s try to justify the formula H2 = 0. The product of H with itself is the
formal sum over all pairs of index 1 curves u, v ∈ Mσ

1(J)/R of certain monomials:
in particular if these two curves respectively have genus gu and gv, homology classes
Au and Av, and asymptotic orbits γ±

u and γ
±
v , then the corresponding term in H2

is
ǫ(u)ǫ(v)

|Autσ(u)||Autσ(v)|~
gu+gv−2eAu+Avqγ

−
u pγ

+
u qγ

−
v pγ

+
v .

Before we can add up all monomials of this form, we need to put all the q and p
variables in the same order: within each of the products qγ

−
u , pγ

+
u and so forth this is

simply a matter of permuting the variables and changing signs as appropriate, but
the interesting part is the product pγ

+
u qγ

−
v , for which we can apply the commutation

relations (12.9) to put all q variables before all p variables. Before discussing how
this works in general, let us consider a more specific example.

Assume γi for i = 1, 2 are two specific orbits with n − 3 + µCZ(γi) even, so the
corresponding q and p variables have even degree, and suppose

γ
+
u = (γ1, γ1, γ2), γ

−
v = (γ1, γ1).

After applying the relation pγ1qγ1 = qγ1pγ1 + κγ1~ a total of five times, one obtains
the expansion

pγ1pγ1pγ2qγ1qγ1 = q2γ1p
2
γ1
pγ2 + 4κγ1~qγ1pγ1pγ2 + 2κ2γ1~

2pγ2 ,

thus contributing a total of three terms to H2, namely the products of the factor
ǫ(u)ǫ(v)

|Aut(u)||Aut(v)|e
Au+Av with each of the expressions

~gu+gv−2qγ
−
u q2γ1p

2
γ1pγ2p

γ
+
v ,(12.16)

4κγ1~
gu+gv−1qγ

−
u qγ1pγ1pγ2p

γ
+
v ,(12.17)

2κ2γ1~
gu+gvqγ

−
u pγ2p

γ
+
v .(12.18)

As shown in Figure 12.2, this sum of three terms can be interpreted as the count of
all possible holomrphic buildings obtained by gluing v on top of u together with a
collection of trivial cylinders. Indeed, since γ

+
u and γ

−
v include two matching orbits

(which also happen to be the same one), there are several choices to be made:

(1) The top-right picture shows what we might call the “stupid gluing,” in
which no ends of u are matched with any ends of v, but all are instead
glued to trivial cylinders, thus producing a disconnected building. This
possibility is encoded by (12.16), and we will see that in the total sum
forming H2, this term gets cancelled out by a similar term for the stupid
gluing of u on top of v.

(2) The lower-left picture shows the building obtained by gluing one end of
u to an end of v along the matching orbit γ1. This option is encoded
by (12.17), where the factor 4κγ1 appears because there are precisely 4κγ1
distinct buildings of this type: indeed, there are four choices of which end
of u should be glued to which end of v, and for each of these, a further κγ1
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γ1 γ1
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γ
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u

γ
−
u

γ
−
uγ

−
u

γ
+
v

γ
+
v

γ
+
vγ

+
v

Figure 12.2. Three possible ways of gluing the curves u and v
along with trivial cylinders to form index 2 curves.

choices of the decoration. The arithmetic genus of the resulting building is
gu + gv, as represented by the factor ~gu+gv−1.

(3) The lower-right picture is encoded by (12.18): here there are two choices of
bijections between the two pairs of punctures asymptotic to γ1, and taking
the choices of decoration at each breaking orbit into account, we obtain the
combinatorial factor 2κ2γ1 . The presence of two nontrivial breaking orbits
increases the arithmetic genus to gu+gv+1, as encoded in the factor ~gu+gv .

You may now be able to extrapolate from the above example why the commu-
tator algebra we’ve defined encodes gluing of holomorphic curves in the symplec-
tization and thus leads to the relation H2 = 0. Think of the algorithm by which
you change qγ

−
u pγ

+
u qγ

−
v pγ

+
u into a sum of products with all q’s appearing before p’s:

for the first q you see appearing after a p, move it past each p for different orbits
(changing signs as necessary) until it encounters a p for the same orbit. Now you
replace pγqγ with (−1)|pγ ||qγ|qγpγ+κγ~, turning one product into a sum of two. This
represents a choice between two options: either you move qγ past pγ and apply the
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usual sign change, or you eliminate them both but replace them with the combina-
torial factor κγ and an extra ~. Then you continue this process until all q’s appear
before all p’s.

The key point is that the process of gluing v on top of u in all possible ways is
governed by exactly the same algorithm: first consider the disjoint union of the two
curves as a single disconnected curve, with its punctures ordered in the same way
in which their orbits appear in the monomial. Now reorder negative punctures of v
and positive punctures of u, changing orientations as appropriate, until you see two
such punctures next to each other approaching the same orbit γ. Here you have two
options: either glue them together, or don’t glue them but exchange their order. If
you exchange the order, then you may again have to change orientations (depending
on the parity of n− 3 + µCZ(γ)), but if you glue, then you have κγ distinct choices
of decoration and will also increase the arithmetic genus of the eventual building
by 1. In this way, every individual term in the final expansion of qγ

−
u pγ

+
u qγ

−
v pγ

+
u

represents a particular choice of which positive of ends of u should or should not be
glued to which negative ends of v. Additional factors of ~ appear to keep track of
the increase in arithmetic genus, and covering multiplicities of the breaking orbits
also appear due to distinct choices of decorations. At the end these must still be
divided by orders of automorphism groups in order to avoid counting equivalent
buildings separately. Fleshing out these details leads to the following explanation
for the relation H2 = 0:

Proposition 12.12. Let ∂Mσ

2 (J) denote the space of two-level holomorphic
buildings inM(J) that have total index 2 and no bad asymptotic or breaking orbits,
divided by the equivalence relation that forgets the order of the punctures. Then

H2 =
∑

u∈∂Mσ
2 (J)

ǫ(u)

|Autσ(u)|~
g−1eAqγ

−
pγ

+

,

where the terms in each monomial are determined by u ∈ ∂Mσ

2 (J) as follows:

(1) g is the arithmetic genus of u;
(2) A is the equivalence class of [u] ∈ H2(M) in H2(M)/G;
(3) γ

± = (γ±1 , . . . , γ
±
k±
) are the asymptotic orbits of u after arbitrarily fixing

orderings of its positive and negative punctures;
(4) ǫ(u) ∈ {1,−1} is the boundary orientation at u determined by the chosen

coherent orientations onM$(J). Specifically, given the chosen ordering of
the punctures and an arbitrary choice of asymptotic markers at each punc-
ture, u determines a boundary point of a 1-dimensional connected compo-

nent of M$
(J), and we define ǫ(u) = +1 if and only if the orientation of

M$
(J) at this point is outward.

Once again ǫ(u) and qγ
−
pγ

+
change signs in the same way under any reordering

of the punctures, so their product is well defined, and there is no dependence on
choices of markers since bad orbits have been excluded.
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Proof of Proposition 12.12. Our original formula for H gives rise to an
expansion

H2 =
∑

(u,v)∈Mσ
1 (J)/R×Mσ

1 (J)/R

ǫ(u)ǫ(v)

|Autσ(u)||Autσ(v)|~
gu+gv−2eAu+Avqγ

−
u pγ

+
u qγ

−
v pγ

+
v .

As explained in the previous paragraph, the process of reordering pγ
+
u qγ

−
v to put all

q’s before p’s produces an expansion, each term of which can be identified with a
specific choice of which positive punctures of u should be glued to which negative
punctures of v. If k punctures are glued, then the resulting power of ~ is gu +
gv−2+k, corresponding to the fact that the resulting building has arithmetic genus
gu+gv+k−1. We claim that the term for k = 0 is cancelled out by the corresponding
term of H2 that has the roles of u and v reversed. To see this, imagine first the case
where u and v have no asymptotic orbits in common, hence no nontrivial gluings
are possible and all the q and p variables in the expression supercommute with each
other. Then since both curves have index 1, the monomials qγ

−
u pγ

+
u and qγ

−
v pγ

+
v must

both have odd degree, implying

qγ
−
u pγ

+
u qγ

−
v pγ

+
v = −qγ−

v pγ
+
v qγ

−
u pγ

+
u

and thus the desired cancellation. If u and v do have orbits in common, then the
result for the k = 0 terms is still not any different from this: all signs still change
in the same way when applying [pγ, qγ ] = κγ~ to change pγqγ into qγpγ, we simply
ignore the extra term κγ~ since it is only relevant for gluings with k > 0. This
proves the claim, and consequently, that the expansion resulting from the curves u
and v has no term containing ~gu+gv−2.

The combinatorial factors can be explained as follows. The commutator expan-
sion for pγ

+
u qγ

−
v automatically produces combinatorial factors that count the different

possible gluings, but if u and v have automorphisms, then not all of these give in-
equivalent buildings. This part of the discussion is a straightforward extension of
what we did for cylindrical contact homology at the end of §12.5. Indeed, the actual
set of inequivalent buildings is the quotient of this larger set by an action of

(Autσ(u)× Autσ(v))
/
Autσ(u),

where for a building u formed by endowing the pair (u, v) with decorations, Autσ(u)
denotes the subgroup consisting of pairs (ϕ, ψ) ∈ Autσ(u)× Autσ(v) that preserve
pairs of breaking punctures along with their decorations. This is what changes the
factor 1

|Autσ(u)||Autσ(v)| into
1

|Autσ(u)| as in the statement of the proposition. �

The theorem that H2 = 0 now follows once you believe the propaganda from

§12.4, arguing that
∑

u∈∂Mσ
2 (J)

ǫ(u)
|Autσ(u)| is the correct way to count the boundary

points ofMσ

2 (J). As we did with cylindrical contact homology, we can use the obvi-

ous projectionM$
(J)→Mσ

(J) to reduce this to the fact that if the 1-dimensional

components ofM$
(J) are manifolds (which is true if Assumption 12.1 holds), then

the integer-valued signed count of their boundary points vanishes.
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12.7. Some remarks on torsion, coefficients, and conventions

12.7.1. What if H1(M) has torsion? The main consequence for SFT ifH1(M)
has torsion is that one cannot define an integer grading, though there is always a
canonical Z2-grading.

3 The setup in §12.2 must now be modified as follows. The
reference curves

C1, . . . , Cr ⊂ M

are required to form a basis of H1(M)/torsion, so for every integral homology class
[γ], there is a unique collection of integers m1, . . . , mr such that [γ] =

∑
imi[Ci] ∈

H1(M ;Q). Instead of spanning surfaces for each orbit, one can define spanning
chains Cγ, which are singular 2-chains with rational coefficients satisfying

∂Cγ =
∑

i

mi[Ci]− [γ]

for the aforementioned set of integers mi ∈ Z. Note that Cγ must in general
have nonintegral coefficients since

∑
imi[Ci] and [γ] might not be homologous in

H1(M ;Z), so Cγ cannot always be represented by a smooth map of a surface. One
consequence of this is that the absolute homology class associated to an asymptoti-
cally cylindrical holomorphic curve u : Σ̇→ R×M will now be rational,

[u] ∈ H2(M ;Q),

and we must therefore take G to be a linear subspace

G ⊂ H2(M ;Q).

Another consequence is that we cannot use capping chains to transfer trivializations
from the reference curves to the orbits, so there is no natural way to define µCZ(γ)
as an integer. The easiest thing to do instead is to take the mod 2 Conley-Zehnder
index

µCZ(γ) ∈ Z2

and define all degrees of generators as either even or odd with no further distinction.
In particular, we now have

|qγ| = n− 3 + µCZ(γ) ∈ Z2, |pγ| = n− 3− µCZ(γ) ∈ Z2,

while ~ and all elements of R = Q[H2(M ;Q)/G] are even. With these modifications,
the rest of the discussion also becomes valid for the case where H1(M) has torsion,
and leads to Z2-graded contact invariants.

12.7.2. Combinatorial conventions. The combinatorial factors appearing in
our definition ofHmay at first look slightly different from what appears elsewhere in
the literature. Actually, most papers seem to agree on this detail, but various subtle
differences and ambiguities in notation mean that it sometimes requires intense
concentration to recognize this fact.

The original propaganda paper [EGH00] expresses everything in terms of moduli
spaces with asymptotic markers, and the formula forH in §2.2.3 of that paper (which

3In fact there is a bit more than a Z2-grading, see [EGH00, §2.9.1].
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is expressed in a slightly more general form involving marked points) agrees with
our (12.8).

Cieliebak and Latschev [CL09, §2] write down the same formula in terms of mod-
uli spaces that have no asymptotic markers but remember the order of the punctures,
thus it includes some factorials that do not appear in (12.6) but is missing the κγ
terms of (12.8). The notation ng(Γ

−,Γ+) used in [CL09] for curve counts must be
understood implicitly to include rational weights arising from automorphisms (or
multivalued perturbations, as the case may be).

My paper with Latschev [LW11] uses moduli spaces with asymptotic markers
and attempts to write down the same formula as in [EGH00,CL09], but gets it
slightly wrong due to some missing κγ terms that should appear in front of each ∂

∂qγ
.

Mea culpa.
For cylindrical contact homology, the combinatorial factors in §12.5 also agree

with what appears in [Bou03]. As observed by Nelson [Nel13, Remark 8.3], there
are other conventions for ∂CCH that appear in the literature and lead to equivalent
theories: in particular it is possible to replace (12.13) with

∂CCHqγ :=
∑

γ′,A

κγ′


 ∑

u∈MA(γ,γ′)

ǫ(u)

κu


 eAqγ′ .

One can derive this from the same definition of H by applying a “change of co-
ordinates” to the algebra A[[~]], or equivalently, by choosing a slightly different
representation of the operator algebra defined by the pγ and qγ variables. To avoid
confusion, let us write the generators of A as xγ instead of qγ , and then define the
operators qγ and pγ on A[[~]] by

qγ = κγxγ , pγ = ~
∂

∂xγ
.

These operators still satisfy [pγ, qγ ] = κγ~ and thus define an equivalent theory, but
the resulting differential operator DSFT on A[[~]] now includes extra factors of κγ
for the negative punctures instead of the positive punctures.

12.7.3. Coefficients: Q, Z or Z2? While we were able to use Z2 coefficients
for cylindrical contact homology in a primitive homotopy class in Lecture 10, a quick
glance at any version of the formula for H should make the reader very skeptical
about doing this for more general versions of SFT. The existence of curves with
automorphisms means that H always contains terms with rational (but nonintegral)
coefficients. And this is only what is true in the fictional world of Assumption 12.1:
in the general version of the theory, we expect to have to replace expressions like∑

u
ǫ(u)

|Aut(u)| with counts of 0-dimensional weighted branched orbifolds with rational

weights, arising as zero-sets of generic multisections. In this case we not only obtain
rational counts but may also lose all control over the sizes of the denominators.

A similar phenomenon occurs in general versions of Gromov-Witten theory. For
instance, in the approach of Cieliebak-Mohnke [CM07] for the rational Gromov-
Witten invariants of a closed symplectic manifold (W 2n, ω) with [ω] ∈ H2(W ;Q),
the invariants are defined by replacing the usual moduli spaceM0,m(J,A) by a space
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M0,m+N(J,A; Y ) consisting of J-holomorphic spheres u : S2 → W with some large
number of auxiliary marked points ζ1, . . . , ζN required to satisfy the condition

u(ζi) ∈ Y, i = 1, . . . , N.

Here Y 2n−2 ⊂ W 2n is a J-holomorphic hypersurface with [Y ] = D · PD([ω]) ∈
H2n−2(W ) for some degree D ∈ N, and the number of extra marked points is deter-
mined by

N = A · [Y ] = D〈[ω], A〉,
so positivity of intersections implies that u only intersects Y at the auxiliary marked
points. These auxiliary points are convenient for technical reasons involving trans-
versality—their role is vaguely analogous to the way that asymptotic markers get
rid of isotropy in SFT—but they are not geometrically meaningful, as we’d actually
prefer to count curves inM0,m(J,A). Every such curve has N intersections with Y ,
so accounting for permutations, it lifts to N ! distinct elements ofM0,m+N(J,A; Y ),
and the correct count is therefore obtained as an integer count of curves in the latter
space divided by N !. Perturbing to achieve transversality breaks the symmetry,
however, so there is no guarantee that counting curves in M0,m+N(J,A; Y ) will
produce a multiple of N !, and moreover, N could be arbitrarily large since one
needs to take hypersurfaces of arbitrarily large degree in order to show that the
invariants don’t depend on this choice. For these reasons, the resulting Gromov-
Witten invariants are rational numbers rather than integers, and their denominators
cannot be predicted or bounded.

The upshot of this discussion is that there is probably no hope of defining SFT
with integer coefficients in general, much less with Z2 coefficients—for this reason
the inclusion of orientations in the picture is unavoidable. That is the bad news.

The good news however is that whenever formulas like
∑

u
ǫ(u)

|Aut(u)| can be taken

literally as a count of curves, the chain complex (A[[~]],DSFT) can in fact be defined
with Z coefficients, and one can even reduce to a Z2 version in order to ignore signs.
A special case of this was observed for cylindrical contact homology in [Nel15, Re-
mark 1.5], and you may notice it already when you look at the formula (12.13) for
∂CCH: the factor κγ/κu is always an integer since the multiplicity of a holomorphic
cylinder always divides the covering multiplicity of both its asymptotic orbits. Sur-
prisingly, something similar turns out to be true for the much larger chain complex
of SFT. The following result is stated under Assumption 12.1 for safety’s sake, but in
light of the discussion in §12.4, we should expect it to hold somewhat more generally.

Proposition 12.13. If Assumption 12.1 holds then the rational coefficients
ng(γ,γ

′, k) in the formula (12.11) for DSFTq
γ are all integers.

Corollary 12.14. Under Assumption 12.1, there exist well-defined chain com-
plexes

(AZ[[~]],DSFT) and (AZ2[[~]],DSFT),

where for a general commutative ring R, AR denotes the graded supercommutative
unital algebra over R[H2(M)/G] generated by the qγ variables for good Reeb orbits γ.
The differentials DSFT on AZ[[~]] and AZ2[[~]] are defined by the same formula as
on A[[~]], where in the Z2 case we are free to set all signs ǫ(u) equal to 1.
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Proof of Proposition 12.13. We need to show that expressions of the form

κγ+

|Autσ(u)|
∂

∂qγ+1
. . .

∂

∂qγ+k+

qγ

produce integer coefficients for every holomorphic curve u with asymptotic orbits
γ
± = (γ±1 , . . . , γ

±
k±
) and every tuple γ = (γ1, . . . , γm). It suffices to consider the

special case γ = γ
+, as the derivative in question is only nonzero on monomials

that are divisible by qγ
+
. Up to a sign change, we can reorder the orbits and write

γ
+ in the form

γ
+ = (γ1, . . . , γ1︸ ︷︷ ︸

m1

, . . . , γN , . . . , γN︸ ︷︷ ︸
mN

)

for some finite set of distinct orbits γ1, . . . , γN and numbers mi ∈ N, i = 1, . . . , N .
We then have

κγ+

|Autσ(u)|
∂

∂qγ+1
. . .

∂

∂qγ+k+

qγ
+

=
κm1
γ1
. . . κmN

γN

|Autσ(u)|

(
∂

∂qγ1

)m1

. . .

(
∂

∂qγN

)mN (
qm1
γ1 . . . q

mN
γN

)

= ±κ
m1
γ1
. . . κmN

γN
m1! . . .mN !

|Autσ(u)| .

(12.19)

We claim that this number is always an integer. Indeed, if Autσ(u) is nontrivial, then

u : Σ̇→ R×M is a multiple cover u = v ◦ ϕ for some holomorphic branched cover
ϕ : (Σ, j)→ (Σ′, j′) and somewhere injective curve v : (Σ̇′ = Σ′\Γ′, j′)→ (R×M,J).
Automorphisms ψ ∈ Autσ(u) thus define biholomorphic maps on (Σ, j) that permute
each of the sets of punctures asymptotic to the same orbit. Given any puncture
z ∈ Γ where u is asymptotic to γi, the Autσ(u)-orbit of z consists of ℓ ≤ mi other
punctures also asymptotic to γi, and its stabilizer is a cyclic subgroup of order
k = |Autσ(u)|/ℓ, acting on a neighborhood of z by biholomorphic rotations. It
follows that κγi is divisible by k, hence

κγiℓ

|Autσ(u)| ∈ N,

and (12.19) is a multiple of this. �

Remark 12.15. Since 1 = −1 in AZ2 , anticommuting elements of AZ2 [[~]] ac-
tually commute, so unless one imposes extra algebraic conditions in the case of Z2

coefficients, higher powers of odd generators pγ and qγ do not vanish. Nonetheless,
these powers still do not appear in H, so the complex (AZ2[[~]],DSFT) ignores curves
with multiple ends approaching an orbit of odd degree (and also bad orbits, for that
matter).
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In the previous lecture, we introduced an operator algebra defined via the su-
percommutators [pγ, qγ ] = κγ~, then we defined the SFT generating function

H =
∑

u∈Mσ
1 (J)/R

ǫ(u)

|Autσ(u)|~
g−1eAqγ

−
pγ

+

and proved (modulo transversality) thatH2 = 0. The generating function is a formal
power series whose coefficients are rational counts of holomorphic curves, and these
counts are strongly dependent on the choices of contact form α, almost complex
structure J ∈ J (α) and further auxiliary data such as coherent orientations. Thus
in contrast to Gromov-Witten theory, the generating function does not define an
invariant, but one can follow the standard prescription of Floer-type theories and
define invariants via homology. We saw that for the natural representation A[[~]] of
the operator algebra defined by setting pγ = κγ~

∂
∂qγ

, H defines a differential operator

DSFT : A[[~]] → A[[~]] with D2
SFT = 0. One of our goals in this lecture will be to

explain (again modulo transversality) why the resulting homology

HSFT
∗ (M, ξ;R) = H∗(A[[~]],DSFT)

is an invariant of the contact structure. We will then use it to define simpler nu-
merical invariants that detect symplectic fillability properties of contact manifolds.

But first, A[[~]] is not the only possible representation of the operator algebra
of SFT: other choices lead to different invariants with different algebraic structures.
Let’s begin by describing the original hierarchy of contact invariants that were out-
lined in [EGH00].

267
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Remark 13.1. Throughout this lecture, we assume for simplicity that H2(M)
has no torsion, and the same assumption is made about cobordisms in §13.2.2. Only
minor changes are necessary if this condition is lifted, e.g. one could then replace all
instances of H2(M) with H2(M ;Q) and assume always that the grading is Z2; see
§12.7.1.

13.1. The Eliashberg-Givental-Hofer package

In the following, (M, ξ) is a (2n − 1)-dimensional closed contact manifold with
a contact form α and almost complex structure J ∈ J (α) for which the optimistic
transversality condition (Assumption 12.1) of Lecture 12 is assumed to hold. We
fix also the auxiliary data described in §12.2, plus a choice of subgroup G ⊂ H2(M)
which determines the coefficient ring

R = Q[H2(M)/G].

Each of the differential graded algebras described below then carries the same grad-
ing that was described in that lecture, i.e. there is always at least a Z2-grading, and
it lifts to Z if H1(M) is torsion free and c1(ξ)|G = 0, or possibly Z2N if N ∈ N is the
smallest possible value for c1(A) with A ∈ G.

13.1.1. Full SFT as a Weyl superalgebra. We start with some seemingly
trivial algebraic observations. First, the relation H2 = 0 is equivalent to

[H,H] = 0.

Remember that [ , ] is a super -commutator, so [F,F] = 0 holds automatically for
operators F with even degree, but H is odd, and for odd operators the commutator
is defined by [F,G] = FG +GF, hence [H,H] = 2H2. Formally speaking [ , ] is a
super Lie bracket and thus satisfies the “super Jacobi identity”:

(13.1)
[
F, [G,K]

]
+ (−1)|F||G|+|F||K|[G, [K,F]

]
+ (−1)|F||K|+|G||K|[K, [F,G]

]
= 0.

A consequence of this is that in order to create a homology theory out of H, we don’t
absolutely need to find a representation of the entire operator algebra: it suffices
to find a representation of the induced super Lie algebra. Indeed, suppose V is a
graded R[[~]]-module and L is a linear grading-preserving map that associates to
operators F (expressed as power series functions of p’s, q’s and ~ with coefficients
in R) an R[[~]]-linear map

LF : V → V

such that
L[F,G] = LFLG − (−1)|F||G|LGLF

for every pair of operators F,G. Then the R[[~]]-linear map LH : V → V satisfies

L2
H =

1

2
[LH, LH] =

1

2
L[H,H] = 0,

hence (V, LH) is a chain complex. The complex (A[[~]],DSFT) was a special case of
this, in which we represented the super Lie algebra via a faithful representation of
the whole operator algebra.

Exercise 13.2. Verify (13.1).
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Remark 13.3 (supersymmetric sign rules). To see where the signs in (13.1)
come from, it suffices to know the following basic rule of superalgebra: for any
pair of Z2-graded vector spaces V and W , the natural “commutation” isomorphism
c : V ⊗W →W ⊗ V is defined on homogeneous elements by

c(v ⊗ w) = (−1)|v||w|w ⊗ v.
For any permutation of a finite tuple of Z2-graded vector spaces, one can derive the
appropriate isomorphism from this: in particular the cyclic permutation isomor-
phism σ : X ⊗ Y ⊗ Z → Y ⊗ Z ⊗X takes the form

σ = (1⊗ c23) ◦ (c12 ⊗ 1) : x⊗ y ⊗ z 7→ (−1)|x||y|+|x||z|y ⊗ z ⊗ x.
Writing the Jacobi identity as [·, [·, ·]] ◦ (1 + σ + σ2) = 0 then produces (13.1). In
this sense, it only differs from the usual Jacobi identity in being based on a different
definition of the commutation isomorphism V ⊗W → W ⊗ V . For more on this
perspective, see [Var04, §3.1].

Now here is a different kind of example, where the representation does not respect
the product structure of the operator algebra but does respect its Lie bracket. Let
W denote the graded unital algebra consisting of formal power series

∑

γ,k

fγ,k(q)~
kpγ ,

where the sum ranges over all integers k ≥ 0 and all ordered sets γ = (γ1, . . . , γm)
of good Reeb orbits for m ≥ 0, and the fγ,k are polynomial functions of the qγ
variables, with coefficients in R. Note that the case of the empty set of orbits is
included here, which means pγ = 1. The multiplicative structure of W is defined
via the usual (super)commutation relations, and its elements can be interpreted as
operators. If we now associate to each F ∈W the R[[~]]-linear map

DF : W→W : G 7→ [F,G],

then the Jacobi identity (13.1) implies

D[F,G] = DFDG − (−1)|F||G|DGDF.

This is just the graded version of the standard adjoint representation of a Lie algebra.
The only problem in applying this idea to define a differential

(13.2) DH : W→W : F 7→ [H,F]

is that H is not technically an element of W: indeed, H contains terms of order −1
in ~, thus

H ∈ 1

~
W.

On the other hand, the failure of supercommutativity in W is a “phenomenon of
order ~,” i.e. since every nontrivial commutator contains a factor of ~, we have

[F,G] = O(~) for all F,G ∈W.

Here and in the following we use the symbol

O(~k)
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to denote any element of the form ~kF for F ∈ W. As a consequence, [H,F] ∈ W

whenever F ∈W, hence (13.2) is well defined, and the Jacobi identity now implies

D2
H = 0.

The homology of the resulting chain complex gives another version of what is often
called full SFT,

HW
∗ (M, ξ;R) := H∗(W, DH).

A proof (modulo transversality) that this defines a contact invariant is outlined in
[EGH00, §2], but it is algebraically somewhat more involved than forHSFT

∗ (M, ξ;R),
so I will skip it since I don’t have any applications of HW

∗ (M, ξ;R) in mind. As far
as I am aware, no contact topological applications of this invariant or computations
of it (outside the trivial case—see §13.1.4 below) have yet appeared in the literature.
This is a pity, because HW

∗ (M, ξ;R) actually has much more algebraic structure than
HSFT

∗ (M, ξ;R). Indeed, using the identities

[F,GK] = [F,G]K+ (−1)|F||G|G[F,K],

[FG,K] = F[G,K] + (−1)|G||K|[F,K]G,
(13.3)

one sees that DH : W→W satisfies a graded Leibniz rule,

DH(FG) = (DHF)G+ (−1)|F|FDHG.

It follows thatDH : W→W is also a derivation with respect to the bracket structure
on W, i.e.

DH[F,G] = [DHF,G] + (−1)|F|[F, DHG]

for all F,G ∈ W. As a consequence, the product and bracket structures on W

descend to HW
∗ (M, ξ;R), giving it the structure of a Weyl superalgebra.

As a matter of interest, we observe that (W, DH), as with (A[[~]],DSFT) in the
previous lecture, can be defined with Z or Z2 coefficients whenever the transversality

results are good enough to take the usual expression
∑

u
ǫ(u)

|Autσ(u)| literally as a count

of holomorphic curves. This result is of limited interest since it cannot hold in gen-
eral cases where transversality for multiple covers is impossible without multivalued
perturbations—nonetheless I find it amusing.1

Proposition 13.4. If Assumption 12.1 in Lecture 12 holds, then DH is also well
defined if the ring R = Q[H2(M)/G] is replaced by Z[H2(M)/G] or Z2[H2(M)/G].

Proof. Since DH is a derivation, it suffices to check that for every good Reeb
orbit γ, DHqγ and DHpγ are each sums of monomials of the form ceA~kqγ

−
pγ

+
with

1The same arguments used to define SFT chain complexes over the integers can also be applied
to the chain maps involved in the proof of invariance (see §13.3.1), so the SFT invariants should
be defined over the integers if transversality can be achieved for multiple covers. There are known
situations however in which this cannot hold: even if the chain complexes are well defined over Z,
invariance may hold only over Q, due to the failure of transversality in cobordisms. See [Hut].
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coefficients c ∈ Z. Suppose u ∈M1(J) is an index 1 holomorphic curve with positive
and/or negative asymptotic orbits

γ
± = (γ±1 , . . . , γ

±
1︸ ︷︷ ︸

m±
1

, . . . , γ±k±, . . . , γ
±
k±︸ ︷︷ ︸

m±
k±

),

where γ±i 6= γ±j for i 6= j. We can assume all the orbits γ±i are good and thatm±
i = 1

whenever n − 3 + µCZ(γ
±
i ) is odd. Up to a sign and factors of eA and ~ which are

not relevant to this discussion, u then contributes a monomial

Hu :=
1

|Autσ(u)|q
m−

1

γ−1
. . . q

m−
k−

γ−k−
p
m+

1

γ+1
. . . p

m+
k+

γ+k+

to H. The commutator [Hu, qγ ] vanishes unless γ is one of the orbits γ+1 , . . . , γ
+
k+
,

so suppose γ = γ+k+. If n− 3 + µCZ(γ) is odd, then m := m+
k+

= 1, and (13.3) with

[pγ , qγ] = κγ~ implies

[Hu, qγ] =
1

|Autσ(u)|

[
q
m−

1

γ−1
. . . q

m−
k−

γ−k−
p
m+

1

γ+1
. . . p

m+
k+−1

γ+k+−1

pγ, qγ

]

=
κγ

|Autσ(u)|~q
m−

1

γ−1
. . . q

m−
k−

γ−k−
p
m+

1

γ+1
. . . p

m+
k+−1

γ+k+−1

.

The fraction in front of this expression is an integer since u can have only one
end asymptotic to γ, and κγ is thus divisible by the covering multiplicity of u. If
n− 3 + µCZ(γ) is even, then we generalize this calculation by using (13.3) to write

[pmγ , qγ] = mκγ~p
m−1
γ ,

so then,

[Hu, qγ] =
1

|Autσ(u)|

[
q
m−

1

γ−1
. . . q

m−
k−

γ−k−
p
m+

1

γ+1
. . . p

m+
k+−1

γ+k+−1

pmγ , qγ

]

=
κγm

|Autσ(u)|~q
m−

1

γ−1
. . . q

m−
k−

γ−k−
p
m+

1

γ+1
. . . p

m+
k+−1

γ+k+−1

pm−1
γ .

To see that κγm
|Autσ(u)| is always an integer, recall from our proof of Prop. 12.13 in

the previous lecture that transformations in Autσ(u) permute each of the sets of
punctures that are asymptotic to the same Reeb orbit. Suppose the set of positive
punctures of u asymptotic to γ is partitioned by the Autσ(u)-action into N subsets,
each consisting of ℓ1, . . . , ℓN punctures, where ℓ1 + . . .+ ℓN = m. If z is a puncture
in the ith of these subsets, then its stabilizer is a cyclic subgroup of order ki acting
on a neighborhood of z by biholomorphic rotations, where kiℓi = |Autσ(u)|. Each
of these orders ki necessarily divides the multiplicity κγ, so we can write kiai = κγ
for some ai ∈ N. Putting all this together, we have

κγm =
N∑

i=1

κγℓi =
N∑

i=1

kiaiℓi = |Autσ(u)|
N∑

i=1

ai.

Following this same procedure, you should now be able to verify on your own
that the coefficient appearing in [Hu, pγ] is also always an integer. The existence
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of a chain complex with Z2 coefficients follows from this simply by projecting Z

to Z2. �

13.1.2. The semiclassical limit: rational SFT. The idea of rational sym-
plectic field theory (RSFT) is to extract as much information as possible from genus
zero holomorphic curves but ignore curves of higher genus. The algebra of SFT
provides a fairly obvious mechanism for this: RSFT should be what SFT becomes
in the “limit as ~→ 0,” i.e. the classical approximation to a quantum theory. Let

P := W
/
~W,

so P is a graded unital algebra generated by the pγ and qγ variables and the co-
efficient ring R, but it does not include ~ as a generator. Since all commutators
in W are in ~W, the product structure of P is supercommutative. Let us use the
distinction between capital and lowercase letters to denote the quotient projection

W→ P : F 7→ f .

We will make an exception for the letter “H”: recall that H is not an element of W
since its genus zero terms have order −1 in ~, but ~H ∈W, so we will define

h =
∑

u

ǫ(u)

|Autσ(u)|e
Aqγ

−
pγ

+ ∈ P

to be the image of ~H under the projection. The sum in this expression ranges
over all R-equivalence classes of index 1 curves with genus zero, so h will serve as
the generating function of RSFT. To encode gluing of genus zero terms, note first
that the commutator operation would not be appropriate since it prodcues terms
for every possible gluing of two curves, including those which glue genus zero curves
along more than one breaking orbit to produce buildings with positive arithmetic
genus. We need instead to have an algebraic operation on P that encodes gluing
along only one breaking orbit at a time.

You already know what to expect if you’ve ever taken a quantum mechanics
course: in the “classical limit,” commutators become Poisson brackets. To express
this properly, we need to make a distinction between differential operators operating
from the left or the right: let −−→

∂

∂qγ
: W→W

denote the usual operator ∂
∂qγ

, which was previously defined on A[[~]] but has an

obvious extension to W such that
−→
∂
∂qγ
pγ′ = 0 for all γ′. This operator satisfies the

graded Leibniz rule
−−→
∂

∂qγ
(FG) =

(−−→
∂

∂qγ
F

)
G+ (−1)|qγ ||F|F

(−−→
∂

∂qγ
G

)
.

The related operator ←−−
∂

∂qγ
: W→W : F 7→ F

←−−
∂

∂qγ
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is defined exactly the same way on individual variables pγ and qγ , but satisfies a
slightly different Leibniz rule,

(FG)

←−−
∂

∂qγ
= F

(
G

←−−
∂

∂qγ

)
+ (−1)|qγ ||G|

(
F

←−−
∂

∂qγ

)
G.

The point of writing
←−
∂
∂qγ

so that it acts from the right is to obey the usual conventions

of superalgebra: signs change whenever the order of two odd elements (or operators)
is interchanged. Partial derivatives with respect to pγ can be defined analogously
on W. With this notation in hand, the graded Poisson bracket on W is defined
by

(13.4) {F,G} =
∑

γ

κγ

(
F

←−−
∂

∂pγ

−−→
∂

∂qγ
G− (−1)|F||G|G

←−−
∂

∂pγ

−−→
∂

∂qγ
F

)
,

where the sum ranges over all good Reeb orbits. In the same manner, the differential
operators and the bracket { , } can also be defined on P.

It is easy to check that { , } on W almost satisfies a version of (13.3): we have

{F,GK} = {F,G}K+ (−1)|F||G|G{F,K}+O(~),
{FG,K} = F{G,K}+ (−1)|G||K|{F,K}G+O(~)

(13.5)

for all F,G,K ∈ W. The extra terms denoted by O(~) arise from the fact that
in proving (13.5), we must sometimes reorder products FG by writing them as
(−1)|F||G|GF + [F,G], where [F,G] = O(~). Since the terms with ~ disappear in
P, the relations become exact in P:

{f , gk} = {f , g}k+ (−1)|f ||g|g{f ,k},
{fg,k} = f{g,k}+ (−1)|g||k|{f ,k}g

(13.6)

for all f , g,k ∈ P.

Proposition 13.5. For all F,G ∈W,

[F,G] = ~{f , g}+O(~2),

and { , } satisfies the conditions of a super Lie bracket on P.

Remark 13.6. In formulas like the one in the above proposition, we interpret
{f , g} ∈ P as an element of W via any choice of R-linear inclusion P →֒W that acts
as the identity on the generators pγ , qγ. There is ambiguity in this choice due to the
noncommutativity of W, but the ambiguity is in ~W and thus makes no difference
to the formula.

Proof of Proposition 13.5. The formula is easily checked when F and G
are individual variables of the form pγ or qγ ; in fact the extra term O(~2) can be
omitted in these cases. The case where F and G are general monomials follows from
this via (13.3) and (13.5) using induction on the number of variables in the product.
This implies the general case via bilinearity.
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Given the formula, the condition {f , g} + (−1)|f ||g|{g, f} = 0 and the Poisson
version of the super Jacobi identity (13.1) follow from the corresponding properties
of [ , ]. �

The proposition implies that our genus zero generating function h ∈ P satisfies
0 = ~2[H,H] = [~H, ~H] = ~{h,h}+O(~2), thus

{h,h} = 0.

This relation can be interpreted as the count of boundary points of all 1-dimensional
moduli spaces of genus zero curves: indeed, any pair of genus two curves u, v ∈
Mσ

1 (J)/R constributes to {h,h} a term of the form

∑

γ

κγ
|Autσ(u)||Autσ(v)|e

Au+Avqγ
−
u

(
pγ

+
u

←−−
∂

∂pγ

)(−−→
∂

∂qγ
qγ

−
v

)
pγ

+
v ,

plus a corresponding term with the roles of u and v reversed. This sums all the mono-
mials that one can construct by cancelling one pγ variable from u with a matching
qγ variable from v, in other words, constructing a building by gluing v on top of u
along one matching Reeb orbit.

The graded Jacobi identity will again imply that any representation of the super
Lie algebra (P, { , }) gives rise to a chain complex with h as its differential. For
example we can take the adjoint representation,

P→ EndR(P) : f 7→ df , dfg := {f , g},

which satisfies d{f ,g} = dfdg− (−1)|f ||g|dgdf due to the Jacobi identity. Then d2h = 0
since h has odd degree and {h,h} = 0, and the homology of rational SFT is
defined as

HRSFT
∗ (M, ξ;R) := H∗(P, dh).

We again refer to [EGH00] for an argument that HRSFT
∗ (M, ξ;R) is an invariant

of the contact structure. Notice that Proposition 13.5 yields a simple relationship
between the chain complexes (W, DH) and (P, dh), namely

(13.7) DHF = dhf +O(~),

where dhf is interpreted as an element of W via Remark 13.6. In other words, the
projection W→ P : F→ f is a chain map. Moreover, dH is a derivation on P with
respect to both the product and the Poisson bracket: this follows via Proposition 13.5
and (13.7) from the fact that DH satisfies the corresponding properties on W. We
conclude that HRSFT

∗ (M, ξ;R) inherits the structure of a Poisson superalgebra, and
the map

HW
∗ (M, ξ;R)→ HRSFT

∗ (M, ξ;R)

induced by the chain map (W, DH) → (P, dh) is both an algebra homomorphism
and a homomorphism of graded super Lie algebras.
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13.1.3. The contact homology algebra. Contact homology is the most pop-
ular tool in the SFT package and was probably the first to be understood beyond the
more straightforward cylindrical theory. In situations where cylindrical contact ho-
mology cannot be defined due to bubbling of holomorphic planes, the next simplest
thing one can do is to define a theory that counts genus zero curves with one positive
end but arbitrary numbers of negative ends (cf. Exercise 10.14 in Lecture 10).

The proper algebraic setting for such a theory turns out to be the algebra A
generated by the qγ variables, and it can be derived from RSFT by setting all pγ
variables to zero. Using the obvious inclusion A →֒ P, define ∂CH : A → A by

∂CHf = dhf |p=0.

We can thus write dhf = ∂CHf +O(p), where
O(pk)

will be used generally to denote any formal sum consisting exclusively of terms of
the form pγ1 . . . pγkf for f ∈ P. Now observe that for any good orbit γ,

dhpγ = {h, pγ} = −(−1)|pγ |
∑

γ′

(
pγ

←−−
∂

∂pγ′

)(−−→
∂

∂qγ′
h

)
= −(−1)|pγ | ∂h

∂qγ
= O(p)

since every term in h has at least one p variable. It follows that dh (O(p)) = O(p),
so the fact that d2h = 0 implies ∂2CH = 0, and contact homology is defined as

HC∗(M, ξ;R) := H∗(A, ∂CH).

Since dh is a derivation on P, the formula dhf = ∂CHf + O(p) implies that ∂CH is
likewise a derivation on A, so HC∗(M, ξ;R) has the structure of a graded super-
commutative algebra with unit. Moreover, the projection P → A : f 7→ f |p=0 is a
chain map, giving rise to an algebra homomorphism

HRSFT
∗ (M, ξ;R)→ HC∗(M, ξ;R).

The invariance of HC∗(M, ξ;R) will follow from the invariance of HSFT
∗ (M, ξ;R), to

be discussed in §13.3.1 below.
To interpret ∂CH, we can separate the part of h that is linear in p variables,

writing

h =
∑

γ

hγ(q)pγ +O(p2),

where for each good Reeb orbit γ, hγ(q) denotes a polynomial in q variables with
coefficients in R. Since elements f ∈ A have no dependence on p variables, we then
have

dhf = {h, f} =
∑

γ

κγ

(
h

←−−
∂

∂pγ

)(−−→
∂

∂qγ
f

)
=
∑

γ

κγhγ
∂f

∂qγ
+O(p),

hence

∂CHf =
∑

γ

κγhγ
∂f

∂qγ
.
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In particular, ∂CH acts on each generator qγ ∈ A as

∂CHqγ = κγhγ =
∑

u

ǫ(u)κγ
Autσ(u)

eAqγ
−
,

where the sum is over all R-equivalence classes of index 1 J-holomorphic curves u
with genus zero, one positive end at γ, and negative ends γ

−, and homology class
A ∈ H2(M)/G.

13.1.4. Algebraic overtwistedness. Even the simplest of the three differen-
tial graded algebras described above is too large to compute in most cases. The
major exception is the case of overtwisted contact manifolds.

Theorem 13.7. If (M, ξ) is overtwisted, then HC∗(M, ξ;R) = 0 for all choices
of the coefficient ring R.

Remark 13.8. If X is an algebra with unit, then saying X = 0 is equivalent to
saying that 1 = 0 in X .

The notion of overtwisted contact structures in dimension three was introduced
by Eliashberg in [Eli89], who proved that they are flexible in the sense that their
classification up to isotopy reduces to the purely obstruction-theoretic classification
of almost contact structures up to homotopy. This means in effect that an over-
twisted contact structure carries no distinctly contact geometric information, so it
should not be surprising when “interesting” contact invariants such as HC∗(M, ξ)
vanish. The three-dimensional case of Theorem 13.7 seems to have been among the
earliest insights about SFT: its first appearance in the literature was in [Eli98], and
a proof later appeared in a paper by Mei-Lin Yau [Yau06], which includes a brief
appendix sketching Eliashberg’s original proof. We will discuss Eliashberg’s proof
in detail in Lecture 16.

The definitive higher-dimensional notion of overtwistedness was introduced a few
years ago by Borman-Eliashberg-Murphy [BEM15], following earlier steps in this
direction by Niederkrüger [Nie06] and others. There are now two known proofs of
Theorem 13.7 in higher dimensions: the first uses the fact that since overtwisted
contact manifolds are flexible, they always admit an embedding of a plastikstufe,
which implies vanishing of contact homology by an unpublished result of Bourgeois
and Niederkrüger (see [Bou09, Theorem 4.10] for a sketch of the argument). The
second argument appeals to an even more recent result of Casals-Murphy-Presas
[CMP] showing that (M, ξ) is overtwisted if and only if it is supported by a nega-
tively stabilized open book, in which case HC∗(M, ξ) = 0 was proven by Bourgeois
and van Koert [BvK10].

It is not known whether the vanishing of contact homology characterizes over-
twistedness, i.e. there are not yet any examples of tight contact manifolds with
HC∗(M, ξ) = 0. I will go out on a limb and say that such examples seem unlikely
to exist in dimension three but are much more likely in higher dimensions; in fact
various candidates are known [MNW13,CDvK], but we do not yet have adequate
methods to prove that any of them are tight. The analogous question about Legen-
drian submanifolds and relative contact homology was recently answered by Ekholm
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[Ekh], giving examples of Legendrians that are not loose in the sense of Murphy
[Mur] but have vanishing Legendrian contact homology.

Nevertheless, the lack of known counterexamples has given rise to the following
definition.

Definition 13.9. A closed contact manifold (M, ξ) is algebraically over-
twisted if HC∗(M, ξ;R) = 0 for every choice of the coefficient ring R.

Remark 13.10. The coefficient ring is not always mentioned in statements of the
above definition, but it should be. We will see in §13.3.2 below that this detail makes
a difference to issues like symplectic filling obstructions. Note that for any nested
pair of subgroups G ⊂ G′ ⊂ H2(M), the natural projection H2(M)/G′ → H2(M)/G
induces an algebra homomorphism

HC∗(M, ξ;Q[H2(M)/G′])→ HC∗(M, ξ;Q[H2(M)/G]).

Since algebra homomorphisms necessarily map 1 7→ 1 and 0 7→ 0, the target of
this map must vanish whenever its domain does, so for checking Definition 13.9, it
suffices to check the case R = Q[H2(M)].

We’ve seen above that there exist algebra homomorphisms

(13.8) HW
∗ (M, ξ;R)→ HRSFT

∗ (M, ξ;R)→ HC∗(M, ξ;R),

thus the vanishing of either of the algebras HW
∗ (M, ξ;R) or HRSFT

∗ (M, ξ;R) with
all coefficient rings R is another sufficient condition for algebraic overtwistedness.
Bourgeois and Niederkrüger observed that, in fact, these conditions are also neces-
sary:

Theorem 13.11 ([BN10]). For any coefficient ring R, the following conditions
are equivalent:

(1) HC∗(M, ξ;R) = 0,
(2) HRSFT

∗ (M, ξ;R) = 0,
(3) HSFT

∗ (M, ξ;R) = 0.

Proof. The implications (3) ⇒ (2) ⇒ (1) are immediate from the algebra
homomorphisms (13.8), thus it will suffice to prove (1) ⇒ (3). Suppose 1 = 0 ∈
HC∗(M, ξ;R), which means ∂CHf = 1 for some f ∈ A. Using the obvious inclusion
A →֒W, this means

DHf = 1−G,

where G = O(p, ~), i.e. G is a sum of terms that all contain at least one pγ variable
or a power of ~. It follows that Gk = O(pk, ~k) for all k ∈ N, and the infinite sum

∞∑

k=0

Gk

is therefore an element ofW, as the coefficient in front of any fixed monomial ~kpγ in
this sum is a polynomial function of the q variables. This sum is then a multiplicative
inverse of 1−G, and since

0 = D2
Hf = 0 = −DHG,
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it also satisfies DH ((1−G)−1) = 0. Using the fact that DH is a derivation, we
therefore have

DH

(
(1−G)−1f

)
= (1−G)−1(1−G) = 1,

implying 1 = 0 ∈ HSFT
∗ (M, ξ;R). �

13.2. SFT generating functions for cobordisms

All invariance proofs in SFT are based on a generating function analogous to
H that counts index 0 holomorphic curves in symplectic cobordisms. The basic
definition is a straightforward extension of what we saw in Lecture 12, but there
is an added wrinkle due to the fact that, in general, one must include disconnected
curves in the count.

13.2.1. Weak, strong and stable cobordisms. First some remarks about
the category we are working in. Since the stated purpose of SFT is to define invari-
ants of contact structures, we have been working since Lecture 12 with symplectiza-
tions of contact manifolds rather than more general stable Hamiltonian structures.
We’ve made use of this restriction on several occasions, namely so that we can
assume:

(1) All nontrivial holomorphic curves in R×M have at least one positive punc-
ture;

(2) The energy of a holomorphic curve in R ×M can be bounded in terms of
its positive asymptotic orbits.

It will be useful however for certain applications to permit a slightly wider class of
stable Hamiltonian structure. Recall that a hypersurface V in an almost complex
manifold (W,J) is called pseudoconvex if the maximal complex subbundle

ξ := TV ∩ J(TV ) ⊂ TV

defines a contact structure on V whose canonical conformal symplectic bundle struc-
ture tames J |ξ. For example, if α is a contact form onM and J ∈ J (α), then each of
the hypersurfaces {const}×M is pseudoconvex in (R×M,J). The contact structure
ξ induces an orientation on the hypersurface V ; if V comes with its own orientation
(e.g. as a boundary component of W ), then we call it pseudoconvex if ξ is a positive
contact structure with respect to this orientation, and pseudoconcave otherwise.
For example, if (W,ω) is a symplectic cobordism from (M−, ξ−) to (M+, ξ+) and
J ∈ J (W,ω, α+, α−), then M+ is pseudoconvex and M− is pseudoconcave.

Definition 13.12. Given an odd-dimensional manifold M , we will say that an
almost complex structure J on R×M is pseudoconvex if {r}×M is a pseudoconvex
hypersurface in (R×M,J) for every r ∈ R, with the induced orientation such that
∂r and {r} ×M are positively transverse.

If H = (ω, λ) is a stable Hamiltonian structure on M , then pseudoconvexity of
J ∈ J (H) imposes conditions on H, in particular λ must be a contact form. It also
requires J |ξ to be tamed by dλ|ξ, but unlike the case when J ∈ J (λ), J |ξ need not be
compatible with it, i.e. the positive bilinear form dλ(·, J ·)|ξ need not be symmetric.
As always, J |ξ must be compatible with ω|ξ, but ω need not be an exact form for



Lectures on Symplectic Field Theory 279

this to hold—the freedom to change [ω] ∈ H2
dR(M) will be the main benefit of this

generalization, particularly when we discuss weak symplectic fillings below.

Proposition 13.13. Suppose H = (ω, λ) is a stable Hamiltonian structure on
a closed manifold M and J ∈ J (H) is pseudoconvex. Then all nonconstant finite-
energy J-holomorphic curves in R × M have at least one positive puncture, and
their energies satisfy a uniform upper bound in terms of the periods of their positive
asymptotic orbits.

Proof. It is straightforward to check that either of the two proofs of Proposi-
tion 10.9 given in Lecture 10 generalizes to any J on R×M that is pseudoconvex.
In particular, pseudoconvexity implies that if u : (Σ̇, j) → (R × M,J) is a J-
holomorphic curve, then u∗dλ ≥ 0, with equality only at points where u is tangent
to ∂r and the Reeb vector field. Stokes’ theorem thus gives

(13.9) 0 ≤
∫

Σ̇

u∗dλ =
∑

z∈Γ+

Tz −
∑

z∈Γ−

Tz,

where Tz > 0 denotes the period of the asymptotic orbit at each positive/negative
puncture z ∈ Γ±. Since J |ξ is also tamed by ω|ξ and ω annihilates the Reeb vector
field, we similarly have u∗ω ≥ 0, with the same condition for equality, and the
compactness of M then implies an estimate of the form

0 ≤ u∗ω ≤ cu∗dλ

for every J-holomorphic curve u : (Σ̇, j) → (R×M,J), with a constant c > 0 that
depends only on M , H and J . In light of (13.9), this implies an upper bound on∫
Σ̇
u∗ω in terms of the periods Tz for z ∈ Γ+. Writing ωϕ = ω+d(ϕ(r)λ) for suitable

C0-small increasing functions ϕ : R→ R, we can then apply Stokes’ theorem to the
second term in

E(u) = sup
ϕ

∫

Σ̇

u∗ωϕ =

∫

Σ̇

u∗ω + sup
ϕ

∫

Σ̇

u∗d(ϕ(r)λ),

implying a similar upper bound for E(u). �

Corollary 13.14. For any stable Hamiltonian structure H = (ω, λ) with a
nondegenerate Reeb vector field RH and a pseudoconvex J ∈ J (H), one can use
closed RH-orbits and count J-holomorphic curves in R × M to define the chain
complexes (A[[~]],DSFT), (W, DH), (P, dh) and (A, ∂CH).

We shall denote the homologies of the above chain complexes with coefficients
in R = Q[H2(M)/G] by

HSFT
∗ (M,H, J ;R), HW

∗ (M,H, J ;R), HRSFT
∗ (M,H, J ;R), HC∗(M,H, J ;R).

We make no claim at this point about these homologies being invariant. For the
examples that we actually care about, this will turn out to be an irrelevant question
due to Proposition 13.16 and Exercise 13.32 below.

Example 13.15. Suppose α is a contact form on (M, ξ) and H = (Ω, α) is a
stable Hamiltonian structure. Then for all constants c > 0 sufficiently large, Hc :=
(Ω+ c dα, α) is also a stable Hamiltonian structure and there exists a pseudoconvex
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Jc ∈ J (Hc). To see the latter, notice that H′
c :=

(
1
c
Ω + dα, α

)
is another family of

stable Hamiltonian structures, with J (H′
c) = J (Hc) for all c, and H′

c → (dα, α) as
c→∞. Thus one can select Jc ∈ J (Hc) converging to some J∞ ∈ J (α) as c→∞,
and these are pseudoconvex for c > 0 sufficiently large since J∞ is.

Proposition 13.16. In the setting of Example 13.15, assume α is nondegenerate
and J∞ ∈ J (α) is generic. If HC∗(M, ξ;R) = 0, then HC∗(M,Hc, Jc;R) also
vanishes for all c > 0 sufficiently large.

Proof. We will assume in the following that the usual (unrealistic) transver-
sality assumptions hold, but the essential idea of the argument would not change in
the presence of abstract perturbations.

Let (A, ∂∞CH) denote the contact homology chain complex generated by closed
Rα-orbits, with ∂∞CH counting J∞-holomorphic curves in R ×M . The assumption
HC∗(M, ξ;R) = 0 means there exists an element f ∈ A with ∂∞CHf = 1. Here f is
a polynomial function of the qγ variables, and ∂∞CHf counts a specific finite set of
Fredholm regular index 1 curves in (R×M,J∞). Now let (A, ∂cCH) denote the chain
complex for HC∗(M,Hc, Jc;R), and notice that since the stable Hamiltonian struc-
tures (dα, α) and Hc define matching Reeb vector fields, the set of generators is un-
changed. There is also no change to this complex if we replace Hc = (Ω+c dα, α) by
H′
c =

(
1
c
Ω + dα, α

)
: this changes the energies of individual Jc-holomorphic curves,

but the sets of finite-energy curves are still the same in both cases. We can assume
Jc → J∞ in C∞ as c → ∞. The implicit function theorem then extends each of
the finitely many J∞-holomorphic curves counted by ∂∞f uniquely to a smooth 1-
parameter family of Jc-holomorphic curves for c > 0 sufficiently large.2 We claim
that these are the only curves counted by ∂cCHf when c > 0 is large. Indeed, there
would otherwise exist a sequence ck → ∞ for which additional Jck-holomorphic
index 1 curves uk contribute to ∂ckCHf , and since f has only finitely many terms rep-
resenting possible positive asymptotic orbits, we can find a subsequence for which all
the uk have the same positive asymptotic orbits. A further subsequence then has all
the same negative asymptotic orbits as well since the Reeb flow is nondegenerate and
the total period of the negative orbits is bounded by the total period of the positive
orbits. Finally, since the sequence of stable Hamiltonian structures H′

ck
converges to

(dα, α), the curves uk have uniformly bounded energy with respect to H′
ck
, so that

SFT compactness yields a subsequence converging to a J∞-holomorphic building of
index 1, which can only be one of the curves counted by ∂∞CHf . This contradicts the
uniqueness in the implicit function theorem and thus proves the claim. We conclude
that for all c > 0 sufficiently large, ∂cCHf = 1. �

Definition 13.17. Assume (W,ω) is a symplectic cobordism with stable bound-
ary ∂W = −M− ⊔M+, with induced stable Hamiltonian structures H± = (ω±, λ±)

at M±, and suppose J is an almost complex structure on the completion Ŵ that is
ω-tame on W and belongs to J (H±) on the cylindrical ends. We will say that J

2In case you are concerned about the parametric moduli space being an orbifold instead of a
manifold, just add asymptotic markers so that there is no isotropy, and divide by the appropriate
combinatorial factors to count.
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is pseudoconvex near infinity3 if the R-invariant almost complex structures J±
defined by restricting J to [0,∞)×M+ and (−∞, 0]×M− are both pseudoconvex.

Note that the condition on J in the above definition can only be satisfied if λ±
are both positive contact forms on M±, but the 2-forms ω± need not be exact.

Proving contact invariance of SFT requires counting curves in trivial exact sym-
plectic cobordisms, but it is also natural to try to say things about non-exact
strong symplectic cobordisms using SFT.4 These fit naturally into our previously
established picture since every strong cobordism has collar neighborhoods near the
boundary in which it matches the symplectization of a contact manifold. The fol-
lowing more general notion of cobordism is also natural from a contact topological
perspective, but fits less easily into the SFT picture.

Definition 13.18 ([MNW13]). Given closed contact manifolds (M+, ξ+) and
(M−, ξ−) of dimension 2n − 1, a weak symplectic cobordism from (M−, ξ−) to
(M+, ξ+) is a compact symplectic manifold (W,ω) with ∂W = −M−⊔M+ admitting
an ω-tame almost complex structure J for which the almost complex manifold (W,J)
is pseudoconvex at M+ and pseudoconcave at M−, with

ξ± = TM± ∩ J(TM±).

Weak cobordisms are characterized by the existence of a tame almost complex
structure J whose restriction to ξ± is tamed by two symplectic bundle structures,
ω|ξ± and dα±|ξ± (for any choices of contact forms α± defining ξ±). Notice that
in dimension 4, the second condition is mostly vacuous, and the weak cobordism
condition just reduces to

ω|ξ± > 0.

In this form, the low-dimensional case of Definition 13.18 has been around since the
late 1980’s, and there are many interesting results about it, e.g. examples of contact
3-manifolds that are weakly but not strongly fillable [Gir94,Eli96]. We will see in
§13.3.2 that this distinction is detectable via SFT. Higher-dimensional examples of
this phenomenon were found in [MNW13].

One major difference between weak and strong cobordisms is that the latter are
always exact near the boundary, as the Liouville vector field is dual to a primitive
of ω. It turns out that up to deformation, weak fillings that are exact at the
boundary are the same thing as strong fillings—this was first observed by Eliashberg
in dimension three [Eli91, Prop. 3.1], and was extended to higher dimensions in
[MNW13]:

Proposition 13.19. Suppose (W,ω) is a weak filling of a (2n− 1)-dimensional
contact manifold (M, ξ) such that ω|TM is exact. Then after a homotopy of ω through

3If I were being hypercorrect about use of language, I might insist on saying that J is “pseu-
doconvex near +∞ and pseudoconcave near −∞,” as the orientation reversal at the negative

boundary makes M− technically a pseudoconcave hypersurface in (Ŵ , J), not pseudoconvex. But
this definition will only be useful to us in cases where M− = ∅, so my linguistic guilt is limited.

4By strong cobordism, we mean the usual notion of a compact symplectic manifold with convex
and/or concave boundary components (see §1.4). The word “strong” is included in order to contrast
this notion with its weaker cousin described in Definition 13.18.
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a family of symplectic forms that vary only in a collar neighborhood of ∂W and define
weak fillings of (M, ξ), (W,ω) is a strong filling of (M, ξ).

Proof. Choose any contact form α for ξ, denote its Reeb vector field by Rα,
and let Ω = ω|TM . Identify a collar neighborhood of ∂W in W smoothly with
(−ǫ, 0]×M , with the coordinate on (−ǫ, 0] denoted by r, such that ∂r and Rα span
the symplectic complement of ξ at ∂W and satisfy ω(∂r, Rα) = 1. Then ω and
Ω + d(rα) are cohomologous symplectic forms on (−ǫ, 0]×M that match at r = 0,
hence a Moser deformation argument implies they are isotopic. We can therefore
assume without loss of generality that ω = Ω + d(rα) on the collar near ∂W .

By assumption, Ω = dη for some 1-form η on M , and since (W,ω) is a weak
filling of (M, ξ = kerα), we can choose a complex structure Jξ on ξ that is tamed
by both dα|ξ and dη|ξ. Now choose a smooth cutoff function β : [0,∞)→ [0, 1] that
has compact support and equals 1 near 0. We claim that

ω := d(β(r)η) + d(rα)

is a symplectic form on [0,∞) × M if |β ′| is sufficiently small. Indeed, writing
ω = dr ∧ (α+ β ′(r) η) + [β(r) dη + r dα], we have

ωn = n dr ∧ α ∧ [β(r) dη + r dα]n−1 + nβ ′(r) dr ∧ η ∧ [β(r) dη + r dα]n−1.

The first term is positive and bounded away from zero since dη|ξ and dα|ξ both
tame Jξ, hence do does β dη + r dα|ξ. The second term is then harmless if |β ′| is
sufficiently small, proving ωn > 0.

This defines an extension of the original weak filling to a symplectic completion

Ŵ = W ∪M ([0,∞)×M), and for each r0 ≥ 0, the compact subdomains defined
by r ≤ r0 define weak fillings of ({r0} ×M, ξ) since ω|ξ = (β(r0) dη + r0 dα)|ξ also
tames Jξ. Notice that for r0 sufficiently large, the dη term disappears, so ω has a
primitive that restricts to {r0} × M as a contact form for ξ, meaning we have a
strong filling of this hypersurface. The desired deformation of ω can therefore be
defined by pulling back via a smooth family of diffeomorphisms (−ǫ, 0] → (−ǫ, r0],
where r0 varies from 0 to a sufficiently large constant. �

Unlike strong cobordisms, being a weak cobordism is an open condition: if (W,ω)
is a weak cobordism, then so is (W,ω + ǫσ) for any ǫ > 0 sufficiently small and a
closed 2-form σ, which need not be exact at ∂W . As a consequence, the cylindrical
ends of a completed weak cobordism cannot always be deformed to look like the
symplectization of a contact manifold. This is where Definition 13.17 comes in
useful. The proof of the next lemma is very much analogous to Proposition 13.19.

Lemma 13.20 ([MNW13, Lemma 2.10]). Suppose (W,ω) is a weak filling of
a (2n − 1)-dimensional contact manifold (M, ξ), α is a contact form for ξ and Ω
is a closed 2-form on M with [Ω] = [ω|TM ] ∈ H2

dR(M). Then for any constant
c > 0 sufficiently large, after a homotopy of ω through a family of symplectic forms
that vary only in a collar neighborhood of ∂W and define weak fillings of (M, ξ),
ω|TM = Ω + c dα. �

The following result then provides a suitable model that can be used as Ω in
the above lemma when ω|TM is nonexact. The statement below is restricted to the
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case where [ω|TM ] is a rational cohomology class; the reason for this is that it relies
on a Donaldson-type existence result for contact submanifolds obtained as zero-sets
of approximately holomorphic sections, due to Ibort, Martíınez-Torres and Presas
[IMTP00]. It seems likely that the rationality condition could be lifted with more
work, and in dimension three this is known to be true; see [NW11, Prop. 2.6].

Lemma 13.21 ([CV15, Prop. 2.18]). For any rational cohomology class η ∈
H2(M ;Q) on a closed (2n − 1)-dimensional contact manifold (M, ξ), there exists
a closed 2-form Ω and a nondegenerate contact form α for ξ such that (Ω, α) is a
stable Hamiltonian structure. �

Combining all of the above results (including Example 13.15) proves:

Proposition 13.22. Suppose (W,ω) is a weak filling of a (2n− 1)-dimensional
contact manifold (M, ξ) such that [ω|TM ] ∈ H2

dR(M) is rational or n = 2. Fix a
nondegenerate contact form α for ξ. Then there exists a closed 2-form Ω cohomol-
ogous to ω|TM such that H := (Ω, α) is a stable Hamiltonian structure, and for
all c > 0 sufficiently large, ω can be deformed in a collar neighborhood of ∂W ,
through a family of symplectic forms defining weak fillings of (M, ξ), to a new weak
filling for which ∂W is also stable and inherits the stable Hamiltonian structure
Hc := (Ω + c dα, α). In particular, after this deformation, the completed stable fill-
ing admits a tame almost complex structure that is pseudoconvex near infinity and
may be assumed C∞-close to any given J ∈ J (α). �

We will use this in §13.3.2 to define obstructions to weak fillability via SFT.

Remark 13.23. There is apparently no analogue of Propositions 13.19 and 13.22
for negative boundary components of weak cobordisms, and this is one of a few
reasons why they are not often discussed. For example, if L is a Lagrangian torus
in the standard symplectic 4-ball D4, then the complement of a neighborhood of
L in B4 defines a strong cobordism from the standard contact T3 to S3. The
symplectic form on this cobordism is obviously exact, but if any result analogous to
Proposition 13.19 were to hold at the concave boundary, then we could deform it to
a Liouville cobordism. No such Liouville cobordism exists—it would imply that the
Lagrangian L ⊂ B4 is exact, thus violating Gromov’s famous theorem [Gro85] on
exact Lagrangians.

13.2.2. Counting disconnected index 0 curves. Fix a symplectic cobor-
dism (W,ω) with stable boundary ∂W = −M− ⊔M+ carrying stable Hamiltonian
structures H± = (ω±, λ±), along with a generic almost complex structure J that is
ω-tame on W , belongs to J (H±) on the cylindrical ends, and is pseudoconvex near
infinity. This implies that the stabilizing 1-forms λ± are both contact forms. Let us
also assume that the λ± are both nondegenerate, and that the induced R-invariant
almost complex structures J± ∈ J (H±) are sufficiently generic to achieve regularity
for all holomorphic curves under consideration. In particular, these assumptions
mean that all the usual SFT chain complexes are well defined for (M±,H±, J±;R±)
with any choice of coefficient ring R± = Q[H2(M±)/G±]. Denote the corresponding
SFT generating functions by H±.
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Recall from Lecture 12 that the auxiliary data on M+ and M− includes a choice
of capping surface Cγ for each closed Reeb orbit γ (or a capping chain with rational
coefficients if H1(M±) has torsion). These surfaces satisfy

∂Cγ =
∑

i

mi[C
±
i ]− [γ],

where the mi are integers and C
±
i ⊂M± are fixed curves forming a basis of H1(M±).

Assume H1(W ) is torsion free, in which case the same is true of H1(M+) and
H1(M−). (Only minor modifications are needed if this assumption fails to hold,
see Remark 13.1.) We can then fix the following additional auxiliary data:

(1) A collection of reference curves

S1 ∼= C1, . . . , Cr ⊂W

whose homology classes from a basis of H1(W ).
(2) A unitary trivialization of TW along each of the reference curves C1, . . . , Cr,

denoted collectively by τ .
(3) A spanning surface S±

i for each of the positive/negative reference curves
C±
i ⊂ M±, i.e. a smooth map of a compact and oriented surface with

boundary into W such that

∂S±
i =

∑

j

mji[Cj ]− [C±
i ]

in the sense of singular 2-chains, where mji ∈ Z are the unique coefficients
with [C±

i ] =
∑

jmji[Cj ] ∈ H1(W ).

Now to any collections of orbits γ
± = (γ±1 , . . . , γ

±
k±
) in M± and a relative homol-

ogy class A ∈ H2(W, γ̄
+ ∪ γ̄

−) with ∂A =
∑

i[γ
+
i ] −

∑
j[γ

−
j ], we can associate an

absolute homology class in two steps: first add A to suitable sums of the capping
surfaces Cγ±i producing a 2-chain whose boundary is a linear combination of positive

and negative reference curves, then add a suitable linear combination of the S±
i so

that the boundary becomes the trivial linear combination of C1, . . . , Cr. With this
understood, we can now associate an absolute homology class

[u] ∈ H2(W )

to any asymptotically cylindrical J-holomorphic curve u : (Σ̇, j) → (Ŵ , J), and
this defines the notationMg,m(J,A,γ

+,γ−) with A ∈ H2(W ). We now require the
trivializations of ξ± along each C±

i to be compatible with τ in the sense that they
extend to trivializations of TW along the capping surfaces S±

i . With this convention,
the Fredholm index formula takes the expected form

ind(u) = (n− 3)χ(Σ̇) + 2c1([u]) +

k+∑

i=1

µCZ(γi)−
k−∑

j=1

µCZ(γj).

If H1(W ) has torsion, then this whole discussion can be adapted as in §12.7.1 by re-
placing integral homology with rational homology and capping surfaces with capping
chains, and the Conley-Zehnder indices can be defined modulo 2.
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We will also need to impose a compatibility condition relating the coefficient
rings R± = Q[H2(M±)/G±] to a corresponding choice on the cobordism W . Choose
a subgroup G ⊂ H2(W ) such that

(13.10) 〈[ω], A〉 = 0 for all A ∈ G,
and such that the maps H2(M±) → H2(W ) induced by the inclusions M± →֒ W
send G± into G. If [ω] 6= 0 ∈ H2

dR(W ), then we will have to deal with noncompact
sequences of J-holomorphic curves that have unbounded energy, so it becomes nec-
essary to “complete” R to a Novikov ring R, which contains R but also includes
infinite formal sums

∞∑

i=1

cie
Ai such that 〈[ω], Ai〉 → +∞ as i→∞.

Note that the evaluation 〈[ω], A〉 ∈ R is well defined for A ∈ H2(W )/G due to
(13.10).

Analogously to our definition of H in Lecture 12, the generating function for

index 0 curves in Ŵ is defined as a formal power series in the variables ~, qγ (for

orbits in M−), and pγ (for orbits in M+), with coefficients in R:

(13.11) F =
∑

u∈Mσ
0 (J)

ǫ(u)

|Autσ(u)|~
g−1eAqγ

−
pγ

+

,

where Mσ
0 (J) denotes the moduli space of connected J-holomorphic curves u in

Ŵ with ind(u) = 0 and only good asymptotic orbits, modulo permutations of the
punctures, and for each u:

• g is the genus of u;
• A is the equivalence class of [u] ∈ H2(W ) in H2(W )/G;
• γ

± = (γ±1 , . . . , γ
±
k±) are the asymptotic orbits of u after arbitrarily fixing

orderings of its positive and negative punctures;
• ǫ(u) ∈ {1,−1} is the sign of u as a point in the 0-dimensional compo-
nent ofM$(J) (after choosing an ordering of the punctures and asymptotic
markers), relative to a choice of coherent orientations onM$(J).

As usual, the product ǫ(u)qγ
−
pγ

+
is independent of choices. We shall regard F as

an element in an enlarged operator algebra that includes q and p variables for good
orbits in bothM+ andM−, related to each other by the supercommutation relations

[pγ− , qγ+ ] = [pγ+ , qγ− ] = [qγ− , qγ+ ] = [pγ− , pγ+] = 0

whenever γ− is an orbit in M− and γ+ is an orbit in M+. Since all curves counted
by F have index 0, F is homogeneous with degree

|F| = 0.

Notice that for any fixed monomial qγ
−
pγ

+
, the corresponding set of curves inMσ

0(J)
may be infinite if ω is nonexact, but SFT compactness implies that the set of such
curves with any given bound on

∫
Σ̇
u∗ω is bounded. As a consequence, the coefficient

of qγ
−
pγ

+
in F belongs to the Novikov ring R.
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Consider next the series

exp(F) :=

∞∑

k=0

1

k!
Fk.

We will be able to view this as a formal power series in q and p variables and a formal
Laurent series in ~ with coefficients in R, though it is not obvious at first glance
whether its coefficients are in any sense finite. We will deduce this after interpreting
it as a count of disconnected index 0 curves: first, write

exp(F) =
∞∑

k=0

1

k!

( ∑

(u1,...,uk)∈(Mσ
0 (J))

k

ǫ(u1) . . . ǫ(uk)

|Autσ(u1)| . . . |Autσ(uk)|
~g1+...+gk−keA1+...Ak

· qγ−
1 pγ

+
1 . . . qγ

−
k pγ

+
k

)
.

Observe that since each of the curves ui ∈ Mσ
0 (J) in this expansion has index 0,

the monomials qγ
−
i pγ

+
i all have even degree and thus the order in which they are

written does not matter. Now for a given collection of distinct curves v1, . . . , vN and
integers k1, . . . , kN ∈ N with k1 + . . .+ kN = k, the various permutations of

(u1, . . . , uk) := (v1, . . . , v1︸ ︷︷ ︸
k1

, . . . , vN , . . . , vN︸ ︷︷ ︸
kN

) ∈ (Mσ
0 (J))

k

occur k!
k1!...kN !

times in the above sum, so if we forget the ordering, then the contri-

bution of this particular k-tuple of curves to exp(F) is

ǫ(u1) . . . ǫ(uk)

k1! . . . kN !|Autσ(u1)| . . . |Autσ(uk)|
~g1+...+gk−keA1+...+Akqγ

−
1 pγ

+
1 . . . qγ

−
k pγ

+
k .

Notice next that the denominator k1! . . . kN !|Autσ(u1)| . . . |Autσ(uk)| is the order of
the automorphism group of the disconnected curve formed by the disjoint union of
u1, . . . , uk: the extra factors ki! come from automorphisms that permute connected
components of the domain. Thus exp(F) can also be written as in (13.11), but with
Mσ

0 (J) replaced by the moduli space of potentially disconnected index 0 curves with
unordered punctures, and g−1 generalized to g1+ . . .+gk−k for any curve that has
k connected components of genera g1, . . . , gk. One subtlety that was glossed over in
the above discussion: the sum also includes the unique curve with zero components,
i.e. the “empty” J-holomorphic curve, which appears as the initial 1 in the series
expansion of exp(F).

With this interpretation of exp(F) understood, we can now address the possibil-
ity that the infinite sum defining exp(F) might include infinitely many terms for a

given monomial ~mqγ
−
pγ

+
, i.e. that there are infinitely many disconnected index 0

curves with fixed asymptotic orbits and a fixed sum of the genera minus the number
of connected components. We claim that this can indeed, happen, but only if the
curves belong to a sequence of homology classes Ai ∈ H2(M)/G with 〈[ω], Ai〉 → ∞,
hence the coefficient of ~mqγ

−
pγ

+
in exp(F) belongs to the Novikov ring R. The

danger here comes only from closed curves, since a disjoint union of two curves
with punctures always has strictly more punctures. Notice also that for any given
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tuples of orbits γ±, there exists a number c ∈ R depending only on these orbits and
the chosen capping surfaces such that every (possibly disconnected) J-holomorphic

curve u : Σ̇→ Ŵ asymptotic to γ
± satisfies

〈[ω], [u]〉 ≥ c.

This follows from the fact that the integral of ω over the relative homology class of
u always has a nonnegative integrand.

Lemma 13.24. Given constants C ∈ R and k ∈ Z, there exists a number N ∈ N

such that if u : (Σ, j)→ (Ŵ , J) is a closed J-holomorphic curve satisfying
∫
Σ
u∗ω ≤

C, with m connected components of genera g1, . . . , gm satisfying g1+. . .+gm−m = k,
then m ≤ N .

Proof. Note first that for each integer g ≥ 0, there is an energy thresh-
old, i.e. a constant cg > 0 such that every nonconstant closed and connected J-

holomorphic curve u : Σ→ Ŵ of genus g has
∫

Σ

u∗ω ≥ cg.

This is an easy consequence of SFT compactness: indeed, if there were no such

constant, then we would find a sequence uk : Σ → Ŵ of connected closed curves
with genus g such that

E(uk) =

∫

Σ

u∗ω → 0;

here we have used the fact that Σ is closed and
∫
Σ
u∗ωϕ depends only on the homology

class of u in order to simplify the usual definition of energy for asymptotically
cylindrical curves. SFT compactness then gives a subsequence of uk that converges
to a stable holomorphic building in which every component has zero energy and is
therefore constant. Since there are no marked points in the picture, no such building
exists, so this is a contradiction.

Now if u is a disconnected curve satisfying the stated conditions, the bound on∫
Σ
u∗ω combines with the energy threshold to give a bound for each g ≥ 0 on the

number of connected components of u with genus g. In particular, there is a bound
on the number of components with genus 0 or 1. All other components contribute
positively to the left hand side of the relation

∑m
i=1(gi − 1) = k, so this implies a

universal bound on m. �

Corollary 13.25. Fix constants C ∈ R and k ∈ Z, and tuples of Reeb orbits
γ
±, and assume that the usual transversality conditions hold. Then there exist at

most finitely many potentially disconnected J-holomorphic curves u : Σ̇ → Ŵ with
index 0 such that the number of connected components m and the genera g1, . . . , gm
of its components satisfy g1 + . . .+ gm −m = k.

Corollary 13.26. The expression exp(F) is a formal power series in q and p
variables and a formal Laurent series in ~, with coefficients in the Novikov ring R.
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The necessity of considering disconnected curves becomes clear when one tries to

translate the compactness and gluing theory of J-holomorphic curves in Ŵ into alge-
braic relations. In particular, consider the 1-dimensional moduli space of connected

index 1 curves in Ŵ with genus g. The boundary points of the compactification of
this space consist of two types of buildings:

Type 1 : A main level of index 0 and an upper level of index 1;
Type 2 : A main level of index 0 and a lower level of index 1.

This is clear under the usual transversality assumptions since regular curves in Ŵ
must have index at least 0, while regular curves in the symplectizations R ×M±
have index at least 1 unless they are trivial cylinders. The building must also be
connected and have arithmetic genus g, but there is nothing to guarantee that each
individual level is connected. In fact, we already saw this issue in Lecture 12 when
proving H2 = 0, but it was simpler to deal with there, because disconnected regular
curves of index 1 in a symplectization always have a unique nontrivial component,

while the rest are trivial cylinders. In the cobordism Ŵ , on the other hand, a
disconnected index 0 curve can be formed by any disjoint union of index 0 curves,
all of which are nontrivial. Exponentiation provides a convenient way to encode all
data about disconnected curves in terms of connected curves.

Since the union of all buildings of types 1 and 2 described above forms the
boundary of a compact oriented 1-manifold, the count of these buildings is zero,
and this fact is encoded in the so-called master equation

(13.12) H− exp(F)|p−=0 − exp(F)H+|q+=0 = 0,

where the expressions “p− = 0” and “q+ = 0” mean that we discard all terms in
H− exp(F)− exp(F)H+ containing any variables pγ for orbits in M− or qγ for orbits
in M+. The resulting expression is therefore a formal power series in q variables
for orbits in M− and p variables for orbits in M+, representing a count of generally

disconnected index 1 holomorphic buildings in Ŵ with the specified asymptotics.
The various ways to form such buildings by choices of gluings is again encoded by
the commutator algebra. The master equation (13.12) can be used to prove the
chain map property for counts of curves in cobordisms, thus it is an essential piece
of the invariance proof for each of the homology theories introduced above.

Exercise 13.27. Fill in the details of the proof of (13.12).

13.3. Full SFT as a BV∞-algebra

In this section we discuss the specific theory HSFT
∗ (M, ξ;R), defined as the ho-

mology of the chain complex (A[[~]],DSFT). The case G = H2(M) with trivial group
ring coefficients Q[H2(M)/G] = Q will be abbreviated as

HSFT
∗ (M, ξ) := HSFT

∗ (M, ξ;Q).

As we defined it, DSFT acts on A[[~]] by treating the generating function H as a
differential operator via the substitution

(13.13) pγ = κγ~
∂

∂qγ
.
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According to [CL09], this makes (A[[~]],DSFT) into a BV∞-algebra; we’ll have no
particular need to discuss here what that means, but one convenient feature is the
expansion

(13.14) DSFT =
1

~

∞∑

k=1

D
(k)
SFT~

k,

in which each D
(k)
SFT : A → A is a differential operator of order ≤ k (see [CL09, §5]).

For each k ∈ N, D
(k)
SFT is a count of all index 1 holomorphic curves that have genus

g ≥ 0 and m ≥ 1 positive punctures such that g + m = k. In particular, D
(1)
SFT

is simply the contact homology differential ∂CH, and the expansion (13.14) implies

together with D2
SFT = 0 that (D

(1)
SFT)

2 = 0, hence we again see the chain complex
for contact homology hidden inside a version of the “full” SFT complex.

13.3.1. Cobordism maps and invariance. One can use the master equation
(13.12) to prove invariance of HSFT

∗ (M, ξ;R) by a straightforward generalization of
the usual Floer-theoretic argument. Suppose (W, dλ) is an exact symplectic cobor-
dism from (M−, ξ−) to (M+, ξ+) with λ|TM± = α±, and choose a generic almost

complex structure J on Ŵ that is dλ-compatible on W and restricts to the cylin-
drical ends as generic elements J± ∈ J (α±). Let (A±[[~]],D±

SFT) denote the chain
complexes associated to the data (α±, J±), and for simplicity in this initial discus-
sion, choose the trivial coefficient ring R = Q for both. We then define a map

Φ : A+[[~]]→ A−[[~]] : f 7→ exp(F)f |q+=0,

where the generating function exp(F) is regarded as a differential operator via the
substitution (13.13), with eA := 1 for all A ∈ H2(W ) since we are using trivial
coefficients, and “q+ = 0” means that after applying exp(F) to change f into a
function of q variables for orbits in both M+ and M−, we discard all terms that
involve orbits in M+. The exactness of the cobordism implies that negative powers
of ~ do not appear in Φf , thus producing an element of A−[[~]]: indeed, since there

are no holomorphic curves in Ŵ without positive punctures, every term in F contains
at least one p variable, so that negative powers of ~ do not appear in exp(F) after
applying (13.13).

The master equation for F now translates into the fact that Φ is a chain map,

D−
SFT ◦Φ−Φ ◦D+

SFT,

thus it descends to homology. The geometric meaning of Φ is straightforward to
describe: analogous to (12.11) in Lecture 12, we can write

(13.15) Φqγ =

∞∑

g=0

∑

γ ′

~g+k−1ng(γ,γ
′, k)qγ

′
,

where ng(γ,γ
′, k) is a product of some combinatorial factors with a signed count

of disconnected index 0 holomorphic curves with connected components of genus
g1, . . . , gm satisfying g1 + . . . + gm − m = g − 1, and with positive ends at γ and
negative ends at γ ′, where k is the number of positive ends.
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Let’s discuss two applications of the cobordism map Φ. First, note that ifW is a
trivial symplectic cobordism [0, 1]×M , then the above discussion can easily be gen-
eralized with (A±,D±

SFT) both defined over the same group ring R = Q[H2(M)/G]
for any choice of G ⊂ H2(M). There is no need to consider a Novikov ring in
defining F here since the cobordism is exact. We therefore obtain a chain map
with arbitrary group ring coefficients, and extending this discussion along standard
Floer-theoretic principles will imply that the chain map is an isomorphism: this can
be used in particular to prove that HSFT

∗ (M, ξ;R) does not depend on the choices of
contact form and almost complex structure. There are two additional steps involved
in this argument: first, one needs to use a chain homotopy to prove that Φ does

not depend on the choice of almost complex structure J on Ŵ . Given a generic
homotopy {Js}s∈[0,1], the chain homotopy map

Ψ : A+[[~]]→ A−[[~]]

is defined as a differential operator in the same manner as Φ, but counting pairs
(s, u) where s ∈ [0, 1] is a parameter value for which Js is nongeneric and u is a

disconnected Js-holomorphic curve in Ŵ with index −1. We saw how this works
for cylindrical contact homology in Lecture 10, but there is a new subtlety now

that should be mentioned: in principle, a disconnected index −1 curve in Ŵ could
have arbitrarily many components, including perhaps many with index −1 and oth-
ers with arbitrarily large index. Even worse, the compactified 1-dimensional space
of pairs (s, u) for Js-holomorphic curves u of index 0 may include buildings that
have symplectization levels of index greater than 1, balanced by disjoint unions of
many index −1 curves in the main level. This sounds horrible, but it can actu-
ally be ignored, for the following reason: first, since there are only finitely many
pairs (s, u) where u is a connected Js-holomorphic curve with index −1, one can (if
transversality is achievable at all) use a genericity argument to assume without loss
of generality that for any given s ∈ [0, 1], at most one connected index −1 curve ex-
ists. This means that in any building that has multiple index −1 components, those
components are just multiple copies of the same curve. Now, since that curve has
odd index, it is represented by a monomial qγ

−
pγ

+
that contains an odd number of

odd generators, and any nontrivial product of such generators therefore disappears
in A since odd generators anticommute with themselves. This algebraic miracle
encodes a convenient fact about coherent orientations: whenever one of the horrible
buildings described above appears, one can reorder two of the index −1 components
to produce from it a different building that lives in a moduli space with the opposite
orientation. Gluing this building back together then produces a continuation of the
1-dimensional moduli space, so that the horrible building can actually be interpreted
as an “interior” point of the 1-dimensional space, rather than boundary. The actual
count of boundary points is then exactly what we want it to be: it is represented
algebraically by the chain homotopy relation!

Finally, compositions of cobordism maps can be understood via a stretching
argument that is not substantially different from the case of cylindrical contact
homology. Since the trivial cobordism with R-invariant data gives a cobordism
map that just counts trivial cylinders and is therefore the identity, it follows that
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cobordism maps relating different pairs of data (α±, J±) are always invertible, and
this proves the invariance of HSFT

∗ (M, ξ;R).
The second application concerns nontrivial exact cobordisms, and it is immediate

from the fact that Φ is a chain map:

Theorem 13.28. Any exact cobordism (W, dλ) from (M−, ξ−) to (M+, ξ+) gives
rise to a Q[[~]]-linear map

HSFT
∗ (M+, ξ+)→ HSFT

∗ (M−, ξ−).

�

It is much more complicated to say what happens in the event of a nonexact
cobordism, but slightly easier if we restrict our attention to fillings, i.e. the case with
M− = ∅. Assume (W,ω) is a compact symplectic manifold with stable boundaryM ,
inheriting a stable Hamiltonian structure H = (Ω, α) for which α is a nondegenerate

contact form, and assume also that the completion Ŵ admits an almost complex
structure J that is ω-tame on W and has a pseudoconvex restriction J+ ∈ J (H) to
the cylindrical end. We saw in Proposition 13.22 that these conditions can always
be achieved for a weak filling after deforming the symplectic structure. Let

G := ker[ω] := {A ∈ H2(W ) | 〈[ω], A〉 = 0} ,
and choose G+ ⊂ H2(M) to be any subgroup such that the map H2(M) → H2(W )
induced by the inclusion M →֒ W sends G+ into G. In other words, G+ can be any
subgroup of ker[Ω] ⊂ H2(M). Define the group rings

R+ = Q[H2(M)/G+], R = Q[H2(W )/ ker[ω]],

with the Novikov completion of R denoted by R. The map H2(M)/G+ → H2(W )/G
induced by M →֒ W then gives a natural ring homomorphism

(13.16) R+ → R.

If ω is not exact, then it may no longer be true that every term in F has at least
one p variable. Let us write

F = F0 + F1,

where F0 contains no p variables and F1 = O(p), i.e. F0 counts all closed curves

in Ŵ , and F1 counts everything else. Since F0 and F1 have even degree, they
commute, and thus

exp(F) = exp(F0) exp(F1).

where exp(F0) is an invertible element of R[[~, ~−1]] since exp(−F0) exp(F0) = 1.
By the master equation,

exp(F0) exp(F1)H = O(q),
hence exp(F1)H = exp(−F0)O(q) = O(q) since exp(−F0) contains no p variables.
Using the substitution (13.13), and using (13.16) to map coefficients in R+ to R, it
follows that exp(F1) gives rise to a differential operator

Φ : A[[~]]→ R[[~]] : f 7→ exp(F1)f |q=0,
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which is a chain map to the SFT of the empty set with Novikov coefficients, meaning

Φ ◦DSFT = 0.

This chain map counts the disconnected index 0 curves in Ŵ whose connected
components all have at least one positive puncture.

Theorem 13.29. Suppose (W,ω) is a compact symplectic manifold with sta-
ble boundary (M,H = (Ω, α)), where α is a nondegenerate contact form, and its

completion Ŵ admits an almost complex structure that is ω-tame on W and has
a generic and pseudoconvex restriction J+ ∈ J (H) to the cylindrical end. Let R
denote the Novikov completion of Q[H2(W )/ ker[ω]], and let R+ = Q[H2(M)/G+],
where G+ ⊂ H2(M) is any subgroup on which the evaluation of [Ω] ∈ H2

dR(M)
vanishes. Then there exists an R[[~]]-linear map HSFT

∗ (M,H, J+;R+)→ R[[~]]. �

13.3.2. Algebraic torsion. We can now generalize the notion of algebraic
overtwistedness. Notice that since every term in DSFT is a differential operator
of order at least 1,

DSFTf = 0 for all f ∈ R[[~]],
hence every element of the extended coefficient ring R[[~]] represents an element
of HSFT

∗ (M, ξ;R) that may or may not be trivial. Since DSFT commutes with all
elements of R[[~]], the subset consisting of elements that are trivial in homology
forms an ideal. The following definition originates in [LW11].

Definition 13.30. We say that a closed contact manifold (M, ξ) has algebraic
torsion of order k (or k-torsion for short) with coefficients in R if

[~k] = 0 ∈ HSFT
∗ (M, ξ;R).

The numerical invariant

AT(M, ξ;R) ∈ N ∪ {0,∞}
is defined to be the smallest integer k such that (M, ξ) has algebraic k-torsion but
no (k − 1)-torsion, or ∞ if there is no algebraic torsion of any order.

Several consequences of algebraic torsion can be read off quickly from the prop-
erties of SFT cobordism maps. Consider first the case of trivial coefficients R = Q,
which we shall refer to as untwisted algebraic torsion and abbreviate

AT(M, ξ) := AT(M, ξ;Q).

If (W,ω) is a strong filling of (M, ξ), then the hypotheses of Theorem 13.29 are
fulfilled even with G+ = H2(M) since ω is exact at the boundary, thus we obtain
a Q[[~]]-linear map HSFT

∗ (M, ξ)→ R[[~]], with R denoting the Novikov completion
of Q[H2(W )/ ker[ω]]. If [~k] = 0 ∈ HSFT

∗ (M, ξ), then the cobordism map implies a
contradiction since ~k does not equal 0 in R[[~]]. Similarly, if (W, dλ) is an exact
cobordism from (M−, ξ−) to (M+, ξ+), then the cobordism map HSFT

∗ (M+, ξ+) →
HSFT

∗ (M−, ξ−) of Theorem 13.28 is alsoQ[[~]]-linear, and thus any algebraic k-torsion
in (M+, ξ+) is inherited by (M−, ξ−). This proves:
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Theorem 13.31. Contact manifolds with AT(M, ξ) <∞ are not strongly fillable.
Moreover, if there exists an exact symplectic cobordism from (M−, ξ−) to (M+, ξ+),
then AT(M−, ξ−) ≤ AT(M+, ξ+). �

It is known (see [Wen13]) that the second part of the above theorem does not
hold for strong symplectic cobordisms in general, so exactness of cobordisms is a
meaningful symplectic topological condition, not just a technical hypothesis. It is
also known thanks to a construction of Ghiggini [Ghi05] that strong and exact
fillability are not equivalent conditions, but Ghiggini’s proof of this uses Heegaard
Floer homology; thus far it is not known whether this phenomenon can be detected
via SFT or other holomorphic curve techniques.

There are also many known examples of contact manifolds that have untwisted
algebraic torsion but are weakly fillable. The simplest are the tight tori (T3, ξk)
for k ≥ 2, for which weak fillings were first constructed by Giroux [Gir94], but
Eliashberg [Eli96] showed that strong fillings do not exist, and we will see in Lec-
ture 16 that AT(T3, ξk) = 1. The weak/strong distinction can often be detected via
the choice of coefficients in SFT. We saw in §13.2.1 that a weak filling of a contact
manifold (M, ξ) can always be deformed so as to have stable boundary with data
(H = (Ω, α), J+) for which α is a nondegenerate contact form and J+ is C∞-close to
any given element of J (α). Proposition 13.16 showed that if (M, ξ) is algebraically
overtwisted, then the contact homology for the stable Hamiltonian data (H, J+) can
also be made to vanish.

Exercise 13.32. Generalize the proof of Prop. 13.16 to show that if (M, ξ) has
algebraic k-torsion with coefficients in R, then also [~k] = 0 ∈ HSFT

∗ (M,Hc, Jc;R)
for sufficiently large c > 0.

It then follows using Theorem 13.29 that algebraic torsion with suitably twisted
coefficients also gives an obstruction to weak filling. Let us say that (M, ξ) has fully
twisted algebraic k-torsion whenever [~k] = 0 ∈ HSFT

∗ (M, ξ;Q[H2(M)]). Note that
in parallel with Remark 13.10, any nested pair of subgroups G ⊂ G′ ⊂ H2(M) gives
rise to a map

HSFT
∗ (M, ξ;Q[H2(M)/G′])→ HSFT

∗ (M, ξ;Q[H2(M)/G]),

which is a morphism in the sense that it maps the unit and all powers of ~ to
themselves. This implies that (M, ξ) has fully twisted k-torsion if and only if it has
k-torsion for every choice of coefficients.

Theorem 13.33. If (M, ξ) is a closed contact manifold with a finite order of
algebraic torsion with coefficients in R = Q[H2(M)/G] for some subgroup G, then
(M, ξ) does not admit any weak symplectic filling (W,ω) for which [ω|TM ] ∈ H2

dR(M)
is rational and annihilates all elements of G. In particular, if (M, ξ) has fully twisted
algebraic torsion of some finite order, then it is not weakly fillable.

Remark 13.34. The rationality condition in Theorem 13.33 can probably be
lifted, and is known to be unnecessary at least in dimension three. It is clear in any
case that if (M, ξ) admits a weak filling (W,ω), then one can always make a small
perturbation of ω to produce a weak filling for which [ω|TM ] ∈ H2(M ;Q).
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We will see some concrete examples of algebraic torsion computations in Lec-
ture 16. Let us conclude this discussion for now with the observation that algebraic
torsion of order zero is a notion we’ve seen before:

Proposition 13.35. For any closed contact manifold (M, ξ) and group ring
R = Q[H2(M)/G], the following conditions are equivalent:

(1) (M, ξ) has algebraic 0-torsion (with coefficients in R);
(2) (M, ξ) is algebraically overtwisted (with coefficients in R);
(3) HSFT

∗ (M, ξ;R) = 0.

Proof. It is obvious that (3) implies (1). Since DSFTf = ∂CHf+O(~) for f ∈ A,
the R[[~]]-linear map

A[[~]]→ A : F 7→ F|~=0

defines a chain map (A[[~]],D) → (A, ∂CH) and thus descends to an R[[~]]-linear
map HSFT

∗ (M, ξ;R) → HC∗(M, ξ;R). The existence of this map proves that (1)
implies (2).

To prove that (2) implies (3), recall first that if there exists f ∈ A with ∂CHf =
1, then the fact that HC∗(M, ξ;R) = 0 follows easily since for any g ∈ A with
∂CHg = 0, the graded Leibniz rule implies ∂CH(fg) = (∂CHf)g − f(∂CHg) = g. This
works because ∂CH is a derivation—but DSFT is not one, so the same trick will not
quite work for DSFT. The trick in proving HSFT

∗ (M, ξ;R) = 0 will be to quantify
the failure of DSFT to be a derivation. For our purposes, it suffices to know that

(13.17) DSFT(FG) = (DSFTF)G + (−1)|F|F(DSFTG) +O(~)
holds for all F,G ∈ A[[~]], which follows from the fact that ∂CH is a derivation.

With this remark out of the way, suppose f ∈ A satisfies ∂CHf = 1, in which case

(13.18) DSFTf = 1 + ~G

for some G ∈ A[[~]]. We claim then that for any Q ∈ A[[~]] with DSFTQ = 0, there
exists Q1 ∈ A[[~]] with
(13.19) DSFT(fQ) = Q+ ~Q1

andDSFTQ1 = 0. Indeed, (13.19) follows from (13.17) and (13.18) sinceDSFTQ = 0,
and DSFTQ1 = 0 then follows by applying DSFT to (13.19) and using D2

SFT = 0.
Fixing Q0 := Q ∈ A[[~]], we can now define a sequence Qk ∈ A[[~]] satisfying
DSFTQk = 0 for all integers k ≥ 0 via the inductive condition

DSFT(fQk) = Qk + ~Qk+1.

Then
∑∞

k=0(−1)k~kQk ∈ A[[~]], and

DSFT

(
f

∞∑

k=0

(−1)k~kQk

)
= Q.

�



LECTURE 14

Transversality and embedding controls in dimension four

The final three lectures will be included in the published version of this book.
For updates on publication, see the author’s website

https://www.mathematik.hu-berlin.de/~wendl/publications.html#notes

295

https://www.mathematik.hu-berlin.de/~wendl/publications.html#notes




LECTURE 15

Intersection theory for punctured holomorphic curves

The final three lectures will be included in the published version of this book.
For updates on publication, see the author’s website

https://www.mathematik.hu-berlin.de/~wendl/publications.html#notes

297

https://www.mathematik.hu-berlin.de/~wendl/publications.html#notes




LECTURE 16

Torsion computations and applications

The final three lectures will be included in the published version of this book.
For updates on publication, see the author’s website

https://www.mathematik.hu-berlin.de/~wendl/publications.html#notes

299

https://www.mathematik.hu-berlin.de/~wendl/publications.html#notes




APPENDIX A

Sobolev spaces

Contents

A.1. Approximation, extension and embedding theorems 301

A.2. Products, compositions, and rescaling 305

A.3. Spaces of sections of vector bundles 311

A.4. Some remarks on domains with cylindrical ends 316

In this appendix, we review some of the standard properties of Sobolev spaces,
in particular using them to prove Propositions 2.7, 2.8 and 2.10 from §2.2, and
elucidating the construction of Sobolev spaces of sections on vector bundles. A
good reference for the necessary background material is [AF03].

A.1. Approximation, extension and embedding theorems

Unless otherwise noted, all functions in the following are assumed to be defined
on a nonempty open subset

U ⊂ Rn

with its standard Lebesgue measure, and taking values in a finite-dimensional normed
vector space that will usually not need to be specified, though occasionally we will
assume it is R or C so that one can define products of functions. The domain U
will also sometimes have additional conditions specified such as boundedness or reg-
ularity at the boundary, though we will try not to add too many more restrictions
than are really needed. The most useful assumption to impose on U is known as
the strong local Lipschitz condition: if U is bounded, then it means simply that
near every boundary point of U , one can find smooth local coordinates in which
U looks like the region bounded by the graph of a Lipschitz-continuous function,
and in this case we call U a bounded Lipschitz domain. If U is unbounded,
then one needs to impose extra conditions guaranteeing e.g. uniformity of Lipschitz
constants, and the precise definition becomes a bit lengthy (see [AF03, §4.9]). For
our purposes, all we really need to know about the strong local Lipschitz condition
is that that it is satisfied both by bounded Lipschitz domains and by relatively
tame unbounded domains such as (0, 1)×(0,∞) ⊂ R2 which have smooth boundary
with finitely many corners. We will repeatedly need to use the generalized version
of Hölder’s inequality, which states that for any finite collection of measurable

301
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functions f1, . . . , fm,

(A.1)

∥∥∥∥∥
m∏

i=1

|fi|
∥∥∥∥∥
Lp

≤
m∏

i=1

‖fi‖Lpi for 1 ≤ p ≤ p1, . . . , pm ≤ ∞ with
1

p
=

m∑

i=1

1

pi
.

This is an easy corollary of the standard version,
∥∥|f | · |g|

∥∥
L1 ≤ ‖f‖Lp · ‖g‖Lq whenever 1 ≤ p, q ≤ ∞ and 1 =

1

p
+

1

q
.

For an integer k ≥ 0 and real number p ∈ [1,∞] we defineW k,p(U) as in §2.2 to be
the Banach space of all f ∈ Lp(U) which have weak partial derivatives ∂αf ∈ Lp(U)
for all |α| ≤ k. For p = 2, these spaces are also often denoted by

Hk(U) :=W k,2(U),
and they admit Hilbert space structures with inner product

〈f, g〉Hk =
∑

|β|≤k
〈∂αf, ∂αg〉L2.

We denote by
W k,p

0 (U) ⊂W k,p(U), Hk
0 (U) ⊂ Hk(U)

the closed subspaces defined as the closures of C∞
0 (U) with respect to the relevant

norms. Since C∞
0 (U) is dense in Lp(U) for 1 ≤ p < ∞ (see e.g. [LL01, §2.19]),

there is no difference between W 0,p(U) and W 0,p
0 (U) for p < ∞, but in general

W k,p
0 (U) 6= W k,p(U) for k ≥ 1, with a few notable exceptions such as the case
U = Rn (cf. Corollary A.2 below). Let

W k,p
loc (U) :=

{
functions f on U

∣∣ f ∈ W k,p(V) for all open subsets V ⊂ U
with compact closure V ⊂ U

}
,

and we say that a sequence fj ∈ W k,p
loc (U) converges in W k,p

loc to f ∈ W k,p
loc (U) if

the restrictions to all precompact open subsets V ⊂ V ⊂ U converge in W k,p(V).
Recall that for k ∈ {0, 1, 2, . . . ,∞}, Ck(U) denotes the space of functions on U with
continuous derivatives up to order k, while

Ck(U) ⊂ Ck(U)
is the space of f ∈ Ck(U) such that for all |α| ≤ k, ∂αf is bounded and uniformly
continuous.

Theorem A.1 ([AF03, §3.17, 3.22]). For any open subset U ⊂ Rn, and any
k ≥ 0, 1 ≤ p <∞, the subspace

C∞(U) ∩W k,p(U) ⊂W k,p(U)
is dense. Moreover, if U ⊂ Rn satisfies the strong local Lipschitz condition, then the
space {

f ∈ C∞(U)
∣∣∣ f = f̃ |U for some f̃ ∈ C∞

0 (Rn)
}

is also dense in W k,p(U), so in particular,

C∞(U) ∩W k,p(U) ⊂W k,p(U)
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is dense. �

Corollary A.2. The space C∞
0 (Rn) is dense in W k,p(Rn) for every k ≥ 0 and

p ∈ [1,∞). �

Here is another useful characterization of W k,p
0 (U):

Theorem A.3 ([AF03, §5.29]). Assume U ⊂ Rn is an open subset satisfying the

strong local Lipschitz condition. Then a function f ∈ W k,p(U) belongs to W k,p
0 (U)

if and only if the function f̃ on Rn defined to match f on U and 0 everywhere else
belongs to W k,p(Rn). �

While it is obvious from the definitions that functions in W k,p
0 (U) always admit

extensions of class W k,p over Rn, this is much less obvious for functions in W k,p(U)
in general, and it is not true without sufficient assumptions about the regularity
of ∂U . For our purposes it suffices to consider the following case.

Theorem A.4 ([AF03, §5.22]). Assume U ⊂ Rn is a bounded open subset such
that ∂U is a submanifold of class Cm for some m ∈ {1, 2, 3, . . . ,∞}. Then there
exists a linear operator E that maps functions defined almost everywhere on U to
functions defined almost everywhere on Rn and has the following properties:

• For every function f on U , Ef |U ≡ f almost everywhere;
• For every nonnegative integer k ≤ m and every p ∈ [1,∞), E defines a
bounded linear operator W k,p(U)→W k,p(Rn).

�

Corollary A.5. Suppose U ,U ′ ⊂ Rn are open subsets such that U has compact
closure contained in U ′. If U satisfies the hypothesis of Theorem A.4, then the
resulting extension operator E can be chosen such that it maps each W k,p(U) for

k ≤ m and 1 ≤ p <∞ into W k,p
0 (U ′).

Proof. Choose a smooth function ρ : U ′ → [0, 1] that has compact support and
equals 1 on U , then replace the operator E given by Theorem A.4 with the operator
f 7→ ρ · Ef . �

To state the Sobolev embedding theorem in its proper generality, recall that for
0 < α ≤ 1, the Hölder seminorm of a function f on U is defined by

|f |Cα := |f |Cα(U) := sup
x 6=y∈U

|f(x)− f(y)|
|x− y|α ,

and Ck,α(U) is then defined as the Banach space of functions f ∈ Ck(U) for which
the norm

‖f‖Ck,α := ‖f‖Ck +max
|β|=k
|∂βf |Cα

is finite. In reading the following statement, it is important to remember that
elements of W k,p(U) are technically not functions, but rather equivalence classes
of functions defined almost everywhere. Thus when we say e.g. that there is an
inclusion W k,p(U) →֒ Cm,α(U), the literal meaning is that for every function f
representing an element of W k,p(U), one can change the values of f in a unique way
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on some set of measure zero in U so that after this change, f ∈ Cm,α(U). Continuity
of the inclusion means that there is a bound of the form

‖f‖Cm,α ≤ c‖f‖W k,p

for all f ∈ W k,p(U), where c > 0 is a constant which may in general depend on m,
α, k, p and U , but not on f .

Theorem A.6 ([AF03, §4.12]). Assume U ⊂ Rn is an open subset satisfying
the strong local Lipschitz condition, k ≥ 1 is an integer and 1 ≤ p <∞.

(1) If kp > n and k − n/p < 1, then there exist continuous inclusions

W k,p(U) →֒ C0,α(U) for each α ∈ (0, k − n/p],
W k,p(U) →֒ Lq(U) for each q ∈ [p,∞].

(2) If kp < n and p∗ > p is defined by the condition

1

p∗
=

1

p
− k

n
,

then there exist continuous inclusions

W k,p(U) →֒ Lq(U), for each q ∈ [p, p∗].

(3) If kp = n, then there exist continuous inclusions

W k,p(U) →֒ Lq(U), for each q ∈ [p,∞).

Moreover, the spaces W k,p
0 (U) admit similar inclusions under no assumption on the

open subset U ⊂ Rn. �

Under the same assumption on the domain U , one can apply Theorem A.6 to suc-
cessive derivatives of functions in W k,p(U) and thus obtain the following inclusions
for any integer d ≥ 0:

(A.2) W k+d,p(U) →֒ Cd,α(U) if kp > n and 0 < α ≤ k − n/p < 1,

(A.3) W k+d,p(U) →֒ W d,q(U) if kp > n and p ≤ q ≤ ∞,

(A.4) W k+d,p(U) →֒ W d,q(U) if kp < n and p ≤ q ≤ p∗, with
1

p∗
=

1

p
− k

n
,

(A.5) W k+d,p(U) →֒ W d,q(U) if kp = n and p ≤ q <∞.
This last inclusion can then be composed with (A.2) for an arbitrarily large choice
of q, giving another inclusion

(A.6) W k+d,p(U) →֒ Cd−1,α(U) if kp = n and 0 < α < 1.

Remark A.7. The embedding theorem suggests that one should intuitively think
of W k,p(U) as consisting of functions with “k − n/p continuous derivatives,” where
the number k−n/p may in general be a non-integer and/or negative. This provides
a useful mnemonic for results about embeddings of one Sobolev space into another,
such as the following.
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Corollary A.8. Assume U ⊂ Rn is an open subset satisfying the strong local
Lipschitz condition, 1 ≤ p, q <∞, and k,m ≥ 0 are integers satisfying

k ≥ m, p ≤ q, and k − n

p
≥ m− n

q
.

Then there exists a continuous inclusion W k,p(U) →֒ Wm,q(U). �

By the Arzelà-Ascoli theorem, the natural inclusion

Ck,α′
(U) →֒ Ck,α(U)

for α < α′ is a compact operator whenever U ⊂ Rn is bounded. It follows that if U ⊂
Rn in (A.2) is bounded and α is strictly less than the extremal value k − n/p, then
the inclusion (A.2) is also compact. A similar statement holds for the inclusion (A.4)
when p ≤ q < p∗, and this is known as the Rellich-Kondrachov compactness
theorem. We summarize these as follows:

Theorem A.9 ([AF03, §6.3]). Assume U ⊂ Rn is a bounded Lipschitz domain,
k ≥ 1 and d ≥ 0 are integers and 1 ≤ p <∞.

(1) If kp > n and k − n/p < 1, then the inclusions

W k+d,p(U) →֒ Cd,α(U) for α ∈ (0, k − n/p),
W k+d,p(U) →֒ W d,q(U) for q ∈ [p,∞)

are compact.
(2) If kp ≤ n and p∗ ∈ (p,∞] is defined by the condition 1/p∗ = 1/p − k/n,

then the inclusions

W k+d,p(U) →֒ W d,q(U) for q ∈ [p, p∗)

are compact.

In particular, the continuous inclusion W k,p(U) →֒ Wm,q(U) in Corollary A.8 is
compact whenever the inequality k − n/p ≥ m− n/q is strict. �

A.2. Products, compositions, and rescaling

We now restate and prove Propositions 2.7, 2.8 and 2.10 from §2.2. These are
all corollaries of the Sobolev embedding theorem, so in particular they hold for the
same class of domains U ⊂ Rn, and the restrictions on U can be dropped at the cost
of replacing each space W k,p by W k,p

0 .
We begin by generalizing Prop. 2.7, hence we consider Sobolev spaces of functions

valued in R or C so that pointwise products of functions are well defined almost
everywhere. We say that there is a continuous product map,

W k1,p1(U)× . . .×W km,pm(U)→W k,p(U),
or a continuous product pairing in the case m = 2, if for every set of functions
fi ∈ W ki,pi(U) with i = 1, . . . , m, the pointwise product function f1 · . . . · fm is in
W k,p(U) and there is an estimate of the form

‖f1 · . . . · fm‖W k,p ≤ c‖f1‖W k1,p1 · . . . · ‖fm‖W km,pm
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for some constant c > 0 not depending on f1, . . . , fm. The case m = 2, k1 = k2 = k
and p1 = p2 = p is especially interesting, as the space W k,p(U) is then a Banach
algebra. More generally, one can ask under what circumstances multiplication by
functions of classW k,p defines a bounded linear operator on functions of class Wm,q.
A hint about this comes from the world of classically differentiable functions: mul-
tiplication by Ck-smooth functions defines a continuous map Cm → Cm if and only
if k ≥ m. The corresponding answer in Sobolev spaces turns out to be that func-
tions of class W k,p need to have strictly more than zero derivatives in the sense of
Remark A.7, and at least as many derivatives as functions of class Wm,q.

Theorem A.10. Assume U ⊂ Rn is an open subset satisfying the strong local
Lipschitz condition, k, p, m and q satisfy the same numerical hypotheses as in
Corollary A.8 (so in particular W k,p(U) embeds continuously into Wm,q(U)), and
kp > n. Then there exists a continuous product pairing

W k,p(U ,C)×Wm,q(U ,C)→Wm,q(U ,C) : (f, g) 7→ fg.

The following preparatory lemma will be useful both for proving the product
estimate and for further results below. It is an easy consequence of Theorem A.6
and Hölder’s inequality.

Lemma A.11. Assume U ⊂ Rn is an open subset satisfying the strong lo-
cal Lipschitz condition, m ≥ 2 is an integer, and we are given positive numbers
p1, . . . , pm ≥ 1 and integers k1, . . . , km ≥ 0. Let I :=

{
i ∈ {1, . . . , m}

∣∣ kipi ≤ n
}
.

Then for any q ≥ 1 satisfying

∑

i∈I

(
1

pi
− ki
n

)
<

1

q
≤

m∑

i=1

1

pi
,

there is a continuous product map

W k1,p1(U)× . . .×W km,pm(U)→ Lq(U).
Proof. By the generalized Hölder inequality (A.1), it suffices to show that for

any q ≥ 1 in the stated range, one can find numbers q1, . . . , qm ∈ [q,∞] satisfying
1/q = 1/q1 + . . .+ 1/qm for which Theorem A.6 provides continuous inclusions

W ki,pi(U) →֒ Lqi(U)
for each i = 1, . . . , m. Whenever kipi > n, this inclusion is valid with qi chosen freely
from the interval [pi,∞], so 1/qi can then take any value subject to the constraint

0 ≤ 1

qi
≤ 1

pi
.

If on the other hand kipi ≤ n, then we can arrange 1/qi to take any value in the
range

1

pi
− ki
n
<

1

qi
≤ 1

pi
.

Adding these up, the range of values for
∑

i
1
qi
that we can achieve in this way covers

the stated interval. �
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Proof of Theorem A.10. By density of smooth functions, it suffices to prove
that an estimate of the form

‖fg‖Wm,q ≤ c‖f‖W k,p‖g‖Wm,q

holds for all f ∈ C∞(U) ∩W k,p(U) and g ∈ C∞(U) ∩Wm,q(U). Equivalently, we
need to show that for all f and g of this type and every multiindex α of degree
|α| ≤ m, there is a constant c > 0 independent of f and g such that

‖∂α(fg)‖Lq ≤ c‖f‖W k,p‖g‖Wm,q .

Since f and g are smooth, we are free to use the product rule in computing ∂α(fg),
which will then be a linear combination of terms of the form ∂βf · ∂γg where |α| =
|β|+ |γ|, hence we have reduced the problem to proving a bound

‖∂βf · ∂γg‖Lq ≤ c‖f‖W k,p‖g‖Wm,q

for every pair of multiindices β, γ with |β|+ |γ| ≤ m. Since ∂βf ∈ W k−|β|,p(U) and
∂γf ∈ Wm−|γ|,q(U), the result follows if we can assume that for every pair of integers
a, b ≥ 0 satisfying a + b ≤ m, there exists a continuous product pairing

(A.7) W k−a,p(U)×Wm−b,q(U)→ Lq(U).
If (k− a)p > n, then W k−a,p →֒ L∞ and (A.7) is immediate since Wm−b,q →֒ Lq(U).
For the remaining cases, we shall apply Lemma A.11, noting that the condition
1/q ≤ 1/p+ 1/q is trivially satisfied.

If (m− b)q > n but (k−a)p ≤ n, then the hypotheses of the lemma are satisfied
if and only if

1

p
− k − a

n
<

1

q
.

Since 1
p
− k

n
≤ 1

q
− m

n
by assumption, we have

1

p
− k − a

n
=

1

p
− k

n
+
a

n
≤ 1

q
− m

n
+
a

n
≤ 1

q

since a ≤ m, and equality holds only if a = m, b = 0 and k − n/p = m − n/q,
which implies mq > n. In this case Wm−b,q = Wm,q →֒ L∞, and the pairing (A.7)
follows because W k−a,p = W k−m,p embeds continuously into Lq: the latter follows
from Theorem A.6 since 1

p
− k−m

n
= 1

q
.

Finally, when (k − a)p ≤ n and (m− b)q ≤ n, the hypotheses of the lemma are
satisfied since(

1

p
− k − a

n

)
+

(
1

q
− m− b

n

)
≤ 1

p
− k

n
+

1

q
− m

n
+
m

n
=

(
1

p
− k

n

)
+

1

q
<

1

q
,

where we’ve used the assumption kp > n and the fact that a+ b ≤ m. �

The next result generalizes Proposition 2.8 and concerns the following question:
if f : U → Rm is a function of class W k,p whose graph lies in some open subset
V ⊂ U × Rm, and Ψ : V → RN is another function, under what conditions can we
conclude that the function

U → RN : x 7→ Ψ(x, f(x))
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is in W k,p(U ,RN)? We will abbreviate this function in the following by Ψ ◦ (Id× f),
and we would also like to know whether it depends continuously (in the W k,p-
topology) on f and Ψ. The following theorem is stated rather generally, but on first
reading you may prefer to assume U ⊂ Rn is bounded, in which case some of the
hypotheses become vacuous. We will say that an open subset V ⊂ U × Rm is a
star-shaped neighborhood of f : U → Rm if it contains the graph of f0 and

(x, v) ∈ V ⇒ (x, tv + (1− t)f0(x)) ∈ V for all t ∈ [0, 1].

Theorem A.12. Assume U ⊂ Rn is an open subset satisfying the strong local
Lipschitz condition, p ∈ [1,∞) and k ∈ N satisfy kp > n, and V ⊂ U × Rm

is a star-shaped neighborhood of some function f0 ∈ W k,p(U ,Rm). Assume also
Ok,p(U ;V) ⊂W k,p(U ,Rm) is an open neighborhood of f0 such that

(x, f(x)) ∈ V for all x ∈ U and f ∈ Ok,p(U ;V),
and Ok(V ,RN) ⊂ Ck(V,RN) is a subset such that all Ψ ∈ Ok(V,Rn) have the
following properties:1

(1) There exists a bounded subset K ⊂ U such that Ψ(x, v) is independent of x
for all x ∈ U \ K;

(2) Ψ ◦ (Id× f0) ∈ Lp(U ,RN).

Then there is a well-defined and continuous map

Ok(V,RN)×Ok,p(U ;V)→ W k,p(U ,RN) : (Ψ, f) 7→ Ψ ◦ (Id× f).
Proof. We will show first that if f ∈ Ok,p(U ;V) is smooth, then Ψ ◦ (Id ×

f) belongs to W k,p(U ,RN) for every Ψ ∈ Ok(V ,RN). Since V is a star-shaped
neighborhood of f0, we have

|Ψ(x, f(x))−Ψ(x, f0(x))| =
∣∣∣∣
∫ 1

0

d

dt
Ψ
(
x, tf(x) + (1− t)f0(x)

)
dt

∣∣∣∣

≤
(∫ 1

0

|D2Ψ
(
x, tf(x) + (1− t)f0(x)

)
| dt
)
· |f(x)− f0(x)|

≤ ‖Ψ‖C1(V) · |f(x)− f0(x)|
for all x ∈ U , implying

‖Ψ ◦ (Id× f)−Ψ ◦ (Id× f0)‖Lp ≤ ‖Ψ‖C1(V) · ‖f − f0‖Lp,

hence Ψ ◦ (Id× f) ∈ Lp(U ,RN).
For ℓ = 1, . . . , k, we can regard the ℓth derivative of Ψ with respect to variables

in Rm as a bounded and uniformly continuous map from V into the vector space of
symmetric ℓ-multilinear maps from Rm to RN , denoting this by

Dℓ
2Ψ : V → Hom((Rm)⊗ℓ,RN).

Denote the partial derivatives with respect to variables in U ⊂ Rn by

Dβ
1Ψ : V → RN ,

1Both of the conditions on Ψ ∈ Ok(V ,Rn) are vacuous if U ⊂ Rn is bounded.
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where β is a multiindex in n variables. Now for any multiindex α with |α| ≤ k, the
derivative ∂α(Ψ ◦ (Id× f)) is a linear combination of product functions of the form

(A.8) (Dγ
1D

ℓ
2Ψ ◦ (Id× f))(∂β1f, . . . , ∂βℓf) : U → RN ,

where ℓ + |γ| ∈ {1, . . . , |α|} and |β1| + . . . + |βℓ| = |α| − |γ|. If ℓ = 0 but |γ| > 0,
then this expression is clearly in Lp(U ,RN) since it is continuous and Dγ

1Ψ(x, v) = 0
for x ∈ U \ K, where K is bounded. For ℓ ≥ 1, it satisfies

∥∥(Dγ
1D

ℓ
2Ψ ◦ (Id× f))(∂β1f, . . . , ∂βℓf)

∥∥
Lp(U)

≤ ‖Dγ
1D

ℓ
2Ψ‖C0(V) ·

∥∥∥∥∥
ℓ∏

j=1

|∂βjf |
∥∥∥∥∥
Lp(U)

if the product on the right hand side has finite Lp-norm. The latter is trivially
true if ℓ = 1. To deal with the ℓ ≥ 2 case, note that ∂βjf ∈ W k−|βj|,p(U) for each
j = 1, . . . , ℓ, so the necessary bound will follow from the existence of a continuous
product map

W k−m1,p(U)× . . .×W k−mℓ,p(U)→ Lp(U)
for mj := |βj|, and we claim that such a product map does exist whenever kp > n
and m1, . . . , mℓ ≥ 0 are integers satisfying m1 + . . . + mℓ ≤ k. To see this, note
first that since W k−mj ,p →֒ L∞ whenever (k − mj)p > n, it suffices to prove the
claim under the assumption that (k −mj)p ≤ n for every j = 1, . . . , ℓ. In this case,
Lemma A.11 provides the desired product map if the condition

ℓ∑

j=1

(
1

p
− k −mj

n

)
<

1

p
≤

ℓ∑

j=1

1

p

is satisfied. And it is: using kp > n, ℓ ≥ 2 and m1 + . . .+mℓ ≤ k, we find

ℓ∑

j=1

(
1

p
− k −mj

n

)
= ℓ

(
1

p
− k

n

)
+
m1 + . . .+mℓ

n

≤ 1

p
+ (ℓ− 1)

(
1

p
− k

n

)
<

1

p
.

This proves that Ψ ◦ (Id× f) ∈ W k,p(U ,RN ).
Next, suppose f ∈ Ok,p(U ;V) is not necessarily smooth but fi ∈ Ok,p(U ;V) is

a sequence of smooth functions converging to f in W k,p, while Ψi ∈ Ok(V ,RN)
converges to Ψ ∈ Ok(V,RN) in Ck. Then the same argument we used to estimate
‖Ψ ◦ (Id× f)−Ψ ◦ (Id× f0)‖Lp shows that Ψ ◦ (Id× fi)→ Ψ ◦ (Id× f) in Lp, and
since fi is also C0-convergent, the compactly supported functions Dγ

1Ψ ◦ (Id × fi)
converge to Dγ

1Ψ ◦ (Id × f) in Lp for each multiindex with 1 ≤ |γ| ≤ k. For ℓ ≥ 1
and |γ| + ℓ ≤ k, Dγ

1D
ℓ
2Ψi ◦ (Id × fi) converges to Dγ

1D
ℓ
2Ψ ◦ (Id × f) in C0(U ,RN),

and each of the derivatives ∂βjfi appearing in (A.8) also converges in Lp(U). In
light of the continuous product maps discussed above, it follows that each derivative
∂α(Ψi ◦ (Id × fi)) for |α| ≤ k is Lp-convergent, and its limit is necessarily the
corresponding weak derivative ∂α(Ψ ◦ (Id × f)), hence (see Exercise A.13 below)

Ψ ◦ (Id× f) ∈ W k,p(U ,RN) and Ψi ◦ (Id× fi) W
k,p

−→ Ψ ◦ (Id× f). �
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Exercise A.13. Show that if fi is a sequence of smooth functions on an open set

U ⊂ Rn with fi
Lp

→ f and ∂αfi
Lp

→ g for some multiindex α and functions f, g ∈ Lp(U),
then ∂αf = g in the sense of distributions.

The following result on coordinate transformations of the domain can be proved
in an analogous way to Theorem A.12, though it is considerably easier since there is
no need to worry about Sobolev product maps (and thus no need to assume kp > n
or impose regularity conditions on the domain).

Theorem A.14 ([AF03, §3.41]). Assume k ∈ N, 1 ≤ p ≤ ∞, and U ,U ′ ⊂
Rn are open subsets with a Ck-smooth diffeomorphism ϕ : U → U ′ such that all
derivatives of ϕ and ϕ−1 up to order k are bounded and uniformly continuous. Then
there is a well-defined Banach space isomorphism

W k,p(U ′)→W k,p(U) : f 7→ f ◦ ϕ.

�

We now restate and prove Proposition 2.10. We denote by D̊n, D̊n
ǫ ⊂ Rn the open

balls of radius 1 and ǫ respectively about the origin.

Theorem A.15. Assume p ∈ [1,∞) and k ∈ N satisfy kp > n, and for each

f ∈ W k,p(D̊n) and ǫ ∈ (0, 1], define fǫ ∈ W k,p(D̊n) by

fǫ(x) := f(ǫx).

Then there exist constants C > 0 and r > 0 such that for every f ∈ W k,p(D̊n),

‖fǫ − f(0)‖W k,p(D̊n) ≤ Cǫr‖f − f(0)‖W k,p(D̊n) for all ǫ ∈ (0, 1].

Proof. Let β denote a multiindex of order |β| = k. Then using a change of
variables, we have

‖∂β(fǫ − f(0))‖pLp(D̊n)
= ǫkp

∫

Dn

|∂βf(ǫx)|p = ǫkp−n
∫

Dn
ǫ

|∂βf(x)|p

≤ ǫkp−n‖∂βf‖p
Lp(D̊n)

≤ ǫkp−n‖f − f(0)‖p
W k,p(D̊n)

,

and ǫkp−n → 0 as ǫ→ 0 since kp− n > 0.
Next, suppose |β| = m ∈ {1, . . . , k− 1}. Then ∂βf and ∂βfǫ are in W

k−m,p(D̊n),
and if (k −m)p < n, Theorem A.6 gives a continuous inclusion

(A.9) W k−m,p(D̊n) →֒ Lq(D̊n)

with q > p satisfying 1/q + (k −m)/n = 1/p. Likewise, if (k −m)p ≥ n, then (A.9)
is a continuous inclusion for arbitrarily large choices of q ≥ p. We will therefore
assume in general that (A.9) holds with q ∈ (p,∞) satisfying

1

q
+

1

r
=

1

p
,
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where r = n
k−m if (k −m)p < n and otherwise r = p+ δ for some δ > 0 which may

be chosen arbitrarily small. Given this, we use Hölder’s inequality and find

‖∂β(fǫ − f(0))‖pLp(D̊n)
= ǫmp

∫

Dn

|∂βf(ǫx)|p = ǫmp−n
∫

Dn
ǫ

|∂βf(x)|p

≤ ǫmp−n‖∂βf‖p
Lq(D̊n

ǫ )
‖1‖p

Lr(D̊n
ǫ )

≤ ǫmp−n [Vol(Dn
ǫ )]

p/r ‖∂βf‖p
Lq(D̊n)

≤ cǫmp−n [Vol(Dn
ǫ )]

p/r ‖∂βf‖p
W k−m,p(D̊n)

≤ cǫmp−n [Vol(Dn
ǫ )]

p/r ‖f − f(0)‖p
W k,p(D̊n)

for some constant c > 0. Writing Vol(Dn
ǫ ) = Cǫn for a suitable constant C > 0, the

exponent on ǫ in this expression becomes

mp− n +
np

r
,

which is positive whenever r = p+ δ with δ > 0 sufficiently small since m ≥ 1, and
in the case r = n/(k −m), it becomes simply kp− n > 0.

Finally, to bound the Lp-norm of fǫ−f(0) itself, we can use the fact that f ∈ W k,p

is Hölder continuous, i.e. it satisfies

|f(x)− f(0)| ≤ c‖f − f(0)‖W k,p(D̊n)|x|α for all x ∈ D̊n

for suitable constants c > 0 and α ∈ (0, 1). Thus

‖fǫ − f(0)‖pLp(D̊n)
=

∫

Dn

|f(ǫx)− f(0)|p ≤ cp‖f − f(0)‖p
W k,p

∫

Dn

|ǫx|αp

= cp‖f − f(0)‖p
W k,pǫ

αp

∫

Dn

|x|αp

= ǫαp
cpVol(Sn−1)

αp+ n
‖f − f(0)‖p

W k,p.

�

A.3. Spaces of sections of vector bundles

In this section, fix a field

F := R or C,

assume M is a smooth n-dimensional manifold, possibly with boundary, and π :
E → M is a smooth vector bundle of rank m over F. This comes with a “bundle
atlas” A(π), a set whose elements α ∈ A(π) each consist of the following data:

(1) An open subset Uα ⊂M ;

(2) A smooth local coordinate chart ϕα : Uα
∼=−→ Ωα, where Ωα is an open

subset of Rn
+ := {(x1, . . . , xn) ∈ Rn | xn ≥ 0};

(3) A smooth local trivialization Φα : E|Uα

∼=−→ Uα × Fm.
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Smoothness of ϕα and Φα means as usual that for every pair α, β ∈ A(π), the
coordinate transformations

ϕβα := ϕ−1
β ◦ ϕα : Ωαβ

∼=−→ Ωβα, Ωαβ := ϕα(Uα ∩ Uβ)
and transition maps

gβα : Uα ∩ Uβ → GL(m,F) such that Φβ ◦ Φ−1
α (x, v) = (x, gβα(x)v)

for x ∈ Uα ∩ Uβ , v ∈ Fm

are smooth, and we shall assume the bundle atlas is maximal in the sense that
any triple (U , ϕ,Φ) that is smoothly compatible with every α ∈ A(π) also belongs
to A(π).

Any α ∈ A(π) now associates to sections η : M → E their local coordinate
representatives

ηα := pr2 ◦Φα ◦ η ◦ ϕ−1
α : Ωα → Fm,

where pr2 : Uα × Fm → Fm is the projection, and the representatives with respect
to two distinct α, β ∈ A(π) are related by

ηβ = (gβα ◦ ϕ−1
β )(ηα ◦ ϕαβ) on Ωβα ⊂ Ωβ.

For p ∈ [1,∞] and each integer k ≥ 0, we then define the topological vector space

of sections of class W k,p
loc by

W k,p
loc (E) :=

{
η :M → E

∣∣ sections such that ηα ∈ W k,p
loc (Ω̊α,F

m)

for all α ∈ A(π)
}
,

where convergence ηj → η in W k,p
loc (E) means that ηαj → ηα in W k,p

loc (Ω̊α,F
m) for all

α ∈ A(π). Note that Ωα is not necessarily an open subset of Rn since it may contain

points in ∂Rn
+ = Rn−1 × {0}, but its interior Ω̊α is open in Rn, and W k,p

loc (Ω̊α) is

thus defined as in §A.1. Strictly speaking, elements of η ∈ W k,p
loc (E) are not sections

but equivalence classes of sections defined almost everywhere—the latter notion is
defined with respect to any measure arising from a smooth volume element on M ,
and it does not depend on this choice.

It turns out that W k,p
loc (E) can be given the structure of a Banach space if M is

compact. This follows from the fact thatM can then be covered by a finite subset of
the atlas A(π), but we must be a little bit careful: not all charts in A(π) are equally
suitable for definingW k,p-norms on sections, because e.g. even a nice smooth section
η ∈ Γ(E) may have ‖ηα‖W k,p(Ω̊α)

= ∞ if Ωα ⊂ Rn
+ is unbounded. One way to deal

with this is as follows: we will say that α ∈ A(π) is a precompact chart if there
exists α′ ∈ A(π) and a compact subset K ⊂ M such that

Uα ⊂ K ⊂ Uα′ .

When this is the case, Ωα ⊂ Rn
+ is necessarily bounded, and the transition maps

between two precompact charts necessarily have bounded derivatives of all orders,
as they are restrictions to precompact subsets of maps that are smooth on larger
domains. If M is compact, then one can always find a finite subset I ⊂ A(π)
consisting of precompact charts such that M =

⋃
α∈I Uα.
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Definition A.16. Suppose E → M is a smooth vector bundle over a compact
manifold M , and I ⊂ A(π) is a finite set of precompact charts such that {Uα}α∈I
is an open cover of M . We then define W k,p(E) as the vector space of all sections
η :M → E for which the norm

‖η‖W k,p := ‖η‖W k,p(E) :=
∑

α∈I
‖ηα‖W k,p(Ω̊α)

is finite.

The norm in the above definition depends on auxiliary choices, but it is easy to
see that the resulting definition of the space W k,p(E) and its topology do not. In
fact:

Proposition A.17. If M is compact, then W k,p(E) = W k,p
loc (E), and a sequence

ηj converges to η inW
k,p
loc (E) if and only if the norm given in Definition A.16 satisfies

‖ηj − η‖W k,p(E) → 0.

The proposition is an immediate consequence of the following.

Lemma A.18. Suppose M is a smooth manifold, π : E → M is a smooth vector
bundle, {β} ∪ J ⊂ A(π) is a finite collection of charts such that M =

⋃
α∈J Uα and

all coordinate transformations and transition maps relating any two charts in the
collection {β} ∪ J have bounded derivatives of all orders (e.g. it suffices to assume
all are precompact). Then there exists a constant c > 0 such that

‖ηβ‖W k,p(Ω̊β)
≤ c

∑

α∈J
‖ηα‖W k,p(Ω̊α)

for all sections η :M → E with ηα ∈ W k,p(Ω̊α) for every α ∈ J .
Proof. Choose a partition of unity {ρα : M → [0, 1]}α∈J subordinate to the

finite open cover {Uα}α∈J . Now η =
∑

α∈J ραη, and each ραη is supported in Uα, so
(ραη)

β has support in Ωβα = ϕβ(Uα ∩ Uβ). Thus using Theorem A.14 with the fact
that gβα, ϕ

−1
β , ϕαβ and ϕβα = ϕ−1

αβ are all smooth functions with bounded derivatives
of all orders on the domains in question, we find

‖ηβ‖W k,p(Ω̊β)
=

∥∥∥∥∥
∑

α∈J
(ραη)

β

∥∥∥∥∥
W k,p(Ω̊β)

≤
∑

α∈J
‖(ραη)β‖W k,p(Ω̊βα)

=
∑

α∈J
‖(ρα ◦ ϕ−1

β )(gβα ◦ ϕ−1
β )(ηα ◦ ϕαβ)‖W k,p(Ω̊βα)

≤ c
∑

α∈J
‖ηα‖W k,p(Ω̊αβ)

≤ c
∑

α∈J
‖ηα‖W k,p(Ω̊α)

.

�

Corollary A.19. If M is compact, then the norm on W k,p(E) given by Defi-
nition A.16 is independent of all auxiliary choices up to equivalence of norms. �

Theorem A.20. For any smooth vector bundle π : E → M over a compact
manifold M , W k,p(E) is a Banach space.
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Proof. If ηj ∈ W k,p(E) is a Cauchy sequence, then for some chosen finite
collection I ⊂ A(π) of precompact charts coveringM , the sequences ηαj for α ∈ I are
Cauchy inW k,p(Ω̊α) and thus have limits ξ(α) ∈ W k,p(Ω̊α,F

m). Choosing a partition
of unity {ρα :M → [0, 1]}α∈I subordinate to {Uα}α∈I , we can now associate to each
α ∈ I a section η∞,α ∈ W k,p(E) characterized uniquely by the condition that it
vanishes outside of Uα and is represented in the trivialization on Uα by

ηα∞,α = (ρα ◦ ϕ−1
α )ξ(α).

We claim that ραηj → η∞,α in W k,p(E) for each α ∈ I. Indeed, we have

(ραηj)
α = (ρα ◦ ϕ−1

α )ηαj → (ρα ◦ ϕ−1
α )ξ(α) = ηα∞,α in W k,p(Ω̊α)

since ηαj → ξ(α). For all other β ∈ I not equal to α, (ραηj)
β − ηβ∞,α ∈ W k,p(Ω̊β,F

m)
has support in Ωβα = ϕβ(Uα ∩ Uβ), thus
‖(ραηj)β − ηβ∞,α‖W k,p(Ω̊β)

= ‖(ραηj)β − ηβ∞,α‖W k,p(Ω̊βα)
≤ c‖(ραηj)α − ηα∞,α‖W k,p(Ω̊α)

,

where the inequality comes from Lemma A.18 after replacing M with Uα, and Uβ
with Uβ ∩ Uα (note that the lemma does not require M to be compact). With the
claim established, we have

ηj =
∑

α∈I
ραηj →

∑

α∈I
η∞,α in W k,p(E).

�

Exercise A.21. For U ⊂ Rn an open subset, the space W k,p
loc (U) was defined in

§A.1, but one can give it an alternative definition in the present context by viewing
functions on U as sections of a trivial vector bundle over U , with the latter viewed
as a noncompact smooth n-manifold. Show that these two definitions of W k,p

loc (U)
are equivalent.

Exercise A.22. Suppose U ⊂ Rn is a bounded open subset with smooth bound-
ary, so its closure U ⊂ Rn is a smooth compact submanifold with boundary, and let
E → U be a trivial vector bundle. Show that there is a canonical Banach space iso-
morphism betweenW k,p(U) as defined in §A.1 andW k,p(E) as defined in the present
section. Hint: Recall that sections inW k,p(E) are only required to be defined almost

everywhere, so in particular if the domainM is a manifold with boundary, they need

not be well defined on ∂M .

In light of Exercise A.22, the natural generalization of W k,p
0 (U) in the present

setting is

W k,p
0 (E) := C∞

0 (E|M\∂M),

i.e. it is the closure in the W k,p-norm of the space of smooth sections that vanish
near the boundary. Density of smooth sections will imply that this is the same as
W k,p(E) if M is closed, but in general W k,p

0 (E) is a closed subspace of W k,p(E).
The partition of unity argument in Theorem A.20 contains all the essential ideas

needed to generalize results about Sobolev spaces on domains in Rn to compact
manifolds. We now state the essential results, leaving the proofs as exercises.
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Theorem A.23. Assume M is a smooth compact n-manifold, possibly with
boundary, π : E → M is a smooth vector bundle of finite rank, k ≥ 0 is an in-
teger and 1 ≤ p <∞. Then the Banach space W k,p(E) has the following properties.

(1) The space Γ(E) of smooth sections is dense in W k,p(E).
(2) If N ⊂ M is a smooth compact n-dimensional submanifold with boundary,

then there exists a bounded linear operator

E : W k,p(E|N)→W k,p
0 (E)

which is an extension operator in the sense that Eη|N = η for all η ∈
W k,p(E|N). Moreover, a section η ∈ W k,p(E|N) belongs to W k,p

0 (E|N) if
and only if the section η̃ defined to match η on N and to vanish on M \N
belongs to W k,p(E).

(3) If kp > n, then for each integer d ≥ 0, there exists a continuous and compact
inclusion

W k+d,p(E) →֒ Cd(E).

(4) The natural inclusion

W k+1,p(E) →֒ W k,p(E)

is compact.
(5) Suppose F,G → M are smooth vector bundles such that there exists a

smooth bundle map

E ⊗ F → G : η ⊗ ξ 7→ η · ξ.
Then if kp > n and 0 ≤ m ≤ k, there exists a continuous product pairing

W k,p(E)×Wm,p(F )→ Wm,p(G) : (η, ξ) 7→ η · ξ.
In particular, products ofW k,p sections giveW k,p sections whenever kp > n.

(6) Suppose F → M is another smooth vector bundle, V ⊂ E is an open subset
that intersects every fiber of E, and we consider the spaces

W k,p(V) :=
{
η ∈ W k,p(E)

∣∣ η(M) ⊂ V
}

and

Ck
M(V, F ) :=

{
Φ : V → F | fiber-preserving maps of class Ck

}
,

where the latter is assigned the topology of Ck-convergence on compact sub-
sets. If kp > n, then W k,p(V) is an open subset of W k,p(E), and the map

Ck
M(V, F )×W k,p(V)→W k,p(F ) : (Φ, η) 7→ Φ ◦ η

is well defined and continuous.
(7) If N is another smooth compact manifold and ϕ : N → M is a smooth

diffeomorphism, then there is a Banach space isomorphism

W k,p(E)→ W k,p(ϕ∗E) : η 7→ η ◦ ϕ.
�
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A.4. Some remarks on domains with cylindrical ends

For bundles π : E → M with M noncompact, W k,p(E) is not generally well

defined without making additional choices. When M = Σ̇ = Σ \ Γ is a punctured
Riemann surface and π : E → Σ̇ is equipped with an asymptotically Hermitian struc-
ture {(Ez, Jz, ωz)}z∈Γ, one nice way to define W k,p(E) was introduced in §4.1: one

takes it to be the space of sections in W k,p
loc (E) whose W

k,p-norms on each cylindrical
end are finite with respect to a choice of asymptotic trivialization. This definition
requires the convenient fact that complex vector bundles over S1 are always triv-
ial, though one can also do without this by using the ideas in the previous section.
Indeed, any collection of local trivializations on the asymptotic bundle Ez → S1

covering S1 gives rise via the asymptotically Hermitian structure to a collection of
trivializations on E covering the corresponding cylindrical end U̇z . The key fact
is then that S1 is compact, hence one can always choose such a covering to be fi-
nite: combining this with a finite covering of Σ̇ in the complement of its cylindrical
ends by precompact charts, we obtain a covering of Σ̇ by a finite collection of bun-
dle charts that are not all precompact, but nonetheless have the property that all
transition maps have bounded derivatives of all orders. This is enough to define a
W k,p-norm for sections of E → Σ̇ as in Definition A.16 and to prove that it does
not depend on the choices of charts or local trivializations, though it does depend
on the asymptotically Hermitian structure.

With this definition understood, one can easily generalize the Sobolev embedding
theorem and other important statements in Theorem A.23 to the setting of an
asymptotically Hermitian bundle over a punctured Riemann surface. We shall leave
the details of this generalization as an exercise, but take the opportunity to point
out a few important differences from the compact case.

First, since Σ̇ is not compact, neither are the inclusions

W k+d,p(E) →֒ Cd(E), W k+1,p(E) →֒ W k,p(E).

The proof of compactness fails due to the fact that cylindrical ends require local
trivializations over unbounded domains of the form (0,∞)× (0, 1) ⊂ R2, for which
Theorem A.9 does not hold. And indeed, considering unbounded shifts on the
infinite cylinder Σ̇ = R×S1, it is easy to find a sequence of W k,p-bounded functions
with kp > 2 that do not have a C0-convergent subsequence. That is the bad news.

The good news is that if η ∈ W k+d,p(E) for kp > 2, then one can say considerably
more about η than just that it is Cd-smooth. Indeed, restricting to one of the
cylindrical ends [0,∞)× S1 ⊂ Σ̇, notice that finiteness of the W k+d,p-norm over Σ̇
implies

‖η‖W k+d,p((R,∞)×S1) → 0 as R→∞.
Since these domains are all naturally diffeomorphic for different values of R, the
Cd-norm of η over (R,∞)× S1 is bounded by the W k+d,p-norm via a constant that
does not depend on R, so this implies an asymptotic decay condition

‖η‖Cd([R,∞)×S1) → 0 as R→∞
for every η ∈ W k+d,p(E).
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Here is another useful piece of good news: since Σ̇ does not have boundary,
W k,p(E) = W k,p

0 (E).

Theorem A.24. Given an asymptotically Hermitian bundle E over a punctured
Riemann surface Σ̇, the space C∞

0 (E) of smooth sections with compact support is
dense in W k,p(E) for all k ≥ 0 and 1 ≤ p <∞.

Proof. We can assume as in Definition A.16 that the W k,p-norm for sections η
of E is given by

‖η‖W k,p =
∑

α∈I
‖ηα‖W k,p(Ωα),

where I ⊂ A(π) is a finite collection of bundle charts

α =
(
ϕα : Uα

∼=−→ Ωα , Φα : E|Uα

∼=−→ Uα × Cn
)

such that each of the open sets Ωα ⊂ C is either bounded or (for charts over the
cylindrical ends) of the form

Ωα = (0,∞)× ωα ⊂ R2 = C

for some bounded open subset ωα ⊂ R. Now given η ∈ W k,p(E), Theorem A.1
provides for each α ∈ I a sequence ηαj ∈ W k,p(Ωα) of smooth functions with bounded

support such that ηαj → ηα in W k,p(Ωα). Choose a partition of unity {ρα : Σ̇ →
[0, 1]}α∈I subordinate to the open cover {Uα}α∈I and let

ηj :=
∑

α∈I
ρα(η

α
j ◦ ϕα) ∈ W k,p(E).

These sections are smooth and have compact support since the ηαj have bounded

support in Ωα, and they converge in W k,p to η. �





APPENDIX B

The Floer Cε space

The Cε-topology for functions was introduced by Floer [Flo88b] to provide a Ba-
nach manifold of perturbed geometric structures without departing from the smooth
category: it is a way to circumvent the annoying fact that spaces of smooth functions
which arise naturally in geometric settings are not Banach spaces. The construction
of Cε spaces generally depends on several arbitrary choices and is thus far from
canonical, but this detail is unimportant since the Cε space itself is never the main
object of interest. What is important is merely the properties that it has, namely
that it not only embeds continuously into C∞ and contains an abundance of non-
trivial functions, but also is a separable Banach space and can therefore be used in
the Sard-Smale theorem for genericity arguments. We shall prove these facts in this
appendix.

Fix a smooth finite-rank vector bundle π : E → M over a finite-dimensional
compact manifoldM , possibly with boundary. For each integer k ≥ 0, we denote by
Ck(E) the Banach space of Ck-smooth sections of E; note that the norm on Ck(E)
depends on various auxiliary choices but is well defined up to equivalence of norms
since M is compact. Now if (εk)

∞
k=0 is a sequence of positive numbers with εk → 0,

set

Cε(E) =
{
η ∈ Γ(E)

∣∣ ‖η‖Cε <∞
}
,

where the Cε-norm is defined by

(B.1) ‖η‖Cε =

∞∑

k=0

εk‖η‖Ck .

The norm for Cε(E) is somewhat more delicate than for Ck(E), e.g. its equivalence
class is not obviously independent of auxiliary choices. This remark is meant as
a sanity check, but it should not cause extra concern since, in practice, the space
Cε(E) is typically regarded as an auxiliary choice in itself. In many applications,
one fixes an open subset U ⊂M and considers the closed subspace

Cε(E;U) =
{
η ∈ Cε(E)

∣∣ η|M\U ≡ 0
}
.

Remark B.1. The requirement for M to be compact can be relaxed as long as
U ⊂ M has compact closure: e.g. in one situation of frequent interest in this book,
we takeM to be the noncompact completion of a symplectic cobordism. In this case
Cε(E;U) can be defined as a closed subspace of Cε(E|M0) where M0 ⊂ M is any
compact manifold with boundary that contains the closure of U . For this reason,
we lose no generality in continuing under the assumption that M is compact.
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In order to prove things about Cε(E), we will need to specify a more precise
definition of the Ck-norms. To this end, define a sequence of vector bundles E(k) →
M for integers k ≥ 0 inductively by

E(0) := E, E(k+1) := Hom(TM,E(k)).

Choose connections and bundle metrics on both TM and E; these induce connec-
tions and bundle metrics on each of the E(k), so that for any section ξ ∈ Γ(E(k)),
the covariant derivative ∇ξ is now a section of E(k+1). In particular for η ∈ Γ(E),
we can define the “kth covariant derivative” of η as a section

∇kη ∈ Γ(E(k)).

Using the bundle metrics to define C0-norms for sections of E(k), we can then define

‖η‖Ck(E) =
k∑

m=0

‖∇mη‖C0(E(m)),

where by convention ∇0η := η. We will assume throughout the following that the
Ck-norms appearing in (B.1) are defined in this way.

Theorem B.2. Cε(E) is a Banach space.

Proof. We need to show that Cε-Cauchy sequences converge in the Cε-norm.
It is clear from the definitions that if ηj ∈ Cε(E) is Cauchy, then ηj is also Ck-
Cauchy for every k ≥ 0, hence its derivatives ∇kηj for every k are C0-convergent
to continuous sections ξk of E(k). This convergence implies that ξk+1 = ∇ξk in
the sense of distributions, hence by the equivalence of classical and distributional
derivatives (see e.g. [LL01, §6.10]), η∞ := ξ0 is smooth with ∇kη∞ = ξk, so that
∇kηj →∇kη∞ in C0(E(k)) for all k.

We claim η∞ ∈ Cε(E). Choose N > 0 such that ‖ηi − ηj‖Cε < 1 for all i, j ≥ N .
Then for every m ∈ N and every i ≥ N ,

m∑

k=0

εk‖ηi‖Ck ≤
m∑

k=0

εk‖ηi − ηN‖Ck +
m∑

k=0

εk‖ηN‖Ck

≤ ‖ηi − ηN‖Cε + ‖ηN‖Cε < 1 + ‖ηN‖Cε .

Fixing m and letting i→∞, we then have
m∑

k=0

εk‖η∞‖Ck ≤ 1 + ‖ηN‖Cε

for all m, so we can now let m→∞ and conclude ‖η∞‖Cε ≤ 1 + ‖ηN‖Cε <∞.
The argument that ‖ηj → η∞‖Cε → 0 as j → ∞ is similar: pick ǫ > 0 and N

such that ‖ηi−ηj‖Cε < ǫ for all i, j ≥ N . Then for a fixed m ∈ N, we can let i→∞
in the expression

∑m
k=0 εk‖ηi − ηj‖Ck < ǫ, giving

m∑

k=0

εk‖η∞ − ηj‖Ck ≤ ǫ.

This is true for every m, so we can take m→∞ and conclude ‖η∞ − ηj‖Cε ≤ ǫ for
all j ≥ N . �
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To show that Cε(E) is also separable, we will follow a hint1 from [HS95] and
embed it isometrically into another Banach space that can be more easily shown to
be separable. For each integer k ≥ 0, define the vector bundle

F (k) = E(0) ⊕ . . .⊕E(k),

and let Xε denote the vector space of all sequences

ξ := (ξ0, ξ1, ξ2, . . .) ∈
∞∏

k=0

C0(F (k))

such that

‖ξ‖Xε :=
∞∑

k=0

εk‖ξk‖C0 <∞.

Exercise B.3. Adapt the proof of Theorem B.2 to show thatXε is also a Banach
space.

Lemma B.4. Xε is separable.

Proof. Since C0(F (k)) is separable for each k ≥ 0, we can fix countable dense
subsets P k ⊂ C0(F (k)). The set

P :=
{
(ξ0, . . . , ξN , 0, 0, . . .) ∈ Xε

∣∣ N ≥ 0 and ξk ∈ P k for all k = 0, . . . , N
}

is then countable and dense in Xε. �

Theorem B.5. Cε(E) is separable.

Proof. Consider the injective linear map

Cε(E) →֒ Xε : η 7→
(
η, (η,∇η), (η,∇η,∇2η), . . .

)
.

This is an isometric embedding and thus presents Cε(E) as a closed linear subspace
of Xε, hence the theorem follows from Lemma B.4 and the fact that subspaces of
separable metric spaces are always separable. �

Note that given any open subset U ⊂ M , Theorems B.2 and B.5 also hold for
Cε(E;U), as a closed subspace of Cε(E). So far in this discussion, however, there has
been no guarantee that Cε(E) or Cε(E;U) contains anything other than the zero-
section, though it is clear that in theory, one should always be able to enlarge the
space by choosing new sequences εk that converge to zero faster. The following result
says that Cε(E;U) can always be made large enough to be useful in applications.

Theorem B.6. Given an open subset U ⊂M , the sequence εk can be chosen to
have the following properties:

(1) Cε(E;U) is dense in the space of continuous sections vanishing outside U .
(2) Given any point p ∈ U , a neighborhood Np ⊂ U of p, a number δ > 0 and

a continuous section η0 of E, there exists a section η ∈ Γ(E) and a smooth
compactly supported function β : Np → [0, 1] such that

βη ∈ Cε(E;U), β(p)η(p) = η0(p), and ‖η − η0‖C0 < δ.

1Thanks to Sam Lisi for explaining to me what the hint in [HS95] was referring to.



322 Chris Wendl

Proof. Note first that it suffices to find two separate sequences εk and ε′k that
have the first and second property respectively, as the sequence of minima min(εk, ε

′
k)

will then have both properties.
The following construction for the first property is based on a suggestion by

Barney Bramham. Observe first that the space C0(E;U) of continuous sections
vanishing outside U is a closed subspace of C0(E) and is thus separable, so we can
choose a countable C0-dense subset P ⊂ C0(E;U). Moreover, the space of smooth
sections vanishing outside U is dense in C0(E;U), hence we can assume without loss
of generality that the sections in P are smooth. Now write P = {η1, η2, η3, . . .} and
define εk > 0 for every integer k ≥ 0 to have the property

εk <
1

2k
min

{
1

‖η1‖Ck

, . . . ,
1

‖ηk‖Ck

}
.

Then every ηj is in Cε(E;U), as

‖ηj‖Cε <

j−1∑

k=0

εk‖ηj‖Ck +
∞∑

k=j

1

2k
<∞.

The second property is essentially local, so it can be deduced from Lemma B.7
below. �

Lemma B.7. Suppose β : D̊n → [0, 1] is a smooth function with compact support

on the open unit ball D̊n ⊂ Rn and β(0) = 1. One can choose a sequence of positive
numbers εk → 0 such that for every η0 ∈ Rm and r > 0, the function η : Rn → Rm

defined by
η(p) := β(p/r)η0

satisfies
∑∞

k=0 εk‖η‖Ck <∞.

Proof. Define εk > 0 so that for k ≥ 1,

εk =
1

kk‖β‖Ck

.

Then ∞∑

k=1

εk‖η‖Ck ≤
∞∑

k=1

1

kk‖β‖Ck

‖β‖Ck

rk
=

∞∑

k=1

(
1/r

k

)k
<∞.

�



APPENDIX C

Genericity in the space of asymptotic operators

The purpose of this appendix is to prove Lemma 3.17, which was needed for
our definition of spectral flow in §3.2. The proof combines some ideas from that
section with the technique used in Lecture 7 to prove generic transversality of moduli
spaces via the Sard-Smale theorem. Some knowledge of that technique should thus
be considered a prerequisite for this appendix; if you have never seen it before and
were directed here after reading the statement of Lemma 3.17, you might want to
skip this for now and come back after you’ve read as far as Lecture 7.

Recalling the notation from Lecture 3, we fix the real Hilbert spaces

H = L2(S1,R2n), D = H1(S1,R2n),

the symmetric index 0 Fredholm operator

Tref = −J0 ∂t : D → H
and, given a smooth loop of symmetric matrices S : S1 → Endsym

R (R2n), refer to any
operator of the form

A = −J0 ∂t − S : D → H
as an asymptotic operator. Such operators belong to the space of symmetric
compact perturbations of Tref ,

Fredsym
R (D,H,Tref) =

{
Tref +K : D → H

∣∣ K ∈ L
sym
R (H)

}
,

which we regard as a smooth Banach manifold via its obvious identification with
the space L

sym
R (H) of symmetric bounded linear operators on H. For k ∈ N, we

denote by

Fredsym,k
R (D,H,Tref) ⊂ Fredsym

R (D,H,Tref)

the finite-codimensional submanifold determined by the condition dimR kerA =
dimR cokerA = k.

Here is the statement of Lemma 3.17 again.

Lemma. Fix a smooth map S : [−1, 1] × S1 → Endsym
R (R2n) and consider the

1-parameter family of operators

As := −J0 ∂t − S(s, ·) ∈ Fredsym
R (D,H,Tref)

for s ∈ [−1, 1]. Then after a C∞-small perturbation of S fixed at s = ±1, one can
assume the following:

(1) For every s ∈ (−1, 1), all eigenvalues of As (regarded as an unbounded
operator on H) are simple.
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(2) All intersections of the path

(−1, 1)→ Fredsym
R (D,H,Tref) : s 7→ As

with Fredsym,1
R (D,H,Tref) are transverse.

We shall now prove this by constructing a Floer-type space of Cε-smooth (see
Appendix B) perturbed families of asymptotic operators, and using the Sard-Smale
theorem to find a countable collection of comeager subsets whose intersection con-
tains perturbations achieving the desired conditions.

Choose a sequence of positive numbers (ε)∞k=0 with εk → 0 to define a separable
Banach space

Aε :=
{
B ∈ C∞([−1, 1]× S1,Endsym

R (R2n))
∣∣ ‖B‖Cε <∞ and B(±1, ·) ≡ 0

}
,

and assume via Theorem B.6 that Aε is dense in the Banach space of continuous
functions [−1, 1] × S1 → Endsym

R (R2n) vanishing at {±1} × S1. We then consider
perturbed 1-parameter families of asymptotic operators of the form

AB
s := As +B(s, ·) : D → H

for B ∈ Aε, s ∈ [−1, 1]. For each k ∈ N and B ∈ Aε, define the set

Vk(B) =
{
(s, λ) ∈ (−1, 1)× R

∣∣ dimR ker
(
AB
s − λ

)
= k

}
.

To show that eigenvalues are generically simple, we need to show that for a comeager
set of choices of B ∈ Aε, Vk(B) is empty for all k ≥ 2. Given (s0, λ0) ∈ Vk(B),
recall from §3.2 that there exist decompositions

D = V ⊕K, H =W ⊕K
where K = ker

(
AB
s0
− λ0

)
, W = im

(
AB
s0
− λ0

)
is the L2-orthogonal complement

of K, and V = W ∩ D, so that any symmetric bounded linear operator T in a
sufficiently small neighborhood O ⊂ L

sym
R (D,H) of AB

s0
− λ0 can be written in

block form

T =

(
A B
C D

)

with A : V →W invertible, giving rise to a smooth map

Φ : O → Endsym
R (K) : T 7→ D−CA−1B

whose zero-set is precisely the set of nearby symmetric operators with k-dimensional
kernel. A neighborhood of (s0, λ0) in Vk(B) can thus be identified with the zero-set
of the map

ΨB(s, λ) := Φ(AB
s − λ) ∈ Endsym

R (K),

defined for (s, λ) ∈ (−1, 1)×R sufficiently close to (s0, λ0). Notice that the derivative
dΨB(s, λ) : R⊕ R → Endsym

R (K) is Fredholm since its domain and target are both
finite dimensional, and it can only ever be surjective when k = dimRK = 1.

The following space will now play the role of a “universal moduli space” as in
Lecture 7: let

Vk =
{
(s, λ, B) ∈ (−1, 1)× R×Aε

∣∣ (s, λ) ∈ Vk(B)
}
.
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The proof that this is a smooth Banach manifold depends on the following algebraic
lemma.

Lemma C.1. Fix an asymptotic operator A = −J0 ∂t − S and a linear transfor-
mation

Υ : kerA→ kerA

that is symmetric with respect to the L2-product. Then there exists a smooth loop
B : S1 → Endsym(R2n) such that

〈η, Bξ〉L2 = 〈η,Υξ〉L2

for all η, ξ ∈ kerA.

Proof. Note first that every nontrivial loop η ∈ kerA ⊂ H1(S1,R2n) is smooth
and nowhere zero since it satisfies a linear first-order ODE with smooth coeffi-
cients. It follows that if we fix a basis (η1, . . . , ηk) for kerA, then the vectors
η1(t), . . . , ηk(t) ∈ R2n are also linearly independent for all t ∈ S1 and thus span
a smooth S1-family of k-dimensional subspaces Vt ⊂ R2n, each equipped with a
distinguished basis. It follows that there exists a unique smooth S1-family of linear
transformations B̂(t) : Vt → Vt such that for every η ∈ kerA, B̂(t)η(t) = (Υη)(t)

for all t. Extend B̂(t) arbitrarily to a smooth family of linear maps on R2n.

The matrices B̂(t) ∈ EndR(R
2n) need not be symmetric, but they do satisfy

〈η, B̂ξ〉L2 = 〈η,Υξ〉L2 for all η, ξ ∈ kerA.

Since Υ is symmetric, this implies moreover that for all η, ξ ∈ kerA,

〈η,Υξ〉L2 = 〈ξ,Υη〉L2 = 〈ξ, B̂η〉L2 = 〈η, B̂Tξ〉L2.

The loop B := 1
2
(B̂ + B̂T) thus has the desired properties. �

Now using the previously described construction in the space of symmetric Fred-
holm operators, a neighborhood of any point (s0, λ0, B0) in Vk can be identified with
the zero-set of a smooth map of the form

Ψ(s, λ, B) := ΨB(s, λ) ∈ Endsym
F (K),

defined for all (s, λ, B) sufficiently close to (s0, λ0, B0) in (−1, 1) × R × Aε, where
K = ker

(
AB0
s0 − λ0

)
. The partial derivative of Ψ with respect to the third variable

at (s0, λ0, B0) is then a linear map

L := D3Ψ(s0, λ0, B0) : Aε → Endsym
R (K)

of the form

(C.1) LB : K → K : η 7→ πK(B(s0, ·)η),
where πK : W ⊕K → K is the orthogonal projection. We claim that L is surjective.
Indeed, for any Υ ∈ Endsym

R (K), Lemma C.1 provides a smooth loop C0 : S1 →
Endsym

R (K) such that
πK(C0η) = Υη for all η ∈ K,

and this can be extended to a smooth function C : [−1, 1] × S1 → Endsym
R (K)

satisfying C(s0, ·) ≡ C0 and C(±1, ·) ≡ 0 since s0 6= ±1. The function C might fail
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to be of class Cε, but since it can be approximated arbitrarily well in the C0-norm
by functions in Aε, we conclude that the image of L is dense in Endsym

R (K). Since
the latter is finite dimensional, the claim follows.

The implicit function theorem now gives Vk the structure of a smooth Banach
submanifold of (−1, 1)×R×Aε, and it is separable since the latter is also separable.
Consider the projection

(C.2) π : Vk → Aε : (s, λ, B) 7→ B,

which is a smooth map of separable Banach manifolds whose fibers π−1(B) are the
spaces Vk(B). Using Lemma 7.18, the fact that each map ΨB is Fredholm implies
that π is also a Fredholm map, so the Sard-Smale theorem implies that the regular
values of π form a comeager subset

Areg,k
ε ⊂ Aε.

The intersection
Areg
ε :=

⋂

k∈N
Areg,k
ε

is then another comeager subset of Aε, with the property that for each B ∈ Areg
ε

and every (s, λ) ∈ Vk(B), dΨB(s, λ) is (by Lemma 7.18) surjective. As was observed
previously, this is impossible for dimensional reasons if k ≥ 2, implying that Vk(B)
is then empty.

To find perturbations that also achieve the transversality condition, we use a
similar argument: define for each B ∈ Aε the subset

V0(B) =
{
s ∈ (−1, 1)

∣∣ dimR kerA
B
s = 1

}
,

along with the corresponding universal set

V0 =
{
(s, B) ∈ (−1, 1)×Aε

∣∣ s ∈ V0(B)
}
.

A neighborhood of any (s0, B0) in V0 is then the zero-set of a smooth map of the
form

Ψ(s, B) = Φ(AB
s ) ∈ Endsym

R (kerAB0
s0
),

defined for all (s, B) ∈ (−1, 1) × Aε close enough to (s0, B0). For a fixed B ∈ Aε
near B0 and s1 ∈ V0(B) near s0, a neighborhood of s1 in V0(B) is then the zero-set
of ΨB(s) := Ψ(s, B), and the intersection of the path s 7→ As ∈ Fredsym

R (D,H,Tref)

with Fredsym,1
R (D,H,Tref) at s = s1 is transverse if and only if

dΨB(s1) : R→ Endsym
R (kerAB0

s0
)

is surjective. At (s0, B0), the partial derivative of Ψ with respect to B is again the
same operator

L = D2Ψ(s0, B0) : Aε → Endsym
R (kerAB0

s0 )

as in (C.1), which we’ve already seen is surjective due to Lemma C.1. Thus one can
apply the Sard-Smale theorem to the projection

V0 → Aε : (s, B) 7→ B,

obtaining a comeager subset Areg,0
ε ⊂ Aε such that all paths As + B(s, ·) for B ∈

Areg,0
ε satisfy the required transversality condition. The comeager subset Areg,0

ε ∩
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Areg
ε ⊂ Aε thus consists of perturbed families of operators for which all desired

conditions are satisfied, and it contains a sequence converging in the C∞-topology
to 0. This concludes the proof of Lemma 3.17.
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[HWZ01] , The asymptotic behavior of a finite energy plane (2001). FIM preprint, available
at http://e-collection.library.ethz.ch/view/eth:25385.

[HWZ96] , Properties of pseudoholomorphic curves in symplectisations. IV. Asymptotics
with degeneracies, Contact and symplectic geometry (Cambridge, 1994), 1996, pp. 78–
117.

[HWZ99] , Properties of pseudoholomorphic curves in symplectizations. III. Fredholm the-
ory, Topics in nonlinear analysis, 1999, pp. 381–475.

[HWZ02] , Finite energy cylinders of small area, Ergodic Theory Dynam. Systems 22

(2002), no. 5, 1451–1486.
[HWZ03] , Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann.

of Math. (2) 157 (2003), no. 1, 125–255.
[HWZ07] , A general Fredholm theory. I. A splicing-based differential geometry, J. Eur.

Math. Soc. (JEMS) 9 (2007), no. 4, 841–876.
[HWZ10] , Integration theory on the zero sets of polyfold Fredholm sections, Math. Ann.

346 (2010), no. 1, 139–198.
[HZ94] H. Hofer and E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser

Verlag, Basel, 1994.
[Hum97] C. Hummel, Gromov’s compactness theorem for pseudo-holomorphic curves, Progress

in Mathematics, vol. 151, Birkhäuser Verlag, Basel, 1997.
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[MNW13] P. Massot, K. Niederkrüger, and C. Wendl, Weak and strong fillability of higher dimen-

sional contact manifolds, Invent. Math. 192 (2013), no. 2, 287–373.
[MS98] D. McDuff and D. Salamon, Introduction to symplectic topology, The Clarendon Press

Oxford University Press, New York, 1998.
[MS04] , J-holomorphic curves and symplectic topology, American Mathematical Soci-

ety, Providence, RI, 2004.
[MW] D. McDuff and K. Wehrheim, Kuranishi atlases with trivial isotropy - the 2013 state of

affairs. Preprint arXiv:1208.1340v8.
[MW95] M. J. Micallef and B. White, The structure of branch points in minimal surfaces and

in pseudoholomorphic curves, Ann. of Math. (2) 141 (1995), no. 1, 35–85.
[Mil97] J. W. Milnor, Topology from the differentiable viewpoint, Princeton Landmarks in Math-

ematics, Princeton University Press, Princeton, NJ, 1997. Based on notes by David W.
Weaver; Revised reprint of the 1965 original.

[Mur] E. Murphy, Loose Legendrian embeddings in high dimensional contact manifolds.
Preprint arXiv:1201.2245.

[Nel13] J. Nelson, Applications of automatic transversality in contact homology, Ph.D. Thesis,
University of Wisconsin at Madison, 2013.

[Nel15] , Automatic transversality in contact homology I: regularity, Abh. Math. Semin.
Univ. Hambg. 85 (2015), no. 2, 125–179.
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