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ALGEBRAIC TORSION IN CONTACT MANIFOLDSJANKO LATSCHEV AND CHRIS WENDL(WITH AN APPENDIX BY MICHAEL HUTCHINGS)Abstra
t. We extra
t an invariant taking values in N [ f1g, whi
h we 
all theorder of algebrai
 torsion, from the Symple
ti
 Field Theory of a 
losed 
onta
tmanifold, and show that its �niteness gives obstru
tions to the existen
e of sym-ple
ti
 �llings and exa
t symple
ti
 
obordisms. A 
onta
t manifold has algebrai
torsion of order 0 if and only if it is algebrai
ally overtwisted (i.e. has trivial 
onta
thomology), and any 
onta
t 3-manifold with positive Giroux torsion has algebrai
torsion of order 1 (though the 
onverse is not true). We also 
onstru
t examplesfor ea
h k 2 N of 
onta
t 3-manifolds that have algebrai
 torsion of order k butnot k � 1, and derive 
onsequen
es for 
onta
t surgeries on su
h manifolds.The appendix by Mi
hael Hut
hings gives an alternative proof of our 
obordismobstru
tions in dimension three using a re�nement of the 
onta
t invariant in Em-bedded Conta
t Homology. 1. Introdu
tion1.1. Main results. Symple
ti
 �eld theory (SFT) is a very general theory of holo-morphi
 
urves in symple
ti
 manifolds whi
h was outlined by Eliashberg, Giventaland Hofer [EGH00℄, and whose analyti
al foundations are 
urrently under develop-ment by Hofer, Wyso
ki and Zehnder, 
f. [Hof℄. It 
ontains as spe
ial 
ases severaltheories that have been shown to have powerful 
onsequen
es in 
onta
t topology|notably 
onta
t homology and Gromov-Witten theory|but the more elaborate stru
-ture of \full" SFT has yet to �nd appli
ation, as it is usually far too 
ompli
ated to
ompute. Our goal here is to introdu
e a numeri
al invariant, whi
h we 
all alge-brai
 torsion, that is extra
ted from the full SFT algebra and whose �niteness givesobstru
tions to the existen
e of symple
ti
 �llings and exa
t symple
ti
 
obordisms.Algebrai
 torsion is de�ned in all dimensions, and we illustrate its e�e
tiveness byproving expli
it nonexisten
e results for exa
t symple
ti
 
obordisms whose ends are
ertain pres
ribed non�llable 
onta
t 3-manifolds, see Corollary 1 below. To the bestof our knowledge, results of this type are new and seem to be beyond the presentrea
h of more topologi
ally oriented methods su
h as Heegaard Floer homology.From the point of view taken in this paper, whi
h is adapted from [CL09℄ anddes
ribed in more detail in x2, the SFT of a 
onta
t manifold (M; �) is the homologyHSFT� (M; �) of a Z2-graded BV1-algebra (A[[~℄℄;DSFT), where A has generators q
2010 Mathemati
s Subje
t Classi�
ation. Primary 53D42; Se
ondary 57R17, 53D35, 32Q65.1

2 JANKO LATSCHEV AND CHRIS WENDLfor ea
h good 
losed Reeb orbit 
 with respe
t to some nondegenerate 
onta
t formfor �, ~ is an even variable, and the operatorDSFT : A[[~℄℄!A[[~℄℄is de�ned by 
ounting rigid solutions to a suitable abstra
t perturbation of a J-holomorphi
 
urve equation in the symple
tization of (M; �). The domains for thesesolutions are pun
tured 
losed Riemann surfa
es, and near the pun
tures the solutionshave so-
alled positive or negative 
ylindri
al ends. It follows from the exa
tness ofthe symple
ti
 form in the symple
tization that all su
h 
urves must have at least onepositive end. Algebrai
ally, this translates into the fa
t that the ground ring R[[~℄℄ ofA 
onsists of 
losed elements with respe
t to DSFT. This motivates the following:De�nition 1.1. Let (M; �) be a 
losed manifold of dimension 2n� 1 with a positive,
o-oriented 
onta
t stru
ture. For any integer k � 0, we say that (M; �) has algebrai
torsion of order k (or simply algebrai
 k-torsion) if [~k℄ = 0 in HSFT� (M; �).Note that although the version of SFT des
ribed in [EGH00℄ has 
oeÆ
ients in thegroup ring of H2(M), the homology HSFT� (M; �) above is de�ned without group ring
oeÆ
ients|one 
an always do this at the 
ost of redu
ing the usual Z-grading toa Z2-grading (see x2 for details). We will introdu
e group ring 
oeÆ
ients later toobtain a more re�ned invariant, 
f. De�nition 1.8.In order to state our �rst main result, we need a few standard 
on
epts. Re
allthat a strong symple
ti
 �lling of a 
onta
t manifold (M; �) is a 
ompa
t symple
ti
manifold (W;!) with �W = M for whi
h there exists a ve
tor �eld Y , de�ned nearthe boundary and pointing transversely outward there, with LY ! = ! (i.e. Y is aLiouville ve
tor �eld) and su
h that �Y !jM is a 
onta
t form for � giving the 
orre
t
o-orientation. More generally, a symple
ti
 
obordism with positive end (M+; �+)and negative end (M�; ��) is a 
ompa
t symple
ti
 manifold (W;!) with boundaryM+ t (�M�) and a ve
tor �eld as above with �� = ker (�Y !jM�), with the di�eren
ethat Y is required to point outward only alongM+ and inward alongM�. Note thatsin
e LY ! = d(�Y !) = !, the symple
ti
 form is always exa
t near the boundary ofa symple
ti
 
obordism, though it need not be exa
t globally. The 
ow of Y 
an beused to identify a neighborhood of �W with([0; �)�M�; d(es(�Y !)jM�)) t ((��; 0℄�M+; d(es(�Y !)jM+));and so any symple
ti
 
obordism in the above sense 
an be 
ompleted by gluing apositive half of the symple
tization of (M+; �+) and a negative half of the symple
-tization of (M�; ��) to the respe
tive boundaries. Holomorphi
 
urves in 
ompletedsymple
ti
 
obordisms are the main obje
t of study in SFT, with the symple
tizationR �M being an important spe
ial 
ase of a 
ompleted symple
ti
 
obordism.A symple
ti
 
obordism (W;!) is 
alled exa
t if the ve
tor �eld Y as des
ribedabove extends globally over W ; equivalently, this means ! = d� for a 1-form � on Wwhose restri
tions toM� de�ne 
onta
t forms for ��. From the above de�nition of al-gebrai
 torsion and the general formalism of SFT, we draw the following 
onsequen
e,whi
h is our �rst main result and is proven in x2.

http://arxiv.org/abs/1009.3262v3


ALGEBRAIC TORSION IN CONTACT MANIFOLDS 3Theorem 1. If (M; �) has algebrai
 torsion then it is not strongly �llable. Moreover,suppose there is an exa
t symple
ti
 
obordism having 
onta
t manifolds (M+; �+) and(M�; ��) as positive and negative ends respe
tively: then if (M+; �+) has algebrai
k-torsion, so does (M�; ��).Remark 1.2. It is time for a more or less standard dis
laimer: All the theorems regard-ing SFT that we shall state in this introdu
tion depend on the analyti
al foundationsof SFT, whi
h remains a large proje
t in progress by Hofer, Wyso
ki and Zehnder (seee.g. [Hof℄). In parti
ular, the main te
hni
al diÆ
ulty whi
h is the subje
t of theirwork is to establish a suÆ
iently well behaved abstra
t perturbation s
heme so thatHSFT� (M; �) is well de�ned and the natural maps indu
ed by 
ounting solutions to aperturbed holomorphi
 
urve equation in symple
ti
 
obordisms exist. We shall takeit for granted throughout the following that su
h a perturbation s
heme exists andhas the properties that its ar
hite
ts 
laim (
f. Remark 3.7)|the further details ofthis s
heme will be irrelevant to our arguments. Note however that our main appli
a-tions, Corollaries 1 and 3, 
an also be proved using the Embedded Conta
t Homologyte
hniques des
ribed in the appendix (
f. Theorem 7), and thus do not depend onany unpublished work in progress.Remark 1.3. Algebrai
 torsion has some obvious appli
ations beyond those that wewill 
onsider in this paper, e.g. it is immediate from the formalism of SFT dis
ussed inx2 that any 
onta
t manifold with algebrai
 torsion satis�es the Weinstein 
onje
ture.The simplest example of algebrai
 torsion is the 
ase k = 0: we will show in x2(Proposition 2.9) that this is equivalent to (M; �) having trivial 
onta
t homology,in whi
h 
ase it is 
alled algebrai
ally overtwisted, 
f. [BN10℄. This is the 
ase, forinstan
e, whenever (M; �) is an overtwisted 
onta
t 3-manifold, and in higher dimen-sions it has been shown to hold whenever (M; �) 
ontains a plastikstufe [BN℄, or when(M; �) is a 
onne
ted sum with a 
ertain exoti
 
onta
t sphere [BvK10℄.In dimension three, there are also many known examples of 
onta
t manifolds thatare tight but not �llable. An important 
lass of examples is the following: (M; �) issaid to have Giroux torsion if it admits a 
onta
t embedding of (T 2� [0; 1℄; �T ) where�T = ker [
os(2�t) d� + sin(2�t) d�℄in 
oordinates (�; �; t) 2 T 2� [0; 1℄ = S1�S1� [0; 1℄. It was shown by D. Gay [Gay06℄that 
onta
t 3-manifolds with Giroux torsion are never strongly �llable, and a 
om-putation of the twisted Ozsv�ath-Szab�o 
onta
t invariant due to Ghiggini and Honda[GH℄ shows that Giroux torsion is also an obstru
tion to weak �llings whenever thesubmanifold T 2 � [0; 1℄ � M separates M . There are obvious examples of manifoldswith these properties that are also tight. On T 3 = S1 � S1 � S1 for example with
oordinates (�; �; t), the 
onta
t form
os(2�Nt) d� + sin(2�Nt) d�has Giroux torsion for any integer N � 2, but it also has no 
ontra
tible Reeb orbits,whi
h implies that its 
onta
t homology 
annot vanish. The original motivation for

4 JANKO LATSCHEV AND CHRIS WENDLthis proje
t was to �nd an algebrai
 interpretation of Giroux torsion that impliesnon�llability. The solution to this problem is the following result, whi
h is impliedby the more general Theorem 6 below:Theorem 2. If (M; �) is a 
onta
t 3-manifold with Giroux torsion, then it has alge-brai
 1-torsion.While it is possible that \overtwisted" and \algebrai
ally overtwisted" 
ould beequivalent notions in dimension three, it turns out that the 
onverse of Theorem 2 isnot true. We will show this using a spe
ial 
lass of 
onta
t manifolds 
onstru
ted asfollows: assume �+ and �� are 
ompa
t (not ne
essarily 
onne
ted) oriented surfa
eswith nonempty di�eomorphi
 boundaries, and denote by� = �+ [ ��the 
losed oriented surfa
e obtained by gluing them along some orientation reversingdi�eomorphism ��+ ! ���. We shall assume � to be 
onne
ted. The 
ommonboundary of �� forms a multi
urve � � �. Then by a 
onstru
tion originally dueto Lutz [Lut77℄, the produ
t S1 � � admits a unique (up to isotopy) S1-invariant
onta
t stru
ture �� for whi
h the loops S1�fzg are positively/negatively transversefor z in the interior of ��, and Legendrian for z 2 �. (We will give a more expli
it
onstru
tion of this 
onta
t stru
ture in x4.) By an argument due to Giroux (see[Mas℄), (S1��; ��) has no Giroux torsion whenever it has the following two properties:� No 
onne
ted 
omponent of � is 
ontra
tible in �,� No two 
onne
ted 
omponents of � are isotopi
 in �.It is easy to �nd examples (see Figure 1) for whi
h both these 
onditions are satis�ed,as well as the assumption in the following result:Theorem 3. If either of �+ or �� is dis
onne
ted, then the S1-invariant 
onta
tmanifold (S1 � �; ��) des
ribed above has algebrai
 1-torsion. In parti
ular, thereexist 
onta
t 3-manifolds that have algebrai
 1-torsion but no Giroux torsion.Remark 1.4. Theorem 1 implies that the examples in Theorem 3 are not strongly �ll-able. The latter has been established previously via vanishing results for the Ozsv�ath-Szab�o 
onta
t invariant in sutured Floer homology, see [HKM,Mas,Mat℄.Examples showing that algebrai
 torsion is interesting for all orders 
an be 
on-stru
ted in almost the same way. In the 
onstru
tion of S1-invariant 
onta
t manifolds(S1 � �; ��) above, assume that �� are both 
onne
ted with k � 1 boundary 
om-ponents, and that �� has genus 0 and �+ has genus g0 > 0. The surfa
e � obtainedby gluing will have genus g = g0 + k � 1. We denote the resulting 
onta
t manifoldby (Vg; �k) := (S1 � �; ��). We then obtain:Theorem 4. (Vg; �k) has algebrai
 torsion of order k � 1, but not k � 2.The proof that (Vg; �k) has algebrai
 torsion of order k � 1 will be a 
onsequen
eof Theorem 6 below, whi
h relates algebrai
 torsion in dimension 3 to the geometri
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ements

��
�+�S1�(W; d�)(V4; �3)(V2; �2)Figure 1. A surfa
e � = �+ [� �� su
h that (S1 � �; ��) hasalgebrai
 1-torsion but no Giroux torsion.notion of planar torsion re
ently introdu
ed by the se
ond author [Wena℄. This isdis
ussed in detail in x3. The proof that there is no algebrai
 torsion of lower ordero

upies a large part of x4. It is based on a 
ombination of algebrai
 properties of SFTand a 
onstru
tion of 
ertain expli
it 
onta
t forms for the 
onta
t stru
tures �k, forwhi
h the Reeb dynami
s and the holomorphi
 
urves 
an be understood suÆ
ientlywell.Combining Theorems 1 and 4 yields the following 
onsequen
e.Corollary 1. Suppose g � k � 2. Then for any exa
t symple
ti
 
obordism withnegative end (Vg; �k), the positive end does not have algebrai
 (k � 2)-torsion.In parti
ular, there exists no exa
t symple
ti
 
obordism with positive end (Vg+; �k+)and negative end (Vg�; �k�) if k+ < k� (Figure 2).Remark 1.5. The in
lusion of the word \exa
t" in the above 
orollary is 
ru
ial, as are
ent 
onstru
tion due to the se
ond author [Wenb℄ shows that non-exa
t symple
ti

obordisms exist between any two 
onta
t 3-manifolds with planar torsion.Remark 1.6. Sometimes exa
t 
obordisms are known to exist when the negative endhas a smaller order of algebrai
 torsion than the positive end, e.g. Etnyre and Honda[EH02℄ have shown that any positive end is allowed if the negative end is overtwisted(meaning 0-torsion, in the present 
ontext). Similarly, Jeremy Van Horn-Morris hasexplained to us that a Stein 
obordism with negative end (Vg; �k) and positive end(Vg+1; �k+1) does always exist; 
f. Remark 4.18 in x4 for an outline of the 
onstru
tion.Together with Corollary 1, this gives in�nite sequen
es of 
onta
t 3-manifolds su
hthat ea
h is exa
tly 
obordant to its su

essor, but not vi
e versa.Remark 1.7. The 
ase k+ = 1 of Corollary 1 
an be dedu
ed already from the argu-ment used by Hofer [Hof93℄ to prove the Weinstein 
onje
ture for overtwisted 
onta
tstru
tures. Indeed, (Vg+; �k+) is always overtwisted if k+ = 1, and transplantingHofer's argument from the symple
tization to an exa
t symple
ti
 
obordism showsthat (Vg�; �k�) must then have a 
ontra
tible Reeb orbit for all nondegenerate 
onta
t

6 JANKO LATSCHEV AND CHRIS WENDL
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Figure 2. An example of an exa
t symple
ti
 
obordism that 
annotexist a

ording to Corollary 1.forms, whi
h is easily shown to be false if k� � 2. In this sense, the obstru
tions 
om-ing from algebrai
 torsion may be seen as a \higher order" generalization of Hofer'sargument, whi
h in
identally was the starting point for the developement of SFT.To obtain a more sensitive invariant, we now introdu
e a more general notion ofalgebrai
 torsion using SFT with group ring 
oeÆ
ients. Namely, for any linear sub-spa
e R � H2(M ;R), one 
an de�ne the algebra of SFT with 
oeÆ
ients in the groupring R[H2(M ;R)=R℄, whi
h means keeping tra
k of the 
lasses in H2(M ;R)=R rep-resented by the holomorphi
 
urves that are 
ounted. We shall denote the SFT with
orresponding 
oeÆ
ients by HSFT� (M; �;R). The most important spe
ial 
ases areR = H2(M ;R) and R = f0g, 
alled the untwisted and fully twisted 
ases respe
tively,and R = ker
 with 
 a 
losed 2-form on M . We shall abbreviate the untwisted 
aseby HSFT� (M; �) = HSFT� (M; �;H2(M ;R)), and often write the 
ase R = ker
 asHSFT� (M; �;
) := HSFT� (M; �; ker 
):De�nition 1.8. If (M; �) is a 
losed 
onta
t manifold, for any integer k � 0 and 
losed2-form 
 on M we say that (M; �) has 
-twisted algebrai
 k-torsion if [~k℄ = 0 inHSFT� (M; �;
). If this is true for all 
, or equivalently, if [~k℄ = 0 in HSFT� (M; �; f0g),then we say that (M; �) has fully twisted algebrai
 k-torsion.



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 7To see the signi�
an
e of algebrai
 torsion with more general 
oeÆ
ients, we 
on-sider a more general notion of symple
ti
 �llings, for whi
h the symple
ti
 form neednot be exa
t near the boundary.De�nition 1.9. Suppose (W;!) is a 
ompa
t symple
ti
 manifold with boundary�W = M , and � is a positive (with respe
t to the boundary orientation) 
o-oriented
onta
t stru
ture on M . We 
all (W;!) a stable symple
ti
 �lling of (M; �) if thefollowing 
onditions are satis�ed:(1) !j� is nondegenerate and the indu
ed orientation on � is 
ompatible with its
o-orientation(2) � admits a nondegenerate 
onta
t form � su
h that the Reeb ve
tor �eld X�generates the 
hara
teristi
 line �eld on �W(3) � admits a 
omplex bundle stru
ture J whi
h is tamed by1 both d�j� and !j�Note that a strong �lling with Liouville ve
tor �eld Y is also a stable �lling wheneverthe 
onta
t form �Y !jM is nondegenerate, whi
h 
an always be assumed after a smallperturbation. In general, the boundary of a stable �lling is a stable hypersurfa
eas de�ned in [HZ94℄, meaning it belongs to a 1-parameter family of hypersurfa
es in(W;!) whose Hamiltonian dynami
s are all 
onjugate. In parti
ular, the pair (�; !jM)de�nes a stable Hamiltonian stru
ture on M (
f. [CV℄).Theorem 5. If (M; �) is a 
losed 
onta
t manifold with 
-twisted algebrai
 torsionfor some 
losed 2-form 
 on M , then it does not admit any stable �lling (W;!) forwhi
h !jM is 
ohomologous to 
. In parti
ular, if (M; �) has fully twisted algebrai
torsion, then it is not stably �llable.Re
all that for dimM = 3, (W;!) with �W = M is said to be a weak symple
ti
�lling of (M; �) if !j� > 0. Thus a stable �lling is also a weak �lling. What's farless obvious is that the 
onverse is true up to deformation: by [NW11, Theorem 2.8℄,every weak �lling 
an be deformed near its boundary to a stable �lling of the same
onta
t manifold, hen
e weak and stable �llability are 
ompletely equivalent notionsin dimension three. Theorem 5 thus implies:Corollary 2. Conta
t 3-manifolds with fully twisted algebrai
 torsion are not weakly�llable.Figure 3 in x 3 below shows some examples to whi
h this result applies, in
ludingone that has no Giroux torsion; see also Theorem 6 below, and [NW11℄.In higher dimensions, it is not hard to �nd examples of stable �llings for whi
h thesymple
ti
 form is not exa
t near the boundary, though it's less obvious whether thereare also examples whi
h are not strongly �llable. Su
h examples are found in the workin progress by Massot, Niederkr�uger and the se
ond author [MNW℄, whi
h de�nes asuitable generalization of weak �llings to arbitrary dimensions: in a nutshell, (W;!)1The 
ompa
tness results in [BEH+03℄ are stated for 
ompatible J , but they hold without 
hangefor tamed J as well.

8 JANKO LATSCHEV AND CHRIS WENDLwith �W = M is a weak �lling of (M; �) if ! tames an almost 
omplex stru
ture Jthat preserves � and is also tamed by the natural 
onformal symple
ti
 stru
tureon �. Under this de�nition, one 
an use an existen
e result of Cieliebak-Volkov [CV℄to show that weak and stable �llability are equivalent, see [MNW℄ for details. ThusSFT also gives obstru
tions to weak �lling in all dimensions, where the distin
tionbetween \strong" and \weak" is dete
ted algebrai
ally via the 
hoi
e of 
oeÆ
ients.As already mentioned, the se
ond author [Wena℄ re
ently introdu
ed a new 
lassof �lling obstru
tions in dimension three 
alled planar torsion, whi
h also has a non-negative integer-valued order. A 
onta
t 3-manifold is then overtwisted if and onlyif it has planar 0-torsion, and Giroux torsion implies planar 1-torsion. We will re
allthe de�nition of planar torsion and 
-separating planar torsion in x3, and prove thefollowing generalization of Theorem 2.Theorem 6. Suppose (M; �) is a 
losed 
onta
t 3-manifold, 
 is a 
losed 2-formon M and k � 0 is an integer.(1) If (M; �) has planar k-torsion then it also has algebrai
 k-torsion.(2) If (M; �) has 
-separating planar k-torsion then it also has 
-twisted algebrai
k-torsion.Remark 1.10. Together with Theorem 1 and Corollary 2, this yields new proofs that
onta
t 3-manifolds with planar torsion are not strongly �llable, and also not weakly�llable if the planar torsion is fully separating. These two results were �rst provedin [Wena℄ and [NW11℄ respe
tively. The former also proves a vanishing result for theECH 
onta
t invariant whi
h is 
losely analogous to Theorem 6 and has thus far beenina

essible from the dire
tion of Heegaard Floer homology. Our argument in fa
timplies a re�nement of this vanishing result in terms of the relative �ltration on ECHintrodu
ed in the appendix; see Theorem 7 below.We 
an now state a more geometri
 analogue of Corollary 1. The notion of planartorsion gives rise to a 
onta
t invariant PT(M; �) 2 N [ f0;1g, the minimal orderof planar torsion, de�ned byPT(M; �) := sup�k � 0 �� (M; �) has no planar `-torsion for any ` < k	 :This number is in�nite whenever (M; �) is strongly �llable, and is positive if andonly if (M; �) is tight. Re
all that 
onta
t 
onne
ted sums and (�1)-surgeries alwaysyield Stein 
obordisms between 
onta
t 3-manifolds (see e.g. [Gei08℄). The following
an then be thought of as demonstrating a higher order variant of the well known
onje
ture that su
h surgeries always preserve tightness.Corollary 3. For any g � k � 1, PT(Vg; �k) = k � 1. Moreover, suppose (M; �) isany 
onta
t 3-manifold that 
an be obtained from (Vg; �k) by a sequen
e of� 
onta
t 
onne
ted sums with itself or exa
tly �llable 
onta
t manifolds, and/or� 
onta
t (�1)-surgeries.Then PT(M; �) � k � 1.



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 9At present, we do not know any example for whi
h the minimal order of algebrai
torsion is stri
tly smaller than the minimal order of planar torsion, but Theorem 3seems to suggest that su
h examples are likely to exist.Here is a summary of the remainder of the paper. In x2 we review the algebrai
formalism of SFT as a BV1-algebra, in parti
ular proving Theorems 1 and 5. In x3we review the de�nition of planar torsion and prove Theorem 6, as an easy appli
ationof some results on holomorphi
 
urves from [Wena℄. The S1-invariant examples (S1��; ��) are then treated at length in x4, leading to the proofs of Theorems 3 and 4.We 
lose with a brief dis
ussion of open questions and related issues in x5.In Mi
hael Hut
hings's appendix to this paper, it is shown that the appli
ationsto 3-dimensional 
onta
t topology des
ribed above 
an also be proved using methodsfrom Embedded Conta
t Homology. Indeed, as remarked above, all of our examplesof 
onta
t 3-manifolds with algebrai
 torsion 
an also be shown to have vanishingECH 
onta
t invariant, suggesting that a re�nement of the latter should exist whi
h
ould dete
t the order of torsion. The appendix 
arries out enough of this program tosuÆ
e for our appli
ations. In parti
ular, Hut
hings asso
iates to any 
losed 
onta
t3-manifold (M; �) with generi
 
onta
t form �, 
ompatible 
omplex stru
ture J andpositive number T 2 (0;1℄, two nonnegative (possibly in�nite) integers fT (M;�; J)and fTsimp(M;�; J). These 
an be �nite only if the ECH 
onta
t invariant vanishes,and they have the property thatfT+simp(M+; �+; J+) � fT�(M�; ��; J�)whenever there is an exa
t 
obordism (X; d�) with � = es�� at the positive/negativeend and T� � T+ (
f. Theorem A.9). Sin
e fT and fTsimp are de�ned by 
ountingembedded holomorphi
 
urves in symple
tizations, our SFT 
omputations 
an bereinterpreted as estimates of these integers, leading to the following:Theorem 7.(1) If (M; �) has planar k-torsion, then � admits a nondegenerate 
onta
t form �and generi
 
omplex stru
ture J su
h that f1simp(M;�; J) � k.(2) For any g � k � 1, (Vg; �k) admits a sequen
e of generi
 
onta
t forms and
omplex stru
tures (�i; Ji) su
h that:(a) fTi(Vg; �i; Ji) � k � 1 for some sequen
e of real numbers Ti ! +1,(b) For i < j, there is an exa
t symple
ti
 
obordism (X; d�) su
h that �mat
hes es�i at the positive end and es�j at the negative end.As mentioned in Remark 1.2 above, this immediately implies an alternative proofof Corollaries 1 and 3, 
f. Corollary A.10 in the appendix.A
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onferen
e visit to the LorentzCenter in Leiden. It is a pleasure to thank these institutions for the stimulatingworking environment.2. Review of SFT as a BV1-algebraThe general framework of SFT, in parti
ular its algebrai
 stru
ture, was laid outin [EGH00℄ (see also [Eli07℄ for a more re
ent point of view), whereas the analyti
foundations are the subje
t of ongoing work by Hofer-Wyso
ki-Zehnder (see [Hof℄).In this se
tion, we will take the existen
e of SFT as des
ribed in [EGH00℄ for grantedand review a version of the theory whi
h is readily derived from this des
ription (
f.[CL09℄ for some details of this translation). To keep the dis
ussion reasonably brief,we will frequently refer to these sour
es for details. Theorems 1 and 5 will be simple
onsequen
es of the algebrai
 properties of SFT.2.1. Review of the basi
 setup of SFT. Let (M; �) be a 
losed manifold of di-mension 2n � 1 with a 
o-oriented 
onta
t stru
ture. To des
ribe SFT, one needsto �x a nondegenerate 
onta
t form �, as well as some additional 
hoi
es, whi
h wedenote by a single letter f (for framing). The most important of these are: a 
ylindri-
al almost 
omplex stru
ture J on the symple
tization of M , 
oherent orientationsfor the moduli spa
e of �nite energy J-holomorphi
 
urves, an abstra
t perturbations
heme for the J-holomorphi
 
urve equation and suitable spanning surfa
es for Reeborbits.Given a linear subspa
e R � H2(M ;R), let RR := R[H2(M ;R)=R℄ denote thegroup ring over R of H2(M ;R)=R, whose elements we write as P aizdi with ai 2 Rand di 2 H2(M ;R)=R. De�ne A = A(�) to be the Z2-graded algebra with unit overthe group ring RR, generated by variables q
 , where 
 ranges over the 
olle
tion ofgood 
losed Reeb orbits for � (
f. [EGH00, footnote on p. 566 and Remarks 1.9.2 and1.9.6℄), and the degree of q
 is de�ned asjq
j := n� 3 + �CZ(
) mod 2:Here �CZ(
) denotes the mod 2 Conley-Zehnder index of the 
losed orbit 
, whi
h isde�ned in terms of the linearized Poin
are return map for 
 (
f. [EGH00, p. 567℄). Wealso introdu
e an extra variable ~ of even degree and 
onsider the algebra of formalpower series A[[~℄℄.To 
onstru
t the di�erential, one 
hooses a 
ylindri
al almost 
omplex stru
ture Jon the symple
tization (R �M;! = d(es�)). To be pre
ise, we say that an almost
omplex stru
ture J on R � M is adapted to � if it is R-invariant, maps the unitve
tor �s in the R-dire
tion to the Reeb ve
tor �eld X� of �, and restri
ts to a tamed
omplex stru
ture on the symple
ti
 ve
tor bundle (�; d�). After a 
hoi
e of spanningsurfa
es as in [EGH00, p. 566, see also p. 651℄, the proje
tion to M of ea
h �nite
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urve u 
an be 
apped o� to a 2-
y
le in M , and so it gives riseto a homology 
lass in H2(M), whi
h we proje
t to de�ne [u℄ 2 H2(M ;R)=R.As explained in [CL09, se
tion 6℄, the 
ount of suitably perturbed J-holomorphi

urves in R �M with �nite Hofer energy gives rise to a di�erential operatorDSFT : A[[~℄℄!A[[~℄℄su
h that� DSFT is odd and squares to zero,� DSFT(1) = 0, and� DSFT = Pk�1Dk~k�1, where Dk : A ! A is a di�erential operator of order� k.More pre
isely,Dk = X�+;��;g;dj�+j+g=kng(��;�+; d) 1C(��;�+)q
�1 � � � q
�s�zd ��q
+1 � � � ��q
+s+ ;where the sum ranges over all nonnegative integers g � 0, homology 
lasses d 2H2(M ;R)=R and ordered (possibly empty) 
olle
tions of good 
losed Reeb orbits�� = (
�1 ; : : : ; 
�s�) su
h that s+ + g = k. The number ng(��;�+; d) 2 Q denotesthe 
ount of (suitably perturbed) holomorphi
 
urves of genus g with positive asymp-toti
s �+ and negative asymptoti
s �� in the homology 
lass d, in
luding asymptoti
markers as explained in [EGH00, p. 622f℄. Finally, C(��;�+) 2 N is a 
ombinatorialfa
tor de�ned as C(��;�+) = s�!s+!�
�1 � � ��
�s��
+1 � � ��
+s+ ;where �
 denotes the 
overing multipli
ity of the Reeb orbit 
.Observe in parti
ular that for Q = q
1 � � � q
r , the 
onstant 
oeÆ
ient (i.e. the ele-ment of the ground ring) in Dk(Q) for k � r 
orresponds to the 
ount of holomorphi

urves of genus k � r with positive asymptoti
s � = f
1; � � � ; 
rg and no negativeends.The homology of (A[[~℄℄;DSFT) is denoted by HSFT� (M;�; f;R). Note that byde�nition the operator DSFT 
ommutes with ~ and with elements of RR. As DSFTis not a derivation, the homology is not an algebra, but only an RR[[~℄℄-module.However, the element 1 2 A and all its RR[[~℄℄-multiples are always 
losed by these
ond property above, and so they de�ne preferred homology 
lasses. The spe
ial
ase R = H2(M ;R) is of parti
ular importan
e: then RR redu
es to the trivial groupring R and we abbreviateHSFT� (M;�; f) := HSFT� (M;�; f;H2(M ;R));whi
h we refer to as the SFT with untwisted 
oeÆ
ients. Similarly, for any 
losed2-form 
 on M , we abbreviate the spe
ial 
ase R = ker 
 � H2(M ;R) byHSFT� (M;�; f;
) := HSFT� (M;�; f; ker
)

12 JANKO LATSCHEV AND CHRIS WENDLand 
all this the SFT with 
-twisted 
oeÆ
ients. The fully twisted SFT isHSFT� (M;�; f; f0g);de�ned by taking R to be the trivial subspa
e. Observe that the in
lusions f0g ,!ker 
 ,! H2(M ;R) indu
e natural R[[~℄℄-module morphismsHSFT� (M;�; f; f0g)! HSFT� (M;�; f;
)! HSFT� (M;�; f):A framed 
obordism (X;!; fX) with positive end (M+; �+; f+) and negative end(M�; ��; f�) is a symple
ti
 
obordism (X;!) with oriented boundary M+t (�M�),together with the following additional data:� a Liouville ve
tor �eld Y , de�ned near the boundary, pointing outward atM+and inward at M�, su
h that �Y !jM� = ��,� a tamed almost 
omplex stru
ture J interpolating between the given 
ylindri-
al stru
tures J� at the ends,� 
oherent orientations for the moduli spa
es of �nite energy J-holomorphi

urves in the 
ompletion of X,� an abstra
t perturbation s
heme 
ompatible with f+ and f�, and� spanning surfa
es for the 
obordism as des
ribed in [EGH00, p. 571f℄.As explained in [CL09, se
tion 8℄, su
h a 
obordism gives rise to a morphism fromHSFT� (M+; �+; f+) to HSFT� (M�; ��; f�) after suitably twisting the di�erential as fol-lows.Suppose R� � H2(M�;R) and R(X) � ker! � H2(X;R) are linear subspa
essu
h that the maps H2(M�;R) ! H2(X;R) indu
ed by the in
lusions M� ,! Xmap R� into R(X). De�ne the group rings RR� = R[H2(M ;R)=R� ℄ and RR(X) =R[H2(X;R)=R(X)℄, and let (A�[[~℄℄;D�SFT) denote theBV1-algebras as de�ned abovefor (M�; ��; f�) with 
oeÆ
ients in RR� . We also denote by A�X the algebra gen-erated by the q�
 with 
oeÆ
ients in RR(X) instead of RR� , Novikov 
ompleted asdes
ribed in [EGH00, p.624℄ (note that integration of ! gives a well de�ned homo-morphism H2(X;R)=R(X) ! R). The in
lusions M� ,! X give rise to morphismsH2(M�;R)=R� ! H2(X;R)=R(X) and RR� ! RR(X), whi
h in parti
ular deter-mine a morphism of algebras A� !A�X .Now (X;!; fX) gives rise to several stru
tures, the �rst of whi
h is an element A 2~�1A�X [[~℄℄ satisfying D�SFT(eA) = 0, whi
h is obtained from 
ounting holomorphi

urves in X with no positive pun
tures (these may exist only if X is not exa
t).Using this, one 
an de�ne a twisted di�erential D�X : A�X [[~℄℄ ! A�X [[~℄℄ by theformula D�X(Q) = e�AD�SFT(eA �Q):In this way, we get a twisted version of SFT for (M�; ��; f�), whi
h depends on(X;!; fX).Remark 2.1. Above we have de�ned two kinds of twisted versions of SFT, namelySFT twisted with respe
t to a 
losed two-form, and the twisted SFT of the negative
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t) symple
ti
 
obordism. We hope that it is always 
lear from the
ontext whi
h kind of twisting is meant.The other stru
ture one obtains is a 
hain map � = e� : (A+[[~℄℄;D+SFT) !(A�X [[~℄℄;D�X) determined by a map � = �X : A+ ! A�X[[~℄℄ satisfying� � is even and �(1) = 0,� e�D+SFT = D�Xe�, and� � =Pk�1 �k~k�1, where ea
h �k : A+ !A�X is a di�erential operator of order� k over the zero morphism.2This � 
ounts holomorphi
 
urves in X with at least one positive pun
ture. The�rst 
ondition above translates to the fa
t that �(1) = 1. Again � is ~-linear, so itindu
es a morphism of R[[~℄℄-modules H�(A+;D+SFT)! H�(A�X ;D�X), whi
h maps thepreferred 
lass [1℄ 2 H�(A+;D+SFT) and its RM+[[~℄℄-multiples to the 
orresponding
lasses in H�(A�X;D�X).To dis
uss the invarian
e properties of SFT, one studies holomorphi
 
urves intopologi
ally trivial 
obordisms R �M . More pre
isely, given two 
onta
t forms ��for the same 
onta
t stru
ture �, there is a 
onstant 
 > 0 and an exa
t symple
ti
form ! = d(es�s) on R � M su
h that the primitive �s agrees with 
�� at thenegative end and with �+ at the positive end of the 
obordism. Similarly, one �ndsa framing fR�M 
ompatible with given framings f� at the ends. Note that in this
ase ker! = H2(X) = H2(M), so we 
an 
hoose R� = R = R(X) and observe thatthe 
ompletion pro
ess in the de�nition of A�X is trivial sin
e ! is exa
t, giving riseto a natural identi�
ation of A�X with A�. Likewise, A 2 ~�1A� vanishes as the
obordism is exa
t. Sin
e res
aling of � does not in
uen
e the 
ount of holomorphi

urves, we obtain a 
hain map (A+[[~℄℄;D+SFT)! (A�[[~℄℄;D�SFT).Reversing the roles of �+ and ��, one obtains a similar 
hain map in the otherdire
tion, and a deformation argument implies that both 
ompositions are 
hain ho-motopi
 to the identity maps on (A�;D�SFT), respe
tively. In parti
ular, they indu
eRR[[~℄℄-module isomorphisms on homology, so that the 
onta
t invariantHSFT� (M; �;R) := HSFT� (M;�; f;R)is well de�ned up to natural isomorphisms. It is important for us to observe that, by
onstru
tion, these morphisms are the identity on RR[[~℄℄ � A�, thus HSFT� (M; �;R)
omes with preferred homology 
lasses asso
iated to the elements of RR[[~℄℄. Consid-ering the spe
ial 
ases where R is f0g, ker 
 or H2(M ;R) again gives rise to the fullytwisted, 
-twisted and untwisted versions respe
tively, with natural R[[~℄℄-modulemorphisms(2.1) HSFT� (M; �; f0g)! HSFT� (M; �;
)! HSFT� (M; �):2Given a morphism � : A1 ! A2 between graded 
ommutative algebras, a homogeneous linearmap D : A1 ! A2 is a di�erential operator of order � k over � if for ea
h homogeneous elementa 2 A1 the map x 7! D(ax) � (�1)jDjjaj�(a)D(x) is a di�erential operator of order � k � 1, withthe 
onvention that the zero map has order � �1.

14 JANKO LATSCHEV AND CHRIS WENDLRemark 2.2. The above dis
ussion of morphisms 
an be re�ned slightly as follows.Given a nondegenerate 
onta
t form � and a 
onstant T > 0, we 
an 
onsider thelinear subspa
e A(�; T ) � A(�) in the 
orresponding 
hain level algebra generatedby all the monomials of the form q
1 : : : q
r for whi
h the total a
tion is bounded byT , i.e. rXj=1 Z
j � < T:Sin
e the energy of holomorphi
 
urves 
ontributing toDSFT is nonnegative and givenby the a
tion di�eren
e of the asymptoti
s, the operator DSFT restri
ts to de�ne adi�erential DSFT : A(�; T )[[~℄℄!A(�; T )[[~℄℄:Moreover, if ! = d(es�s) is a symple
ti
 form on R�M su
h that � agrees with �+ atthe positive end and 
�� at the negative end, then the resulting morphism respe
tsthe trun
ation with suitable res
aling, i.e. it gives rise to a 
hain map�T : (A(�+; T )[[~℄℄;D+SFT)! (A(
��; T )[[~℄℄;D�SFT) = (A(��; T=
)[[~℄℄;D�SFT):Beware however that, due to the res
aling of forms for the 
ylindri
al 
obordisms,there is no meaningful �ltration on HSFT� (M; �;R).In the proof of Theorem 4 we will use this re�nement in the situation where �� hasonly its periodi
 orbits of a
tion at most T nondegenerate, in whi
h 
ase the trun
ated
omplex (A(��; T )[[~℄℄;D�SFT) 
an still be 
onstru
ted with all the required properties.It is useful to 
onsider how the 
hain map � : (A+[[~℄℄;D+SFT) ! (A�X [[~℄℄;D�X)indu
ed by a symple
ti
 
obordism (X;!) simpli�es whenever 
ertain natural extraassumptions are pla
ed on X. First, suppose that (X;!) is an exa
t 
obordism. Aswe already observed above, in this 
ase X 
ontains no holomorphi
 
urves withoutpositive ends, hen
e the \twisting" term A 2 ~�1A�X [[~℄℄ vanishes. Moreover, sin
eker! = H2(X;R), we 
an set R(X) = H2(X;R) and redu
e RR(X) to the untwisted
oeÆ
ient ring R. Making 
orresponding 
hoi
es R� = H2(M�;R) so that RR� = Rfor the positive and negative ends, we then have a natural identi�
ation of the two
hain 
omplexes (A�X[[~℄℄;D�X) and (A�[[~℄℄;D�SFT), hen
e the aforementioned 
hainmap yields the following:Proposition 2.3. Any exa
t symple
ti
 
obordism (X;!) with positive end (M+; �+)and negative end (M�; ��) gives rise to a natural R[[~℄℄-module morphism on theuntwisted SFT, �X : HSFT� (M+; �+)! HSFT� (M�; ��):Now suppose (X;!) is a strong �lling of (M+; �+), whi
h we may view as a symple
-ti
 
obordism whose negative end (M�; ��) is the empty set. For any given subspa
eR(X) � ker!, the Novikov 
ompletion RR(X) of RR(X) need not be trivial, but the
hain 
omplex (A�X [[~℄℄;D�X) has no generators other than the unit, and its di�eren-tial vanishes, hen
e its homology is simply RR(X)[[~℄℄. Choosing R � H2(M ;R) so



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 15that the natural map H2(M ;R) ! H2(X;R) indu
ed by the in
lusion M ,! X takesR into R(X), we also obtain a natural R[[~℄℄-module morphism RR[[~℄℄! RR(X)[[~℄℄.Note that sin
e ! is ne
essarily exa
t near �X, we 
an always 
hoose R(X) = ker!and R = H2(M ;R). We obtain:Proposition 2.4. Suppose (X;!) is a strong �lling of (M; �), and R(X) � ker! �H2(X;R) and R � H2(M ;R) are linear subspa
es for whi
h the natural map fromH2(M ;R) to H2(X;R) takes R into R(X). Then there is a natural R[[~℄℄-modulemorphism �X : HSFT� (M; �;R)! RR(X)[[~℄℄;whi
h a
ts on RR[[~℄℄ � HSFT� (M; �;R) as the natural map to RR(X)[[~℄℄ indu
edby the in
lusion M ,! X. In parti
ular, the untwisted SFT of (M; �) admits anR[[~℄℄-module morphism �X : HSFT� (M; �)! Rker![[~℄℄:Finally, we generalize the above to allow for stable symple
ti
 �llings as de�nedin the introdu
tion. Re
all that if (X;!) is a stable �lling of (M; �) and we write
 := !jM , then � admits a nondegenerate 
onta
t form � and 
omplex stru
ture J�su
h that !j� and d�j� both de�ne symple
ti
 bundle stru
tures taming J�, and theReeb ve
tor �eld X� generates ker 
. In parti
ular, the pair (�;
) is then a stableHamiltonian stru
ture, meaning it satis�es:(1) � ^ 
n�1 > 0,(2) d
 = 0,(3) ker 
 � ker d�.A routine Moser deformation argument shows that a neighborhood of �X in (X;!)
an then be identi�ed symple
ti
ally with the 
ollar((��; 0℄�M; d(t�) + 
)for � > 0 suÆ
iently small. Choose a small number �0 > 0 and de�neT := f' 2 C1([0;1)! [0; �0)) j '0 > 0 everywhere and '(t) = t near t = 0g:Then if �0 is small enough, every ' 2 T gives rise to a symple
ti
 form !' on the
ompletion bX := X [M ([0;1)�M), de�ned by!' = (! on X;d ('(t)�) + 
 on [0;1)�M:De�ne a 
ylindri
al almost 
omplex stru
ture on [0;1)�M whi
h maps �s to X� andrestri
ts to J� on �; due to the 
ompatibility assumptions on J�, this is !'-tame for allpossible 
hoi
es of ' 2 T . We 
an thus extend it to a generi
 !'-tame almost 
omplexstru
ture J on bX. Then one 
an generalize the previous dis
ussion by 
onsideringpun
tured J-holomorphi
 
urves u : _S ! bX that satisfy the �nite energy 
onditionE(u) := sup'2T Z _S u�!':

16 JANKO LATSCHEV AND CHRIS WENDLThis de�nition of energy is equivalent to the one given in [BEH+03℄ in the sensethat bounds on either imply bounds on the other; it follows that the 
ompa
tnesstheorems of [BEH+03℄ apply to sequen
es uk of pun
tured J-holomorphi
 
urves forwhi
h E(uk) is uniformly bounded. Su
h a bound exists for any sequen
e of 
urveswith �xed genus, asymptoti
s and homology 
lass. Note also that the restri
tion of Jto the 
ylindri
al end is also adapted to � in the usual sense, thus the upper level
urves that appear in holomorphi
 buildings arising from the 
ompa
tness theoremare pre
isely the 
urves that are 
ounted in the de�nition of HSFT� (M;�; f;R).The above observations yield the following generalization of Proposition 2.4:Proposition 2.5. Suppose (X;!) is a stable symple
ti
 �lling of (M; �), and R(X) �ker! � H2(X;R) and R � H2(M ;R) are linear subspa
es su
h that the natural mapH2(M ;R) ! H2(X;R) takes R into R(X). Then there exists a natural R[[~℄℄-modulemorphism �X : HSFT� (M; �;R)! RR(X)[[~℄℄;whi
h a
ts on RR[[~℄℄ as the natural map to RR(X)[[~℄℄ indu
ed by the in
lusion M ,!X. In parti
ular, de�ning a 2-form on M by 
 = !jM , the 
-twisted SFT of (M; �)admits an R[[~℄℄-module morphism�X : HSFT� (M; �;
)! Rker![[~℄℄:Example 2.6. The following shows that aside from de�ning �lling obstru
tions, SFT
an also provide information as to the 
lassi�
ation of symple
ti
 �llings. Consider forinstan
e the tight 
onta
t stru
ture �0 on S1 � S2, whi
h it aquires as the boundaryof the Stein domain S1 � B3 � T �S1 � R2 . Presenting (S1 � S2; �0) via a symmetri
summed open book with disk-like pages (see De�nition 3.1), one 
an �nd a Reeb orbitthat is uniquely spanned by two rigid holomorphi
 planes whose homology 
lassesdi�er by the generator [S2℄ := [f�g � S2℄ 2 H2(S1 � S2;R). Hen
e, in the notationestablished at the beginning of this se
tion, the fully twisted SFT satis�es a relationof the form [1� z[S2℄℄ = 0 2 HSFT� (S1 � S2; �0; f0g):Then if (X;!) is any weak �lling of (S1 � S2; �0), Proposition 2.5 gives a map fromHSFT� (S1 � S2; �0; f0g) to the Novikov 
ompletion of R[H2(X;R)℄ whose a
tion onR[H2(M ;R)℄[[~℄℄ is determined by the in
lusion S1 � S2 ,! X. In light of the aboverelation, this implies that the natural map H2(S1 � S2;R) ! H2(X;R) takes [S2℄ tozero. In fa
t, this is known to be true: it follows from the disk �lling argument ofEliashberg [Eli90℄, whi
h implies that every weak �lling of S1 � S2 is di�eormorphi
to a blow-up of S1 � B3.Another example is provided by the standard 3-torus (T 3; �0), whi
h is the boundaryof the Stein domain T 2�D � T �T 2 and 
an also be presented by a symmetri
 summedopen book, but with 
ylindri
al pages. One 
an then 
hoose a 1-dimensional subspa
eR � H2(T 3;R) with generator d0 represented by a pre-Lagrangian torus, so that
ounting holomorphi
 
ylinders yields relations of the form[(1� zd1)~℄ = [(1� zd2)~℄ = 0 2 HSFT� (T 3; �0;R)
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anoni
al generators d1; d2 2 H2(T 3;R). Applying Proposi-tion 2.5 again, one 
an use this to show that for any weak �lling (X;!) of (T 3; �0) su
hthat Rd0 ! = 0, and in parti
ular for any strong �lling, the natural map H2(T 3;R) !H2(X;R) has its image in a spa
e of dimension at most one. This is also known to betrue: by a 
ombination of arguments in [Wen10b℄ and [NW11℄, (X;!) must in this
ase be a symple
ti
 blow-up of the standard Stein �lling T 2 � D .2.2. Algebrai
 torsion and its 
onsequen
es. As above, we write R for somegiven linear subspa
e in H2(M ;R), and use the notation RR = R[H2(M ;R)=R℄ forthe 
orresponding group ring. Re
all the following de�nition from the introdu
tion:De�nition 2.7. For any integer k � 0, we say that (M; �) has algebrai
 torsionof order k with 
oeÆ
ients in RR if [~k℄ = 0 in HSFT� (M; �;R). We single out thefollowing spe
ial 
ases:� (M; �) has (untwisted) algebrai
 k-torsion if [~k℄ = 0 2 HSFT� (M; �).� For a 
losed 2-form 
 on M , (M; �) has 
-twisted algebrai
 k-torsion if [~k℄ =0 2 HSFT� (M; �;
).� (M; �) has fully twisted algebrai
 k-torsion if [~k℄ = 0 2 HSFT� (M; �; f0g).By default, when we speak of algebrai
 torsion without spe
ifying the 
oeÆ
ients,we will always mean the untwisted version. Observe that due to the morphisms(2.1), fully twisted torsion implies 
-twisted torsion for all 
losed 2-forms 
, andit is not hard to show that the 
onverse is also true. Likewise, 
-twisted torsionfor any one 
losed 2-form 
 implies untwisted torsion, and k-torsion for any 
hoi
eof 
oeÆ
ients implies (k + 1)-torsion for the same 
oeÆ
ients sin
e DSFT(Q) = ~kimplies DSFT(~Q) = ~k+1.Remark 2.8. Sin
e all power series in R[[~℄℄ are naturally 
losed elements of the SFT
hain 
omplex, one 
an de�ne a seemingly more general notion than algebrai
 torsionvia the 
ondition [f(~)℄ = 0 2 HSFT� (M; �)for any nonzero power series f 2 R[[~℄℄. In fa
t, this is not more general: all elementsof the form 1 +O(~) 
an be inverted in R[[~℄℄ via alternating series, thus [f(~)℄ = 0implies untwisted algebrai
 k-torsion where k � 0 is the largest integer with f(~) =~kg(~) for some g 2 R[[~℄℄. The situation 
hanges when one 
onsiders the vanishingof nonzero elements of RR[[~℄℄ in HSFT� (M; �;R): as shown by Example 2.6 above,this does not always imply non�llability, but it 
an yield topologi
al restri
tions onthe symple
ti
 �llings that exist.The spe
ial 
ase k = 0 is not a new 
on
ept; the following result is stated for theuntwisted theory but has obvious analogues for any 
hoi
e of 
oeÆ
ients RR.Proposition 2.9. The following statements are equivalent.(i) (M; �) has algebrai
 0-torsion.(ii) HSFT� (M; �) = 0.

18 JANKO LATSCHEV AND CHRIS WENDL(iii) (M; �) is algebrai
ally overtwisted in the sense of [BN10℄, i.e. its 
onta
thomology is trivial.Proof. The only 
laim not immediate from the de�nitions is that (i) implies (ii), forwhi
h we use a variation on the main argument in [BN10℄. For Q1; Q2 2 A[[~℄℄, de�ne[Q1; Q2℄ := DSFT(Q1Q2)�DSFT(Q1)Q2 � (�1)jQ1jQ1DSFT(Q2)to be the deviation of DSFT from being a derivation. Note that sin
e the �rst termD1 in the expansion of DSFT is a derivation, we always have [Q1; Q2℄ = O(~). Onealso easily 
he
ks that DSFT is a derivation of this bra
ket, in the sense thatDSFT[Q1; Q2℄ = �[DSFTQ1; Q2℄� (�1)jQ1j[Q1;DSFTQ2℄:These signs are 
orre
t be
ause the bra
ket has odd degree.Now suppose DSFT(P ) = 1, and de�ne a map B : A[[~℄℄! A[[~℄℄ as an alternatingsum of iterated bra
kets with P , i.e. asB(Q) := Q� [P;Q℄ + [P; [P;Q℄℄� : : :Clearly [P;B(Q)℄ = Q�B(Q) and DSFT(B(Q)) = B(DSFT(Q)), and so if DSFT(Q) =0, thenDSFT(P �B(Q)) = [P;B(Q)℄ +DSFT(P ) �B(Q) = Q�B(Q) +B(Q) = Q;proving that every 
losed element in A[[~℄℄ is exa
t. �With the algebrai
 formalism in pla
e, the proofs of Theorems 1 and 5 are nowimmediate.Proofs of Theorems 1 and 5. Suppose (X;!) is an exa
t symple
ti
 
obordism withpositive end (M+; �+) and negative end (M�; ��). Then if [~k℄ = 0 2 HSFT� (M+; �+),the same must be true in HSFT� (M�; ��) due to Proposition 2.3.Likewise, if (X;!) is a strong �lling of (M; �), then Proposition 2.4 gives an R[[~℄℄-module morphism fromHSFT� (M; �) to RR(X)[[~℄℄, where RR(X) is the Novikov 
omple-tion of R[H2(X;R)= ker !℄. Sin
e no power of ~ vanishes in RR(X)[[~℄℄, the same mustbe true in HSFT� (M; �), 
ompleting the proof of Theorem 1. Theorem 5 follows byexa
tly the same argument, using Proposition 2.5 and observing that HSFT� (M; �;
)depends only on (M; �) and the 
ohomology 
lass of 
. �3. Relation to planar torsion in dimension 3This se
tion des
ribes the relation of algebrai
 torsion to planar torsion, and inparti
ular provides the proof of Theorem 6.



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 193.1. Review of planar torsion. We begin by reviewing brie
y the notion of planartorsion, whi
h is de�ned in more detail in [Wena℄. A planar torsion domain is aspe
ial type of 
onta
t manifold with boundary whi
h generalizes the thi
kened torus(T 2 � [0; 1℄; �T ) in the de�nition of Giroux torsion. We 
an de�ne it in terms of openbook de
ompositions as follows.Re
all �rst that if �M is a 
losed oriented (not ne
essarily 
onne
ted) 3-manifoldwith an open book de
omposition �� : �M n �B ! S1, then the open book 
an be \blownup" along part of its binding to produ
e a manifold with boundary: for any givenbinding 
omponent 
 � �B, this means repla
ing 
 with its unit normal bundle. Thelatter is then a 2-torus T in the boundary of the blown up manifoldM , and it 
omeswith a 
anoni
al homology basis f�; �g � H1(T ), where � is the meridian around theboundary of a neighborhood of 
 and � is a boundary 
omponent of a page. Givenany two binding 
omponents 
1; 
2 � �B, one 
an then produ
e a new manifold via aso-
alled binding sum, whi
h 
onsists of the following two steps:(1) Blow up at 
1 and 
2 to produ
e boundary tori T1 and T2 with 
anoni
alhomology bases f�1; �1g and f�2; �2g respe
tively.(2) Atta
h T1 to T2 via an orientation reversing di�eomorphism T1 ! T2 thatmaps �1 to �2 and �1 to ��2.Combining both the blow-up and binding sum operations for a given 
losed manifoldwith an open book �� : �M n �B ! S1, one obtains a 
ompa
t manifold M , possiblywith boundary, 
arrying a �bration� :M n (B [ I)! S1;where B is an oriented (possibly empty) link 
onsisting of all 
omponents of �B thathave not been blown up, and I is a spe
ial (also possibly empty) 
olle
tion of 2-toriwhi
h are ea
h the result of identifying two blown up binding 
omponents in a bindingsum. The tori T � I [ �M ea
h 
arry 
anoni
al homology bases f�; �g � H1(T ),where for T 2 I, � is de�ned only up to a sign. These homology bases togetherwith the �bration � determine a so-
alled blown up summed open book � on M ,with binding B and interfa
e I. Its pages are the 
onne
ted 
omponents of the �bers��1(
onst). We 
all a blown up summed open book irredu
ible if the �bers ��1(
onst)are 
onne
ted, whi
h means it 
ontains only a single S1-family of pages. In general,every manifold M with a blown up summed open book � 
an be written as a unionof irredu
ible subdomains, M =M1 [ : : : [Mn;where Mi are manifolds with boundary that ea
h 
arry irredu
ible blown up summedopen books �i, whose pages are pages of �, and they are atta
hed to ea
h other alongtori in the interfa
e of �.Just as an open book onM determines a spe
ial 
lass of 
onta
t forms, we de�ne aGiroux form on a manifoldM with a blown up summed open book to be any 
onta
tform � with the following properties:

20 JANKO LATSCHEV AND CHRIS WENDL(1) The Reeb ve
tor �eld X� is everywhere positively transverse to the pages andpositively tangent to the oriented boundaries of their 
losures,(2) The 
hara
teristi
 foliation 
ut out by � = ker � on ea
h boundary or interfa
etorus T � I [ �M has 
losed leaves in the homology 
lass of the meridian.Note that whenever � is a Giroux form, the binding 
onsists of periodi
 orbits of X�,and ea
h torus in I [�M is foliated by periodi
 orbits. A Giroux form 
an be de�nedfor any blown up summed open book that 
ontains no 
losed pages, and it is thenunique up to deformation. We say that a 
onta
t stru
ture � on M is supported bya given blown up summed open book if and only if it 
an be written as the kernel ofa Giroux form. The e�e
t of a binding sum on supported 
onta
t stru
tures is thenequivalent to a spe
ial 
ase of the 
onta
t �ber sum de�ned by Gromov [Gro86℄ andGeiges [Gei97℄.De�nition 3.1. A blown up summed open book is 
alled symmetri
 if it has noboundary and 
ontains exa
tly two irredu
ible subdomains, ea
h with pages of thesame topologi
al type, and ea
h with empty binding and (interior) interfa
e.Symmetri
 examples are 
onstru
ted in general by taking any two open books withdi�eomorphi
 pages, 
hoosing an oriented di�eomorphism from the binding of one tothe binding of the other and 
onstru
ting the 
orresponding binding sum on theirdisjoint union. Supported 
onta
t manifolds that arise in this way in
lude the tightS1 � S2 (with disk-like pages) and the standard T 3 (
ylindri
al pages).We 
all an irredu
ible blown up summed open book planar if its pages have genus 0,and a general blown up summed open book is then partially planar if it 
ontains aplanar irredu
ible subdomain in its interior.De�nition 3.2. For any integer k � 0, a planar torsion domain of order k (orsimply planar k-torsion domain) is a 
onne
ted 
onta
t 3-manifold (M; �), possiblywith boundary, with a supporting blown up summed open book � su
h that:(1) M 
ontains a planar irredu
ible subdomain MP � M in its interior, whosepages have k + 1 boundary 
omponents,(2) M nMP is not empty, and(3) � is not symmetri
.We then 
all the subdomains MP and M nMP the planar pie
e and the paddingrespe
tively.A 
onta
t 3-manifold is said to have planar k-torsion whenever it admits a 
onta
tembedding of a planar k-torsion domain.De�nition 3.3. Suppose (M; �) is a 
onta
t 3-manifold 
ontaining a planar k-torsiondomain M0 � M with planar pie
e MP0 for some k � 0, and 
 is a 
losed 2-formon M . If every interfa
e torus T � M0 lying in MP0 satis�es RT 
 = 0, then we saythat (M; �) has 
-separating planar k-torsion. We say that (M; �) has fully separatingplanar k-torsion if this is true for every 
losed 2-form on M , or equivalently, ea
h ofthe relevant interfa
e tori separates M .
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PSfrag repla
ements���+�S1�(W; d�)(V4; �3)(V2; �2)Figure 3. Some examples of 
onvex surfa
es and dividing sets thatdetermine S1-invariant planar torsion domains, of orders 1, 0, 3 and 2respe
tively. The examples at the top right and bottom left are bothfully separating. The bottom right example de�nes a 
losed manifold
onta
tomorphi
 to the example (V4; �3) from Theorem 4. Note thatin this 
ase, it's important that the two surfa
es on either side of thedividing set are not di�eomorphi
 (so that the summed open book isnot symmetri
).Example 3.4. The simplest examples of planar torsion domains have the form S1��,where � is an orientable surfa
e (possibly with boundary), the 
onta
t stru
ture isS1-invariant and the resulting dividing set � � � 
ontains the boundary. This may beviewed as a blown up summed open book whose pages are the 
onne
ted 
omponentsof �n�, so the binding is empty, and the interfa
e and boundary together are S1��.Some spe
ial 
ases are shown in Figure 3.Remark 3.5. Another phenomenon that is allowed by the de�nition but not seen inthe 
ases S1�� of Example 3.4 is for an irredu
ible subdomain to have interfa
e toriin its interior, due to summing of a single 
onne
ted open book to itself at di�erent
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PSfrag repla
ements���+�S1�(W; d�)(V4; �3)(V2; �2)Figure 4. S
hemati
 representations of two summed open booksthat in
lude \self summing", i.e. interfa
e tori in the interior of anirredubi
le subdomain. Assuming trivial monodromy, the example atthe left is obtained from the tight S1 � S2 with its obvious 
ylindri
alopen book by summing one binding 
omponent to the other: the resultis a Stein �llable 
onta
t stru
ture on the torus bundle over S1 withmonodromy �1. At the right, the additional subdomain with disk-likepages turns it into a planar torsion domain: the 3-manifold is the same,but the 
onta
t stru
ture is 
hanged by a half Lutz twist and is thusovertwisted. Note that in this example either irredu
ible subdomain
an be taken as the planar pie
e, so it is both a 0-torsion domain anda 2-torsion domain.binding 
omponents. Examples of this are shown in Figure 4, whi
h also illustratesthe fa
t that the 
hoi
e of planar pie
e (and 
onsequently the order of planar torsion)is not always unique, even for a �xed planar torsion domain.It is shown in [Wena℄ that a 
onta
t manifold has planar 0-torsion if and only ifit is overtwisted, and every 
onta
t manifold with Giroux torsion also has planar1-torsion. The latter is the reason why Theorem 6 implies Theorem 2.3.2. Proof of Theorem 6. With these de�nitions in pla
e, Theorem 6 follows easilyfrom an existen
e and uniqueness result proved in [Wena℄ for J-holomorphi
 
urves inblown up summed open books. Namely, suppose (M; �) is a 
losed 
onta
t 3-manifold
ontaining a 
ompa
t and 
onne
ted 3-dimensional submanifold M0, possibly withboundary, on whi
h � is supported by a blown up summed open book � with bind-ing B, interfa
e I and indu
ed �bration � : M0 n (B [ I) ! S1. Assume there areN � 2 irredu
ible subdomains M0 =M1 [ : : : [MN ;of whi
h M1 lies fully in the interior ofM0, and denote the 
orresponding restri
tionsof � by �i :Mi n (Bi [ Ii)! S1for i = 1; : : : ; N , with Bi := B \Mi and Ii := I \ intMi. Note that while � itselfis not ne
essarily well de�ned at �Mi, �i always has a 
ontinuous extension to �Mi.
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ular, M0 is aplanar torsion domain with planar pie
e M1.Proposition 3.6 ([Wena℄). For any number �0 > 0, (M; �) admits a Morse-Bott
onta
t form � and 
ompatible Fredholm regular almost 
omplex stru
ture J with thefollowing properties.(1) On M0, � is a Giroux form for �.(2) The Reeb orbits in B are nondegenerate and ellipti
, and the 
omponents ofI [ �M0 are all Morse-Bott submanifolds.(3) All Reeb orbits in B1 [ I1 [ �M1 have minimal period at most �0, while everyother 
losed orbit of the Reeb ve
tor �eld X� in M has minimal period atleast 1.(4) For ea
h irredu
ible subdomain Mi with gi = 0, the �bration �i : Mi n (Bi [Ii) ! S1 admits a C1-small perturbation ^�i : Mi n (Bi [ Ii) ! S1 su
h thatthe interior of ea
h �ber ^��1i (�) for � 2 S1 lifts uniquely to an R-invariantfamily of properly embedded surfa
esS(i)�;� � R �Mi; (�; �) 2 R � S1;whi
h are the images of embedded �nite energy J-holomorphi
 
urvesu(i)�;� = (a(i)� + �; F (i)� ) : _Si ! R �Mi;all of them Fredholm regular with index 2, and with only positive ends.(5) Suppose u : _S ! R�M is a �nite energy pun
tured J-holomorphi
 
urve whi
his not a 
over of a trivial 
ylinder, and su
h that all its positive asymptoti
orbits are simply 
overed and 
ontained in B1 [ I1 [ �M1, with at most onepositive end approa
hing ea
h 
onne
ted 
omponent of B1 [ �M1 and at mosttwo approa
hing ea
h 
onne
ted 
omponent of I1. Then u has genus zero andparametrizes one of the surfa
es S(i)�;� des
ribed above.Re
all that a J-holomorphi
 
urve is 
alled Fredholm regular if it 
orresponds toa transversal interse
tion of the appropriate se
tion of a Bana
h spa
e bundle withthe zero-se
tion, see for example [Wen10a℄. We also say that J is Fredholm regular ifevery somewhere inje
tive J-holomorphi
 
urve is Fredholm regular; this is a generi

ondition due to [Dra04℄. If u is a rigid 
urve that is Fredholm regular, this impliesin parti
ular that u 
an be perturbed uniquely to a solution of any suÆ
iently smallperturbation of the nonlinear Cau
hy-Riemann equation.Proof of Theorem 6. The following is an adaptation of the argument used in [Wena℄to show that planar torsion kills the ECH 
onta
t invariant, and it 
an similarlybe used to 
ompute an upper bound on the integer fTsimp(M;�; J) de�ned via ECHin the appendix. Given a 
losed 2-form 
 on M , let k0 � k be the smallest orderof 
-separating planar torsion that (M; �) admits. We will prove that (M; �) thenhas 
-twisted algebrai
 k0-torsion, whi
h as previously observed, implies algebrai
 k-torsion. The statement for untwisted algebrai
 torsion is then the spe
ial 
ase where

24 JANKO LATSCHEV AND CHRIS WENDL
 = 0. Throughout the proof, for any d 2 H2(M ;R), we denote by�d 2 H2(M ;R)= ker 
the 
orresponding equivalen
e 
lass.Suppose M0 � (M; �) is a planar k0-torsion domain with planar pie
e MP0 � M0,su
h that [T ℄ � ker 
 � H2(M ;R) for every interfa
e torus T lying in MP0 . Denoteby �P :MP0 n (BP [ IP )! S1the 
orresponding �bration in the planar pie
e. Write the 
onne
ted 
omponents ofthe binding, interfa
e and boundary respe
tively asBP = 
1 [ : : : [ 
m;�MP0 = T1 [ : : : [ Tn;IP = Tn+1 [ : : : [ Tn+r;where by de�nition we havem + n+ 2r = k0 + 1 and n � 1:Now given the spe
ial Morse-Bott 
onta
t form �0 and 
ompatible almost 
omplexstru
ture J0 provided by Proposition 3.6, we 
onsider the moduli spa
eM(J0) :=M0(
1; : : : ; 
m; T1; : : : ; Tn; Tn+1; Tn+1; : : : ; Tn+r; Tn+r; J0)of unparametrized J0-holomorphi
 
urves u : _S ! R �M su
h that(1) _S has genus 0, no negative pun
tures and m + n+ 2r positive pun
turesz1; : : : ; zm; �1; : : : ; �n; w+1 ; w�1 ; : : : ; w+r ; w�r(2) For the pun
tures listed above, u approa
hes the simply 
overed orbit 
i at zi,any simply 
overed orbit in Ti at �i and any simply 
overed orbit in Tn+i atboth w+i and w�i .By Prop. 3.6, M is a 
onne
ted 2-dimensional manifold 
onsisting of an R-invariantfamily of embedded Fredholm regular 
urves that proje
t to the pages in MP0 . Notehere we are using the fa
t that the blown up summed open book on M0 is notsymmetri
, so in parti
ular the padding M0 nMP0 
annot 
ontain additional genus 0
urves with the asymptoti
 behavior that de�nes M(J0). It also 
annot 
ontain anygenus 0 
urves asymptoti
 to a proper subset of the same orbits, as this would meanthe existen
e of an 
-separating planar torsion domain with order less than k0.We next perturb the Morse-Bott data (�0; J0) to generi
 nondegenerate data (�; J)by the s
heme des
ribed in [Bou02℄, extend J to a suitable framing f and assume thatHSFT� (M;�; f;
) is well de�ned (see Remark 3.7 below). Re
all that the perturba-tion to nondegenerate data is a
hieved by 
hoosing a Morse fun
tion on ea
h of therelevant Morse-Bott families of orbits and using it to alter the 
onta
t form in smallneighborhoods of these families. In our 
ase, ea
h Morse-bott family is parametrizedby a 
ir
le, so we may assume without loss of generality that our Morse fun
tion on S1has exa
tly two 
riti
al points, whi
h 
orrespond to the two orbits in the family that



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 25survive as nondegenerate orbits after the perturbation. Moreover, J-holomorphi

urves are obtained as perturbations of J0-holomorphi
 \
as
ades", i.e. multi-levelbuildings 
omposed of a mixture of holomorphi
 
urves with gradient 
ow lines alongthe Morse-Bott manifolds. We may therefore assume after the perturbation that ea
hof the tori Ti for i = 1; : : : ; n+r 
ontains two nondegenerate simple Reeb orbits 
ei and
hi , ellipti
 and hyperboli
 respe
tively. These orbits 
ome with preferred framingsdetermined by the tangent spa
es to Ti, and in these framings their Conley-Zehnderindi
es are �CZ(
ei ) = 1 and �CZ(
hi ) = 0:There are also two embedded J-holomorphi
 index 1 
ylinders (
orresponding togradient 
ow lines along the Morse-Bott family)v�i : R � S1 ! R �Mwhose proje
tions to M are disjoint and �ll the two regions in Ti separated by 
ei and
hi , so the homology 
lasses they represent are related to ea
h other by[v+i ℄� [v�i ℄ = [Ti℄ 2 H2(M ;R);and for a suitable 
hoi
e of 
oherent orientation, these two together 
ontribute termsof the form (z[Ti℄ � 1)q
hi ��q
eito the operatorDSFT. The 
urves inM(J0) likewise give rise to a unique J-holomorphi
pun
tured sphere in the spa
eM(J) :=M0(
1; : : : ; 
m; 
h1 ; 
e2; : : : ; 
en; 
en+1; 
en+1; : : : ; 
en+r; 
en+r; J)with pun
ture �1 asymptoti
 to 
h1 and all other pun
tures asymptoti
 to ellipti
orbits. This 
urve is embedded and has index 1, thus if d 2 H2(M ;R) denotes thehomology 
lass de�ned by the pages inMP0 with atta
hed 
apping surfa
es, then this
urve produ
es a termz �d~m+n+2r�1 ��q
h1 mYi=1 ��q
i nYi=2 ��q
ei rYi=1 12 ��q
en+i ��q
en+iin DSFT. We thus de�ne the monomialF = q
1 : : : q
mq
h1 q
e2 : : : q
enq
en+1q
en+1 : : : q
en+rq
en+rand 
ompute, DSFTF = z �d~k0 + n+rXi=2 (z[Ti℄ � 1)q
hi �F�q
ei :Every term in the summation now vanishes sin
e [Ti℄ � ker 
, implying that ~k0 isexa
t. �

26 JANKO LATSCHEV AND CHRIS WENDLRemark 3.7. To make the above 
omputation fully rigorous, one must show that therelevant 
ount of 
urves doesn't 
hange under a suitable abstra
t perturbation, e.g. asprovided by [Hof℄. The 
urves that were 
ounted in the above argument are Fredholmregular and will thus survive any su
h perturbation, but we also need to 
he
k thatno additional 
urves appear. If any su
h 
urves exist, then in the unperturbed limitthey must give rise to nontrivial holomorphi
 
as
ades in the natural 
ompa
ti�
ationof M(J0), see [BEH+03℄. It suÆ
es therefore to observe that in the above setup, allpossible 
as
ades are a

ounted for by the J0-holomorphi
 pages in MP0 , due to theuniqueness statement in Prop. 3.6.4. S1-invariant examples in dimension 3In this se
tion we 
onsider the spe
ial examples (S1��; ��) des
ribed in the intro-du
tion, and prove in parti
ular Theorems 3 and 4. Note that the examples (Vg; �k) ofTheorem 4 
an be 
onstru
ted via a summed open book as follows. Fix g � k � 1, andlet (M�; ��) denote the 
losed 
onta
t 3-manifold supported by a planar open book�� : M� n B� ! S1 with k binding 
omponents and trivial monodromy. Similarly,let (M+; �+) be the 
onta
t manifold supported by an open book �+ :M+ nB+ ! S1with pages of genus g � k + 1 > 0, k binding 
omponents and trivial monodromy.Choosing any one-to-one 
orresponden
e between the 
onne
ted 
omponents of B+and B�, we produ
e a new 
losed 
onta
t manifold (M; �) by taking the binding sumof (M+; �+) t (M�; ��) along 
orresponding binding 
omponents as des
ribed in x3;this produ
es a 
losed planar (k � 1)-torsion domain whi
h is 
onta
tomorphi
 to(Vg; �k).To 
omplete the proof of Theorem 4, we will have to show that 
ertain types ofholomorphi
 
urves in R � Vg do not exist (at least algebrai
ally), whi
h would needto exist if ~k�2 were exa
t (see Lemma 4.15 below). To do this, we will 
onstru
ta pre
ise model for 
onta
t manifolds of the form (S1 � �; ��), in whi
h all therelevant holomorphi
 
urves 
an be 
lassi�ed. The proof of Theorem 3 will alsofollow immediately from this 
lassi�
ation.4.1. Holomorphi
 
urves in (S1 � �; ��). The basi
 idea of our model for (S1 ��; ��) will be to 
hoose data so that the singular foliation of � de�ned by the gradient
ow lines of a suitable Morse fun
tion gives rise to a foliation of the symple
tizationby holomorphi
 
ylinders, whi
h 
an be 
ounted by Morse homology. We will thenbe able to ex
lude all the other relevant 
urves by a 
ombination of interse
tionarguments and index estimates.For the 
onstru
tions 
arried out below, the following lemma turns out to be 
on-venient.Lemma 4.1. Suppose � is a 
ompa
t 
onne
ted oriented surfa
e with nonemptyboundary, and ~h : � ! R is a smooth Morse fun
tion with all 
riti
al points in theinterior and none of index 2, and with �� = ~h�1(1). Then there exists a 
onformalstru
ture j on �, 
ompatible with the orientation, and a smooth, stri
tly in
reasing
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tion ' : R ! R su
h that h := ' Æ ~h : �! R satis�es�d(dh Æ j) > 0;and ea
h boundary 
omponent has a 
ollar neighborhood biholomorphi
ally identi�edwith (�Æ; 0℄ � S1 for some small Æ > 0, so that in these holomorphi
 
oordinates(s; t) 2 (�Æ; 0℄� S1 we have h(s; t) = es:Proof. To 
onstru
t j with the required properties, we start by 
hoosing oriented 
o-ordinates (s; t) 2 (�2Æ; 0℄�S1 on a 
ollar neigbhorhood of ea
h boundary 
omponentsu
h that ~h(s; t) = es in these 
oordinates. In this 
ollar neighborhood, we simplyde�ne j by requiring j(�s) = �t and j(�t) = ��s. Note that�d(d~h Æ j) = es ds ^ dt > 0on these 
ollars.Next we 
hoose oriented Morse 
oordinates near the 
riti
al points, su
h that lo
ally~h(x; y) = x2 � y2 + ~h(0):In su
h 
oordinates, we 
an de�ne j su
h that j(�x) = ��y and j(�y) = � 1��x forsome � > 0. A 
omputation then yields�d(d~h Æ j) = �2� � 2�� dx ^ dy;whi
h is positive whenever 0 < � < 1.Now extend j arbitrarily to all of � and 
onsider the fun
tion h = ' Æ ~h, where' : R ! R is a smooth fun
tion with '0 > 0 and '00 � 0. Observe that the 2-form� := �d~h ^ (d~h Æ j)is everywhere nonnegative, and vanishes pre
isely at the 
riti
al points of ~h. We then
ompute,(4.1) � d(dh Æ j) = �('0 Æ ~h) d(d~h Æ j) + ('00 Æ ~h)�:This is already positive whenever �d(d~h Æ j) is positive, whi
h is true on a neighbor-hood of the 
riti
al points and the boundary. Outside of this neighborhood, we have� > 0 and 
an thus arrange �d(dh Æ j) > 0 by 
hoosing ' so that'00'0 � Kfor a suÆ
iently large 
onstant K > 0. Sin
e �d(d~h Æ j) > 0 on the 
ollar neigh-borhoods (�2Æ; 0℄ � S1 of ��, we are free to set '00 = 0 in [�Æ; 0℄ � S1. Now sin
e�d(dhÆj) > 0 everywhere, (4.1) implies that this property will survive a further post-
omposition with an in
reasing aÆne fun
tion, hen
e through su
h a 
omposition we
an arrange without loss of generality that '(s) = s on the 
ollar neighborhoods[�Æ; 0℄� S1. �

28 JANKO LATSCHEV AND CHRIS WENDLLet �� and �+ denote 
ompa
t oriented and possibly dis
onne
ted surfa
es, su
hthat ea
h 
onne
ted 
omponent has non-empty boundary and the total number ofboundary 
omponents of �� and �+ agrees. On ea
h of the surfa
es ��, we 
hoosea fun
tion h� and 
onformal stru
ture j� as provided by the lemma and de�ne a1-form by �� = �dh� Æ j�:This indu
es a symple
ti
 form �� and Riemannian metri
 g� on ��, de�ned by�� = d��; g� = ��(�; j��):Sin
e dh� = es ds in holomorphi
 
oordinates (s; t) 2 (�Æ; 0℄�S1 near ea
h 
omponentof the boundary, we �nd �� = es ds ^ dt; rh� = �s:Denote the union of all these 
ollar neighborhoods of ��� byU� � ��:The gradient rh� is a Liouville ve
tor �eld pointing orthogonally outward at ���.Remark 4.2. Sin
e the subharmoni
ity 
ondition on the pair (h�; j�) is open, thereis some freedom in the 
onstru
tion. In parti
ular, by perturbing the 
onformalstru
ture if ne
essary we 
an a
hieve that the 
ow of rh� is Morse-Smale.We now glue �+ and �� together along an orientation preserving di�eomorphism��+ ! ��� to 
reate a 
losed oriented surfa
e� = �+ [ (���);divided into two halves by a spe
ial set of 
ir
les � := ��+ � �. We will alwaysassume � is 
onne
ted, and as the above notation suggests we assign it the sameorientation as �+, whi
h is opposite the given orientation on ��. On ea
h 
onne
ted
omponent of U+ and U�, one 
an de�ne new 
oordinatesS1 � [0; Æ) 3 (�; �) := (t;�s) for (s; t) 2 U+;S1 � (�Æ; 0℄ 3 (�; �) := (t; s) for (s; t) 2 U�;and then de�ne the gluing map and the smooth stru
ture on � so that ea
h 
omponentof U := U+ [ U� � � inherits smooth positively oriented 
oordinates (�; �) 2 S1 �(�Æ; Æ).Choose a fun
tion g0 : [�Æ; Æ℄ ! R with g0(�) = �1 for � near �Æ, g0(0) = 0,g00 � 0 and g00 > 0 near � = 0 and a fun
tion 
 : [�Æ; Æ℄ ! R with 
(�) = �e�� for� near �Æ, 
0 > 0 wherever g00 = 0, 
(�) > 0 for � < 0 and 
(�) < 0 for � > 0. For� 2 (0; 1), we then set g�(�) = g0(�) + �2
(�);whi
h satis�es� g0� > 0 for suÆ
iently small � > 0,� g�(�) = �(1� �2e��) for � near �Æ,



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 29� g�(0) = 0.Now de�ne a smooth family of fun
tions h� : �! R byh� = 8><>:1� �2h+ on �+ n U+,g�(�) for (�; �) 2 U ,�1 + �2h� on �� n U�.For ea
h �xed � > 0, h� is a Morse fun
tion with all its 
riti
al points in � nU , andthey are pre
isely the 
riti
al points of h�.Next 
hoose a fun
tion f0 : [�Æ; Æ℄ ! R su
h that f0(�) = 0 for � near �Æ, f0 � 0everywhere and � � f 00(�) � 0 for � 6= 0 and f 000 (0) < 0, and a fun
tion  : [�Æ; Æ℄! Rwith  (�) = e�� for � near �Æ,  � 0 everywhere and � �  0(�) < 0 for � 6= 0. Thenwe de�ne f�(�) = f0(�) + � (�):With these 
hoi
es in pla
e, we denote the 
oordinate in S1 by � and de�ne asmooth family of 1-forms �� on S1 � � by(4.2) �� = 8><>:��+ + h� d� on S1 � (�+ n U+),f�(�) d� + g�(�) d� on S1 � U ,��� + h� d� on S1 � (�� n U�).Observe that S1�� admits a natural summed open book with empty binding, inter-fa
e I = S1 � �, �bration� : S1 � (� n �)! S1 : (�; z) 7! (� if z 2 �+;�� if z 2 ��;and the meridians on S1 � � generated by the 
ir
les S1 � f
onstg.Proposition 4.3. There exists �0 > 0 with the following properties.(i) For any � 2 (0; �0℄, �� is a positive 
onta
t form on S1 � � and is a Girouxform for the summed open book des
ribed above. Moreover, for all these 
onta
tforms ea
h 
omponent of the interfa
e S1 � � is a Morse-Bott submanifold ofReeb orbits pointing in the ��-dire
tion.(ii) For any � 2 (0; �0℄ and for ea
h � 2 S1, the leaves of the 
hara
teristi
 foliationon f�g � � are pre
isely the gradient 
ow lines of h�.(iii) The 2-form ! = d(es�s) is symple
ti
 on (0; �0℄ � S1 � �, where s denotes the
oordinate on the �rst fa
tor.Proof. To prove (i), note that the natural 
o-orientation indu
ed by the summed openbook on its pages is 
ompatible with the orientations de�ned on �� by j�, for whi
h�� are positive volume forms. To prove the 
onta
t 
ondition on S1 � (�� n U�),observe that �� ! �d� on this region as � ! 0, so the 
onta
t planes are almosttangent to the pages. Thus it suÆ
es to observe that d�� is positive on �� n U�,whi
h is 
lear sin
e d�� = ��� when restri
ted to the pages.

30 JANKO LATSCHEV AND CHRIS WENDLOn S1 � U , a routine 
omputation shows that the 
onta
t 
ondition follows fromf�g0� � f 0�g� > 0. But this is easily 
omputed to equalf�g0� � f 0�g� = f0g00 � f 00g0 + �( g00 �  0g0) +O(�2):Our 
onditions on the various fun
tions ensure that all four summands are nonnega-tive, with the �rst one stri
tly positive for � near 0 and the last one stri
tly positivefor � away from zero. So for �0 > 0 su��
iently small, the 
onta
t 
ondition holds forall � 2 (0; �0℄ on S1 �U as well. Here it is also easy to 
ompute the Reeb ve
tor �eldX��: writing D� = f�g0� � f 0�g�, we have(4.3) X��(�; �; �) = 1D�(�) �g0�(�) ��� � f 0�(�) ���� :Our assumptions on f 0�(�) then imply thatX�� always has a 
omponent in the negative��-dire
tion for � 2 (�Æ; 0), and in the positive ��-dire
tion for � 2 (0; Æ), while at� = 0 it points in the ��-dire
tion. Moreover the 
ondition g�(0) = 0 implies that the
onta
t planes at � = 0 are tangent to the 
ir
les S1 � f
onstg, thus �� is a Girouxform. The Morse-Bott 
ondition at S1 � � follows from f 00� (0) < 0, whi
h for small� > 0 follows from f 000 (0) < 0. This 
on
ludes the proof of (i).Next we verify that the 
hara
teristi
 foliation on f�g � � mat
hes the gradient
ow of h�. This is obvious in U , where both 
hara
teristi
 leaves and gradient 
owlines are simply straight lines in the ��-dire
tion. On �� n U�, a ve
tor v 2 T�� istangent to the 
hara
teristi
 foliation if and only if ��(v) = 0, implying dh�(j�v) = 0and thus v is orthogonal to the level sets of h�, whi
h makes it proportional to rh�as 
laimed, and establishes (ii).Finally, 
onsider the two-form ! = d(es�s). On R � S1 � U , we have �s = fs d� +gs d� and so ! = es(ds ^ �s + dfs ^ d� + dgs ^ d�);with dfs = f 0s d�+  dsdgs = g0s d�+ 2s
 ds:One then 
omputes! ^ ! = es(fsg0s � f 0sgs +  g0s � 2
sf 0s) ds ^ d� ^ d� ^ d�here, and observe that all four terms are nonnegative, with the �rst one stri
tlypositive for small s > 0, so ! is symple
ti
 here.On R�S1�(�+nU), we have �s = s�++(1�s2h+) d�, and so another 
omputationshows ! ^ ! = e2s(s �+ ^ ds ^ d�+O(s2))here, whi
h is also a positive volume form for small enough s > 0. A similar 
ompu-tation on R � S1 � (�� n U) �nishes the proof of part (iii). �
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onta
t stru
ture on S1 � � for � 2 (0; �0℄ by�� = ker��:Due to Gray's stability theorem, �� is independent of � up to isotopy, and it is iso-morphi
 to ��.Remark 4.4. From the dis
ussion above it is 
lear that for every � 2 S1, f�g � �is a 
onvex surfa
e for �� with dividing set �, positive part �+ and negative part��. In parti
ular, the Euler 
lass e(��) 2 H2(S1 � �) satis�es he(��); [f�g � �℄i =�(�+)� �(��). It follows from the S1-invarian
e of �� that the Euler 
lass vanisheson all 
y
les of the form S1 � 
 for 
losed 
urves 
 � �. Thuse(��) = [�(�+)� �(��)℄ PD[S1 � f�g℄:The following assertion 
an be 
he
ked by a routine 
omputation.Lemma 4.5. The Reeb ve
tor �eld X�� on S1 � (�� n U�) is given by(4.4) X�� = 11 + �2 �jrh�j2g� � h�� �� ��� + �j�rh�� : �In parti
ular, this shows that every 
riti
al point z 2 Crit(h�) gives rise to a periodi
orbit 
z := S1 � fzgof X�� . We shall denote by 
nz the n-fold 
over of 
z for any n 2 N and z 2 Crit(h�).Observe that there is always a natural trivialization of the 
onta
t bundle along 
nz ,de�ned by 
hoosing any frame at a point and transporting by the S1-a
tion.We next de�ne a 
ompatible 
omplex stru
ture J� on �� as follows. On S1�(��n�),the proje
tion S1 � �! � de�nes a bundle isomorphism�� : ��jS1�(�n�) ! T�jS1�(�n�);whi
h we 
an use to de�ne J� : �� ! �� on S1 � (�� n U�) by(4.5) J� = ���j�:Sin
e �� 2 �� on S1 � U , we 
an now extend J� to this region by settingJ��� = ��(�)[f�(�)�� � g�(�)��℄;for any smooth family of fun
tions �� : (�Æ; Æ) ! (0;1) whi
h equals �1=g� near� = �Æ, so in parti
ular for � > 0, J� satis�esd�(J���) = 0 and d��(��; J���) > 0:Extend J� to an R-invariant almost 
omplex stru
tureJ� : T �R � (S1 � �)�! T �R � (S1 � �)�in the standard way, i.e. by setting J��s = X�� where s is the R-
oordinate. Then forea
h z 2 Crit(h�), there is a trivial 
ylinderR � S1 ! R � (S1 � �) : (s; t) 7! (s; t; z);

32 JANKO LATSCHEV AND CHRIS WENDLwhi
h 
an be reparametrized to de�ne an embedded J�-holomorphi
 
urve of Fredholmindex 0. We shall abbreviate this 
urve by R � 
z, and similarly write R � 
nz for theobvious J�-holomorphi
 n-fold 
over of R � 
z.Proposition 4.6. For � 2 (0; �0℄, suppose x : R ! � is a solution to the gradient
ow equation _x = rh�(x) approa
hing z� 2 Crit(h�) at �1. Then there exists aproper fun
tion a : R ! R, unique up to a 
onstant, su
h that the embeddingux : R � S1 ! R � (S1 � �) : (s; t) 7! (a(s); t; x(s))is a J�-
omplex 
urve. Both ends of u are positive if and only if the two 
riti
al pointsz+ and z� lie on opposite sides of the interfa
e.Proof. For any z 2 �, regard rh�(z) as a ve
tor in T(�;z)(S1 � �) for some �xed� 2 S1, and observe that rh�(z) 2 (��)z due to Prop. 4.3. Thus we 
an de�ne anS1-invariant ve
tor �eld v(�; z) = J�rh�(z);whi
h takes values in �� and vanishes only at S1 � Crit(h�). For z 2 �� n U�, (4.5)implies that v(�; z) is a linear 
ombination of j�rh�(z) and ��, and the same is truefor z 2 U due to the 
ondition d�(J���) = 0. By (4.3) and (4.4), the Reeb ve
tor�eld X�� is also a linear 
ombination of the same two ve
tor �elds everywhere, andis of 
ourse linearly independent of v ex
ept when the latter vanishes, from whi
h we
on
lude �� 2 RX�� � Rveverywhere on S1 � �. It follows that J��� is everywhere a linear 
ombination of �sand rh�, so the desired 
omplex 
urves are obtained by integrating the distributionR�� � RJ���:In parti
ular, this generates a foliation whose leaves in
lude an R-invariant familyof 
ylinders of the form ux des
ribed above for ea
h nontrivial gradient 
ow linex : R ! �, and the trivial 
ylinders R � 
z de�ned above for ea
h z 2 Crit(h�). Thesigns of the 
ylindri
al ends 
an now be dedu
ed from the orientations of the Reeborbits, using the fa
t that the orientations of 
z and 
� in the S1-dire
tion mat
h ifand only if z and � lie on the same side of the dividing set �. �From the proposition it follows that ea
h of the embeddings ux is a (not ne
essar-ily J�-holomorphi
) parametrization of a �nite energy J�-holomorphi
 
urve, whoseFredholm index ind(ux) is the sum of the Conley-Zehnder indi
es at its ends if bothare positive, or the di�eren
e if one end is negative. We shall abuse notation byidentifying the map ux : R � S1 ! R � (S1 � �) with the unique unparametrizedJ�-holomorphi
 
urve it determines, and do the same with the obvious unbran
hedmultiple 
over unx(s; t) := ux(s; nt)for ea
h n 2 N.
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hosen so that their gradient 
ows areMorse-Smale (see Remark 4.2). Then after possibly adjusting the gluing map ��+ !���, there exist fun
tions (0; �0℄! (0;1) : � 7! T�(0; �0℄! N : � 7! N�with lim�!0 T� = lim�!0N� = +1 su
h that the following 
onditions hold for all � > 0:(1) rh� is Morse-Smale.(2) Every 
losed orbit of X�� with period less than T� is either in S1 �U or is 
nzfor some z 2 Crit(h�) and n � N�.(3) For all n � N�, 
nz is nondegenerate as an orbit of X�� and has Conley-Zehnderindex(4.6) �CZ(
nz ) = (1 if ind(z) = 0 or 2,0 if ind(z) = 1,with respe
t to the S1-invariant trivialization of �� along 
nz , where ind(z)denotes the Morse index of z.Proof. Up to parametrization, the 
ow of rh� mat
hes that of rh� on �� n U�and �� on U . Thus if rh� are both Morse-Smale, any 
ow lines of rh� 
onne
tingtwo index 1 
riti
al points must pass through �, and 
an thus be eliminated by asmall rotation of the gluing map ��+ ! ���. The existen
e of the fun
tion T� withlim�!0 T� =1 follows from (4.4), as all orbits outside of S1�U other than the 
nz forz 2 Crit(h�) 
orrespond to 
losed orbits of j�rh� in level sets of h�, with periodsthat be
ome in�nitely large as �! 0. We 
an then de�neN� := maxfn 2 N j All 
nz have periods < T� as orbits of X��g;and observe that N� ! 1 as � ! 0 sin
e the periods of 
z 
onverge to 1. Theformula for �CZ(
nz ) is a standard 
omputation from Floer theory relating Conley-Zehnder indi
es to Morse indi
es, see for example [SZ92℄. �We will assume from now on that the 
onditions of Prop. 4.7 are satis�ed. Thenrh� is Morse-Smale for all � 2 (0; �0℄, and it will follow that ea
h of the J�-holomorphi

ylinders ux 
orresponding to gradient 
ow lines x : R ! � between 
riti
al pointsz�; z+ 2 Crit(h�) has positive Fredholm index. Indeed, these 
ylinders 
ome in �vetypes:(1) z� 2 �� with index 0 and z+ 2 �+ with index 2: then ind(ux) = 2 and bothends are positive.(2) z�; z+ 2 �+ with indi
es 1 and 2: then ind(ux) = 1 and one end is negative.(3) z�; z+ 2 �� with indi
es 0 and 1: then ind(ux) = 1 and one end is negative.(4) z� 2 �� with index 0 and z+ 2 �+ with index 1: then ind(ux) = 1 and bothends are positive.(5) z� 2 �� with index 1 and z+ 2 �+ with index 2: then ind(ux) = 1 and bothends are positive.

34 JANKO LATSCHEV AND CHRIS WENDLThis 
lassi�
ation is exa
tly the same for the multiply 
overed 
ylinders unx(s; t) forall n � N�.Proposition 4.8. For every gradient 
ow line x : R ! �, the 
orresponding J�-holomorphi
 
ylinders unx for n � N� are all Fredholm regular.Proof. By the 
riterion in [Wen10a, Theorem 1℄, an immersed, 
onne
ted �nite energyJ�-holomorphi
 
urve u with genus g asymptoti
 to nondegenerate Reeb orbits isFredholm regular whenever ind(u) > 2g � 2 + #�0;where the integer #�0 � 0 denotes the number of ends at whi
h u approa
hes orbitswith even Conley-Zehnder index. In the 
ase at hand, we always have g = 0 andeither ind(u) = 2 with #�0 = 0 or ind(u) = 1 with #�0 = 1, so the 
riterion issatis�ed in all 
ases. �It follows that the embedded 
ylinders ux for all gradient 
ow lines x on �, togetherwith the trivial 
ylinders R � 
z for z 2 Crit(h�), form a stable �nite energy foliationin the sense of [HWZ03,Wen08℄.In the following, we will make use of the interse
tion theory for pun
tured holomor-phi
 
urves, de�ned by Siefring [Sie11℄. This theory de�nes an interse
tion numberu � v 2 Zfor any two asymptoti
ally 
ylindri
al maps u; v from pun
tured Riemann surfa
esinto the symple
tization of a 
onta
t 3-manifold, with the following properties:� u � v is invariant under homotopies of u and v through asymptoti
ally 
ylin-dri
al maps.� u � v � 0 whenever both are �nite energy pseudoholomorphi
 
urves that arenot 
overs of the same somewhere inje
tive 
urve, and the inequality is stri
tif they have nonempty interse
tion.Lemma 4.9. Suppose u and v are �nite energy pseudoholomorphi
 
urves in thesymple
tization R � M of a 
onta
t manifold (M; �), su
h that u has no negativeends, and the positive pun
tures � 2 �+v of v are asymptoti
 to Reeb orbits denotedby 
�. Then u � v = X�2�+v u � (R � 
�):Proof. By R-translation we 
an assume the image of u is 
ontained in [0;1) �M ,and 
an then homotop v through a family of asymptoti
ally 
ylindri
al maps so thatits interse
tion with [0;1)�M 
onsists only of the trivial half-
ylinders [0;1)� 
�for � 2 �+v . The lemma thus follows from the homotopy invarian
e of u � v. �It is possible in general to have u � v > 0 even if u and v are disjoint holomorphi

urves: in this 
ase interse
tions 
an \emerge from in�nity" under generi
 pertur-bations, and ex
luding this typi
ally requires the 
omputation of 
ertain windingnumbers. We will only need to worry about this in one spe
ial 
ase:
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ow line x : R ! � that begins andends on opposite sides of the interfa
e, and n � N�, (R � 
nz ) � ux = 0.Proof. The 
urves R � 
nz and ux obviously do not interse
t sin
e x does not passthrough any 
riti
al points, so we only have to 
he
k that there are no asymptoti

ontributions to (R � 
nz ) � ux. This is trivially true unless z is one of the end pointsof x, so assume the latter. Then the de�nition of the interse
tion number in [Sie11℄implies that (R � 
nz ) � ux = 0 if and only if the asymptoti
 end of unx approa
hing
nz has the largest possible asymptoti
 winding about the orbit. This bound on thewinding is an integer ��(
nz ), whi
h is the winding of a parti
ular eigenfun
tion ofthe Hessian of the 
onta
t a
tion fun
tional, and was shown in [HWZ95℄ to be relatedto the Conley-Zehnder index by�CZ(
nz ) = 2��(
nz ) + p(
nz );where p(
nz ) 2 f0; 1g. Sin
e �CZ(
nz ) is either 0 or 1 by Prop. 4.7, we 
on
lude��(
nz ) = 0, whi
h is obviously the same as the winding of unx about 
nz as it ap-proa
hes asymptoti
ally. �Proposition 4.11. Suppose u : _S ! R � (S1 � �) is a �nite energy J�-holomorphi

urve whi
h is not a 
over of a trivial 
ylinder and has all its positive ends asymptoti
to Reeb orbits of the form 
nz for z 2 Crit(h�) and n � N�. Then u is a 
over of uxfor some gradient 
ow line x : R ! �.Proof. If u is neither a 
over of any ux nor of a trivial 
ylinder over 
z for somez 2 Crit(h�), then it must have a nontrivial interse
tion with one of the 
urves ux,implying u �ux > 0. By a small perturbation using positivity of interse
tions, we 
anassume also that x is a generi
 
ow line, 
onne
ting an index 0 
riti
al point z� 2 ��to an index 2 
riti
al point z+ 2 �+. Then ux has no negative ends, so u � ux is thesum of the interse
tion numbers of ux with all the positive asymptoti
 orbits of u byLemma 4.9. But these are all zero by Lemma 4.10, giving a 
ontradi
tion. �Proposition 4.12. Suppose x : R ! � is a gradient 
ow line of h� and u : _S !R � (S1 � �) is a J�-holomorphi
 multiple 
over of ux with 
overing multipli
ity atmost N�. Then ind(u) � 1, and the inequality is stri
t unless the 
over is unbran
hed,i.e. u = unx for some n � N�.Proof. The index formula for u isind(u) = ��( _S) + 2
1(u��) + �CZ(u);where �CZ(u) is the sum of the Conley-Zehnder indi
es of its positive asymptoti
orbits minus those of its negative asymptoti
 orbits, and 
1(u��) is the relative �rstChern number of the bundle u�� ! _S with respe
t to the natural trivialization ofea
h orbit 
nz . The latter vanishes due to the S1-invarian
e (
f. Remark 4.4). For theConley-Zehnder indi
es, we use Prop. 4.7, distinguishing between two 
ases:� If x passes through �, then both ends of ux are positive and thus all ends of uare positive. Moreover, the Morse-Smale 
ondition guarantees that ux 
annot
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riti
al points with Conley-Zehnder index 0,hen
e �CZ(u) � 1.� Otherwise ux has a positive end at an ellipti
 
riti
al point z+ with �CZ(
z+) =1 and a negative end at a hyperboli
 
riti
al point z� with �CZ(
z�) = 0, soagain �CZ(u) � 1.As a result, ind(u) � ��( _S)+1, whi
h is stri
tly greater than 1 unless _S is a 
ylinder,in whi
h 
ase there are no bran
h points. �Proposition 4.13. Suppose z 2 Crit(h�) and u : _S ! R � (S1 � �) is a J�-holomorphi
 multiple 
over of R � 
z with 
overing multipli
ity at most N�. Thenind(u) � 0, and the inequality is stri
t unless u has exa
tly one positive end.Proof. If ind(z) = 1, then Prop. 4.7 implies that all asymptoti
 orbits of u haveConley-Zehnder index 0 in the natural trivialization, hen
e ind(u) = ��( _S) � 0,with equality if and only if _S is a 
ylinder, implying it has one positive and onenegative end. Otherwise, the asymptoti
 orbits of u all have Conley-Zehnder index 1,so if g � 0 is the genus of u and its sets of positive and negative pun
tures are denotedby �+ and �� respe
tively, we haveind(u) = ��( _S) + #�+ �#�� = �(2� 2g �#�+ �#��) + #�+ �#��= 2g � 2 + 2#�+ = 2g + 2 �#�+ � 1� � 0: �Remark 4.14. The moduli spa
es of J�-holomorphi
 
urves in R � (S1 � �) 
an beoriented 
oherently whenever all asymptoti
 orbits are nondegenerate and \good", see[EGH00,BM04℄. In parti
ular, the spa
es of 
ylinders unx 
overing gradient 
ow lines x
an be given orientations that mat
h a 
orresponding set of 
oherent orientations forthe spa
es of Morse gradient 
ow lines.4.2. Proofs of Theorems 3 and 4. The results of the previous subse
tion giveenough information on J�-holomorphi
 
urves in R � (S1 � �) to prove the maintheorems. Re
all that the natural 
ompa
ti�
ation of the moduli spa
e of �niteenergy pun
tured holomorphi
 
urves 
onsists of holomorphi
 buildings, whi
h ingeneral may have multiple levels and nodes, see [BEH+03℄.Proof of Theorem 3. Assume �� is dis
onne
ted and let �1� and �2� denote two ofits 
onne
ted 
omponents. Then we 
an 
hoose the Morse fun
tions h� so that h�has exa
tly one index 0 
riti
al point in ea
h of �1� and �2�, denoted by z1� and z2�respe
tively, and h+ has an index 1 
riti
al point z+ 2 �+ su
h that the two negativegradient 
ow lines of h� 
owing out of z+ end at z1� and z2� respe
tively. In parti
ular,there is a unique gradient 
ow line x1 
onne
ting z1� to z+. By Prop. 4.11, the setof all J�-holomorphi
 buildings with no negative ends and positive ends approa
hingany subset of the two simply 
overed orbits 
z+ and 
z1� 
onsists of the following:(1) The 
ylinder ux1 with two positive ends at 
z+ and 
z1�.
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ylinders ux 
orresponding to gradient 
ow lines x 
onne
ting z1� to index 1
riti
al points in �1�. Ea
h of these 
ylinders has one positive and one negativeend, with the positive end approa
hing 
z1�.Sin
e both of these orbits are nondegenerate and all of the holomorphi
 
urves inquestion are Fredholm regular by Prop. 4.8, they all survive any suÆ
iently smallperturbation to make �� nondegenerate and J� generi
, as well as the introdu
tionof an abstra
t perturbation for the holomorphi
 
urve equation. The 
hain 
omplexfor SFT 
an therefore be de�ned so as to 
ontain two spe
ial generators q
z1� andq
z+ su
h that DSFT(q
z1� q
z+ ) is 
omputed by 
ounting the J�-holomorphi
 
urveslisted above (
f. Remark 3.7). We 
laim now that for a suitable 
hoi
e of 
oherentorientations, the algebrai
 
ount of 
ylinders of the se
ond type is zero. Indeed,the orientations 
an be 
hosen 
ompatibly with a 
hoi
e of 
oherent orientations forthe spa
e of gradient 
ow lines (
f. Remark 4.14), thus the 
ount of these 
ylindersmat
hes the 
ount of all gradient 
ow lines 
onne
ting z1� to index 1 
riti
al pointsin �1�. The latter 
omputes a part of the term dhz1�i in the Morse 
ohomology of �,but sin
e z1� is the only index 0 
riti
al point in �1�, hz1�i is a 
losed generator of theMorse 
ohomology, and the 
laim follows. We 
on
lude that only the 
ylinder ux1with two positive ends gives a nontrivial 
ount, and thusDSFT �q
z1� q
z+� = ~: �Re
all from Remark 2.2 that if all the Reeb orbits below some given a
tion T > 0are nondegenerate, then one 
an de�ne a trun
ated 
omplex (A(�; T )[[~℄℄;DSFT). Theproof that (Vg; �k) has no algebrai
 (k � 2)-torsion for k � 2 depends on establishingthe following 
riterion.Lemma 4.15. Suppose K is a nonnegative integer and (M; �) is a 
losed 
onta
tmanifold admitting a 
onta
t form �, 
ompatible almost 
omplex stru
ture J and
onstant T > 0 with the following properties:(1) All Reeb orbits of � with period less than T are nondegenerate.(2) For every pair of integers g � 0 and r � 1 with g+ r � K +1, let M1g;r(J ;T )denote the spa
e of all index 1 
onne
ted J-holomorphi
 buildings in R �Mwith arithmeti
 genus g, no negative ends, and r positive ends approa
hingorbits whose periods add up to less than T . ThenM1g;r(J ;T ) 
onsists of �nitelymany smooth 
urves (i.e. buildings with only one level and no nodes), whi
hare all Fredholm regular.(3) There is a 
hoi
e of 
oherent orientations for whi
h the algebrai
 
ount of
urves in M1g;r(J ;T ) is zero whenever g + r � K + 1.Then if DSFT : A(�; T )[[~℄℄ ! A(�; T )[[~℄℄ is de�ned by 
ounting solutions to asuÆ
iently small abstra
t perturbation of the J-holomorphi
 
urve equation, there is
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h thatDSFT(Q) = ~K +O(~K+1):Proof. We begin by observing that sin
e all the buildings in M1g;r(J ;T ) are smoothFredholm regular 
urves, the 
ount of the 
orresponding moduli spa
e of solutionsunder any suitable abstra
t perturbation will remain 0 (
f. Remark 3.7).Re
all now that DSFT has an expansion DSFT =PD`~` in powers of ~, where D`
ounts (perturbed) holomorphi
 
urves whose genus and number of positive pun
turesadd up to `. The assumption (3) now guarantees that, for every Q 2 A(�; T ) ea
hterm of D`(Q) with ` � K 
ontains at least one q-variable. So if Q 2 A(�; T )[[~℄℄ isarbitrary, we 
an write its di�erential uniquely asDSFT(Q) = P +O(~K+1);with P a polynomial of degree at most K in ~ whose nontrivial terms ea
h 
ontainat least one q-variable. This establishes the 
laim. �We now �x one of our spe
i�
 examples (Vg; �k). The two sides �+ and �� of � arethen both 
onne
ted, so we 
an 
hoose ea
h of the fun
tions h� : �� ! R to have aunique lo
al minimum; in this 
ase h� : �! R for � > 0 has a unique index 0 
riti
alpoint in �� and a unique index 2 
riti
al point in �+. Re
all that for any � 2 (0; �0℄,Proposition 4.3 gives an exa
t symple
ti
 
obordism([�; �0℄� (S1 � �); d(es�s))relating the 
onta
t forms e��� and e�0��0 . Then for any suÆ
iently C1-small fun
tionF� : S1 � �! R, the subdomainX� := f(s;m) 2 R � (S1 � �) j �+ F�(m) � s � �0ggives an exa
t symple
ti
 
obordism between e�0��0 and e��0�, where �0� is the perturbed
onta
t form �0� := eF���:By Prop. 4.7, �� has nondegenerate orbits up to period T� ex
ept in S1�U , thus one
an 
hoose a generi
 C1-small fun
tion F� with 
ompa
t support in S1�U so that �0�has only nondegenerate orbits up to period T� (the fa
t that generi
 perturbations inan open subset suÆ
e follows from the appendix of [ABW10℄). Choose a 
orrespond-ing 
omplex stru
ture J 0� on the perturbed 
onta
t stru
ture �0� := ker �0� su
h that J 0�is C1-
lose to J�. The proof of Theorem 4 now rests on the following observation.Lemma 4.16. The assumptions of Lemma 4.15 are satis�ed with � = �0�, J = J 0�,T = T� and K = k � 2.Proof. It will turn out that it suÆ
es to 
ount holomorphi
 buildings for the unper-turbed stru
ture J�, so to start with, suppose u is an index 1 J�-holomorphi
 buildingin R � (S1 � �) with no negative ends and at most k � 1 positive ends, asymptoti
to orbits whose periods add up to less than T�. We 
laim that u is then a smooth
urve (with only one level and no nodes), and is a 
ylinder of the form unx for some
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ow line x : R ! � of h� and n � N�. Indeed, we start by arguing that noneof the asymptoti
 orbits of u 
an lie in the region S1 � U . By Proposition 4.7, allasymptoti
 orbits of u outside this region are of the form 
nz for z 2 Crit(h�), and thushave trivial proje
tions to �. Moreover, all 
losed Reeb orbits in S1�U proje
t to Uas 
losed 
urves homologous to some positive multiple of a 
omponent of �, orientedas boundary of �+. It follows that the proje
tion of u to � provides a homology fromthe sum of these 
urves to zero. Sin
e there are k 
omponents of �, but only at mostk � 1 ends of u, there is at least one 
omponent of S1 � U whi
h does not 
ontainany asymptoti
s of u. Using this interfa
e 
omponent, it is easy to 
onstru
t a 
losed
urve on � whi
h has nonzero interse
tion number with the proje
ted asymptoti
s ofu in U � �, proving that the sum 
annot be homologous to zero. This 
ontradi
tionproves our 
laim that none of the asymptoti
s 
an lie in S1 � U .Now Proposition 4.7 implies that all the asymptoti
 orbits of u are of the form 
nzfor z 2 Crit(h�) and n � N�. Proposition 4.11 then implies that every 
omponent
urve in the levels of u is one of the following:(1) A 
over of a trivial 
ylinder R � 
z for some z 2 Crit(h�).(2) A 
over of the 
ylinder ux for some gradient 
ow line x : R ! � of h�,
onne
ting 
riti
al points of h� on opposite sides of �.By Proposition 4.13, all 
urves of the �rst type have nonnegative index. Proposi-tion 4.12 implies in turn that all 
urves of the se
ond type have index at least 1, andthere must be at least one su
h 
urve sin
e u has no negative ends. Sin
e ind(u) = 1,it follows that u 
ontains exa
tly one 
urve of the se
ond type, whi
h is an unbran
hed
over unx for some gradient 
ow line x and n � N�, and all 
omponents of u that are
overs of trivial 
ylinders have exa
tly one positive end. Combinatorially, this is onlypossible if u has pre
isely one nontrivial 
onne
ted 
omponent, whi
h is of the formunx.By Prop. 4.8, the 
urves unx are all Fredholm regular, thus they will all survive thesmall perturbation of J� to J 0�; in fa
t the la
k of nontrivial J�-holomorphi
 buildingsmeans that no additional J 0�-holomorphi
 buildings 
an appear under this perturba-tion. Thus it will suÆ
e to show that the algebrai
 
ount of the J�-holomorphi

ylinders unx for n � N� is zero. For this, 
hoose a system of 
oherent orientationsfor the gradient 
ow lines of h�, and a 
orresponding system of orientations for themoduli spa
es of J�-holomorphi
 
urves (see Remark 4.14). The relevant 
ount ofholomorphi
 
urves is then the same as a 
ertain 
ount of gradient 
ow lines: weare interested namely in all index 1 holomorphi
 
ylinders unx for whi
h both endsare positive, and these 
orrespond to the gradient 
ow lines x that pass through �and 
onne
t an index 1 
riti
al point on one side to an index 0 or 2 
riti
al point onthe other. Consider in parti
ular the set of all gradient 
ow lines that 
onne
t theunique index 2 
riti
al point z+ 2 �+ to any index 1 
riti
al point in ��. The 
ountof these 
ow lines 
al
ulates part of the di�erential �hz+i in the Morse homologyof �, but sin
e there is no other 
riti
al point of index 2, hz+i is ne
essarily 
losedin Morse homology, implying that the relevant algebrai
 
ount of 
ow lines is zero.

40 JANKO LATSCHEV AND CHRIS WENDLApplying the same argument to the unique index 0 
riti
al point in �� using Morse
ohomology, we �nd indeed that the algebrai
 
ount of 
ylinders unx with two positiveends for any n � N� vanishes. �Remark 4.17. The pre
eding result also establishes the 
onditions of Proposition A.6in the appendix, thus implying the lower bound stated in Theorem 7.Proof of Theorem 4. In light of Theorem 6, it remains to show that [~k�2℄ does notvanish in HSFT� (Vg; �k).We will argue by 
ontradi
tion and suppose ~k�2 vanishes in HSFT� (Vg; �k). Choosea nondegenerate 
onta
t form � su
h that there is a topologi
ally trivial 
obordismX with positive end (Vg; �) and negative end (Vg; e�0��0). Choose all ne
essary datato de�ne DSFT on A(�)[[~℄℄ su
h that it 
omputes HSFT� (Vg; �k). In parti
ular, thereexists Q 2 A(�)[[~℄℄ su
h that DSFT(Q) = ~k�2:Writing Q = Q1 + O(~k�1), we �nd a polynomial Q1 of degree at most k � 2 in ~with the property that DSFT(Q1) = ~k�2 +O(~k�1):Note that sin
e Q1 is a polynomial in the q-variables, there exists some T > 0 su
hthat in fa
t Q1 2 A(�; T )[[~℄℄.Now 
hoose � > 0 so small that e�T� > T . Gluing the 
obordism X� 
onstru
tedabove to X, we obtain an exa
t 
obordism with positive end (Vg; �) and negative end(Vg; e��0�) whi
h a

ording to Remark 2.2 gives rise to a 
hain map,�T : (A(�; T )[[~℄℄;DSFT)! (A(�0�; e��T )[[~℄℄;DSFT);where the right hand side admits the obvious in
lusion into (A(�0�; T�)[[~℄℄;DSFT).But then DSFT�T (Q1) = �TDSFT(Q1) = ~k�2 + O(~k�1), whi
h 
ontradi
ts Lem-mas 4.15 and 4.16. This 
ontradi
tion shows that ~k�2 
annot vanish in HSFT� (Vg; �k),
ompleting the proof of the theorem. �Remark 4.18. We 
on
lude this se
tion by giving the rough idea of how to 
onstru
tthe exa
t 
obordisms with positive end (Vg+1; �k+1) and negative end (Vg; �k) alludedto in Remark 1.6; this was explained to us by J. Van Horn-Morris. First observethat if Vg = S1 � � with � = �+ [� �� and Vg+1 = S1 � �0 with �0 = �0+ [�0 �0�,then one 
an transform the former to the latter by pi
king two distin
t points p�; p+in the same 
onne
ted 
omponent of � and atta
hing 2-dimensional 1-handles H :=D 1 � D 1 along the 
orresponding points in both ��+ and ���, produ
ing �0+ and �0�respe
tively with a preferred orientation reversing di�eomorphism ��0+ ! ��0�. AStein 
obordism between (Vg; �k) and (Vg+1; �k+1) is then 
onstru
ted by \multiplyingthe handle atta
hment by an annulus". More pre
isely, we de�ne the two Legendrianloops `� = S1 � fp�g � Vg, and atta
h to these a 4-dimensional round 1-handlebH := H� [�1; 1℄� S1 �= D 1 � �D 2 � S1�



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 41with boundary� bH = �� bH [ �+ bH := ��D 1 � �D 2 � S1� � [ �D 1 � � �D 2 � S1� �:This produ
es a smooth 
obordism from Vg to Vg+1, and one 
an make it into a Stein
obordism by regarding bH as an \S1-invariant Weinstein handle", with a Morse-Bottplurisubharmoni
 fun
tion with 
riti
al set f(0; 0)g� S1, isotropi
 unstable manifoldD 1�f0g�S1 and 
oisotropi
 stable manifold f0g�D 2�S1. Perturbing the Morse-Bottfun
tion to a Morse fun
tion with 
riti
al points of index 1 and 2 along f(0; 0)g�S1,one sees that the same 
obordism 
an be obtained by atta
hing a 
ombination ofstandard Stein 1-handles and 2-handles. One 
an then use open book de
ompositions[VHM℄ to show that the resulting 
onta
t stru
ture on Vg+1 is the one determined bythe dividing 
urves �0 � �0. 5. OutlookWe 
lose by mentioning a few questions that arise from the results of this paper.As shown in the appendix, algebrai
 torsion in dimension three seems to be 
loselyrelated to the ECH 
onta
t invariant; indeed, all of our examples are 
onta
t manifoldsfor whi
h the latter vanishes, and they exhibit a 
orresponden
e between the minimalorder of algebrai
 torsion and the integers f and fsimp de�ned by Hut
hings. Itis un
lear however whether a pre
ise relationship between these invariants exists ingeneral, as SFT 
ounts a mu
h larger 
lass of holomorphi
 
urves than ECH.It is presumably also possible to de�ne a 
orresponding invariant in Heegaard Floerhomology, but the latter is apparently still unknown.Question 1. Is there a Heegaard Floer theoreti
 
onta
t invariant that implies ob-stru
tions to Stein 
obordisms between pairs of 
onta
t 3-manifolds whose Ozsv�ath-Szab�o invariants vanish?Remark 5.1. There is an obvious Stein 
obordism obstru
tion in Heegaard Floerhomology, de�ned in terms of the largest integer k � 1 for whi
h the 
onta
t invariantis in the image of the kth power of the so-
alled U -map. (Note that one 
ould de�ne anexa
t 
obordism obstru
tion in ECH in pre
isely the same way.) Nontrivial examplesof this obstru
tion have been 
omputed by Karakurt [Kar℄. Interestingly, sin
e thisinvariant is only really interesting in 
ases where the 
onta
t invariant is nonvanishing,Karakurt's results are 
ompletely disjoint from ours.In 
ontrast to ECH or Heegaard Floer homology, SFT is also well de�ned in higherdimensions, and it remains to �nd interesting examples beyond the 0-torsion examplesthat are known from [BN,BvK10℄. Some 
andidates arise in [MNW℄: in parti
ular, theauthors de�ne a higher-dimensional generalization of Giroux torsion whi
h obstru
tsstrong �llability and 
onje
turally implies algebrai
 1-torsion. They also �nd examplesof 
onta
t forms in all dimensions that have this form of torsion but don't admit any
ontra
tible Reeb orbits, implying there is no algebrai
 0-torsion, and in some 
ases

42 JANKO LATSCHEV AND CHRIS WENDLthe examples are also known to be weakly (and hen
e stably) �llable, implying thatthey do not have any fully twisted algebrai
 torsion.Conje
ture. For all integers k � 1 and n � 2, there exist in�nitely many 
losed(2n� 1)-dimensional 
onta
t manifolds that have algebrai
 torsion of order k but notk� 1. There also exist (2n� 1)-dimensional 
onta
t manifolds that have (untwisted)algebrai
 k-torsion but admit stable symple
ti
 �llings.Finally, one wonders to what extent algebrai
 torsion might also give obstru
tionsto non-exa
t 
obordisms. Results in [Wenb℄ show that Corollary 1 for instan
e isfalse without the exa
tness assumption, and the reason is that a non-exa
t 
obordismbetween (M+; �+) and (M�; ��) does not in general imply a morphismHSFT� (M+; �+)! HSFT� (M�; ��):On the other hand, if (M+; �+) has algebrai
 torsion, then (M�; ��) 
learly 
annotbe �llable, and as was explained in x2, a non-exa
t 
obordism does give a map fromHSFT� (M+; �+) to a suitably twisted version of HSFT� (M�; ��), where the twisting isde�ned by a 
ount of holomorphi
 
urves without positive ends in the 
obordism. Itis however un
lear whether the vanishing of [~k℄ in this twisted SFT also implies aresult for the untwisted theory. A promising 
lass of test examples is provided bythe so-
alled 
apping and de
oupling 
obordisms 
onstru
ted in [Wenb℄, for whi
h theholomorphi
 
urves without positive ends 
an be enumerated pre
isely.Question 2. If (M+; �+) and (M�; ��) are related by a non-exa
t symple
ti
 
obor-dism and (M+; �+) has algebrai
 torsion of some �nite order, must (M�; ��) also havealgebrai
 torsion of some (possibly higher) �nite order? Is there a pre
ise relation be-tween these orders for the 
apping/de
oupling 
obordisms 
onstru
ted in [Wenb℄?Appendix (by Mi
hael Hut
hings). ECH analogue of algebrai
 k-torsionThe purpose of this appendix is to de�ne an analogue of algebrai
 k-torsion inembedded 
onta
t homology (ECH). Spe
i�
ally, given a 
losed oriented 3-manifoldY , a nondegenerate 
onta
t form � on Y , and an almost 
omplex stru
ture J on R�Yas needed to de�ne the ECH 
hain 
omplex, we de�ne a number f(Y; �; J) 2 N[f1g,whi
h is similar to the order of algebrai
 torsion. It is not known whether thisnumber is an invariant of the 
onta
t manifold (Y; � = Ker�). Nonetheless thisnumber, together with some variants thereof, 
an be used to reprove some of theresults on nonexisten
e of exa
t symple
ti
 
obordisms between 
onta
t manifoldsthat are proved in the main paper using algebrai
 torsion. In addition, the results inthis appendix do not depend on any unpublished work: in parti
ular we do not useany symple
ti
 �eld theory or Seiberg-Witten theory here.A.1. Basi
 re
olle
tions about ECH. We begin by re
alling what we will need toknow about the de�nition of ECH.Let Y be a 
losed oriented 3-manifold with a nondegenerate 
onta
t form �. LetR denote the Reeb ve
tor �eld determined by �, and let � = Ker(�) denote the
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orresponding 
onta
t stru
ture. Choose a generi
 almost 
omplex stru
ture J onR � Y su
h that J is R-invariant, J(�s) = R where s denotes the R 
oordinate, andJ(�) = �, with d�(v; Jv) � 0 for v 2 �. To save verbiage below, we refer to the pair(�; J) as ECH data for (Y; �). From these data one de�nes the ECH 
hain 
omplexECC(Y; �; J) as follows.An orbit set is a �nite set of pairs � = f(�i; mi)g where the �i's are distin
tembedded Reeb orbits and the mi's are positive integers. The homology 
lass ofthe orbit set � is de�ned by [�℄ := Pimi[�i℄ 2 H1(Y ). The orbit set � is 
alledadmissible if mi = 1 whenever �i is hyperboli
 (i.e. its linearized return map has realeigenvalues). The ECH 
hain 
omplex is freely generated over Z by admissible orbitsets.Now let � = f(�i; mi)g and � = f(�j; nj)g be two orbit sets with [�℄ = [�℄ 2 H1(Y ).De�nition A.1. De�ne MJ(�; �) to be the moduli spa
e of holomorphi
 
urvesu : (�; j) ! (R � Y; J), where the domain � is a (possibly dis
onne
ted) pun
tured
ompa
t Riemann surfa
e, and u has positive ends at 
overs of �i with total 
overingmultipli
ity mi, negative ends at 
overs of �j with total 
overing multipli
ity nj, andno other ends. We 
onsider two su
h holomorphi
 
urves to be equivalent if theyrepresent the same 2-dimensional 
urrent in R � Y .Let H2(Y; �; �) denote the set of relative homology 
lasses of 2-
hains in Y with�Y =Pimi�i�Pj nj�j; this is an aÆne spa
e over H2(Y ). Any holomorphi
 
urveu 2 MJ(�; �) determines a 
lass [u℄ 2 H2(Y; �; �). If Z 2 H2(Y; �; �), de�neMJ(�; �; Z) = fu 2 MJ(�; �) j [u℄ = Zg:Also the ECH index is de�ned by(A.1) I(�; �; Z) := 
� (Z) +Q� (Z) +Xi miXk=1 CZ� (�ki )�Xj njXk=1 CZ� (�kj ):Here � is a trivialization of � over the Reeb orbits �i and �j; 
� (Z) denotes therelative �rst Chern 
lass of � over Z with respe
t to the boundary trivializations � ;Q� (Z) denotes the relative self-interse
tion pairing; and CZ� (
k) denotes the Conley-Zehnder index with respe
t to � of the kth iterate of 
. These notions are explainedin detail in [Hut02,Hut09℄. The ECH index of a holomorphi
 
urve u 2 MJ(�; �) isde�ned by I(u) := I(�; �; [u℄).We will need the following fa
ts, whi
h are proved in [Hut09, Thm. 4.15℄ and[HS06, Cor. 11.5℄:Proposition A.2.(a) If u 2 MJ(�; �) does not multiply 
over any 
omponent of its image, thenind(u) � I(u), where ind denotes the Fredholm index.(b) If J is generi
 and u 2 MJ(�; �), then:� I(u) � 0, with equality if and only if u is R-invariant (as a 
urrent).

44 JANKO LATSCHEV AND CHRIS WENDL� If I(u) = 1, then u = u0 t u1 where u1 is embedded and 
onne
ted,ind(u1) = I(u1) = 1, and u0 is R-invariant (as a 
urrent).The di�erential � on the ECH 
hain 
omplex is now de�ned as follows: If � is anadmissible orbit set, then�� := X� Xfu2MJ (�;�)=R j I(u)=1g "(u) � �:Here the sum is over admissible orbit sets � with [�℄ = [�℄, and "(u) 2 f�1g is asign explained in [HT09, x9℄. The signs depend on some orientation 
hoi
es, but the
hain 
omplexes for di�erent sign 
hoi
es are 
anoni
ally isomorphi
 to ea
h other.It is shown in [HT07,HT09℄ that � is well-de�ned and (what is mu
h harder) �2 = 0.The homology of the 
hain 
omplex is the embedded 
onta
t homology ECH(Y; �; J).Note that the empty set ; is a legitimate generator of the ECH 
hain 
omplex, and�; = 0. The homology 
lass [;℄ 2 ECH(Y; �; J) is 
alled the ECH 
onta
t invariant .Taubes has shown that ECH(Y; �; J) is 
anoni
ally isomorphi
 to a version ofSeiberg-Witten Floer 
ohomology [Tau10℄, and in parti
ular depends only on Y . Inaddition, under this isomorphism the ECH 
onta
t invariant depends only on � andagrees with an analogous 
onta
t invariant in Seiberg-Witten Floer 
ohomology. How-ever we will not need these fa
ts here.There is also a �ltered version of ECH whi
h is important in appli
ations. If� = f(�i; mi)g is an orbit set, de�ne the symple
ti
 a
tionA(�) := Xi mi Z�i �:It follows from the 
onditions on J that the ECH di�erential de
reases symple
ti
 a
-tion, i.e. if h��; �i 6= 0 then A(�) > A(�). Hen
e for ea
h L 2 (0;1℄, the submoduleECCL(Y; �; J) of ECC(Y; �; J) generated by admissible orbit sets of a
tion less thanL is a sub
omplex. The homology of this sub
omplex is denoted by ECHL(Y; �; J),and 
alled �ltered ECH . Of 
ourse, taking L =1 re
overs the usual ECH.It is shown in [HT℄ that �ltered ECH does not depend on J (we will not use thisfa
t here). However �ltered ECH does depend on the 
onta
t form �. In parti
ular,if 
 is a positive 
onstant, then an almost 
omplex stru
ture J as needed to de�nethe ECH of � determines an almost 
omplex stru
ture (whi
h we also denote by J)as needed to de�ne the ECH of 
�, with the same holomorphi
 
urves. There is thena 
anoni
al isomorphism of 
hain 
omplexes(A.2) ECCL(Y; �; J) = ECC
L(Y; 
�; J);indu
ed by the obvious bije
tion on generators.A.2. The relative �ltration J+. We now re
all from [Hut09, x6℄ how to de�ne arelative �ltration on ECH whi
h is similar to the exponent of ~ in SFT.



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 45Let � and � be admissible orbit sets with [�℄ = [�℄ 2 H1(Y ), and let Z 2H2(Y; �; �). Similarly to (A.1), de�ne(A.3) J+(�; �; Z) := �
� (Z)+Q� (Z)+Xi mi�1Xk=1 CZ� (�ki )�Xj nj�1Xk=1 CZ� (�kj )+j�j�j�j:Here j�j denotes the 
ardinality of the admissible orbit set �. (There is also a moregeneral de�nition of J+ when the orbit sets are not ne
essarily admissible, but we willnot need this here.) If u 2 MJ(�; �), de�ne J+(u) := J+(�; �; [u℄). There is now thefollowing analogue of Proposition A.2, proved in [Hut09, Prop. 6.9 and Thm. 6.6℄:Proposition A.3. Let � and � be admissible orbit sets with [�℄ = [�℄.(a) If u 2 MJ(�; �) is irredu
ible and not multiply 
overed and has genus g, then(A.4) J+(u) � 2 g � 1 + j�j+Xi (N+i � 1) +Xj (N�j � 1)! :Here N+i denotes the number of positive ends of u at 
overs of �i, and N�jdenotes the number of negative ends of u at 
overs of �j. Moreover, equalityholds in (A.4) when ind(u) = I(u).(b) If J is generi
, and if u 2 MJ(�; �), then J+(u) � 0.Note that if u 
ontributes to the ECH di�erential, then J+(u) is even. (Comparing(A.1) and (A.3) shows that the parity of J+(u)� I(u) is the parity of the number ofReeb orbits �i or �j that are positive hyperboli
, whi
h is the parity of ind(u).) Thuswe 
an de
ompose the ECH di�erential � as(A.5) � = �0 + �1 + �2 + � � �where �k denotes the 
ontribution from holomorphi
 
urves u with J+(u) = 2k.Sin
e J+ is additive under gluing [Hut09, Prop. 6.5(a)℄, it follows that �20 = 0,�0�1 + �1�0 = 0, et
. Thus we obtain a spe
tral sequen
e E�(Y; �; J), where E1 isthe homology of �0, and E2 is the homology of �1 a
ting on E1. Let us 
all this the\J+ spe
tral sequen
e". Unfortunately this spe
tral sequen
e is not invariant underdeformation of the 
onta
t form. The reason is that although an exa
t symple
ti

obordism indu
es a map on ECH whi
h (up to a given symple
ti
 a
tion) is indu
edby a 
hain map that somehow 
ounts (possibly broken) holomorphi
 
urves [HT℄,Proposition A.3(b) does not generalize to exa
t symple
ti
 
obordisms. That is, the
hain map indu
ed by a 
obordism 
an in
lude 
ontributions from multiply 
overedholomorphi
 
urves with J+ negative. However we 
an still use the J+ spe
tral se-quen
e to de�ne a useful analogue of the order of algebrai
 k-torsion.A.3. The analogue of order of algebrai
 torsion. Let Y be a 
losed oriented3-manifold, and let (�; J) be ECH data on Y .

46 JANKO LATSCHEV AND CHRIS WENDLDe�nition A.4. De�ne f(Y; �; J) to be the smallest nonnegative integer k su
h that; does not survive to the Ek+1 page of the spe
tral sequen
e E�(Y; �; J). If no su
hk exists, de�ne f(Y; �; J) :=1.Note that if there exists x 2 ECC(Y; �; J) with(�0 + � � �+ �k)x = ;;then f(Y; �; J) � k. In parti
ular, f(Y; �; J) < 1 if the ECH 
onta
t invariantvanishes. One 
an use the 
obordism maps on ECH de�ned in [HT℄ (using Seiberg-Witten theory) to show that f(Y; �; J) does not depend on J . However we will notneed this fa
t here.There are now two diÆ
ulties in using f to obstru
t exa
t symple
ti
 
obordisms.First, we would like to show that if there is an exa
t symple
ti
 
obordism from(Y+; �+) to (Y�; ��) then(A.6) f(Y+; �+; J+) � f(Y�; ��; J�):This would imply that f depends only on the 
onta
t stru
ture and is monotone withrespe
t to exa
t symple
ti
 
obordisms. Unfortunately, we 
annot prove (A.6) or these
onsequen
es (and we do not know whether these are true), due to the aforementionedla
k of invarian
e of the spe
tral sequen
e. Se
ond, f(Y; �; J) is diÆ
ult to 
omputein pra
ti
e, be
ause often one only understands the ECH 
hain 
omplex up to a givensymple
ti
 a
tion.To deal with the latter diÆ
ulty, we 
an de�ne a �ltered version of f . To preparefor this, note that the J+ spe
tral sequen
e has an analogue for any sub
omplex ofECC(Y; �; J).De�nition A.5. Given L 2 (0;1℄, de�ne fL(Y; �; J) to be the smallest nonnegativeinteger k su
h that ; does not survive to the Ek+1 page of the J+ spe
tral sequen
efor the sub
omplex ECCL(Y; �; J). If no su
h k exists, de�ne fL(Y; �; J) :=1.The following proposition 
an be used in 
al
ulations to give lower bounds on fL.Proposition A.6. Let (�; J) be ECH data on Y , and �x L 2 (0;1℄. Let k be apositive integer. Suppose that the algebrai
 
ountXfu2MJ (�;;;Z)=Rg "(u) = 0whenever:� � is an admissible orbit set with A(�) < L, and� Z 2 H2(Y; �; ;) is su
h that I(�; ;; Z) = 1, and� 
urves in MJ(�; ;; Z) have genus g and N+ positive ends with g +N+ � k.Then fL(Y; �; J) � k.In the third bullet point above, note that 
urves inMJ(�; ;; Z) are embedded and
onne
ted by Proposition A.2(b), and then g and N+ are uniquely determined by



ALGEBRAIC TORSION IN CONTACT MANIFOLDS 47� and Z. Here N+ is determined by [Hut09, Thm. 4.15℄, while g is determined byProposition A.3(a).Proof. Let � be an admissible orbit set with A(�) < L and let Z 2 H2(Y; �; ;)su
h that I(�; ;; Z) = 1 and J+(�; ;; Z) < 2k. Then by Proposition A.2(b), 
urvesin MJ(�; ;; Z) are embedded and 
onne
ted, so by Proposition A.3(a), su
h 
urveshave g + N+ � k. Then by hypothesis, the algebrai
 
ount of su
h 
urves is zero.This means that h�i�; ;i = 0 whenever i < k. �We now prove a weaker version of (A.6), whi
h will still allow us to obstru
t exa
tsymple
ti
 
obordisms. This requires the following additional de�nitions.De�nition A.7. An orbit set � = f(�i; mi)g is simple (with respe
t to J) if:� mi = 1 for ea
h i.� If � = f(�j; nj)g is another orbit set (not ne
essarily admissible), and if thereis a (possibly broken) J-holomorphi
 
urve from � to �, then nj = 1 for ea
h j.Given L 2 (0;1℄, let ECCLsimp(Y; �; J) denote the sub
omplex of ECC(Y; �; J) gen-erated by simple admissible orbit sets � with A(�) < L.Note that even when L = 1, the homology of the sub
omplex ECCLsimp is notinvariant under deformation of �, as shown by the ellipsoid example in [Hut10℄.De�nition A.8. De�ne fLsimp(Y; �; J) to be the smallest nonnegative integer k su
hthat ; does not survive to the Ek+1 page of the J+ spe
tral sequen
e for the sub
om-plex ECCLsimp(Y; �; J). If no su
h k exists, de�ne fLsimp(Y; �; J) :=1.Note that fLsimp(Y; �; J) � fL(Y; �; J), be
ause the in
lusion of 
hain 
omplexesindu
es a morphism of spe
tral sequen
es. The main result of this appendix is nowthe following theorem.Theorem A.9. Let (��; J�) be ECH data on Y�. Suppose there is an exa
t symple
ti

obordism from (Y+; �+) to (Y�; ��). ThenfLsimp(Y+; �+; J+) � fL(Y�; ��; J�)for ea
h L 2 (0;1℄.Here is how Theorem A.9 
an be used in pra
ti
e to obstru
t symple
ti
 
obordisms.Below, write fsimp := f1simp.Corollary A.10. Suppose there exists an exa
t symple
ti
 
obordism from (Y+; �+) to(Y�; ��). Fix ECH data (�+; J+) for (Y+; �+) and a 
onta
t form �0� with Ker(�0�) =��. Fix a positive integer k. Suppose that for ea
h L > 0 there exist ECH data(��; J�) for (Y�; ��) with fL(Y�; ��; J�) � k and an exa
t symple
ti
 
obordismfrom (Y�; �0�) to (Y�; ��). Then fsimp(Y+; �+; J+) � k.Proof. The �rst hypothesis implies that there exist a positive 
onstant 
 and an exa
tsymple
ti
 
obordism from (Y+; 
�+) to (Y�; �0�). The se
ond hypothesis then impliesthat for ea
h L > 0 there exist ECH data (��; J�) for (Y�; ��) with fL(Y�; ��; J�) �

48 JANKO LATSCHEV AND CHRIS WENDLk and an exa
t symple
ti
 
obordism from (Y+; 
�+) to (Y�; ��). By the s
alingisomorphism (A.2) and Theorem A.9 we havef 
�1Lsimp (Y+; �+; J+) = fLsimp(Y+; 
�+; J+) � k:Sin
e L was arbitrary, we 
on
lude that fsimp(Y+; �+; J+) � k. �Here is another 
orollary of Theorem A.9 whi
h tells us a bit more about themeaning of f .Corollary A.11. Suppose (Y; �) is overtwisted. Then f(Y; �; J) = 0 whenever (�; J)is ECH data for (Y; �).Proof. The argument in the appendix to [Yau06℄ shows that one 
an �nd ECH data(�+; J+) for (Y; �) su
h that there is an embedded Reeb orbit 
 with the followingproperties:� 
 has smaller symple
ti
 a
tion than any other Reeb orbit.� There is a unique Fredholm index 1 holomorphi
 plane u in R�Y with positiveend at 
.The holomorphi
 plane u is embedded in R � Y , so I(u) = 1 also, and J+(u) = 0.This means that �0f(
; 1)g = �;. Sin
e 
 has minimal symple
ti
 a
tion, f(
; 1)g issimple. Thus fsimp(Y; �+; J+) = 0. We 
an also assume, by multiplying �+ by a largepositive 
onstant, that there is an exa
t (produ
t) symple
ti
 
obordism from (Y; �+)to (Y; �). Theorem A.9 with L =1 then implies that f(Y; �; J) = 0. �One might 
onje
ture that the 
onverse of Corollary A.11 holds:Conje
ture A.12. Given a 
losed 
onta
t 3-manifold (Y; �), if f(Y; �; J) = 0 for allECH data (�; J) for (Y; �), then (Y; �) is overtwisted.Remark A.13. Conje
ture A.12 implies the well-known 
onje
ture that if (Y�; ��)is a 
losed tight 
onta
t 3-manifold, and if (Y+; �+) is obtained from (Y�; ��) byLegendrian surgery, then (Y+; �+) is also tight.Proof. Suppose (Y+; �+) is obtained from (Y�; ��) by Legendrian surgery. Re
allfrom [Wei91℄ that there is an exa
t symple
ti
 
obordism from (Y+; �+) to (Y�; ��).If (Y+; �+) is overtwisted, then as explained above one 
an �nd ECH data (�+; J+) for(Y+; �+) su
h that fsimp(Y+; �+; J+) = 0. Theorem A.9 then implies that f(Y�; ��; J�) =0 for all ECH data (��; J�) for (Y�; ��). If we knew Conje
ture A.12, then we 
ould
on
lude that (Y�; ��) is overtwisted. �A.4. A 
obordism 
hain map. We now state and prove the key lemma in the proofof Theorem A.9.Lemma A.14. Under the assumptions of Theorem A.9, there is a 
hain map� : ECCLsimp(Y+; �+; J+) �! ECCL(Y�; ��; J�)with the following properties:
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omposition � = �0 + �1 + � � � su
h that(A.7) Xi+j=k(�i�j � �i�j) = 0for ea
h nonnegative integer k.Proof. The proof has four steps.Step 1. We begin with the de�nition of �. Let (X;!) be an exa
t symple
ti

obordism from (Y+; �+) to (Y�; ��). Let � be the 
orresponding 1-form on X. Thereexists a neighborhoodN+ ' (�"; 0℄�Y+ of Y+ inX in whi
h � = es�+ where s denotesthe (�"; 0℄ 
oordinate. Likewise there exists a neighborhood N� ' [0; ")� Y� of Y�in X in whi
h � = es��. We then de�ne the \
ompletion"X = ((�1; 0℄� Y�) [Y� X [Y+ ([0;1)� Y+);with smooth stru
ture de�ned using the above neighborhoods. Choose a generi
almost 
omplex stru
ture J on X whi
h agrees with J+ on [0;1)� Y+, whi
h agreeswith J� on (�1; 0℄� Y�, and whi
h is !-tame on X. If �+ and �� are orbit sets inY+ and Y� respe
tively, de�ne MJ(�+; ��) to be the moduli spa
e of J-holomorphi

urves in X satisfying the obvious analogues of the 
onditions in De�nition A.1.The 
ru
ial point in all of what follows is this:(*) If the orbit set �+ is simple, then a holomorphi
 
urve inMJ(�+; ��) 
annothave any multiply 
overed 
omponent. Also, a broken holomorphi
 
urvearising as a limit of a sequen
e of 
urves in MJ(�+; ��) 
annot have anymultiply 
overed 
omponent in the 
obordism level.Note that the proof of (*) uses exa
tness of the 
obordism to dedu
e that every
omponent of a holomorphi
 
urve in X has at least one positive end.Another key point is that the de�nition of the ECH index I, and the index inequalityin Proposition A.2(a), 
arry over dire
tly to holomorphi
 
urves in X, see [Hut09,Thm. 4.15℄. In parti
ular, if �+ is simple and if u 2 MJ(�+; ��) has I(u) = 0, thenthe index inequality applies to give ind(u) � I(u), and sin
e J is generi
 we 
on
ludethat I(u) = 0 and u is an isolated point in the moduli spa
e, 
ut out transversely. Asa result, we 
an de�ne the map � as follows: If �+ is a simple admissible orbit set inY+ with A(�+) < L, then(A.8) �(�+) := X�� Xfu2MJ (�+;��)jI(u)=0g "(u);where the �rst sum is over admissible orbit sets �� in Y�, and "(u) 2 f�1g is a signde�ned as in [HT09, x9℄.Step 2. We now show that � is well-de�ned, i.e. that the sum on the right handside of (A.8) is �nite, and we also prove that � satis�es property (a).To start, note that if there exists u 2 MJ(�+; ��), then exa
tness of the 
obordismand Stokes's theorem imply that A(�+) � A(��), with equality only if u is the empty
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urve. This has three important 
onsequen
es. First, � maps ECCLsimpto ECCL as required. Se
ond, �(;) = ;. (The sign here follows from the 
onventionsin [HT09, x9℄.) Third, for any simple admissible orbit set �+, only �nitely manyadmissible orbit sets �� 
an make a nonzero 
ontribution to the right hand side of(A.8). So to prove that � is well-de�ned, we need to show that if �+ is a simpleadmissible orbit set in Y+ and if �� is an admissible orbit set in Y�, then there areonly �nitely many 
urves u 2 MJ(�+; ��) with I(u) = 0.Suppose to obtain a 
ontradi
tion that there are in�nitely many su
h 
urves. Bya Gromov 
ompa
tness argument as in [Hut02, Lem. 9.8℄ we 
an then pass to asubsequen
e that 
onverges to a broken holomorphi
 
urve with total ECH index andtotal Fredholm index both equal to 0. By (*), the level of the broken 
urve inX 
annot
ontain any multiply 
overed 
omponent. Consequently the index inequality impliesthat this level has I � 0, and so by Proposition A.2(a) all levels have I = 0. Theproof of [HT07, Lem. 7.19℄ then shows that there is only one level (i.e. there 
annotbe symple
tization levels 
ontaining bran
hed 
overs of R-invariant 
ylinders). Thusthe limiting 
urve is also an element of MJ(�+; ��) with I = 0, and sin
e this is anisolated point in the moduli spa
e we have a 
ontradi
tion.Step 3. We now show that � is a 
hain map. If �+ is a simple admissible orbitset in Y+, then to prove that (�� � ��)�+ = 0, we analyze ends of the I = 1 partof MJ(�+; ��) where �� is an admissible orbit set in Y�. Again, by (*), a broken
urve arising as a limit of su
h 
urves 
annot 
ontain a multiply 
overed 
omponentin the 
obordism level. Thus the proof of [HT07, Lem. 7.23℄ 
arries over to show thata broken 
urve arising as a limit of su
h 
urves 
onsists of an ind = I = 0 pie
e u0in the 
obordism level, an ind = I = 1 pie
e u1 in a symple
tization level, and (ifu1 is in R � Y�) possibly additional levels in R � Y� between u0 and u1 
onsistingof bran
hed 
overs of R-invariant 
ylinders. The gluing analysis to prove that theECH di�erential has square zero [HT07, Thm. 7.20℄ then 
arries over with minormodi�
ations to prove that �� = ��.Step 4. We now show that � satis�es property (b). To do so, note that if u is aholomorphi
 
urve 
ounted by �, then J+(u) is even by the same parity argumentas before. Also, sin
e u 
ontains no multiply 
overed 
omponent, and sin
e every
omponent of u has a positive end, the proof of [Hut09, Thm. 6.6℄ 
arries over toshow that J+(u) � 0. We now de�ne �k to be the 
ontribution to � from 
urves uwith J+(u) = 2k. Equation (A.7) then follows from the fa
t that J+ is additive undergluing. �A.5. Con
lusion.Proof of Theorem A.9. Let LE�simp(Y+; �+; J+) denote the J+ spe
tral sequen
e forthe sub
omplex ECCLsimp(Y+; �+; J+), and let LE�(Y�; ��; J�) denote the J+ spe
tralsequen
e for the sub
omplex ECCL(Y�; ��; J�). By Lemma A.14(b), � indu
es amorphism of spe
tral sequen
es�� : LE�simp(Y+; �+; J+) �! LE�(Y�; ��; J�);
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h by Lemma A.14(a) sends ; to ;. If fLsimp(Y+; �+; J+) = k <1, then ; does notsurvive to LEk+1simp. Applying the morphism �� then shows that ; does not survive toLEk+1(Y�; ��; J�), so fL(Y�; ��; J�) � k. �A
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