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NON-EXACT SYMPLECTIC COBORDISMS BETWEEN CONTACT

3-MANIFOLDS

CHRIS WENDL

Abstract. We show that the pre-order defined on the category of contact manifolds by
arbitrary symplectic cobordisms is considerably less rigid than its counterparts for exact or
Stein cobordisms: in particular, we exhibit large new classes of contact 3-manifolds which are
symplectically cobordant to something overtwisted, or to the tight 3-sphere, or which admit
symplectic caps containing symplectically embedded spheres with vanishing self-intersection.
These constructions imply new and simplified proofs of several recent results involving filla-
bility, planarity and non-separating contact type embeddings. The cobordisms are built from
symplectic handles of the form Σ×D and Σ× [−1, 1]× S1, which have symplectic cores and
can be attached to contact 3-manifolds along sufficiently large neighborhoods of transverse
links and pre-Lagrangian tori. We also sketch a construction of J-holomorphic foliations in
these cobordisms and formulate a conjecture regarding maps induced on Embedded Contact
Homology with twisted coefficients.
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2 CHRIS WENDL

1. Introduction

Many important notions and results in contact topology can be expressed in terms of sym-
plectic cobordisms. For example, the existence of a symplectic cobordism between particular
contact manifolds can be used to determine whether one of them is symplectically fillable,
assuming the filling properties of the other are already understood. Moreover, cobordisms
are intimately associated with various notions of surgery, e.g. Weinstein [Wei91] defined a
notion of symplectic handle attachment in which handles with Lagrangian cores can be at-
tached along Legendrian spheres in a contact manifold (M, ξ), giving a Stein cobordism (see
[CE12]) to the contact manifold obtained from (M, ξ) by Legendrian surgery. In dimension
three, Eliashberg [Eli04], Gay [Gay06] and Gay-Stipsicz [GS12] have defined various other
types of surgeries on contact manifolds that yield symplectic cobordisms which are not Stein.
In some cases, these cobordisms have also been shown to induce surprisingly well-behaved
morphisms for certain contact invariants, e.g. in Heegaard Floer homology [Bal]. The cobor-
dism of [Gay06] and its precursor in [Eli96] yielded breakthroughs in the study of symplectic
fillings, resulting in the proof that contact manifolds with Giroux torsion are not strongly fill-
able. The latter result was recently reinterpreted by the author [Wen] in the wider context of
blown up summed open book decompositions, leading to an infinite hierarchy of more general
filling obstructions that can be detected via holomorphic curves.

The main purpose of the present article is to show that the various seemingly unrelated
constructions of non-Stein cobordisms mentioned above are all special cases of a much more
general phenomenon, which arises naturally in the setting of blown up summed open books
and produces non-exact symplectic cobordisms in many situations where exact or Stein cobor-
disms are forbidden. The overall pattern seems to be that while exact and Stein cobordisms
are rigidly constrained by a variety of symplectic obstructions (for instance in Symplectic
Field Theory [LW11] or Heegaard Floer homology [Kar]), non-exact symplectic cobordisms
are quite flexible: they tend to exist whenever there is no obvious reason why they should
not.

Our constructions are based on a new notion of generalized symplectic handles, which
have symplectic cores and co-cores and can be attached to contact 3-manifolds along “suf-
ficiently wide” neighborhoods of transverse links and pre-Lagrangian tori. The notion of a
“sufficiently wide” neighborhood here is somewhat subtle, and indicates that in contrast to
Weinstein handle attachment and many other forms of surgery, our surgery is not a truly local
operation—e.g. the surgery along a transverse knot requires a neighborhood of a size that is
only guaranteed to exist in certain situations, notably when the knot is one of several binding
components in a supporting open book.

We begin by stating in §1.1 the essential definitions and explaining some existence results
for non-exact symplectic cobordisms that follow from the handle construction. As easy appli-
cations, these results imply new and substantially simplified proofs of several recent theorems
of the author and collaborators on obstructions to symplectic fillings, contact type embed-
dings and embeddings of partially planar domains. The main results concerning the handle
construction itself will be explained in §1.2, together with a simple application to Embedded
Contact Homology and a conjectured generalization. In §2 we discuss further applications
and examples, providing a unified framework for reproving several important previous results
of Eliashberg, Gay, Etnyre and others involving the existence of symplectic cobordisms. The
hard work is then undertaken in §3, of which the first several sections construct the symplectic
handles described in §1.2, §3.7 completes the proofs of the results stated in the introduction,
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and §3.8 discusses the construction of a holomorphic foliation in the cobordisms, which we ex-
pect should have interesting applications in Embedded Contact Homology and/or Symplectic
Field Theory.

Acknowledgments. The writing of this article benefited substantially from discussions with
John Etnyre, David Gay, Michael Hutchings, Klaus Niederkrüger, András Stipsicz, Cliff
Taubes and Jeremy Van Horn-Morris. Several of these conversations took place at the March
2010 MSRI Workshop Symplectic and Contact Topology and Dynamics: Puzzles and Hori-

zons. I would also like to thank Patrick Massot for suggesting the use of the term “co-fillable,”
as well as Paolo Ghiggini and an anonymous referee, both of whom read the original version
quite carefully and made several suggestions for improving the exposition.

1.1. Some background and sample results. In topology, an oriented cobordism from
one closed oriented manifold M− to another M+ is a compact oriented manifold W such
that ∂W = M+ ⊔ (−M−). If W has dimension 2n and also carries a symplectic structure ω,
then it is natural to consider the case where (W,ω) is symplectically convex at M+ and
concave at M−: this means there exists a vector field Y near ∂W which points transversely
outward at M+ and inward at M−, and is a Liouville vector field, i.e. LY ω = ω. In this case
the 1-form λ := ιY ω is a primitive of ω and its restriction to each boundary component M±

is a (positive) contact form, meaning it satisfies λ ∧ (dλ)n−1 > 0. The induced contact
structure on M± is the co-oriented1 hyperplane field ξ± := ker (λ|TM±), and up to isotopy it
depends only on the symplectic structure near the boundary. We thus call (W,ω) a (strong)
symplectic cobordism from (M−, ξ−) to (M+, ξ+), and when such a cobordism exists, we
say that (M−, ξ−) is (strongly) symplectically cobordant to (M+, ξ+). If λ also extends
to a global primitive of ω, or equivalently, Y extends to a global Liouville field on W , then
we call (W,ω) an exact symplectic cobordism from (M−, ξ−) to (M+, ξ+). Whenever
(M−, ξ−) and (M+, ξ+) are both connected, we shall abbreviate the existence of a connected
symplectic cobordism from (M−, ξ−) to (M+, ξ+) by writing

(M−, ξ−) 2 (M+, ξ+)

for the general case, and

(M−, ξ−) ≺ (M+, ξ+)

for the exact case.2

When dimW = 4, it is also interesting to consider a much weaker notion: without assuming
that ω is exact near ∂W , we call (W,ω) a weak symplectic cobordism from (M−, ξ−) to
(M+, ξ+) if ξ± are any two positive co-oriented (and hence also oriented) contact structures
such that ω|ξ± > 0. We then say that ω dominates the contact structures on both boundary
components. In order to distinguish strong symplectic cobordisms from this weaker notion,
we will sometimes refer to convex/concave boundary components of strong cobordisms as
strongly convex/concave.

1Though contact structures need not be co-orientable in general, all contact structures considered in this
paper will be, and we shall regard the co-orientation always as an essential part of the data, though it will
usually be suppressed in the notation.

2The reason to single out connected cobordisms is that technically, every closed contact 3-manifold (M, ξ) is
symplectically cobordant to the standard contact 3-sphere (S3, ξ0), namely via the disjoint union of a symplectic
cap for (M, ξ) with a symplectic filling of (S3, ξ0). We will see however that if the cobordism is required to be
connected, then the question of when (M, ξ) 2 (S3, ξ0) becomes an interesting one, cf. Theorems 4, 4′ and 10.
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It is a standard fact that strong or exact symplectic cobordisms can always be glued together
along contactomorphic boundary components, thus the relations 2 and ≺ define preorders on
the category of closed and connected contact manifolds, i.e. they are reflexive and transitive.
They are neither symmetric nor antisymmetric, as is clear from some simple examples that we
shall recall in a moment. Regarding the empty set as a trivial example of a contact manifold,
we say that (M, ξ) is weakly/strongly/exactly fillable if there exists a weak/strong/exact
symplectic cobordism from ∅ to (M, ξ). For example, the tight 3-sphere (S3, ξ0) is exactly
fillable, as it is the convex boundary of the unit 4-ball with its standard symplectic structure.
There are many known examples of contact 3-manifolds that are not fillable by these various
definitions: the original such result, that the so-called overtwisted contact manifolds are not
weakly fillable, was proved by Gromov [Gro85] and Eliashberg [Eli89]. In contrast, Etnyre
and Honda [EH02] showed that every contact 3-manifold admits a symplectic cap, meaning
it is strongly cobordant to ∅ (though never exactly, due to Stokes’ theorem).

There is an obvious obstruction to the relation (M−, ξ−) 2 (M+, ξ+) whenever (M−, ξ−) is
strongly fillable but (M+, ξ+) is not, e.g. (M−, ξ−) cannot be the tight 3-sphere if (M+, ξ+)
is overtwisted. Put another way, symplectic cobordisms imply filling obstructions, as (M, ξ)
cannot be fillable if it is cobordant to anything overtwisted. The following question may be
viewed as a test case for the existence of subtler obstructions to symplectic cobordisms.

Question 1. Is every contact 3-manifold (M, ξ) that is not strongly fillable also symplectically
cobordant to some overtwisted contact manifold (MOT, ξOT)?

This question was open when the first version of the present article appeared, but it has
since been answered in the negative: by an argument of Hutchings [Hut], (M, ξ) 2 (MOT, ξOT)
implies that the contact invariant in the Embedded Contact Homology of (M, ξ) must van-
ish, and therefore (using [CGH]), so does the Ozsváth-Szabó contact invariant. A negative
example for Question 1 is therefore furnished by any nonfillable contact manifold with non-
vanishing Ozsváth-Szabó invariant; the first such examples were found by Lisca and Stipsicz
in [LS04].

The answer to the corresponding question for exact cobordisms is much less subtle: by
an argument originally due to Hofer [Hof93], (M, ξ) ≺ (MOT, ξOT) implies that every Reeb
vector field on (M, ξ) admits a contractible periodic orbit, yet there are simple examples of
contact manifolds without contractible orbits that are known to be non-fillable, e.g. all of the
tight 3-tori other than the standard one. More generally, it has recently become clear that
overtwistedness is only the first level in an infinite hierarchy of filling obstructions called planar
k-torsion for integers k ≥ 0, cf. [Wen]. A contact manifold is overtwisted if and only if it has
planar 0-torsion, and there are many examples which are tight or have no Giroux torsion but
have planar k-torsion for some k ∈ N, and are thus not strongly fillable. The aforementioned
argument of Hofer then generalizes to define an algebraic filling obstruction [LW11] that lives
in Symplectic Field Theory and sometimes also gives obstructions to exact cobordisms from
k-torsion to (k − 1)-torsion. Our first main result says that no such obstructions exist for
non-exact cobordisms, thus giving a large class of contact 3-manifolds for which the answer
to Question 1 is yes.

Theorem 1. Every closed contact 3-manifold with planar torsion admits a (non-exact) sym-
plectic cobordism to an overtwisted contact manifold.

This of course yields a new and comparatively low-tech proof of the fact, proved first in
[Wen], that planar torsion obstructs strong fillings. It also generalizes a result proved by
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David Gay in [Gay06], that any contact manifold with Giroux torsion at least 2 is cobordant
to something overtwisted; as shown in [Wen], positive Giroux torsion implies planar 1-torsion
(cf. §2.3). By a result of Etnyre and Honda [EH02], every connected overtwisted contact
manifold admits a connected Stein cobordism to any other connected contact 3-manifold, and
Gay [Gay06] showed that the word “connected” can be removed from this statement at the
cost of dropping the Stein condition. We thus have the following consequence:

Corollary 1. Every closed connected contact 3-manifold with planar torsion admits a con-
nected strong symplectic cobordism to every other closed contact 3-manifold.

It should be emphasized that due to the obstructions mentioned above, Corollary 1 is not
true for exact cobordisms, not even if the positive boundary is required to be connected.
In fact, there is no known example of an exact cobordism from anything tight to anything
overtwisted, and many examples that are tight but non-fillable (e.g. the 3-tori with positive
Giroux torsion) certainly do not admit such cobordisms.

There is also a version of Theorem 1 that implies the more general obstruction to weak
fillings proved in [NW11]. Recall (see Definitions 3.1 and 3.3) that for a given closed 2-
form Ω on a contact 3-manifold (M, ξ), we say that (M, ξ) has Ω-separating planar torsion if
it contains a planar torsion domain in which a certain set of embedded 2-tori T all satisfy

∫

T

Ω = 0.

If this is true for all closed 2-forms Ω, then (M, ξ) is said to have fully separating planar
torsion.

Theorem 2. Suppose (M, ξ) is a closed contact 3-manifold with Ω-separating planar torsion
for some closed 2-form Ω on M with Ω|ξ > 0. Then there exists a weak symplectic cobordism
(W,ω) from (M, ξ) to an overtwisted contact manifold, with ω|TM = Ω.

Using a Darboux-type normal form near the boundary, weak symplectic cobordisms can
be glued together along contactomorphic boundary components of opposite sign whenever
the restrictions of the symplectic forms on the boundaries match (see Lemma 3.14). Thus if
(M, ξ) has Ω-separating planar k-torsion and admits a weak filling (W,ω) with [ω|TM ] = [Ω] ∈
H2

dR(M), then Theorem 2 yields a weak filling of an overtwisted contact manifold, and hence
a contradiction due to the well known theorem of Gromov [Gro85] and Eliashberg [Eli90]. We
thus obtain a much simplified proof of the following result, which was proved in [NW11] by a
direct holomorphic curve argument and also follows from a computation of the twisted ECH
contact invariant in [Wen].

Corollary ([NW11]). If (M, ξ) has Ω-separating planar torsion for some closed 2-form Ω
on M , then it does not admit any weak filling (W,ω) with [ω|TM ] = [Ω] ∈ H2

dR(M). In
particular, if (M, ξ) has fully separating planar torsion then it is not weakly fillable.

We now state some related results that also apply to fillable contact manifolds. The afore-
mentioned existence result of [EH02] for symplectic caps was generalized independently by
Eliashberg [Eli04] and Etnyre [Etn04a] to weak cobordisms: they showed namely that for
any (M, ξ) with a closed 2-form Ω that dominates ξ, there is a symplectic cap (W,ω) with
∂W = −M and ω|TM = Ω. Our next result concerns a large class of contact manifolds for
which this cap may be assumed to have a certain very restrictive property.
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Theorem 3. Suppose (M, ξ) is a contact 3-manifold containing an Ω-separating partially
planar domain M0 ⊂ M (see Definition 3.1) for some closed 2-form Ω on M with Ω|ξ >
0. Then (M, ξ) admits a symplectic cap (W,ω) such that ω|TM = Ω and there exists a
symplectically embedded 2-sphere S ⊂W with vanishing self-intersection number.

As the work of McDuff [McD90] makes clear, symplectic manifolds that contain symplectic
spheres of square 0 are quite special, and for instance any closed symplectic manifold obtained
by gluing the cap from Theorem 3 to a filling of (M, ξ) must be rational or ruled. An easy
adaptation of the main result in [ABW10] also provides the following consequence, which was
proved using much harder punctured holomorphic curve arguments in [Wen,NW11]:

Corollary 2. Suppose (M, ξ) contains an Ω-separating partially planar domain for some
closed 2-form Ω onM . If (W,ω) is a closed symplectic 4-manifold andM admits an embedding
ι :M →֒ W such that ι∗ω|ξ > 0 and [ι∗ω] = [Ω] ∈ H2

dR(M), then ι(M) separates W .

Since planar torsion domains are also partially planar domains, this implies that planar
torsion is actually an obstruction to contact type embeddings into closed symplectic manifolds,
not just symplectic fillings.

Some examples of contact manifolds admitting non-separating embeddings arise from spe-
cial types of symplectic fillings: we shall say that (M, ξ) is (strongly or weakly) co-fillable
if there is a connected (strong or weak) filling (W,ω) whose boundary is the disjoint union
of (M, ξ) with an arbitrary non-empty contact manifold. Put another way, (M, ξ) admits
a connected semi-filling with disconnected boundary. Given such a filling, one can always
attach a symplectic 1-handle to connect distinct boundary components and then cap off the
boundary to realize (M, ξ) as a non-separating contact hypersurface. Various examples of
contact manifolds that are or are not co-fillable have been known for many years:

• The tight 3-sphere (S3, ξ0) is not weakly co-fillable, by arguments due to Gromov
[Gro85], Eliashberg [Eli90] and McDuff [McD91]. Etnyre [Etn04b] extended this result
to all planar contact manifolds.

• McDuff [McD91] showed that for any Riemann surface Σ of genus at least 2, the unit
cotangent bundle ST ∗Σ with its canonical contact structure is strongly co-fillable.
Further examples were found by Geiges [Gei95] and Mitsumatsu [Mit95].

• Giroux [Gir94] showed that every tight contact structure on T 3 is weakly co-fillable.
However, none of them are strongly co-fillable, due to a result of the author [Wen10].

All of the negative results just mentioned can be viewed as special cases of Corollary 2, and
so can the closely related result in [ABW10], that partially planar contact manifolds never
admit non-separating contact type embeddings. Observe that any contact manifold cobordant
to one for which Corollary 2 holds also cannot be co-fillable: in particular this shows that
not every contact 3-manifold is cobordant to (S3, ξ0). We are thus led to an analogue of
Question 1 that also applies to fillable contact manifolds:

Question 2. Does every closed and connected contact 3-manifold (M, ξ) that is not strongly
co-fillable satisfy (M, ξ) 2 (S3, ξ0)?

To the author’s knowledge, this question is open. The answer is again clearly no for exact
cobordisms, as a variation on Hofer’s argument from [Hof93] also shows that (M, ξ) must
always admit contractible Reeb orbits if (M, ξ) ≺ (S3, ξ0). The following result provides
some evidence for a positive answer in the non-exact case, though it is not quite as general
as one might have hoped. (See also Remark 1.1 below for a candidate counterexample.)
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Theorem 4. Suppose (M, ξ) is a connected contact 3-manifold containing a partially planar
domain which either has more than one irreducible subdomain or has nonempty binding.
Then (M, ξ) 2 (S3, ξ0), hence (M, ξ) admits a connected strong symplectic cobordism to every
connected strongly fillable contact 3-manifold.

The conditions of Theorem 4 hold in particular for all planar contact manifolds, and in
fact a stronger version can be stated since the fully separating condition is always satisfied.
We will show in §2.6 that this implies Etnyre’s planarity obstruction from [Etn04b].

Theorem 4′. Suppose (M, ξ) is a connected planar contact 3-manifold. Then there exists a
compact connected 4-manifold W with ∂W = S3 ⊔ (−M), with the property that for every
closed 2-form Ω on M with Ω|ξ > 0, W admits a symplectic structure ω such that ω|TM = Ω
and (W,ω) is a weak symplectic cobordism from (M, ξ) to (S3, ξ0).

Remark 1.1. Let us describe a contact manifold that could conceivably furnish a negative
answer to Question 2. Consider the standard contact 3-torus (T 3, ξ1) (the definition of ξ1 is
recalled in (2.1) below), and divide it by the Z2-action induced by the contact involution

T 3 → T 3 : (η, φ, θ) 7→ (η + 1/2,−φ,−θ).

The quotient T 3/Z2 then inherits a contact structure ξ, which is supported by a summed
open book with empty binding, one interface torus T := {2η ∈ Z} and fibration

π([η, φ, θ]) =

{
φ for 0 < η < 1/2,

−φ for 1/2 < η < 1.

Since the pages are cylinders, (T 3/Z2, ξ) is a partially planar domain, so Corollary 2 implies
that it is not strongly co-fillable. (Note that (T 3/Z2, ξ) is Stein fillable, as it can be con-
structed from the Stein fillable torus (T 3, ξ1) by a sequence of contact (−1)-surgeries along
Legendrian curves in the pre-Lagrangian fibers {η = const}.) Theorem 4 however does not
apply, as there is only one irreducible subdomain and no binding. It is not clear whether
(T 3/Z2, ξ) 2 (S3, ξ0).

1.2. The main theorems on handle attaching. The cobordisms of the previous section
are constructed by repeated application of two handle attaching constructions that we shall
now describe. The handles we will work with take the form

−Σ× D and − Σ× [−1, 1] × S1,

where in each case Σ is a compact oriented surface with boundary, appearing with reversed
orientation because we think of it as a “symplectic cap” for the page of an open book de-
composition. In the first case, we shall attach ∂Σ × D to the neighborhood of a transverse
link, and in the second case, ∂Σ × [−1, 1] × S1 is attached to the neighborhood of a disjoint
union of pre-Lagrangian tori. It is important however to understand that these constructions
are not truly local, as the attaching requires neighborhoods that are in some sense sufficiently
large. This condition on the neighborhoods is most easily stated in the language of (possibly
blown up and summed) open books—that is not necessarily the only natural setting in which
these operations make sense, but it is the first that comes to mind.

We have derived considerable inspiration from the symplectic capping technique introduced
by Eliashberg in [Eli04]. The goal of Eliashberg’s construction was somewhat different, namely
to embed any weak symplectic filling into a closed symplectic manifold, but it can also be
used to construct symplectic cobordisms between contact manifolds with supporting open
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books that are related to each other by capping off binding components. Indeed, Eliashberg’s
capping construction works as follows:

(1) Given (M, ξ) with a supporting open book π : M \ B → S1, attach 2-handles to
[0, 1]×M at {1}×M along each component of B via the page framing. This transforms
M by a 0-surgery along each binding component, producing a new 3-manifold M ′

with a fibration M ′ → S1 whose fibers are the closed surfaces obtained by capping
the original pages with disks. Any symplectic structure on [0, 1] ×M dominating ξ
can then be extended over the handles so that the fibers of M ′ → S1 are symplectic.

(2) Cap off the boundary of the cobordism above by presenting M ′ as the boundary of a
Lefschetz fibration over the disk with closed fibers.

The first step can be generalized by observing that if we choose to attach 2-handles along
some but not all components of the binding, then the new manifoldM ′ inherits an open book
decomposition

π′ :M ′ \B′ → S1

obtained from π by capping off the corresponding boundary components of the pages (cf. [Bal]),
and we will show that the symplectic structure can always be arranged so as to produce a
weak symplectic cobordism from (M, ξ) to (M ′, ξ′), where ξ′ is supported by π′. Under some
additional topological assumptions one can actually arrange the weak cobordism to be strong;
this variation on Eliashberg’s construction has already been worked out in detail by Gay and
Stipsicz [GS12]. To generalize further, one can also imagine replacing the usual 2-handle
D×D by Σ×D for any compact orientable surface Σ. We shall carry out this generalization
below, though the reader may prefer to pretend Σ = D on first reading, and this suffices for
most of the applications we will discuss.

The key to our construction will be to combine the above brand of handle attachment
with a “blown up” version, in which a round handle is attached to (M, ξ) along a 2-torus
that can be thought of as a blown up binding circle. This is most naturally described in
the language of blown up summed open books, a generalization of open book decompositions
that was introduced in [Wen] and will be reviewed in more detail in §3.1. Rougly speaking,
a blown up summed open book on a compact 3-manifold M , possibly with boundary, defines
a fibration

π :M \ (B ∪ I) → S1,

where the binding B ⊂M \ ∂M is an oriented link and the interface I ⊂M \ ∂M is a set of
disjoint 2-tori, and the connected components of the fibers, which intersect ∂M transversely,
are called pages. An ordinary open book is the special case where I = ∂M = ∅, and in
general we allow any or all of B, I and ∂M to be empty, so there may be closed pages. As
with ordinary open books there is a natural notion of contact structures being supported by a
blown up summed open book, in which case binding components become positively transverse
links and interface and boundary components become pre-Lagrangian tori. Such a contact
structure exists and is unique up to deformation unless the pages are closed.

Suppose (M, ξ) is a closed contact 3-manifold containing a compact 3-dimensional subman-
ifold M0 ⊂M , possibly with boundary, which carries a blown up summed open book π that
supports ξ|M0

and has nonempty binding. Pick a set of binding components

B0 = γ1 ∪ . . . ∪ γN ⊂ B,

each of which comes with a natural framing determined by the pages adjacent to γ, called
the page framing. For each γj ⊂ B0, we identify a tubular neighborhood N (γj) ⊂ M of γj
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with the oriented solid torus S1 × D via this framing so that γj = S1 × {0} with the correct
orientation and the fibration π takes the form

π(θ, ρ, φ) = φ

on N (γj)\γj , where (ρ, φ) denote polar coordinates on the disk, normalized so that φ ∈ S1 =
R/Z. Assign to ∂N (γj) its natural orientation as the boundary of N (γj) and denote by

{µj , λj} ⊂ H1(∂N (γj))

the distinguished positively oriented homology basis for which µj is a meridian and λj is the
longitude determined by the page framing. Denote N (B0) = N (γ1) ∪ . . . ∪ N (γN ).

Now pick a compact, connected and oriented surface Σ with N boundary components

∂Σ = ∂1Σ ∪ . . . ∪ ∂NΣ

and choose an orientation preserving diffeomorphism of each ∂jΣ to S1, thus defining a
coordinate s ∈ S1 for ∂jΣ. Using this, we define new compact oriented manifolds

M ′ = (M \ N (B0)) ∪ (−Σ× S1),

M ′
0 = (M0 \ N (B0)) ∪ (−Σ× S1)

by gluing in Σ× S1 via orientation reversing diffeomorphisms ∂Σj × S1 → ∂N (γj) that take
the form

(s, t) 7→ (s, 1, t)

in the chosen coordinates. On the level of homology, the map ∂Σ × S1 → ∂N (B0) identifies
[∂jΣ× {∗}] with λj and [{z} × S1] for z ∈ ∂jΣ with µj .

Remark 1.2. In the special case Σ = D, the operation just defined is simply a Dehn surgery
along a binding component γ ⊂ B with framing 0 relative to the page framing.

The fibration π : M \ (B ∪ I) → S1 extends smoothly over Σ × S1 as the projection to
the second factor, thus M ′

0 inherits from π a natural blown up summed open book π
′, with

binding B \B0, interface I and pages that are obtained from the pages of π by attaching −Σ,
gluing ∂jΣ to the boundary component adjacent to γj. We say that π′ is obtained from π by
Σ-capping surgery along B0. If π

′ does not have closed pages, then it supports a contact
structure ξ′ on M ′

0 which can be assumed to match ξ outside the region of surgery, and thus
extends to M ′.

The Σ-capping surgery can also be defined by attaching a generalized version of a 4-
dimensional 2-handle: define

HΣ = −Σ× D,

with boundary

∂HΣ = −∂−HΣ ∪ ∂+HΣ := −(∂Σ× D) ∪ (−Σ× S1).

The above identifications of the neighborhoods N (γj) with S
1 × D yield an identification of

N (B0) with ∂
−HΣ = ∂Σ×D, which we use to attach HΣ to the trivial cobordism [0, 1]×M

by gluing ∂−HΣ to N (B0) ⊂ {1} ×M , defining

(1.1) W = ([0, 1] ×M) ∪N (B0) HΣ,

which after smoothing the corners has boundary

∂W =M ′ ⊔ (−M).
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We will refer to the oriented submanifolds

KΣ := ([0, 1] ×B0) ∪B0
(−Σ× {0}) ⊂W

and
K′

Σ := {p} × D ⊂W

for an arbitrary interior point p ∈ Σ as the core and co-core respectively. Note that ∂KΣ =
−B0 ⊂M , ∂K′

Σ ⊂M ′ and KΣ •K′
Σ = 1, where • denotes the algebraic count of intersections.

The following generalizes results in [Eli04] and [GS12].

Theorem 5. Suppose ω is a symplectic form on [0, 1] ×M with ω|ξ > 0, and let W denote
the handle cobordism defined in (1.1), after smoothing corners. Then after a symplectic
deformation of ω away from {0} ×M , ω can be extended symplectically over W so that it is
positive on KΣ, K

′
Σ and the pages of π′. Moreover, if the latter pages are not closed, then

ω also dominates a supported contact structure ξ′ on M ′, thus defining a weak symplectic
cobordism from (M, ξ) to (M ′, ξ′).

We will refer to the cobordism (W,ω) of Theorem 5 henceforward as a Σ-capping cobor-
dism. In general it is a weak cobordism, but under certain conditions that depend only on
the topology of the setup, it can also be made strong. Recall the standard fact, observed
originally by Eliashberg [Eli91, Proposition 3.1] (see also [Eli04, Prop. 4.1]), that whenever
(W,ω) has a boundary component M on which ω dominates a positive contact structure ξ
and is exact, ω can be deformed in a collar neighborhood to make M strongly convex, with ξ
as the induced contact structure. In §3.6 we will use routine Mayer-Vietoris arguments to
characterize the situations in which this trick can be applied to the above construction.

Theorem 5′. The symplectic cobordism (W,ω) constructed by Theorem 5 can be arranged so
that the following holds. Choose a real 1-cycle h in M \ N (B0) such that [h] ∈ H1(M ;R) is
Poincaré dual to the restriction of ω to {0} ×M . Then there is a number c > 0 such that

PD([ω]) = [0, 1] × [h] + c [K′
Σ] ∈ H2(W,∂W ;R),

where PD : H2
dR(W ) → H2(W,∂W ;R) denotes the Poincaré-Lefschetz duality isomorphism.

In particular, if {0} ×M ⊂ (W,ω) is (strongly) concave then the following conditions are
equivalent:

(i) ω is exact.
(ii) [K′

Σ] = 0 ∈ H2(W,∂W ;R).
(iii) [γ1] + . . .+ [γN ] is not torsion in H1(M).

Further, assuming that {0} ×M is concave, the following conditions are also equivalent:

(i) (W,ω) can be arranged to be a strong symplectic cobordism from (M, ξ) to (M ′, ξ′).
(ii) [∂K′

Σ] = 0 ∈ H1(M
′;R).

(iii) λ1+ . . .+λN is not torsion in H1(M \B0), where λj denote the longitudes on ∂N (γj)
determined by the page framing.

It should be emphasized that the above theorem assumes Σ is connected. The case where
Σ is disconnected is equivalent to performing multiple surgery operations in succession, but
the statement of Theorem 5′ would then become more complicated.

Remark 1.3. For the case Σ = D, if γ ⊂ B denotes the binding component where 0-surgery is
performed, then Theorem 5′ means that ω will be exact on W if and only if γ is not torsion in
H1(M), and (W,ω) can be made into a strong cobordism if and only if γ has no nullhomologous
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cover whose page framing matches its Seifert framing. An equivalent condition is assumed in
[GS12], which only constructs strong cobordisms.

Remark 1.4. Though ω in the above construction is sometimes an exact symplectic form,
(W,ω) is never an exact cobordism, i.e. it does not admit a global primitive that restricts
to suitable contact forms on both boundary components. This follows immediately from the
observation that the core KΣ ⊂ W is a symplectic submanifold whose oriented boundary is
a negatively transverse link in (M, ξ), hence if ω = dλ and λ|TM defines a contact form on
(M, ξ) with the proper co-orientation, then

0 <

∫

KΣ

ω =

∫

∂KΣ

λ < 0,

a contradiction. A similar remark applies to the round handle cobordism considered in The-
orems 6 and 6′ below. The non-exactness of (W,ω) is important because there are examples
in which it is known that no exact cobordism from (M, ξ) to (M ′, ξ′) exists (see §2.4).

To describe the blown up version of these results, we continue with the same setup as above
and choose a set of interface tori,

I0 = T1 ∪ . . . ∪ TN ⊂ I,

together with an orientation for each Tj ⊂ I0. There is then a distinguished positively oriented
homology basis

{µj, λj} ⊂ H1(Tj),

where λj is represented by some oriented boundary component of a page adjacent to Tj , and
µj is represented by a closed leaf of the characteristic foliation defined on Tj by ξ. Choose
tubular neighborhoods N (Tj) ⊂ M of Tj and identify them with S1 × [−1, 1] × S1 to define
positively oriented coordinates (θ, ρ, φ) in which λj = [S1×{∗}] and µj = [{∗}×S1]. We may
then assume that for every θ0 ∈ S1 the loop {(θ0, 0)} × S1 is Legendrian, and the fibration π
takes the form

π(θ, ρ, φ) =

{
φ for ρ > 0,

−φ for ρ < 0.

Denote the two oriented boundary components of N (Tj) by

∂N (Tj) = ∂+N (Tj) ⊔ ∂−N (Tj),

where we define the oriented tori ∂±N (Tj) = ±(S1×{±1}×S1) with corresponding homology
bases {µ±j , λ

±
j } ⊂ H1(∂±N (Tj)) such that

λ±j := λj ∈ H1(N (Tj)) and µ±j := ±µj ∈ H1(N (Tj)).

Denote the union of all the neighborhoodsN (Tj) by N (I0). Then writing two identical copies
of Σ as Σ± and choosing a positively oriented coordinate s ∈ S1 for each boundary component
∂jΣ±, we construct new compact oriented manifolds

M ′ = (M \ N (I0)) ∪ (−Σ+ × S1) ∪ (−Σ− × S1),

M ′
0 = (M0 \ N (I0)) ∪ (−Σ+ × S1) ∪ (−Σ− × S1)

from M and M0 respectively by gluing along orientation reversing diffeomorphisms ∂jΣ± ×
S1 → ∂±N (Tj) that take the form

(s, t) 7→ (s,±1,±t)
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in the chosen coordinates. Thus in homology, [∂jΣ±×{∗}] ∈ H1(∂jΣ±×S1) is identified with
λ±j and [{∗} × S1] ∈ H1(∂jΣ± × S1) with µ±j .

Once again the fibration π : M \ (B ∪ I) → S1 extends smoothly over the glued in region
(Σ+ ⊔ Σ−)× S1 as the projection to S1, so M ′

0 inherits from π a natural blown up summed
open book π

′, with interface I \ I0, binding B and fibers that are obtained from the fibers
of π by attaching −(Σ+ ⊔ Σ−) along the boundary components adjacent to I0. We say that
π
′ is obtained by Σ-decoupling surgery along I0.

Remark 1.5. The choice of the term decoupling is easiest to justify in the special case Σ = D:
then the surgery cuts openM along T and glues in two solid tori that cap off the corresponding
boundary components of the pages.

Even ifM is connected,M ′ may in general be disconnected, and there is a (possibly empty)
component

M ′
flat ⊂M ′,

defined as the union of all the closed pages of π′. Denote M ′
convex :=M ′ \M ′

flat, so that

M ′ =M ′
convex ⊔M

′
flat.

On M ′
convex there is a contact structure ξ′ which matches ξ away from the region of surgery

and is supported by π
′ in M ′

convex ∩M
′
0.

The above surgery corresponds topologically to the attachment of a round handle: denote
the annulus by

A = [−1, 1] × S1

and define
ĤΣ = −Σ× A,

with boundary

∂ĤΣ = −∂−ĤΣ ∪ ∂+ĤΣ := − (∂Σ× A) ∪ (−Σ× ∂A) ,

where we identify the two connected components of ∂+ĤΣ = −Σ×{−1, 1}×S1 with −Σ±×S
1

via the orientation preserving maps

(1.2) − Σ± × S1 → −Σ× {±1} × S1 : (p, φ) 7→ (p,±1,±φ).

Using the identifications of the neighborhoods N (Tj) with S
1× [−1, 1]×S1 chosen above, we

can identify

∂−ĤΣ = ∂Σ× A =

N⊔

j=1

∂jΣ× [−1, 1] × S1

with N (I0) and use this to attach ĤΣ to [0, 1] ×M by gluing ∂−ĤΣ to N (I0) ⊂ {1} ×M ,
defining an oriented cobordism

(1.3) W = ([0, 1] ×M) ∪N (I0) ĤΣ

with boundary ∂W = M ′ ⊔ (−M). Use the coordinates (θ, ρ, φ) ∈ S1 × [−1, 1] × S1 on each

N (Tj) ⊂ N (I0) to define an oriented link B̂0 as the union of all the loops

S1 × {(0, 0)} ⊂ Tj ⊂ I0.

Then the core and co-core respectively can be defined as oriented submanifolds by

K̂Σ := ([0, 1] × B̂0) ∪B̂0
(−Σ× {(0, 0)}) ⊂W
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and
K̂′

Σ := {p} × A ⊂W

for an arbitrary interior point p ∈ Σ. We have ∂K̂Σ = −B̂0 ⊂M , ∂K̂′
Σ ⊂M ′ and K̂Σ•K̂

′
Σ = 1.

Theorem 6. Suppose ω is a symplectic form on [0, 1] ×M which satisfies ω|ξ > 0 and

(1.4)

N∑

j=1

∫

Tj

ω = 0,

and W denotes the round handle cobordism of (1.3). Then after a symplectic deformation

away from {0} ×M , ω can be extended symplectically over W so that it is positive on K̂Σ,

K̂′
Σ and the pages of π′, and ω dominates a supported contact structure ξ′ on M ′

convex. In
particular, after capping M ′

flat by attaching a Lefschetz fibration over the disk as in [Eli04],

this defines a weak symplectic cobordism from (M, ξ) to (M ′
convex, ξ

′).

We will refer to (W,ω) in this construction from now on as a Σ-decoupling cobordism.

Remark 1.6. The homological condition (1.4) is clearly not removable since the 2-cycles∑N
j=1[∂±N (Tj)] both become nullhomologous in M ′. Note that here the chosen orienta-

tions of the tori Tj play a role, i.e. they cannot in general be chosen arbitrarily unless ω is
exact. No such issue arose in Theorem 5 because ω is always exact on a neighborhood of a
binding circle. This is the reason why the “Ω-separating” condition is needed for many of the
results in §1.1, and there are easy examples to show that those theorems are not true without
it (cf. Remark 2.3).

For the analogue of Theorem 5′ in this context, we shall restrict for simplicity to the case
where

∫
Tj
ω vanishes for every Tj ⊂ I0. Note that in this case, the Poincaré dual of ω|TM can

be represented by a real 1-cycle in M \ N (I0).

Theorem 6′. If
∫
Tj
ω = 0 for each T1, . . . , TN ⊂ I0, then the symplectic cobordism (W,ω)

constructed by Theorem 6 can be arranged so that the following holds. Choose a real 1-cycle
h in M \N (I0) with [h] ∈ H1(M ;R) Poincaré dual to the restriction of ω to {0} ×M . Then
there is a number c > 0 with

PD([ω]) = [0, 1] × [h] + c [K̂′
Σ] ∈ H2(W,∂W ;R).

In particular, if {0} ×M ⊂ (W,ω) is (strongly) concave then the following conditions are
equivalent:

(i) ω is exact.

(ii) [K̂′
Σ] = 0 ∈ H2(W,∂W ;R).

(iii) There are no integers k,m1, . . . ,mN ∈ Z with k > 0 and
∑N

j=1mj = 0 such that the
homology class

k(λ1 + . . .+ λN ) +
N∑

j=1

mjµj ∈ H1(I0)

is trivial in H1(M).

Further, if {0} ×M is concave and M ′
flat = ∅, the following conditions are also equivalent:

(i) (W,ω) can be arranged to be a strong symplectic cobordism from (M, ξ) to (M ′, ξ′).

(ii) [∂K̂′
Σ] = 0 ∈ H1(M

′;R).
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(iii) There are no integers k±,m
±
1 , . . . ,m

±
N ∈ Z with k−+k+ > 0 and

∑
jm

+
j =

∑
jm

−
j = 0

such that

k+

N∑

j=1

λ+j + k−

N∑

j=1

λ−j +
N∑

j=1

m+
j µ

+
j +

N∑

j=1

m−
j µ

−
j = 0 ∈ H1(M \ I0).

Finally, if M ′
flat and M

′
convex are both nonempty, assume the labels are chosen so that Σ+ ×

S1 ⊂M ′
convex and Σ− × S1 ⊂M ′

flat, and consider the weak cobordism

(W,ω) = (W,ω) ∪M ′
flat

(X,ωX)

from (M, ξ) to (M ′
convex, ξ

′) obtained by capping off M ′
flat with a symplectic Lefschetz fibration

X → D as in [Eli04]. The following conditions are then equivalent:

(i) (W,ω) can be arranged to be a strong symplectic cobordism from (M, ξ) to (M ′
convex, ξ

′).

(ii) [∂K̂′
Σ ∩M ′

convex] = 0 ∈ H1(M
′
convex;R).

(iii) There are no integers k,m1, . . . ,mN ∈ Z with k > 0 and
∑

jmj = 0 such that the
homology class

k

N∑

j=1

λ+j +

N∑

j=1

mjµ
+
j

is trivial in H1(M \ I0).

We now discuss some applications of the capping and decoupling cobordisms to Embedded
Contact Homology (cf. [Hut10]). Recall that for a closed contact 3-manifold (M, ξ) and
homology class h ∈ H1(M), ECH∗(M, ξ;h) is the homology of a chain complex generated by
sets of Reeb orbits with multiplicities whose homology classes add up to h, with a differential
counting embedded index 1 holomorphic curves with positive and negative cylindrical ends
in the symplectization R × M . Similarly, counting embedded index 2 holomorphic curves
through a generic point in M yields the so-called U -map,

U : ECH∗(M, ξ;h) → ECH∗−2(M, ξ;h).

The ECH contact invariant

c(M, ξ) ∈ ECH∗(M, ξ; 0)

is the homology class represented by the “empty orbit set”. It is equivalent via an isomor-
phism of Taubes [Tau10] to a corresponding invariant in Seiberg-Witten theory, and also to
the Ozsváth-Szabó contact invariant [OS05] by recent work of Colin-Ghiggini-Honda [CGH]
and independently Kutluhan-Lee-Taubes [KLT]. Like those invariants, its vanishing gives an
obstruction to strong symplectic fillings, and a version with twisted coefficients also obstructs
weak fillings.

Remark 1.7. Technically the definitions of ECH∗(M, ξ;h) and c(M, ξ) depend not just on ξ but
also on a choice of contact form and almost complex structure. However, Taubes’ isomorphism
to Seiberg-Witten Floer homology implies that they are actually independent of these choices,
thus we are safe in writing ECH∗(M, ξ;h) without explicitly mentioning the extra data.
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An argument due to Eliashberg3 shows that c(M, ξ) = 0 whenever (M, ξ) is overtwisted,
and a much more general computation in [Wen] established the same result whenever (M, ξ)
has planar k-torsion for any k ≥ 0. The latter result can now be recovered as a consequence of
Theorem 1, using a result recently announced by Hutchings [Hut] that (M−, ξ−) 2 (M+, ξ+)
and c(M+, ξ+) = 0 imply c(M−, ξ−) = 0. This is highly non-obvious since the cobordisms
we construct are never exact (see Remark 1.4), and non-exact cobordisms do not in general
give rise to well-behaved maps on ECH in its standard form. The situation becomes slightly
simpler however under stricter assumptions, e.g. Hutchings and Taubes have explained in
[HT] how to construct such maps for the case h = 0 whenever (W,ω) is a strong cobordism
with an exact symplectic form, sometimes called a “weakly exact” cobordism:

Proposition 1.8 ([HT]). Suppose (W,ω) is a strong symplectic cobordism from (M−, ξ−) to
(M+, ξ+) such that ω is exact. Then there is a U -equivariant map

ECH∗(M+, ξ+; 0) → ECH∗(M−, ξ−; 0)

that takes c(M+, ξ+) to c(M−, ξ−).

Remark 1.9. For the example of a 2-handle cobordism constructed from an ordinary open
book decomposition, the analogue of Proposition 1.8 in Heegaard Floer homology has been
established by John Baldwin [Bal].

Let us now discuss a conjectural generalization of Proposition 1.8 which could remove all
conditions on ω. Recall that for any closed 2-form Ω onM , one can define ECH with twisted
coefficients in the group ring Z[H2(M)/ ker Ω], which we shall abbreviate by

ECH(M, ξ;h,Ω) := ECH
(
M, ξ;h,Z[H2(M)/ ker Ω]

)
.

Here the differential keeps track of the homology classes in H2(M)/ ker Ω of the holomorphic
curves being counted, see [HS06]. The U -map can again be defined as a degree −2 map on
ECH(M, ξ;h,Ω), and the twisted contact invariant c(M, ξ; Ω) is again the homology class
in ECH(M, ξ; 0,Ω) generated by the empty orbit set. The vanishing results in [Wen] give
convincing evidence that a more general version of the map in Proposition 1.8 should exist,
in particular with the following consequence:

Conjecture 1. Suppose (W,ω) is a Σ-capping or Σ-decoupling cobordism from (M−, ξ−) to
(M+, ξ+), and write Ω± = ω|TM±. Then:

(1) If c(M+, ξ+; Ω+) vanishes, then so does c(M−, ξ−; Ω−).
(2) If c(M+, ξ+; Ω+) is in the image of the map Uk on ECH(M+, ξ+; 0,Ω+) for some

k ∈ N, then c(M−, ξ−; Ω−) is in the image of Uk on ECH(M−, ξ−; 0,Ω−).

The first part of the conjecture would reduce both the untwisted and twisted vanishing
results in [Wen] to the fact, proved essentially by Eliashberg in the appendix of [Yau06],
that the fully twisted contact invariant vanishes for every overtwisted contact manifold. The
second part is related to another result proved in [Wen], namely the twisted ECH version of
the planarity obstruction of Oszváth-Stipsicz-Szabó [OSS05] in Heegaard Floer homology: if
(M, ξ) is planar, then c(M, ξ; Ω) is in the image of Uk for all k and all Ω. If the conjecture
holds, then this fact follows from Theorem 4′ and the computation of ECH(S3, ξ0).

3In the appendix of [Yau06], Eliashberg sketches an argument to show that every overtwisted contact
manifold has trivial contact homology, and this argument also implies the vanishing of the ECH contact
invariant.
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The obvious way to try to prove Conjecture 1 would be by constructing a U -equivariant
map

ECH(M+, ξ+; 0,Ω+) → ECH(M−, ξ−; 0,Ω−)

which takes c(M+, ξ+; Ω+) to c(M−, ξ−; Ω−). Due to the non-exactness of ω and a resulting
lack of energy bounds, it seems unlikely that such a map would exist in general, but a more
probable scenario is to obtain a map

ECH(M+, ξ+; 0,Λω) → ECH(M−, ξ−; 0,Λω),

where Λω is a Novikov completion of Z[H2(W )/ ker ω], and we take advantage of the natural
inclusions

H2(M±)/ ker Ω± →֒ H2(W )/ kerω

to define the ECH of (M±, ξ±) with coefficients in Λω. In cases where M+ has connected
components with closed leaves, one would expect this map to involve also the Periodic Floer
Homology (cf. [HS05]) of the resulting mapping tori. Defining such a map would require a
slightly more careful construction of the weak cobordism (W,ω), such that both boundary
components inherit stable Hamiltonian structures which can be used to attach cylindrical
ends and define reasonable moduli spaces of finite energy punctured holomorphic curves.
This can always be done due to a construction in [NW11], which shows that suitable stable
Hamiltonian structures exist for any desired cohomology class on the boundary. It is probably
also useful to observe that for an intelligent choice of data, the holomorphic curves in (W,ω)
with no positive ends can be enumerated precisely: we will show in Proposition 3.20 that all
of them arise from the symplectic core of the handle.

2. Further applications, examples and discussion

We shall now give some concrete examples of capping and decoupling cobordisms and
survey a few more applications, including new proofs of several known results and one or two
new ones.

2.1. The Gromov-Eliashberg theorem using holomorphic spheres. In [Wen,NW11],
holomorphic curve arguments were used to show that planar torsion is a filling obstruction, but
Theorems 1 and 2 make these proofs much easier by using essentially “soft” methods to reduce
them to the well-known result of Gromov-Eliashberg that overtwisted contact manifolds are
not weakly fillable. This does not of course make everything elementary, as the Gromov-
Eliashberg theorem still requires some technology—the original proof used a “Bishop family”
of holomorphic disks with totally real boundary, and these days one can instead use punctured
holomorphic curves, Seiberg-Witten theory or Heegaard Floer homology if preferred. While
this technological overhead is probably not removable, we can use a decoupling cobordism to
simplify the level of technology a tiny bit: namely we can reduce it to the following standard
fact whose proof requires only closed holomorphic spheres, e.g. the methods used in [McD90].

Lemma 2.1. If (W,ω) is a connected weak filling of a nonempty contact manifold (M, ξ),
then it contains no embedded symplectic sphere with vanishing self-intersection.

This lemma follows essentially from McDuff’s results [McD90], but by today’s standards
it is also easy to prove on its own: if one chooses a compatible almost complex structure
to make the boundary J-convex and the embedded symplectic sphere J-holomorphic, then
vanishing self-intersection implies that the latter lives in a smooth 2-dimensional moduli space
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(M, ξ)(M, ξ)

M ′
flat (M ′

convex, ξ
′)

(M ′
convex, ξ

′)

MP
0

· · ·

· · ·

· · ·

· · ·
T

(W ′, ω)

D× S2

S1 × S2

(W,ω)

Figure 1. A proof of the Gromov-Eliashberg theorem using a D-decoupling
cobordism. The left shows the effect on the pages when a round handle D ×
A is attached to a planar 0-torsion domain. The right shows the resulting
cobordism and consequent weak filling which furnishes a contradiction to
Lemma 2.1.

of holomorphic spheres that foliateW (except at finitely many nodal singularities). This forces
some leaf of the foliation to hit the boundary tangentially, thus contradicting J-convexity.

Corollary ([Gro85,Eli90]). Every weakly fillable contact manifold is tight.

Proof. A schematic diagram of the proof is shown in Figure 1. Suppose (W,ω) is a weak filling
of (M, ξ) and the latter is overtwisted. Then (M, ξ) contains a planar 0-torsion domain4 M0,
whose planar piece MP

0 is a solid torus with disk-like pages, attached along an interface torus
T = ∂MP

0 to another subdomain whose pages are not disks. Since [T ] = 0 ∈ H2(M),
∫
T
ω = 0

and we can attach a D-decoupling cobordism along T , producing a larger symplectic manifold
(W ′, ω) whose boundary has two connected components

∂W ′ =M ′
flat ⊔M

′
convex,

of which the latter carries a contact structure ξ′ dominated by ω. The component M ′
flat

has closed sphere-like pages, and is thus the trivial symplectic fibration S1 × S2 → S1.
After capping M ′

flat by a symplectic fibration D × S2 → D, we then obtain a weak filling
of (M ′

convex, ξ
′) containing a symplectic sphere with vanishing self-intersection, contradicting

Lemma 2.1. �

Remark 2.2. A related argument appears in [Gay06], using the fact that overtwisted contact
manifolds always have Giroux torsion; see also §2.3 below.

4The fact that overtwistedness implies planar 0-torsion relies on Eliashberg’s classification of overtwisted
contact structures [Eli89], quite a large result in itself. The original “Bishop disk” argument of Gromov and
Eliashberg had the advantage of not requiring this.
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T1

T2T2

T3

T0

M0
M1

M2 M3

(T3, ξ2) (S1 × S2, ξOT) (S1 × S2, ξ0) ⊔ (S1 × S2, ξ0)

Figure 2. The torus (T 3, ξ2) can be constructed out of four irreducible
subdomains containing cylindrical pages with trivial monodromy. Attaching
one D-decoupling cobordism yields an overtwisted S1 × S2, and one can then
attach a second one to obtain a disjoint union of two copies of the tight S1×S2.

2.2. Eliashberg’s cobordisms from T 3 to S3 ⊔ . . . ⊔ S3. Let T 3 = S1 × S1 × S1 with
coordinates (η, φ, θ) and define for n ∈ N the contact structure

(2.1) ξn = ker [cos(2πnη) dθ + sin(2πnη) dφ] .

These contact structures are all tight, but Eliashberg showed in [Eli96] that they are not
strongly fillable for n ≥ 2, which follows from the fact that disjoint unions of multiple copies
of (S3, ξ0) are not fillable, together with the following:

Theorem ([Eli96]). For any n ∈ N, (T 3, ξn) is symplectically cobordant to the disjoint union
of n copies of the tight 3-sphere.

Proof. The torus (T 3, ξn) admits a supporting summed open book decomposition with 2n
irreducible subdomains Mj each having cylindrical pages and trivial monodromy, attached
to each other along 2n interface tori I =

⋃
j Tj such that Tj = Mj ∩ Mj+1 for j = Z2n.

Attaching round handles D × A along every second interface torus T0, T2, . . . , T2n−2 yields a
weak symplectic cobordism to the disjoint union of n copies of the tight S1 × S2 (Figure 2).
The latter is also supported by an open book with cylindrical pages and trivial monodromy,
so we can attach a 2-handle D×D along one binding component to create a weak cobordism
to the tight S3. The resulting weak cobordism from T 3 to S3 ⊔ . . . ⊔ S3 can be deformed to
a strong cobordism since the symplectic form is necessarily exact near S3 ⊔ . . . ⊔ S3. �

Remark 2.3. Note that (T 3, ξn) is always weakly fillable [Gir94], and indeed, the above cobor-
dism cannot be attached to any weak filling (W,ω) of (T 3, ξn) for which

∫
Tj
ω 6= 0. This shows

that the homological condition in Theorem 6 cannot be removed.

2.3. Gay’s cobordisms for Giroux torsion. Recall that a contact manifold (M, ξ) is said
to have Giroux torsion GT(M, ξ) = n ∈ N if n is the largest integer for which (M, ξ) admits
a contact embedding of ([0, 1]× T 2, ξn), where ξn is given by (2.1); we write GT(M, ξ) = 0 if
there are no such embeddings and GT(M, ξ) = ∞ if they exist for arbitrarily large n. Every
contact manifold with positive Giroux torsion also has planar 1-torsion (see [Wen]), thus as
a special case of Theorem 1, every (M, ξ) with GT(M, ξ) ≥ 1 is symplectically cobordant
to something overtwisted; this was proved by David Gay in [Gay06] for GT(M, ξ) ≥ 2. A
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(M ′, ξ′)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

S1 × S2

T−

T+

T+

M− M+

M+M ′
−

Z

Z ′

GT(M, ξ) ≥ 1

overtwisted

Figure 3. Attaching a D-decoupling cobordism to (M, ξ) with Giroux tor-
sion at least 1 yields an overtwisted contact manifold (M ′, ξ′). Attaching one
more yields the disjoint union of a contact manifold with a trivial symplectic
S2-fibration over S1.

concrete picture of this cobordism5 is shown in Figure 3: namely, if GT(M, ξ) ≥ 1, then M
contains a domain [0, 1] × T 2 ∼= M0 ⊂ M on which ξ is supported by a blown up summed
open book with three irreducible subdomains

M0 =M− ∪T− Z ∪T+ M+

attached to each other in a chain along two interface tori T± = Z ∩M±. As is explained in
[Wen], M0 is literally the closure of some open neighborhood of the standard Giroux torsion
domain ([0, 1]×T 2, ξ1) in M , and the middle segment Z can be identified with [1/4, 3/4]×T 2

in ([0, 1] × T 2, ξ1): in particular it has cylindrical pages with trivial monodromy. Likewise
M+ and M− have cylindrical pages but nontrivial monodromy in general—this detail will
play no role in the following. Attaching a round handle D × A along T− produces a weak
symplectic cobordism to a new contact manifold M ′, containing the disconnected domain M ′

0
shown in Figure 3: in particular M− and Z are each transformed into subdomains M ′

− and
Z ′ with disk-like pages. Now Z ′ ∪M+ ⊂ M ′ contains an overtwisted disk; indeed, it is a
planar 0-torsion domain. Observe that this construction can also be used to show that (M, ξ)
is not weakly fillable if the torsion domain separates M , as then

∫
T−
ω = 0 for any symplectic

form ω arising from a weak filling.
Gay’s proof in [Gay06] that Giroux torsion obstructs strong filling did not directly use the

above cobordism, but proved instead that (M, ξ) with GT(M, ξ) ≥ 1 admits a symplectic
cobordism to some non-empty contact manifold such that the cobordism itself contains a
symplectic sphere with vanishing self-intersection—Gay’s argument then used gauge theory

5Both the cobordism in Figure 3 and the one that is constructed explicitly in [Gay06] for the case GT(M, ξ) ≥
2 are weak cobordisms, not strong in general. As David Gay has pointed out to me, these can always be turned
into strong cobordisms by attaching additional 2-handles to make the positive boundary an overtwisted rational
homology sphere (see the proof of Theorem 1 in §3.7).
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to derive a contradiction if (M, ξ) has a filling, but one can just as well use Lemma 2.1 above.
A close relative of Gay’s cobordism construction is easily obtained from the above picture:
attaching round handles D × A along both T− and T+, the top of the cobordism contains a
connected component with closed sphere-like pages (the top picture in Figure 3), which can be
capped by D×S2 to produce a cobordism that contains symplectic spheres of self-intersection
number 0.

2.4. Some new examples with M− 2M+ but M− ⊀M+. Gromov’s theorem [Gro85] on
the non-existence of exact Lagrangians in R2n provides perhaps the original example of a pair
of contact manifolds that are strongly but not exactly cobordant: indeed, viewing (T 3, ξ1) as
the boundary of a Weinstein neighborhood of any Lagrangian torus in the standard strong
filling of the tight 3-sphere (S3, ξ0), we obtain

(T 3, ξ1) 2 (S3, ξ0) but (T 3, ξ1) ⊀ (S3, ξ0).

The nonexistence of the exact cobordism here can also be proved by the argument of Hofer
[Hof93] mentioned in the introduction, which implies that if (M, ξ) admits a Reeb vector
field with no contractible periodic orbit, then (M, ξ) ⊀ (M ′, ξ′) whenever either (M ′, ξ′) is
overtwisted or M ′ ∼= S3. Together with Theorem 1, this implies that for any (MOT, ξOT)
overtwisted and n ≥ 2,

(T 3, ξn) 2 (MOT, ξOT) but (T 3, ξn) ⊀ (MOT, ξOT).

A subtler obstruction to exact cobordisms is defined in joint work of the author with Janko
Latschev [LW11] via Symplectic Field Theory, leading to the following example. For any
integer k ≥ 1, suppose Σ is a closed, connected and oriented surface of genus g ≥ k, and
Γ ⊂ Σ is a multicurve consisting of k disjoint embedded loops which divide Σ into exactly
two connected components

Σ = Σ+ ∪Γ Σ−,

such that Σ+ has genus 0 and Σ− has genus g − k + 1 > 0. By a construction due to Lutz
[Lut77], the product

Mk,g := S1 × Σ

then admits a unique (up to isotopy) S1-invariant contact structure ξk,g such that the convex
surfaces {∗} × Σ have dividing set Γ. The contact manifold (Mk,g, ξk,g) then has planar
(k− 1)-torsion, as the two subsets S1 ×Σ± can be regarded as the irreducible subdomains of
a supporting summed open book with pages {∗}×Σ±, so we view S1×Σ+ as the planar piece
and S1 × Σ− as the padding (see Definition 3.3). In particular, (Mk,g, ξk,g) is overtwisted if
and only if k = 1, and for k ≥ 2 it has a Reeb vector field with no contractible periodic orbits.
It turns out in fact that each increment of k contains an obstruction to exact fillings that is
invisible in the non-exact case.

Theorem 7. If k > ℓ ≥ 1 then for any g ≥ k and g′ ≥ ℓ,

(Mk,g, ξk,g) 2 (Mℓ,g′ , ξℓ,g′) but (Mk,g, ξk,g) ⊀ (Mℓ,g′ , ξℓ,g′)

Proof. The nonexistence of the exact cobordism is a result of [LW11]. The existence of
the non-exact cobordism follows immediately from Corollary 1, but in certain cases one can
construct it much more explicitly as in Figure 4. In particular, (Mk,g, ξk,g) is supported by a
summed open book consisting of the two irreducible subdomains S1×Σ± with pages {∗}×Σ±

attached along k interface tori. Attaching D× A along one of the interface tori gives a weak
D-decoupling cobordism to (Mk−1,g−1, ξk−1,g−1). Theorem 6′ then implies that this can be
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Σ−

Σ+

Γ

Figure 4. An explicit cobordism from (M3,3, ξ3,3) to (M2,2, ξ2,2) as in the
proof of Theorem 7 can be realized as a D-decoupling cobordism.

deformed to a strong cobordism, as the restriction of the symplectic form to Mk−1,g−1 is
Poincaré dual to a multiple of the boundary of the co-core; the latter consists of two loops of
the form S1 × {∗} with opposite orientations and is thus nullhomologous. �

2.5. Open books with reducible monodromy. Any compact, connected and oriented
surface Σ with boundary, together with a diffeomorphism ϕ : Σ → Σ fixing the boundary,
determines a contact 3-manifold (Mϕ, ξϕ), namely the one supported by the open book de-
composition with page Σ and monodromy ϕ. Recall that the mapping class of the monodromy
map ϕ is said to be reducible if it has a representative that preserves some multicurve Γ ⊂ Σ
such that no component of Σ \Γ is a disk or an annulus. Consider the simple case in which ϕ
preserves each individual connected component γ ⊂ Γ and also preserves its orientation (note
that this is always true for some iterate of ϕ). In this case we may assume after a suitable
isotopy that ϕ is the identity on a neighborhood of ∂Σ ∪ Γ, so that for some open annular
neighborhood γ ⊂ N (γ) ⊂ Σ of each curve γ ⊂ Γ, Mϕ contains a thickened torus region

S1 ×N (γ) ⊂Mϕ

on which the open book decomposition is the projection to the first factor. Let N (Γ) ⊂ Σ
denote the union of all the neighborhoods N (γ) and define the possibly disconnected compact
surface

ΣΓ = Σ \ N (Γ)

with boundary; then ϕ restricts to this surface as an orientation preserving diffeomorphism
ϕΓ : ΣΓ → ΣΓ that preserves each connected component and equals the identity near ∂ΣΓ.
Denote the connected components of ΣΓ by

ΣΓ = Σ1
Γ ⊔ . . . ⊔ ΣNΓ

and the corresponding restrictions of ϕΓ by

ϕjΓ : ΣjΓ → ΣjΓ

for j = 1, . . . , N . Since each ΣjΓ necessarily has nonempty boundary, each gives rise to a
connected contact manifold (M

ϕ
j
Γ

, ξ
ϕ
j
Γ

).

Theorem 8. Given a reducible monodromy map ϕ : Σ → Σ as described above, there exists
a weak symplectic cobordism (W,ω) from

(Mϕ1
Γ
, ξϕ1

Γ
) ⊔ . . . ⊔ (MϕN

Γ
, ξϕN

Γ
) to (Mϕ, ξϕ),
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which is (strongly) concave at the negative boundary and such that the restriction of ω to the
positive boundary is Poincaré dual to a positive multiple of

∑

γ⊂Γ

[S1 × {pγ}] ∈ H1(Mϕ;R),

where the summation is over the connected components of Γ and pγ ⊂ N (γ) denotes an
arbitrarily chosen point.

Moreover, given any closed 2-form Ω on Mϕ1
Γ
⊔ . . . ⊔MϕN

Γ
that dominates the respective

contact structures, one can also construct a weak cobordism between the contact manifolds
above such that ω matches Ω at the negative boundary.

Proof. The cobordism is a stack of A-capping cobordisms, constructed by attaching handles
of the form [−1, 1]×S1×D via Theorem 5 along all pairs of binding circles inMϕ1

Γ
⊔ . . .⊔MϕN

Γ

that correspond to the same curve in Γ. The co-core of each of these handles is a disk with
boundary of the form S1 × {∗} ⊂ S1 × N (γ) ⊂ Mϕ, thus the cohomology class of ω at the
positive boundary follows immediately from Theorem 5′. �

Corollary 3. If the contact manifolds (M
ϕ
j
Γ

, ξ
ϕ
j
Γ

) for j = 1, . . . , N are all weakly fillable,

then so is (Mϕ, ξϕ).

Remark 2.4. John Baldwin [Bal] has observed that topologically, the cobordism of Theo-
rem 8 can also be obtained by performing boundary connected sums on the pages and then
using D-capping cobordisms to remove extra boundary components; in [Bal] this is used to
deduce a relation between the Ozsváth-Szabó contact invariants of (Mϕ, ξϕ) and the pieces
(Mϕ1

Γ
, ξϕ1

Γ
), . . . , (MϕN

Γ
, ξϕN

Γ
). Additionally, Jeremy Van Horn-Morris and John Etnyre have

pointed out to me that if one also assumes every component of Σ\Γ to intersect ∂Σ, then one
can replace the weak cobordism of Theorem 8 with a Stein cobordism. This does not appear
to be possible if any component of Σ \ Γ has its full boundary in Γ.

2.6. Etnyre’s planarity obstruction. Let us say that a connected contact 3-manifold
(M, ξ) is maximally cobordant to S3 if there exists a compact connected 4-manifold W
with ∂W = S3 ⊔ (−M) such that for every closed 2-form Ω on M with Ω|ξ > 0, there is a
symplectic form ω onW with ω|TM = Ω defining a weak symplectic cobordism from (M, ξ) to
(S3, ξ0). Theorem 4′ says that every planar contact manifold is maximally cobordant to S3.
It turns out that this suffices to give an alternative proof of the planarity obstruction in
[Etn04b, Theorem 4.1].

Theorem 9. Suppose (M, ξ) is maximally cobordant to S3. Then every connected weak semi-
filling of (M, ξ) has connected boundary and negative-definite intersection form.

Proof. LetW1 be the compact 4-manifold with ∂W1 = S3⊔(−M) guaranteed by the assump-
tion, and suppose (W0, ω) is a weak filling of (M, ξ) ⊔ (M ′, ξ′), where (M ′, ξ′) is some other
contact manifold, possibly empty. If W =W0∪MW1 is defined by gluing these two along M ,
then by assumption ω can be extended over W1 so that (W,ω) becomes a weak filling of
(S3, ξ0) ⊔ (M ′, ξ′), implying that M ′ must be empty since (S3, ξ0) is not weakly co-fillable.
Now ω is exact near ∂W = S3, so without loss of generality we may assume (W,ω) is a strong
filling of (S3, ξ0).

We claim that the map induced on homology H2(W0;Q) → H2(W ;Q) by the inclusion
ι : W0 →֒ W is injective. Indeed, if A ∈ H2(W0;Q) satisfies

∫
A
ω 6= 0, then obviously

∫
ι∗A

ω
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is also nonzero and thus ι∗A 6= 0 ∈ H2(W ;Q). If
∫
A
ω = 0 but A ∈ H2(W0;Q) is nontrivial,

we can pick any closed 2-form σ on W0 with
∫
A
σ 6= 0 and replace ω by ω + ǫσ for any

ǫ > 0 sufficiently small so that (W0, ω + ǫσ) remains a weak filling of (M, ξ). Then ω + ǫσ
also extends over W1, so that the above argument goes through again to prove that ι∗A is
nontrivial.

Finally, we use the fact that the strong fillings of (S3, ξ0) have been classified: by a result
of Gromov [Gro85] and Eliashberg [Eli90], W is necessarily diffeomorphic to a symplectic
blow-up of the 4-ball, i.e.

W ∼= B4#CP 2# . . .#CP 2.

Since the latter has a negative-definite intersection form and ι∗ : H2(W0;Q) → H2(W ;Q) is
injective, the result follows. �

Our proof of Theorem 4′ combined with Conjecture 1 would also reprove the algebraic
planarity obstruction established in [Wen], which is the twisted ECH version of a Heegaard
Floer theoretic result by due to Oszváth, Stipsicz and Szabó [OSS05]. Note that the condition
of being maximally cobordant to S3 does not require (M, ξ) to be fillable. It is also not clear
whether there can exist non-planar contact manifolds that also satisfy this condition; the
author is unaware of any known invariants that would be able to detect this distinction.

Question 3. Is there a non-planar contact 3-manifold which is maximally cobordant to S3?

Note that if the assumption of Theorem 9 is relaxed to (M, ξ) 2 (S3, ξ0), then the result
becomes false: a counterexample is furnished by the standard 3-torus (T 3, ξ1), which admits
a cobordism to (S3, ξ0) by Theorem 4 but also is strongly filled by T ∗T 2, whose intersection
form is indefinite. Assuming a strong filling (W0, ω) of (M, ξ), the proof above fails precisely
at the point where the inclusionW0 →֒W is required to induce an injective mapH2(W0;Q) →
H2(W ;Q). However, it still follows by the same argument that H2(W0;Q) cannot contain
any class with strictly positive square, hence we obtain the following weaker result with
more general assumptions—it applies in particular to all the contact manifolds covered by
Theorem 4.

Theorem 10. Suppose (M, ξ) is a closed connected contact 3-manifold with (M, ξ) 2 (S3, ξ0).
Then every strong semi-filling (W,ω) of (M, ξ) has connected boundary and b+2 (W ) = 0.

2.7. Some remarks on planar torsion. The filling obstruction known as planar torsion
was introduced in [Wen] with mainly holomorphic curves as motivation, as it provides the
most general setting known so far in which the existence and uniqueness of certain embedded
holomorphic curves leads to a vanishing result for the ECH contact invariant. In light of
our cobordism construction, however, one can now provide an alternative motivation for the
definition in purely symplectic topological terms. The first step is to understand what kinds
of blown up summed open books automatically support overtwisted contact structures: using
Eliashberg’s classification theorem [Eli89] and Giroux’s criterion (cf. [Gei08]), this naturally
leads to the notion of planar 0-torsion. Then a more general blown up summed open book
defines a planar k-torsion domain for some k ≥ 1 if and only if it can be transformed into
a planar 0-torsion domain by a sequence of D-capping and D-decoupling surgeries; this is
the essence of Proposition 3.4 proved below. From this perspective, the definition of planar
torsion and the crucial role played by blown up summed open books seem completely natural.

More generally, the partially planar domains are precisely the blown up summed open books
for which a sequence of D-capping and D-decoupling cobordisms can be used to construct a
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symplectic cap that contains a symplectic sphere with square 0. As far as the author is aware,
almost all existing uniqueness or classification results for symplectic fillings (e.g. [Wen10,Lis08,
OO05]) apply to contact manifolds that admit caps of this type. However, it does not always
suffice to construct an appropriate cap and then apply McDuff’s results [McD90]: e.g. the
classification of strong fillings of planar contact manifolds in terms of Lefschetz fibrations
[Wen10, LVW] truly relies on punctured holomorphic curves, as there is no obvious way to
produce a Lefschetz fibration with bounded fibers out of a family of holomorphic spheres in
a cap.

Finally, we remark that while Theorems 1 and 2 substantially simplify the proof that planar
torsion is a filling obstruction, they do not reproduce all of the results in [Wen]: in particular
the technology of Embedded Contact Homology is not yet far enough along to deduce the
vanishing of the contact invariant from a non-exact cobordism. Moreover, a proof using
capping and decoupling cobordisms simplifies the technology needed but does not remove it,
as a simplified version of the very same technology is required to prove the Gromov-Eliashberg
theorem (cf. §2.1). From the author’s own perspective, the idea for constructing symplectic
cobordisms out of these types of handles would never have emerged without a holomorphic
curve picture in the background (cf. Figure 7), and as we will discuss in §3.8, after one has
constructed the symplectic structure, it is practically no extra effort to add a foliation by
embedded J-holomorphic curves which reproduces the J-holomorphic blown up open books
of [Wen] on both boundary components. The moral is that whether one prefers to prove
non-fillability results by direct holomorphic curve arguments or by constructing cobordisms
to reduce them to previously known results, it is essentially the same thing: neither proof
would be possible without the other.

3. The details

The plan for proving the main results is as follows. We begin in §3.1 by reviewing the fun-
damental definitions involving blown up summed open books and planar torsion, culminating
with the (more or less obvious) observation that one can always use capping or decoupling
surgery to decrease the order of a planar torsion domain. In §3.2, we introduce a useful con-
crete model for a blown up summed open book and its supported contact structure. This is
applied in §3.3 to write down a model of a weak Σ-decoupling cobordism, and minor modifica-
tions explained in §3.4 yield a similar model for the Σ-capping cobordism. This completes the
cobordism construction for the case where the negative boundary is strongly concave (or more
generally when the given symplectic form ω in Theorem 5 or 6 is exact), see Remark 3.12. For
the general case, we need to show additionally that any given symplectic form on [0, 1] ×M
satisfying the necessary cohomological condition can be deformed so as to attach smoothly
to the model cobordisms we’ve constructed; this is shown in §3.5, thus completing the proofs
of Theorems 5 and 6. We prove Theorems 5′ and 6′ in §3.6, answering the essentially coho-
mological question of when the weak cobordism can be made strong, and when its symplectic
form is exact. With these ingredients all in place, the proofs of the main results from §1.1
are completed in §3.7. Finally, §3.8 gives a brief discussion of the existence and uniqueness
of holomorphic curves in the cobordisms we’ve constructed.

3.1. Review of summed open books and planar torsion. The following notions were
introduced in [Wen], and we refer to that paper for more precise definitions and further
discussion.
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Assume M is a compact oriented 3-manifold, possibly with boundary, the latter consisting
of a union of 2-tori. A blown up summed open book π on M can be described via the
following data.

(1) An oriented link B ⊂M \ ∂M , called the binding.
(2) A disjoint union of 2-tori I ⊂M \ ∂M , called the interface.
(3) For each interface torus T ⊂ I a distinguished basis (λ, µ) of H1(T ), where µ is defined

only up to sign.
(4) For each boundary torus T ⊂ ∂M a distinguished basis (λ, µ) of H1(T ).
(5) A fibration

π :M \ (B ∪ I) → S1

whose restriction to ∂M is a submersion.

The distinguished homology classes λ, µ ∈ H1(T ) associated to each torus T ⊂ I ∪ ∂M are
called longitudes and meridians respectively, and the oriented connected components of
the fibers π−1(const) are called pages. We assume moreover that the fibration π can be
expressed in the following normal forms near the components of B ∪ I ∪ ∂M . As in an
ordinary open book decomposition, each binding circle γ ⊂ B has a neighborhood admitting
coordinates (θ, ρ, φ) ∈ S1 × D, where (ρ, φ) are polar coordinates on the disk (normalized so
that φ ∈ S1 = R/Z), such that γ = {ρ = 0} and

(3.1) π(θ, ρ, φ) = φ.

Near an interface torus T ⊂ I, we can find a neighborhood with coordinates (θ, ρ, φ) ∈
S1 × [−1, 1] × S1 such that T = {ρ = 0} = S1 × {0} × S1 with (λ, µ) matching the natural
basis of H1(S

1 × {0} × S1), and

(3.2) π(θ, ρ, φ) =

{
φ for ρ > 0,

−φ for ρ < 0.

A neighborhood of a boundary torus T ⊂ ∂M similarly admits coordinates (θ, ρ, φ) ∈ S1 ×
[0, 1] × S1 with T = S1 × {0} × S1 and

(3.3) π(θ, ρ, φ) = φ.

Observe that unlike the normal form (3.1), the map (3.3) is well defined at ρ = 0, since there
are no polar coordinates and hence no coordinate singularity. The above conditions imply
that the closure of each page is a smoothly immersed surface, whose boundary components
are each embedded submanifolds of B, I or ∂M , and in the last two cases homologous to
the distinguished longitude λ. The “generic” page has an embedded closure, but in isolated
cases there may be pairs of boundary components that are identical as oriented 1-dimensional
submanifolds in I.

In general, any or all of B, I and ∂M may be empty, and M may also be disconnected.
If B ∪ I ∪ ∂M = ∅ we have simply a fibration π : M → S1 whose fibers are closed oriented
surfaces. If I ∪ ∂M = ∅ but B 6= ∅ and M is connected, we have an ordinary open book.

We say that π is irreducible if the fibers π−1(const) are connected, i.e. there is only one
S1-parametrized family of pages. More generally, any blown up summed open book can be
presented uniquely as a union of irreducible subdomains

M =M1 ∪ . . . ∪MN ,

which each inherit irreducible blown up summed open books and are attached together along
boundary tori (which become interface tori in M).
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The notion of a contact structure supported by an open book generalizes in a natural way:
we say that a contact structure ξ on M is supported by π if it is the kernel of a Giroux
form, a contact form whose Reeb vector field is everywhere positively transverse to the pages
and positively tangent to their boundaries, and which induces a characteristic foliation on
I ∪ ∂M with closed leaves parallel to the distinguished meridians. A Giroux form exists and
is unique up to homotopy through Giroux forms on any connected manifold with a blown
up summed open book, except in the case where the pages are closed, i.e. B ∪ I ∪ ∂M = ∅.
The binding is then a positively transverse link, and the interface and boundary are disjoint
unions of pre-Lagrangian tori.

Definition 3.1. An irreducible blown up summed open book is called planar if its pages
have genus zero. An arbitrary blown up summed open book is then called partially planar
if its interior contains a planar irreducible subdomain, which we call a planar piece. A
partially planar domain is a contact 3-manifold (M, ξ), possibly with boundary, together
with a supporting blown up summed open book that is partially planar. For a given closed
2-form Ω on M , and a partially planar domain (M, ξ) with planar piece MP ⊂ M , we say
that (M, ξ) is Ω-separating if

∫
T
Ω = 0 for all interface tori T of M that lie in MP , and

fully separating if this is true for all Ω.

Definition 3.2. A blown up summed open book is called symmetric if it has empty bound-
ary, all its pages are diffeomorphic and it contains exactly two irreducible subdomains

M =M+ ∪M−,

each of which has empty binding and interface.

The simplest example of a symmetric summed open book is the one whose pages are disks:
this supports the tight contact structure on S1 × S2 (cf. Figure 2, right).

Definition 3.3. For any integer k ≥ 0, an Ω-separating partially planar domain (M, ξ) with
planar piece MP ⊂ M is called an Ω-separating planar k-torsion domain if it satisfies
the following conditions:

• (M, ξ) is not symmetric.
• ∂MP 6= ∅.
• The pages in MP have k + 1 boundary components.

The (necessarily nonempty) subdomain M \MP is then called the padding.
We say that a contact manifold (M, ξ) with closed 2-form Ω has Ω-separating planar

k-torsion if it contains an Ω-separating planar k-torsion domain. If this is true for all closed
2-forms Ω on M , then we say (M, ξ) has fully separating planar k-torsion.

It was shown in [Wen] that a contact manifold is overtwisted if and only if it has planar
0-torsion, which is always fully separating since the interface then intersects the planar piece
only at its boundary, a single nullhomologous torus. The proofs of Theorems 1 and 2 thus
rest on the following easy consequence of the preceeding definitions.

Proposition 3.4. If M is a planar k-torsion domain for some k ≥ 1, then it contains a
binding circle γ or interface torus T in its planar piece such that the following is true. Let
M ′ denote the manifold with corresponding blown up summed open book obtained from M by
D-capping surgery along γ or D-decoupling surgery along T respetively. Then some connected
component of M ′ is a planar ℓ-torsion domain for some ℓ ∈ {k − 2, k − 1}.
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Proof. By assumption, M contains a planar piece MP with nonempty boundary, and if T0 ⊂
∂MP denotes a boundary component, then the pages in MP have exactly one boundary
component adjacent to T0. The pages in MP have k +1 boundary components, and without
loss of generality we may assume no other irreducible subdomain in the interior of M has
planar pages with fewer boundary components than this. Since k ≥ 1, these pages have at
least one boundary component adjacent to some binding circle γ or interface torus T distinct
from T0. Performing D-capping sugery to remove γ or D-decoupling surgery to remove T
produces a new manifold M1 containing a planar irreducible subdomain MP

1 whose pages
have ℓ boundary components where ℓ is either k or k − 1; the latter can only result from
a decoupling surgery along T ⊂ MP \ ∂MP . Thus M1 is a planar (ℓ − 1)-torsion domain

unless it is symmetric. The latter would mean ∂M1 = ∅, hence also ∂M = ∅, and M1 \MP
1

is also irreducible and has planar pages with ℓ boundary components. This cannot arise from
capping surgery along a binding circle or decoupling surgery along a torus in the interior of
MP , as we assumed all planar pages in the interior of M outside of MP to have at least
k + 1 ≥ ℓ + 1 boundary components. The only remaining possibility would be decoupling
surgery along T ⊂ ∂MP , but then symmetry of M1 would imply that M must also have been
symmetric, hence a contradiction. �

3.2. A model for a blown up summed open book. Assume (M0, ξ) is a compact contact
3-manifold, possibly with boundary, supported by a blown up summed open book π with
binding B, interface I and fibration

π :M0 \ (B ∪ I) → S1.

We assume that each connected component of M0 contains at least one component of B ∪
I ∪ ∂M0, so that π will support a contact structure everywhere. It will be useful to identify
this with the following generalization of the notion of an abstract open book (cf. [Etn06]).

The closure of a fiber π−1(const) ⊂M0 is the image of some compact oriented surface S with
boundary under an immersion

ι : S #M0,

which is an embedding on the interior. The monodromy of the fibration then determines (up
to isotopy) a diffeomorphism ψ : S → S which preserves connected components and is the
identity in a neighborhood of the boundary, and we define the mapping torus

Sψ = (S × R)/ ∼

with (z, t+ 1) ∼ (ψ(z), t) for all t ∈ R, z ∈ S. Denote by

φ : Sψ → R/Z = S1

the natural fibration.
Let us label the connected components of ∂S by

∂S = ∂1S ∪ . . . ∪ ∂nS,

and for each i = 1, . . . , n choose an open collar neighborhood U i ⊂ S of ∂iS on which ψ is the
identity. Denote the union of all these neighborhoods by U ⊂ S. Now for each i = 1, . . . , n,
choose positively oriented coordinates

(θ, ρ) : U i → S1 × [r, 1)
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for some r ∈ (0, 1). These neighborhoods give rise to corresponding collar neighborhoods of
∂Sψ,

U iψ = U i × S1 ⊂ Sψ,

which can be identified with S1 × [r, 1) × S1 via the coordinates (θ, ρ, φ). The index set
I := {1, . . . , n} comes with an obvious partition

I = IB ∪ II ∪ I∂ ,

where

IB = {i ∈ I | ι(∂iS) ⊂ B},

II = {i ∈ I | ι(∂iS) ⊂ I},

I∂ = {i ∈ I | ι(∂iS) ⊂ ∂M0}.

There is also a free Z2-action on II defined via an involution

σ : II → II

such that j = σ(i) if and only if ι(∂iS) and ι(∂jS) lie in the same connected component of I.
Now define for each i ∈ I the domain

Ni =





S1 × D if i ∈ IB ,

S1 × [−1, 1] × S1 if i ∈ II ,

S1 × [0, 1] × S1 if i ∈ I∂ ,

and denote by (θ, ρ, φ) the natural coordinates on Ni, where for i ∈ IB we view (ρ, φ) as polar
coordinates on the disk with the angle normalized to take values in S1 = R/Z. Denote the
subsets {ρ = 0} by

Babs =
⊔

i∈IB

S1 × {0} ⊂
⊔

i∈IB

Ni, Iabs =
⊔

i∈II

S1 × {0} × S1 ⊂
⊔

i∈II

Ni.

The chosen coordinates on the neighborhoods U iψ then determine a gluing map

Φ :
⋃

i∈I

U iψ →
⊔

i∈I

Ni

which takes U iψ to Ni, and we use this to define a new compact and oriented manifold, possibly
with boundary,

Mabs
0 = Sψ ∪Φ

(
⊔

i∈I

Ni

)/
∼,

where the equivalence relation identifies (θ, ρ, φ) ∈ Ni for i ∈ II with (θ,−ρ,−φ) ∈ Nσ(i).

This naturally contains Babs and Iabs as submanifolds, and the fibration φ : Sψ → S1 can

be extended over Mabs
0 \ (Babs ∪ Iabs) so that it matches the canonical φ-coordinate on Ni

wherever ρ > 0. Now M0 can be identified with Mabs
0 via a diffeomorphism that maps B to

Babs and I to Iabs, and transforms the fibration π :M0 \ (B ∪ I) → S1 to φ.
A supported contact structure on Mabs

0 can be defined as follows. First, define a smooth
1-form of the form

λ0 =

{
dφ on Sψ,

fi(ρ) dθ + gi(ρ) dφ on Ni, i ∈ I,

where fi, gi : [0, 1] → R are smooth functions chosen to have the following properties:
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(1) As ρ moves from 0 to 1, ρ 7→ (fi(ρ), gi(ρ)) ∈ R2 \ {0} defines a path through the first
quadrant from (1, 0) to (0, 1).

(2) λ0 is contact on {0 ≤ ρ < r} ⊂ Ni.
(3) fi(ρ) = 0 for ρ ∈ [r, 1].
(4) gi(ρ) = 1 for ρ ∈ [r′, 1], for some positive number r′ < r.
(5) g′i(ρ) > 0 for ρ ∈ (0, r′).

Remark 3.5. The contact condition is satisfied if and only if fig
′
i − f ′igi 6= 0, except at Babs,

where the coordinate singularity changes the condition to g′′i (0) 6= 0. One consequence is that
f ′i(ρ) < 0 for ρ ∈ [r′, r), hence fi(r

′) > 0. The assumption that λ0 is a smooth 1-form imposes
some additional conditions, namely for i ∈ IB, (ρ, φ) 7→ fi(ρ) and (ρ, φ) 7→ gi(ρ)/ρ

2 must
define smooth functions at the origin in R2 (in polar coordinates), and for i ∈ II , fi and gi
can be extended smoothly over [−1, 1] such that

fi(ρ) = fσ(i)(−ρ), gi(ρ) = −gσ(i)(−ρ).

In particular this implies (fi(ρ), gi(ρ)) = (0,−1) for ρ ∈ [−1,−r]. We will assume these
conditions are always satisfied without further comment.

The co-oriented distribution
ξ0 := kerλ0

is a confoliation on Mabs
0 , which is integrable on the mapping torus Sψ and outside of this is

a positive contact structure. To perturb it to a global contact structure, choose a 1-form α
on S which satisfies dα > 0 and takes the form

(3.4) α = (2− ρ) dθ

on U i. By a simple interpolation trick (cf. [Etn06]), α can be used to construct a 1-form αψ
on Sψ that satisfies

dαψ |ξ0 > 0 and αψ = (2− ρ) dθ on U iψ.

Choosing ǫ > 0 sufficiently small, we can bring ker(dφ+ ǫαψ) sufficiently C0-close to ξ0 on Sψ
so that dαψ|ker(dφ+ǫαψ) > 0. Then a contact form that equals λ0 near ∂Mabs

0 can be defined
by

(3.5) λǫ =





dφ+ ǫ αψ on Sψ,

fi,ǫ(ρ) dθ + dφ on {ρ ∈ [r′, r]} ⊂ Ni,

λ0 on {ρ ≤ r′} ⊂ Ni,

where the fact that fi(r
′) > 0 allows us for ǫ > 0 sufficiently small to choose smooth functions

fi,ǫ : [0, 1] → R satisfying

• fi,ǫ(ρ) = fi(ρ) for ρ ∈ [0, r′],
• f ′i,ǫ < 0 for ρ ∈ [r′, r], and

• fi,ǫ(ρ) = ǫ(2− ρ) for ρ ∈ [r, 1].

Note that for i ∈ II , fi,ǫ also extends naturally over [−1, 1] with fi,ǫ(ρ) = fσ(i),ǫ(−ρ). All
contact forms that one can construct in this way are homotopic to each other through families
of contact forms, so the resulting contact structure

ξǫ := kerλǫ

is uniquely determined up to isotopy. Moreover, it is easy to check that the Reeb vector
field determined by λǫ is everywhere positively transverse to the pages: in particular, λǫ is a
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Giroux form for the blown up summed open book we’ve constructed on Mabs
0 , thus (Mabs

0 , ξǫ)
is contactomorphic to (M0, ξ).

3.3. A model decoupling cobordism. Assume now that the manifold M0 from the previ-
ous section is embedded into a closed contact 3-manifold (M, ξ) such that ξ is an extension of
the contact structure that was given onM0. Without loss of generality, we can identify (M0, ξ)
with the abstract model (Mabs

0 , ξǫ), and assume in particular that λ0 and λǫ are 1-forms onM

which restrict on M0 to the models constructed above, and on a neighborhood of M \M0

define matching contact forms whose kernel is ξ.
Our goal in this section is to construct a weak symplectic cobordism that realizes a Σ-

decoupling surgery along some set of oriented interface tori

I0 = T1 ∪ . . . ∪ TN ⊂ I.

The chosen orientation of each Tj splits a tubular neighborhood N (Tj) ⊂ M of Tj naturally
into positive and negative parts

N (Tj) = N−(Tj) ∪ N+(Tj)

whose intersection is Tj . To simplify notation in the following, let us assume these neighbor-
hoods are chosen and the page boundary components ∂S = ∂1S ∪ . . . ∪ ∂nS are ordered so
that for each j = 1, . . . , N ,

N (Tj) = Nj = S1 × [−1, 1] × S1 and N+(Tj) = S1 × [0, 1] × S1.

We will fix on N (Tj) the standard coordinates (θ, ρ, φ) of Nj, and assume all the functions
chosen to define λ0 and λǫ are the same for all of these neighborhoods, so we can write

f = fj, g = gj , fǫ = fj,ǫ

for j = 1, . . . , N .
For Theorems 5 and 6, the cobordism we construct will need to be attached to a trivial

cobordism of the form ([0, 1] ×M,ω), which will be impossible if our model symplectic form
does not match ω at least cohomologically at {1}×M . In order to realize the right cohomology
class in the model, we choose a closed 2-form Ω0 on M representing an arbitrary cohomology
class for which the condition (1.4) is satisfied. Since we only care about Ω0 up to cohomology,
we are free to add an exact 2-form and thus assume Ω0 satisfies

Ω0 = cj dφ ∧ dθ on N (Tj)

for each j = 1, . . . , N , where cj ∈ R are constants satisfying

(3.6)

N∑

j=1

cj = 0.

Since λ0 ∧ dλǫ > 0 everywhere on M , we can define an exact symplectic form on the trivial
cobordism [0, 1] ×M as follows: fix any smooth, strictly increasing function ϕ : [0, 1] → R

with ϕ(0) = 0 and |ϕ(t)| uniformly small, and set

(3.7) ω0 = d (ϕ(t)λ0 + λǫ) .

If ‖ϕ‖L∞ is sufficiently small then ω0 is symplectic and restricts positively to both ξ and the
pages of π, everywhere on [0, 1] ×M . Now if C > 0 is a sufficiently large constant, then the
2-form

(3.8) ωC := Cω0 +Ω0
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also has these properties. In the following we shall always assume C is arbitrarily large
whenever convenient. Note that for the case of Theorems 5 and 6 where the given ω on
[0, 1] ×M is exact, we may assume without loss of generality that Ω0 ≡ 0, see Remark 3.12.

To construct a cobordism corresponding to the round handle attachment, we shall first
“dig a hole” in the trivial cobordism [0, 1] ×M near each of the tori {1} × Tj . In order to
find nice coordinates near the boundary of the hole, it will be useful to consider the vector
field Xθ on [0, 1] ×N (Tj) defined by the condition

ω0(Xθ, ·) = −dθ.

Lemma 3.6. The vector field Xθ is locally Hamiltonian with respect to ωC and takes the form

(3.9) Xθ = A(t, ρ) ∂t +B(t, ρ) ∂ρ

for some smooth functions A,B : [0, 1] × [1, 1] → R with the following properties:

(1) For ±ρ ∈ [r, 1], A(t, ρ) = 0 and B(t, ρ) = ±1
ǫ
.

(2) For ±ρ ∈ [r′, r], A(t, ρ) = 0 and ±B(t, ρ) > 0.
(3) For ρ ∈ (−r′, r′), A(t, ρ) < 0.

Proof. By a direct computation, Xθ takes the form (3.9) with A and B satisfying the linear
system (

−ϕ′(t)f(ρ) − [ϕ(t)f ′(ρ) + f ′ǫ(ρ)]
ϕ′(t)g(ρ) [ϕ(t) + 1] g′(ρ)

)(
A(t, ρ)
B(t, ρ)

)
=

(
1
0

)
.

The determinant ∆(t, ρ) of this matrix is always negative since the contact condition requires
f(ρ)g′(ρ) − f ′(ρ)g(ρ) > 0 for |ρ| < r, and for ±ρ ∈ [r, 1] we have g(ρ) = ±1, ±f ′(ρ) ≤ 0 and
±f ′ǫ(ρ) < 0. The general solution for A and B can thus be written as

(
A(t, ρ)
B(t, ρ)

)
=

1

∆(t, ρ)

(
[ϕ(t) + 1] g′(ρ)
−ϕ′(t)g(ρ)

)
.

The stated conditions on A(t, ρ) and B(t, ρ) then follow immediately from the conditions
we’ve placed on f , g, fǫ and ϕ.

In light of (3.9), Xθ is in the kernel of dφ ∧ dθ, and we conclude easily that it is locally
Hamiltonian since

LXθωC = dιXθ (Cω0 + cj dφ ∧ dθ) = d (−C dθ) = 0.

�

Due to the lemma, we can choose a smoothly embedded curve

[−1, 1] → [1/2, 1] × [−1, 1] : τ 7→ (t(τ), ρ(τ))

that is everywhere transverse to the vector field (3.9) and also satisfies (t(0), ρ(0)) = (1/2, 0)
and

(t(τ), ρ(τ)) = (±τ,±1)

near τ = ±1 (see Figure 5). Writing the annulus as A = [−1, 1] × S1, use the curve just
chosen to define an embedding

Ψ : S1 × A →֒ [0, 1] ×N (Tj) : (θ, τ, φ) 7→ (t(τ), θ, ρ(τ), φ),

which traces out a smooth hypersurface HTj ⊂ [0, 1]×N (Tj) that meets {1}×M transversely
at the pair of tori {1} × ∂N (Tj). Denote by

UTj ⊂ [0, 1] ×M
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1

1

−1 rr′−r −r′

τ = 1τ = −1

τ = 0

ρ

t

Figure 5. The path (t(τ), ρ(τ)) transverse to the vector field of (3.9).

the interior of the component of ([0, 1]×M)\HTj that contains {1}×Tj (see Figure 6). Observe
that by construction, UTj lies entirely within [1/2, 1] × N (Tj), and the locally Hamiltonian

vector field Xθ points transversely outward at ∂UT = HTj . Thus for sufficiently small δ > 0,

we can use the flow ϕtXθ of Xθ to parametrize a neighborhood of HTj in UT by an embedding

Ψ̃ : (1− δ, 1] × S1 × A →֒ [0, 1] ×M

(σ, θ, τ, φ) 7→ ϕσ−1
Xθ

(Ψ(θ, τ, φ)).

Lemma 3.7. We have

(3.10) Ψ̃∗ω0 = −d (σ dθ) + dη,

where η is an S1-invariant 1-form on S1 × A that satisfies

η = ± [ϕ(±τ) + 1] dφ near {τ = ±1} = ∂(S1 × A),

and dθ ∧ dη > 0 everywhere.

Proof. In [0, 1] ×N (T ) we can write ω0 = dΛ, where

Λ := ϕ(t)λ0 + λǫ − ǫ dθ.

Then defining η := Ψ∗Λ on S1×A, we have dη = Ψ∗ω0 and can write η explicitly near τ = ±1
by plugging in t = ±τ , ρ = ±1, f(ρ) = 0, g(ρ) = ±1 and fǫ(ρ) = ǫ(2− ρ) = ǫ, hence

η = Ψ∗ (ϕ(t)λ0 + λǫ − ǫ dθ) = ϕ(±τ)(±dφ) + ǫ dθ ± dφ− ǫ dθ

= ± [ϕ(±τ) + 1] dφ

as desired. Since Λ is invariant under the S1-action by translation of θ, η is also S1-invariant.
The claim dθ ∧ dη > 0 is a consequence of the fact that HTj is transverse to the vector field
Xθ, which is ω0-dual to −dθ: indeed, ignoring combinatorial factors we find

dθ ∧ dη(∂θ, ∂τ , ∂φ) = −Ψ∗(ιXθω0) ∧Ψ∗ω0(∂θ, ∂τ , ∂φ)

∝ −ω0 ∧ ω0(Xθ,Ψ∗∂θ,Ψ∗∂τ ,Ψ∗∂φ) 6= 0.

It follows that dθ∧ dη is positive since this is obviously true near τ = ±1. The formula (3.10)
now follows from the fact that −dθ = ιXθω0 and Xθ has a symplectic flow. �
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Wj

UTj

{1} × Tj

[0, 1] ×N (Tj)

HTj = ∂UTj

⊔

Figure 6. Digging a hole in [0, 1] ×N (Tj) near {1} × Tj.

Remark 3.8. The embedding Ψ̃ reverses orientations. This will be convenient in the following

since the handle ĤΣ = −Σ× A also comes with a reversed orientation.

Since Ψ̃ acts trivially on the coordinates φ and θ, the lemma also yields a formula for the
pullback of ωC , namely

(3.11) Ψ̃∗ωC = C [−d (σ dθ) + dη] + cj dφ ∧ dθ.

For each j = 1, . . . , N , denote by Wj ⊂ [0, 1]×N (Tj) the image of the map Ψ̃ as constructed
above (Figure 6): Wj thus inherits negatively oriented coordinates (σ, θ, τ, φ) ∈ (1 − δ, 1] ×
S1 × [−1, 1]× S1 in which ωC has the form given in (3.11).

We are now ready to write down a smooth model of the round handle attachment. As in
§1, assume Σ is a compact, connected and oriented surface with N boundary components

∂Σ = ∂1Σ ∪ . . . ∪ ∂NΣ.

Near each component ∂jΣ, identify a collar neighborhood Vj ⊂ Σ with (1 − δ, 1] × S1 and
denote the resulting oriented coordinates by (σ, θ). Then denote the union of all the subsets
UTj by UI0 and define the cobordism

W = (([0, 1] ×M) \ UI0) ∪ (−Σ× A)

by removing UI0 from [0, 1]×M and replacing it by the handle −Σ×A, gluing Vj ×A to Wj

via the natural identification of the coordinates (σ, θ, τ, φ). This yields a smooth 4-manifold
with two boundary components

∂W =M ′ ⊔ (−M),

where we identify M with {0} ×M and write

M ′ = (({1} ×M) \ N (I0)) ∪ (−Σ+ × S1) ∪ (−Σ− × S1),

using the identification Σ × ∂A = (Σ+ × S1) ⊔ (Σ− × S1) defined in (1.2). The oriented
surfaces −(Σ+ ⊔Σ−)×{φ} now glue together smoothly with the fibers π−1(φ) in M \N (I0)
to form the pages of the natural blown up summed open book π

′ on M ′ obtained from π by
Σ-decoupling surgery along I0. It remains to define a suitable symplectic form on Σ×A that
matches (3.11) near ∂Σ ×A and is positive on these pages.

Lemma 3.9. There exists a symplectic form on −Σ×A that matches (3.10) near ∂Σ×A and
is positive on the oriented surfaces {p}×A for any p ∈ Σ \ (V1 ∪ . . .∪VN ) and −Σ×{(τ, φ)}
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for any (τ, φ) ∈ A, and makes T (Σ × {∗}) and T ({∗} × A) into symplectically orthogonal
symplectic subspaces everywhere along Σ× ∂A.

Proof. We will use a standard deformation trick to simplify (3.10) on each of the regions
Vj × A so that it can be extended as a split symplectic form. Choose a 1-form η0 on A with
dη0 > 0 and lift it in the obvious way to S1 × A. Since

∫

{∗}×∂A
η = 2 [ϕ(1) + 1] > 0

and η has no dθ-term near S1×∂A, we can also arrange for η0 to match η on a neighborhood
of S1× ∂A. Next choose a smooth cutoff function β̃ : (1− δ, 1] → [0, 1] that satisfies β̃(σ) = 0

near σ = 1−δ and β̃(σ) = 1 near σ = 1, and use this to define a smooth function β : Σ → [0, 1]
which satisfies

β(σ, θ) = β̃(σ) on Vj, β ≡ 0 on Σ \ (V1 ∪ . . . ∪ VN ).

We observe that the expression

βη + (1− β) η0

now gives a well-defined 1-form on Σ × A by lifting η0 from A to Σ × A and η from S1 × A

to (1− δ, 1] × S1 × A = Vj × A in the obvious ways.
Choose also a smooth function ψ : (1− δ, 1] → [1,∞) satisfying ψ′ > 0 and ψ′(σ) = 1 near

σ = 1, and a 1-form µ on Σ such that

µ = ψ(σ) dθ in Vj, dµ > 0 everywhere.

A suitable symplectic form on Σ× A can then be defined by

(3.12) ω′
0 = −dµ+ d

(
βη + (1− β) η0

)
.

By construction, ω′
0 matches (3.10) near ∂Σ×A, while near Σ×∂A and outside of the regions

Vj × A it takes the split form

−dµ+ dη0,

which is symplectic and makes each of T (Σ×{∗}) and T ({∗} ×A) into symplectic subspaces
which are symplectically orthogonal to each other. To test whether ω′

0 is symplectic on Vj×A,
we compute

1

2
ω′
0 ∧ ω

′
0 = ψ′ dθ ∧ dσ ∧ [β dη + (1− β) dη0]

+ ββ′ dσ ∧ (η − η0) ∧ [β dη + (1− β) dη0] .

The first term is always nonzero since dθ ∧ dη and dθ ∧ dη0 are both positive. The whole
expression is therefore nonzero whenever either β′(σ) = 0 or ψ′(σ) is sufficiently large, and
we are free to choose ψ so that it increases fast in the region where β is not constant. This
choice also ensures ω′

0(∂θ, ∂σ) > 0 everywhere on Vj × A. �

To find a symplectic extension of (3.11) over Σ × A, choose now a closed 1-form κ on Σ
which takes the form

κ = cj dθ

near each boundary component ∂jΣ; this is possible due to the homological condition (3.6).

Then if ω′
0 denotes the extension of Ψ̃∗ω0 given by Lemma 3.9, we extend (3.11) as

ω′
C := Cω′

0 + dφ ∧ κ.
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Whenever C is sufficiently large, Lemma 3.9 implies that this form is also symplectic and
restricts positively to the surfaces −Σ×{(τ, φ)} and {p}×A if p ∈ Σ lies outside a neighbor-
hood of the boundary. This implies that it is positive on the pages of π′, as well as on the

core K̂Σ = ([0, 1/2] × B̂0) ∪ (−Σ× {(0, 0)}) ⊂W and co-core K̂′
Σ = {p} × A ⊂W (cf. §1.2).

To summarize: we have constructed a smooth cobordism W with symplectic form ω′
C that

matches ωC nearM = {0}×M and is positive on the core and co-core and on the pages of the
induced blown up summed open book at the other boundary component M ′. An appropriate
confoliation 1-form λ′0 can now be defined on M ′ by

(3.13) λ′0 =

{
λ0 on M \ N (I0),

dφ on Σ± × S1,

where we use φ to denote the natural S1-coordinate on Σ±×S1. The distribution ξ′0 := ker λ′0
is then tangent to the pages on the glued in region, hence ω′

C |ξ′0 > 0. It follows that on any

connected component of M ′ that does not contain closed pages, ξ′0 has a perturbation to a
contact structure ξ′ that is supported by π

′ and dominated by ω′
C .

Remark 3.10. It will be useful later to observe that
∫
K̂Σ

ω′
C is not only positive but can be

assumed to be arbitrarily large. In fact it must in general be large due to the deformation
trick used in the proof of Lemma 3.9.

Remark 3.11. If the constants cj all vanish, i.e. Ω0 = 0 on N (I0), then one can choose the
1-form κ in the above construction to be identically zero. This has the useful consequence
that for any τ ∈ [−1, 1] and any closed embedded loop ℓ ⊂ Σ outside a neighborhood of ∂Σ,
the torus ℓ × {τ} × S1 ⊂ Σ × A is Lagrangian. More generally, if ℓ ⊂ Σ is any properly
embedded compact 1-dimensional submanifold transverse to ∂Σ, then

∫

ℓ×{τ}×S1

ω′
C = 0.

Indeed, with κ = 0 it is equivalent to show that the integral of ω′
0 vanishes, and using (3.12)

we find ∫

ℓ×{τ}×S1

ω′
0 =

∫

∂ℓ×{τ}×S1

η

since µ vanishes on the S1-factor in ∂ℓ × {τ} × S1. Since η is S1-invariant on S1 × A, this
integral doesn’t depend on the position of any point in ∂ℓ ⊂ ∂Σ but only on the algebraic
count of these points, which is zero, thus

∫

∂ℓ×{τ}×S1

η = #(∂ℓ)

∫

{(θ,τ)}×S1

η = 0.

Remark 3.12. The reader who is only interested in strong cobordisms, or more generally
the case where the negative boundary of the cobordism is (strongly) concave, may assume
throughout this section that Ω0 ≡ 0. In this case, the symplectic form we have defined on W
is exact near M ⊂ ∂W and has a primitive there which restricts to a constant multiple of
the contact form λǫ, so this boundary component is concave. The contents of this and the
next section therefore suffice to complete the proofs of Theorems 6 and 5 respectively if the
given ω on [0, 1]×M is exact: indeed, by [Eli91, Proposition 3.1], ω can then be deformed to
make it (strongly) convex at the positive boundary, so after a further deformation to match
the contact forms, the Liouville flow can be used to attach it smoothly to our model as long
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as the constant C > 0 is chosen sufficiently large. The case where ω is not exact requires the
additional deformation argument of §3.5 below.

3.4. Modifications for the capping cobordism. The above construction works essentially
the same way for the handle Σ×D, so we will be content to briefly summarize the differences.
Here we pick binding components

B0 = γ1 ∪ . . . ∪ γN ⊂ B

and denote the corresponding solid torus neighborhoods by N (γj) = S1×D with coordinates
(θ, ρ, φ), viewing (ρ, φ) as polar coordinates, and denote the union of these neighborhoods
by N (B0). The model symplectic form ωC on the trivial cobordism [0, 1]×M is again defined
via (3.7) and (3.8), with the difference that since every closed 2-form on N (γj) is exact, we
can assume (after adding an exact 2-form) that Ω0 vanishes on all of these neighborhoods.
The role of HTj is now played by a hypersurface

Hγj ⊂ [0, 1] ×N (γj)

parametrized by an embedding

Ψ : S1 × D → [0, 1] ×M,

thus defining a similar set of coordinates (θ, τ, φ) ∈ S1 × D on Hγj , where (τ, φ) are now
polar coordinates on D. We can again arrange Hγj to be transverse to the vector field Xθ,
defined exactly as before, and then use its flow to parametrize a neighborhood of Hγj in the

region Uγj that it bounds via a map

Ψ̃ : (1− δ, 1] × S1 × D →֒ [0, 1] ×N (γj) : (σ, θ, τ, φ) 7→ ϕσ−1
Xθ

(Ψ(θ, φ, τ))

for which Ψ̃∗ω0 again takes the form −d(σ dθ)+ dη for some 1-form η on S1×D that satisfies

η = [ϕ(τ) + 1] dφ

near S1 × ∂D and dθ ∧ dη > 0 everywhere. Denote the image of Ψ̃ corresponding to each γj
by Wj , with negatively oriented coordinates (σ, θ, τ, φ) ∈ (1 − δ, 1] × S1 × D. Writing the
union of the regions Uγj as UB0

, the smooth cobordism is then defined by

W = (([0, 1] ×M) \ UB0
) ∪ (−Σ× D),

where Σ × D is glued in by identifying Vj × D with Wj so that the coordinates match. This
has boundary ∂W =M ′ ⊔ (−M), where M = {0} ×M and

M ′ = (({1} ×M) \ N (B0)) ∪ (−Σ× S1),

hence the glued in region Σ×S1 carries the coordinates (σ, θ, φ) near its boundary. Choosing
a 1-form η0 on D that matches η near ∂D and satisfies dη0 > 0, the interpolation trick (3.12)
can again be used to deform ω0 in a collar neighborhood of ∂Σ × D so that it admits a
symplectic extension over the rest of Σ× D in the form ω′

0 = −dµ+ dη0. The resulting form
ω′
C = Cω′

0 +Ω0 is symplectic everywhere on W and is also positive on the pages of π′ at M ′

if C is sufficiently large, as well as on the core

(3.14) KΣ = ([0, 1/2] ×B0) ∪ (−Σ× {0}) ⊂W

and the co-core

K′
Σ = {p} × D ⊂W
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for an appropriate choice of p ∈ Σ. The confoliation 1-form extends smoothly over Σ × S1

as λ′0 = dφ, so that ω′
C is also positive on ξ′0 := ker λ′0 and thus dominates any contact form

obtained as a small perturbation.

3.5. Symplectic deformation in a collar neighborhood. To apply the constructions of
the previous sections in proving Theorems 5 and 6 when the given symplectic form ω on
[0, 1] × M dominating ξ is non-exact, we must show that ω can be deformed away from
{0} ×M to reproduce the model

(3.15) ωC = C d (ϕ(t)λ0 + λ) + Ω0,

where λ := λǫ and λ0 are 1-forms as described at the beginning of §3.3, ϕ : [0, 1] → R is a
smooth function with ϕ′ > 0, ϕ(0) = 0 and ‖ϕ‖L∞ small, Ω0 is some closed 2-form on M
in the appropriate cohomology class, and C > 0 is a constant that we can assume to be
as large as necessary. The following application of a standard Moser deformation argument
(cf. [NW11, Lemma 2.3]) will be useful.

Lemma 3.13. Suppose (W,ω) is a symplectic 4-manifold, M is a closed oriented 3-manifold
with an embedding Φ :M →֒W and λ is a 1-form on M that satisfies λ∧Φ∗ω > 0. Then for
sufficiently small ǫ > 0, Φ extends to an embedding

Φ̃ : (−ǫ, ǫ)×M →֒W

such that Φ̃(0, ·) = Φ and Φ̃∗ω = d(tλ) + Φ∗ω.

Observe that if M ⊂W is an oriented hypersurface in a symplectic 4-manifold (W,ω) with
a positive contact structure ξ, then ω dominates ξ if and only if it satisfies

λ ∧ ω|TM > 0

for every contact form λ on (M, ξ). Using the obvious variants of Lemma 3.13 when the
hypersurface is a positive or negative boundary component of W , we obtain the following
useful consequence:

Lemma 3.14. Suppose (M, ξ) is a closed contact 3-manifold and ((−1, 0] × M,ω−) and
([0, 1) × M,ω+) are two symplectic manifolds such that the restrictions of ω− and ω+ to
{0}×M define the same 2-form Ω on M , with Ω|ξ > 0. Then for any small ǫ > 0, (−1, 1)×M
admits a symplectic form which matches ω+ on [ǫ, 1) ×M and ω− on (−1,−ǫ]×M .

Proposition 3.15. Suppose (M, ξ) is any closed contact 3-manifold with contact form λ, λ0
is a 1-form on M satisfying λ0 ∧ dλ > 0, ω is a symplectic form on [0, 1] ×M with ω|ξ > 0,
and Ω0 is a closed 2-form on M with [Ω0] = [ω|TM ] ∈ H2

dR(M). Then for any δ ∈ (0, 1) and
sufficiently large C > 0, there exists a symplectic form ω′ on [0, 1] ×M that matches ω on a
neighborhood of {0} ×M and takes the form (3.15) on [δ, 1] ×M .

Proof. By Lemma 3.13 we can assume without loss of generality that ω has the form

ω = d(tλ) + Ω,

near {0} ×M , where Ω is the closed 2-form on M defined as the restriction of ω to {0} ×M .
The proof now proceeds in two steps, of which the first is to put the symplectic structure

ωC of (3.15) into a slightly simpler form via a coordinate change near {0} ×M . Define the
1-form

Λ0 = ϕ(t)λ0 + λ
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on [0, 1] ×M and write ω0 := dΛ0, so ωC = Cω0 +Ω0. Let V denote the vector field that is
ωC-dual to CΛ0, i.e. ωC(V, ·) = CΛ0. For C sufficiently large, V is then a small perturbation
of the vector field that is ω0-dual to Λ0, which is a Liouville (with respect to ω0) vector field
positively transverse to {0} ×M since Λ0|{0}×M = λ is contact. Hence we may assume V is

also positively transverse to {0} ×M and use its flow ϕtV to define an embedding

ψ : [0, ǫ) ×M →֒ [0, 1] ×M : (t,m) 7→ ϕtV (m)

for ǫ > 0 sufficiently small. If Xλ denotes the Reeb vector field determined by λ, along
{0} ×M we then have

ι∂t(ψ
∗ωC) = Cλ

and

ψ∗ωC |T ({0}×M) = C dλ+Ω0.

Hence ψ∗ωC matches the symplectic form d(t Cλ) + C dλ + Ω0 pointwise at {0} ×M , and
another Moser deformation argument thus allows us to isotop the embedding ψ so that ψ∗ωC
takes this form on some neighborhood of {0} ×M . Equivalently, this means ωC admits a
deformation to a new symplectic form ω′

C which takes the form

(3.16) ω′
C = d(tCλ) + C dλ+Ω0

on an arbitrarily small neighborhood of {0}×M and matches the original ωC outside a slightly
larger neighborhood.

For step two, we show that the given ω can be deformed outside a small neighborhood of
{0} ×M to a new symplectic form ω′ that matches (3.16) outside a slightly larger neighbor-
hood. Indeed, choose a constant C ′ > 0 large enough so that

(C ′ dλ+Ω0)|ξ > 0,

and since Ω and Ω0 are cohomologous by assumption, choose a 1-form η on M such that
C ′ dλ+Ω0 − Ω = dη. For some δ > 0 small, choose a cutoff function β(t) that equals 0 near
t = 0 and 1 near t = δ, and define

ω′ = d (f(t)λ) + Ω + d (β(t) η) ,

with f : [0, δ] → [0,∞) a smooth function satisfying

• f(t) = t near t = 0,
• f ′ > 0,
• f(δ) + C ′ = C(δ + 1).

If f is chosen to increase sufficiently fast, then ω′ is symplectic, and this can always be arranged
if C > 0 is made sufficiently large. This depends in particular on the fact that the 2-forms
Ω and C dλ + Ω0 are both positive on ξ. The restrictions of ω′ and ω′

C to the hypersurface
{δ} ×M now match, thus the two can be glued together smoothly by Lemma 3.14. �

Combining Proposition 3.15 with the cobordism constructions of §3.3 and §3.4 completes
the proofs of Theorems 5 and 6.
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3.6. Cohomology. We now prove Theorems 5′ and 6′ by characterizing the situations in
which ω can be made exact on W or on M ′

convex.
Assume first that (W,ω) is a Σ-capping cobordism ([0, 1] ×M) ∪HΣ, with HΣ = −Σ× D

attached along a neighborhood N (B0) of B0 = γ1 ∪ . . . ∪ γN . Write ∂W =M ′ ⊔ (−M) and

Ω := ω|TM , Ω′ := ω|TM ′ .

Due to §3.5, we may assume without loss of generality that Ω has the form

(3.17) Ω = C dλ+Ω0

where C > 0 is arbitrarily large, λ is the usual contact form on M and Ω0 vanishes on N (B0).
By Remark 3.10, we can also assume in the following that

∫
KΣ

ω is arbitrarily large.

The decomposition of W into [0, 1] ×M and HΣ, which intersect at N (B0) ⊂ {1} ×M ,
gives rise to the Mayer-Vietoris sequence,

. . .→ H2(N (B0)) → H2(M)⊕H2(HΣ) → H2(W ) → H1(N (B0)) → H1(M)⊕H1(HΣ) → . . .

in which H2(N (B0)) = H2(HΣ) = 0, H1(HΣ) = H1(Σ) and H1(N (B0)) = H1(B0) = ZN .
Thus there is an isomorphism

H2(W ) ∼= im
(
H2(M) →H2(W )

)

⊕ ker
(
H1(N (B0)) → H1(M)⊕H1(HΣ)

)
,

(3.18)

in which the first summand is an isomorphic copy of H2(M). Denote by ιM : N (B0) →֒ M
and ιΣ : N (B0) →֒ HΣ the natural inclusions. Then ιΣ∗ ([γj ]) = [∂jΣ] ∈ H1(Σ) = H1(HΣ),
so since Σ is connected, ker ιΣ∗ is isomorphic to Z and is generated by [γ1] + . . . + [γN ]. It
follows that the second summand in (3.18) consists of all integer multiples of [γ1] + . . .+ [γN ]
which are also in ker ιM∗ , i.e. it is isomorphic to Z if [γ1] + . . . + [γN ] is torsion in H1(M),
and is otherwise trivial. In the former case, let k0 ∈ N be the smallest number for which
k0([γ1] + . . .+ [γN ]) = 0 ∈ H1(M), and construct a cycle Ak0 ∈ H2(W ) in the form

(3.19) Ak0 = CM + k0[KΣ],

where CM is any 2-chain in {0}×M with ∂CM = k0([γ1]+ . . .+[γN ]) and KΣ ⊂W is the core
(3.14). The isomorphism (3.18) implies that everything in H2(W ) is an element of H2(M)
plus an integer multiple of (3.19).

Let h denote a real 1-cycle in M \ N (B0) such that [h] = PD([Ω]) ∈ H1(M ;R); note that
this is always possible since Ω is necessarily exact on N (B0). The product [0, 1] × h then
represents a relative homology class in H2(W,∂W ;R).

Proposition 3.16. There is a number c > 0 such that PD([ω]) = [0, 1] × [h] + c[K′
Σ] ∈

H2(W,∂W ;R).

Proof. It suffices to show that for every A ∈ H2(W ), the evaluation of ω on A matches the
intersection product

(3.20)

∫

A

ω = A •
(
[0, 1] × [h] + c[K′

Σ]
)
.

For any A ∈ im(H2(M) → H2(W )) this is immediately clear since
∫

A

ω =

∫

A

Ω = A • [h],



40 CHRIS WENDL

where the latter is the intersection product in M , and A does not intersect anything in the
handle. By (3.18), either the image of H2(M) → H2(W ) is the entirety of H2(W ) or there is
one more generator Ak0 = CM + k0[KΣ]. For the latter we have

∫

Ak0

ω =

∫

CM

Ω+ k0

∫

KΣ

ω

and

Ak0 •
(
[0, 1] × [h] + c[K′

Σ]
)
= CM • [h] + k0c,

so (3.20) is satisfied if and only if

c =

∫

KΣ

ω +
1

k0

(∫

CM

Ω− CM • [h]

)
.

This is positive without loss of generality since
∫
KΣ

ω was assumed to be arbitrarily large. �

The above argument also shows that if {0} ×M ⊂ (W,ω) is concave, then ω can never be
exact if [γ1] + . . . + [γN ] ∈ H1(M) is torsion, even without assuming

∫
KΣ

ω to be arbitrarily

large. Indeed, in this case we have Ω = dλ for a contact form λ on (M, ξ), and [h] = 0, hence

∫

Ak0

ω =

∫

CM

dλ+ k0

∫

KΣ

ω = k0

N∑

j=1

∫

γj

λ+ k0

∫

KΣ

ω > 0,

and

c =

∫

KΣ

ω +

N∑

j=1

∫

γj

λ > 0.

On the other hand if [γ1]+. . .+[γN ] ∈ H1(M) is not torsion, thenH2(M) generates everything
in H2(W ), so

∫
A
ω always vanishes since Ω is exact. This proves the first half of Theorem 5′.

We also conclude from the above that if {0} × M ⊂ (W,ω) is concave, then there is a
constant c > 0 such that

PD([Ω′]) = c[∂K′
Σ] ∈ H1(M

′;R),

so the second half of the theorem is proved by showing that [∂K′
Σ] = 0 ∈ H1(M

′;R) if and only
if the stated homological condition on γ1, . . . , γN is satisfied. Writing M ′ = (M \ N (B0)) ∪
(−Σ× S1), we obtain the Mayer-Vietoris sequence

. . .→ H2(M
′) → H1(∂N (B0)) → H1(M \B0)⊕H1(Σ × S1) → . . . ,

where H1(∂N (B0)) ∼= Z2N , with each component ∂N (γj) carrying the two distinguished
generators µj, λj defined in §1. Denote the inclusions ιM : ∂N (B0) → M \ B0 and ιΣ :

∂N (B0) → Σ×S1. Then ιΣ∗ λj = [∂jΣ×{∗}] ∈ H1(Σ×S1) and ιΣ∗ µj = [{∗}×S1] ∈ H1(Σ×S1),
so ker ιΣ∗ consists of all classes of the form

k
N∑

j=1

λj +
N∑

j=1

mjµj

with k,m1, . . . ,mN ∈ Z and
∑

jmj = 0. Now, [∂K′
Σ] is represented by the cycle {∗} × S1 ⊂

Σ× S1 ⊂M ′, and it vanishes in H1(M
′;R) if and only if

A • [{∗} × S1] = 0
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for every A ∈ H2(M
′). This is true if and only if the image of the mapH2(M

′) → H1(∂N (B0))
in the above sequence contains only cycles of the form

∑
jmjµj. In light of the above

description of ker ιΣ∗ , this is true if and only if

k(λ1 + . . .+ λN ) 6∈ ker ιM∗

for all k 6= 0. This completes the proof of Theorem 5′.

The proof of Theorem 6′ proceeds similarly: AssumeW = ([0, 1]×M)∪ĤΣ is a Σ-decoupling

cobordism, with ĤΣ = −Σ× A attached along a neighborhood N (I0) of I0 = T1 ∪ . . . ∪ TN ,
write ∂W = M ′ ⊔ (−M), Ω := ω|TM and Ω′ := ω|TM ′ . We again assume that

∫
K̂Σ

ω is

arbitrarily large, and that Ω takes the form of (3.17), and we also impose the extra condition
∫

Tj

Ω = 0 for every component Tj ⊂ I0.

In this case we can find a real 1-cycle h in M \ N (I0) that represents PD([Ω]) ∈ H1(M ;R).
Without changing the cohomology class or the symplectic properties of ω, we can then also
assume that Ω0 is supported in a tubular neighborhood of the cycle h.

Recall from §1 that each oriented torus Tj ⊂ I0 comes with a distinguished homology basis
{µj , λj} ⊂ H1(Tj), where λj is a boundary component of a page and µj is represented by
a Legendrian loop in Tj. This also gives rise to bases {µ±j , λ

±
j } of H1(∂±N (Tj)), where the

orientation of µ−j is reversed compared with µj. For W = ([0, 1] ×M) ∪ ĤΣ we have the
Mayer-Vietoris sequence

. . .→ H2(M)⊕H2(ĤΣ) → H2(W ) → H1(N (I0)) → H1(M)⊕H1(ĤΣ) → . . .

and resulting isomorphism

H2(W ) ∼= im
(
H2(M)⊕H2(ĤΣ) →H2(W )

)

⊕ ker
(
H1(N (I0)) → H1(M)⊕H1(ĤΣ)

)
.

(3.21)

Denote the generator ofH1(A) = Z by [S1], which can also naturally be regarded as a primitive

class in H1(ĤΣ) = H1(Σ) ⊕ H1(A). Then writing the inclusions as ιM : N (I0) →֒ M and

ιΣ : N (I0) →֒ ĤΣ, we have ιΣ∗ (λj) = [∂jΣ × {∗}] and ιΣ∗ (µj) = [S1], hence ker ιΣ∗ consists of
all classes of the form

k
N∑

j=1

λj +
N∑

j=1

mjµj

for k,m1, . . . ,mN ∈ Z with
∑

jmj = 0. For any Γ ∈ H1(I0) of this form which is also

nullhomologous in M , we can form a cycle AΓ ∈ H2(W ) as follows. First choose a 2-chain
CM in {0} ×M with ∂CM = Γ. Choose also a 1-chain ℓ in Σ with boundary in ∂Σ such that

the 2-chain ℓ× {∗} × S1 in ĤΣ has boundary

∂(ℓ× {∗} × S1) = −
N∑

j=1

mjµj,

which is always possible since
∑

jmj = 0. We can represent ℓ by a properly immersed

submanifold in Σ so that by Remark 3.11,
∫
ℓ×{∗}×S1 ω = 0. Now extend ℓ× {∗} × S1 to a 2-

chain inW with boundary in {0}×M by attaching trivial cylinders over the appropriate covers
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of Legendrian representatives of µj . Since these cylinders are Lagrangian, this construction
yields an immersed submanifold Lℓ ⊂W which satisfies

(3.22)

∫

Lℓ

ω = 0

and ∂Lℓ ⊂ I0 ⊂ {0} ×M , with [∂Lℓ] = −
∑

jmjµj ∈ H1(I0). We define AΓ ∈ H2(W ) by

(3.23) AΓ = CM + [Lℓ] + k[K̂Σ].

Proposition 3.17. There is a number c > 0 such that PD([ω]) = [0, 1] × [h] + c[K̂′
Σ] ∈

H2(W,∂W ;R).

Proof. The goal is again to prove

(3.24)

∫

A

ω = A •
(
[0, 1] × [h] + c[K̂′

Σ]
)

for every A ∈ H2(W ), and it is again immediate if A ∈ im(H2(M) → H2(W )). It is also clear

for A ∈ im(H2(ĤΣ) → H2(W )), as H2(ĤΣ) is generated by classes of the form ℓ′ × [S1] for
ℓ′ ∈ H1(Σ), hence both sides of (3.24) vanish (see Remark 3.11).

The rest of H2(W ) is generated by classes of the form AΓ defined in (3.23), for which
∫

AΓ

ω =

∫

CM

Ω+ k

∫

K̂Σ

ω

in light of (3.22). Similarly, Lℓ does not intersect either [0, 1] × h or K̂′
Σ, thus

Aγ •
(
[0, 1] × [h] + c[K̂′

Σ]
)
= CM • [h] + kc,

and (3.24) is thus satisfied if and only if

c =

∫

K̂Σ

ω +
1

k

(∫

CM

Ω− CM • [h]

)
,

which is positive if
∫
K̂Σ

ω is made sufficiently large. To see that this formula for c doesn’t

depend on any choices, observe that if Ω is exact, then h = 0 and Ω = C dλ, so
∫

CM

Ω− CM • [h] = C

∫

∂CM

λ

is proportional to k, as the integral of λ vanishes on all the meridians µj. When Ω is not
exact but equals C dλ+Ω0 with Ω0 supported in a tubular neighborhood of h, we can find a
real homology class B ∈ H2(M ;R) with B • [h] = CM • [h] and thus define a real 2-chain

C ′
M := CM −B

with ∂C ′
M = ∂CM and C ′

M • [h] = 0. Then up to relative homology, C ′
M can be represented

by a real linear combination of immersed surfaces that have no geometric intersection with h,
hence

∫
C′
M
Ω0 = 0. Now since

∫
B
Ω = B • [h],

∫

CM

Ω− CM • [h] =

∫

C′
M

Ω = C

∫

C′
M

dλ = C

∫

∂CM

λ,

and this is again proportional to k. �
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If {0} ×M ⊂ (W,ω) is concave, then writing h = 0 and Ω = dλ gives
∫

AΓ

ω =

∫

Γ
λ+ k

∫

K̂Σ

ω

for any cycle Γ = k(λ1+. . .+λN )+
∑

jmjµj ∈ H1(I0) with
∑

jmj = 0 that is nullhomologous

in M . Since
∫
Γ λ is also positively proportional to k, this proves that ω is exact if and only

if there is no such nullhomologous cycle Γ with k > 0. Moreover, PD([Ω′]) = c[∂K̂′
Σ] ∈

H1(M
′;R) for some c > 0, so it remains to characterize the situations where this homology

class vanishes. WriteM ′ = (M \N (I0))∪(−Σ+×S1)∪(−Σ−×S1) and consider the resulting
Mayer-Vietoris sequence

. . . → H2(M
′) → H1(∂N (I0)) → H1(M \ I0)⊕H1((Σ+ ⊔ Σ−)× S1) → . . . ,

where H1(∂N (I0)) is freely generated by the 4N cycles µ±j , λ
±
j . Denote the inclusions ιM :

∂N (I0) →M \ I0 and ιΣ : ∂N (I0) → (Σ+ ⊔ Σ−)× S1, where the latter maps ∂±N (Tj) into
Σ± × S1. Then ιΣ∗ λ

±
j = [∂jΣ × {∗}] ∈ H1(Σ± × S1) and ιΣ∗ µ

±
j = [{∗} × S1] ∈ H1(Σ± × S1),

thus ker ιΣ∗ consists of all classes of the form

(3.25) k+

N∑

j=1

λ+j + k−

N∑

j=1

λ−j +
N∑

j=1

m+
j µ

+
j +

N∑

j=1

m−
j µ

−
j ,

with k±,m
±
1 , . . . ,m

±
N ∈ Z satisfying

∑
jm

+
j =

∑
jm

−
j = 0. The co-core K̂′

Σ has two boundary

components, one generating each of the cycles {∗}×S1 ⊂ Σ±×S1 ⊂M ′, which we will denote

by [S1]± ∈ H1(M
′). Thus [∂K̂′

Σ] vanishes in H1(M
′;R) if and only if

A • ([S1]+ + [S1]−) = 0

for every A ∈ H2(M
′). This is true if and only if the image of the map H2(M

′) → H1(∂N (I0))
in the above sequence contains only cycles of the form (3.25) with k++k− = 0, meaning that
cycles of this form with k+ + k− 6= 0 are never trivial in H1(M \ I0).

We’ve now characterized the cases in which Ω′ is globally exact on M ′; of course this never
happens if M ′

flat 6= ∅ since the latter then contains closed pages on which Ω′ is positive. If
both M ′

convex and M ′
flat are nonempty, then the interesting question is when Ω′ will be exact

on M ′
convex, which is the case if and only if

[∂K̂′
Σ ∩M ′

convex] = 0 ∈ H1(M
′
convex;R).

Assuming the labels are chosen so that Σ+×S
1 ⊂M ′

convex and Σ−×S
1 ⊂M ′

flat, [∂K̂
′
Σ∩M

′
convex]

is now represented by {∗}×S1 ⊂ Σ+×S1, and a repeat of the above argument shows that this
cycle vanishes if and only if H1(∂N (I0)) contains no cycle of the form (3.25) which vanishes
in H1(M \I0) and has k+ 6= 0. We observe however that in this situation, I0 must separateM
so that each ∂+N (Tj) lies in a different connected component of M \ I0 from each ∂−N (Ti),
hence a cycle of the form (3.25) vanishes in H1(M \I0) if and only if both the plus and minus
parts vanish. Our condition is thus reduced to the nonexistence of a cycle

k

N∑

j=1

λ+j +

N∑

j=1

mjµ
+
j

with k 6= 0 that vanishes in H1(M \ I0).
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3.7. Proofs of the results from §1.1.

Proofs of Theorems 1 and 2. To prove Theorem 2, suppose (M, ξ) contains an Ω-separating
planar k-torsion domain M0 for some closed 2-form Ω with Ω|ξ > 0 and an integer k ≥ 1.
Then

∫
T
Ω = 0 for every interface torus T in M0 that lies in the planar piece, so we are free

to remove any such torus by attaching a D-decoupling cobordism whose symplectic structure
matches Ω atM . By Proposition 3.4, one can find a binding component γ or interface torus T
such that if (W,ω) with ∂W =M ′ ⊔ (−M) denotes the result of attaching the corresponding
D-capping or D-decoupling cobordism respectively, then M ′ contains a planar torsion domain
of order either k − 1 or k − 2. Writing Ω′ := ω|TM ′ , the latter is also Ω′-separating since
near each of the remaining interface tori, which lie outside the region of surgery, ω is still
cohomologous to the original Ω. The process can therefore be repeated until the manifold at
the top has planar 0-torsion, meaning it is overtwisted.

Theorem 1 is essentially the special case of Theorem 2 for which we assume Ω is exact
to start with, except that the above argument actually gives a weak symplectic cobordism
(W,ω) from (M, ξ) to some overtwisted (MOT, ξOT), where we can assume M ⊂ (W,ω) is
concave and MOT ⊂ (W,ω) is not necessarily convex, but ω|ξOT

> 0. This can now be
turned into a strong cobordism by the following trick which was suggested to me by David
Gay: first, observe that if MOT is a rational homology sphere, then ω is exact near MOT

and can thus be deformed to make MOT convex using the argument of Eliashberg in [Eli91,
Proposition 3.1]. Otherwise, take any knot K ⊂ MOT that is nontrivial in H1(MOT;Q),
and isotop it if necessary so that it is disjoint from some overtwisted disk. Then after a
C0-small perturbation to make K Legendrian, one can attach a symplectic 2-handle along K
so that the new positive boundary becomes an overtwisted contact manifold (M ′

OT, ξ
′
OT) with

dimH1(M
′
OT;Q) = dimH1(MOT;Q) − 1, see Lemma 3.18 below. Repeating this process

enough times, the positive boundary eventually becomes an overtwisted rational homology
sphere, so that the weak cobordism can be deformed to a strong one. �

The final step in the above proof is justified by the following simple homological lemma:

Lemma 3.18. Suppose M is a closed oriented 3-manifold, K ⊂M is a knot with [K] 6= 0 ∈
H1(M ;Q) and M ′ is the result of performing Dehn surgery along K with any framing. Then
dimH1(M

′;Q) = dimH1(M ;Q)− 1.

Proof. As preparation, suppose K is any knot in a closed oriented 3-manifold M , denote a
neighborhood of K in M by NK and let (µ, λ) denote any basis of H1(∂NK) such that µ is a
meridian. If ι : ∂NK →֒M \K denotes the inclusion, we claim that

dimH1(M ;Q) =

{
dimH1(M \K;Q) if ι∗µ = 0 ∈ H1(M \K;Q),

dimH1(M \K;Q)− 1 if ι∗µ 6= 0 ∈ H1(M \K;Q).

This follows from the Mayer-Vietoris sequence for M = NK ∪ (M \K):

. . . H2(M ;Q) → H1(∂NK ;Q)
Φ
→ H1(NK ;Q)⊕H1(M \K;Q) → H1(M ;Q) → H0(∂NK ;Q) . . .

Since any 1-cycle in M can be disjoined from NK , the map H1(M ;Q) → H0(∂NK ;Q) in this
sequence is trivial, thus exactness implies

H1(M ;Q) ∼= (H1(NK ;Q)⊕H1(M \K;Q))
/
imΦ.
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The map Φ : H1(∂NK ;Q) → H1(NK ;Q) ⊕H1(M \ K;Q) is nontrivial since λ maps to the
generator of H1(NK ;Q) = Q. Since µ maps to 0 in H1(NK ;Q), imΦ is thus 1-dimensional if
and only if ι∗µ = 0 ∈ H1(M \K;Q), and is otherwise 2-dimensional. This proves the claim.

Now assume [K] 6= 0 ∈ H1(M ;Q), and we are given a framing such that λ is the preferred
longitude. This implies immediately that ι∗λ 6= 0 ∈ H1(M \ K;Q). Likewise, ι∗µ = 0 ∈
H1(M \ K;Q): to see this, note that by the nondegeneracy of the intersection form, there
exists a 2-cycle C in M such that [C] • [K] = 1, hence the restriction of C to the complement
of NK defines a chain whose boundary is µ; alternatively, one can also derive this from the
exact sequence above by considering the image of [C] under H2(M ;Q) → H1(∂NK ;Q). We
therefore have dimH1(M ;Q) = dimH1(M \K;Q) by the claim above. If M ′ is now defined
by gluing another solid torus into M \NK such that λ becomes the meridian, then the claim
is again applicable and implies dimH1(M

′;Q) = dimH1(M \K;Q)− 1. �

Proof of Theorem 3. Suppose (M, ξ) contains an Ω-separating partially planar domain M0 ⊂
M with planar piece MP

0 ⊂ M0, where Ω is a closed 2-form on M satisfying Ω|ξ > 0. Then

for every binding circle or interface torus in MP
0 , we can attach D-capping or D-decoupling

cobordisms to produce a symplectic manifold (W,ω) with ∂W =M ′ ⊔ (−M), ω|TM = Ω and

M ′ =M ′
flat ⊔M

′
convex,

where M ′
flat contains a component that is a symplectic S2-fibration over S1, and M ′

convex

carries a contact structure ξ′ with ω|ξ′ > 0. The desired cap is then obtained from (W,ω)
after capping M ′

flat ⊔M
′
convex via [Eli04] or [Etn04a]. �

Proof of Theorem 4. Note that since H2
dR(S

3) = 0, any weak cobordism from (M, ξ) to
(S3, ξ0) that is concave at M can be deformed to a strong cobordism, so it suffices to prove
that (S3, ξ0) can be obtained from (M, ξ) by a finite sequence of (generally weak) capping
and decoupling cobordisms.

Suppose M0 ⊂ M is a partially planar domain. If it is also a planar torsion domain then
the result already follows from Corollary 1, thus assume not. If M0 has only one irreducible
subdomain with nonempty binding, we can remove binding components by D-capping cobor-
disms and interface tori by D-decoupling cobordisms until the planar piece has exactly one
binding component left and no interface or boundary, which means it is the tight S3. The
desired cobordism can then be obtained by capping any additional components that may
remain at the end of this process.

If M0 has more than one irreducible subdomain but does not have planar torsion, then it
must be symmetric (see Definition 3.2). This means thatM =M0, the binding and boundary
are empty and the interface tori divide M into exactly two irreducible subdomains that have
diffeomorphic planar pages. Then we can remove interface tori by D-decoupling cobordisms
until exactly one remains, and the resulting contact manifold is the tight S1 ×S2. The latter
is cobordant to S3 by a D-capping cobordism that removes one binding component from the
supporting open book with cylindrical pages and trivial monodromy.

Theorem 4′ follows essentially by the same argument since every planar open book is also a
fully twisted partially planar domain. We only need to add that the topological construction
of the cobordism by attaching 2-handles along binding components does not depend on the
choice of 2-form Ω on M , which after the deformation carried out in §3.5, always looks the
same on a large tubular neighborhood of the binding. �
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3.8. Holomorphic curves. For applications to Embedded Contact Homology and Symplec-
tic Field Theory among other things, it may be quite helpful to observe that the cobordism
(W,ω) generally admits not only a symplectic structure but also a foliation by J-holomorphic
curves. We don’t plan to pursue this here in full detail, but we shall give a sketch of the general
picture. For simplicity, we consider only the Σ-decoupling cobordism along I0 = T1∪ . . .∪TN
in the case where the negative boundary component (M, ξ) is concave, so we can arrange ω
near {0} ×M to have the form

(3.26) ω = d (ϕ(t)λ0 + λ)

as in §3.3, where λ0 and λ are the confoliation 1-form and contact form respectively that were
constructed in §3.2. These have the following convenient properties:

• λ0 ∧ dλ > 0
• ker dλ ⊂ ker dλ0

Together with the obvious fact that dλ is closed, these properties mean that the pair (λ0, dλ)
is a stable Hamiltonian structure, to which we associate the co-oriented distribution
ξ0 = ker λ0 and positively transverse vector field X0 on M such that

λ0(X0) ≡ 1, dλ(X0, ·) ≡ 0.

Similarly, writing Ω′ := ω|TM ′ and recalling the confoliation 1-form λ′0 defined onM ′ by (3.13),
the pair (λ′0,Ω

′) forms a stable Hamiltonian structure onM ′, and we define the corresponding
distribution ξ′0 = ker λ′0 and vector field X ′

0 on M ′ such that

λ′0(X
′
0) ≡ 1, Ω′(X ′

0, ·) ≡ 0.

In fact, on components of M ′ where the pages are not closed, one can show with a little more
effort that λ′0 admits a perturbation to a contact form λ′ on M ′ such that ξ′ := ker λ′ is
dominated by Ω′, where

Ω′ = F dλ′

for some smooth function F :M ′ → (0,∞) that satisfies dF ∧ dλ′ ≡ 0 and is constant outside

a neighborhood of the boundary of the co-core, ∂K̂′
Σ ⊂M ′, hence X ′

0 is colinear with the Reeb
vector field determined by λ′. There is now a collar neighborhood (−ǫ, 0] ×M ′ ⊂ W of M ′

on which ω takes the form d(tλ′0) + Ω′, thus we can attach positive and negative cylindrical
ends to define the completion of (W,ω),

W∞ :=W ∪ ((−∞, 0] ×M) ∪
(
[0,∞)×M ′

)

and extend ω symplectically so that it takes the form d(ϕ(t)λ0) + dλ on (−∞, 0] ×M and
d(ψ(t)λ′0)+Ω′ on [0,∞)×M ′ for suitable choices of functions ϕ and ψ. Equivalently, (W∞, ω)
can be constructed directly from the symplectization of (M, ξ) as follows: extend the function
ϕ(t) to R so that (3.26) defines a symplectic form on R × M , and extend the “hole” UI0
defined in §3.3 to a hole in R×M by including the interior of the region (1,∞)×N (I0); let

U∞
I0 ⊂ R×M

denote the extended hole. Then (W∞, ω) can be obtained by removing U∞
I0

from (R ×
M,d(ϕ(t)λ0 + λ)) and replacing it with the completion of the round handle,

Ĥ∞
Σ := Σ× (−∞,∞)× S1,

extending the symplectic form over Ĥ∞
Σ by an adaptation of the argument in §3.3.
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An almost complex structure J on (W∞, ω) is now admissible if it is ω-compatible on W
and is compatible with the stable Hamiltonian structures on both cylindrical ends, meaning
it is R-invariant, restricts to a complex structure on the respective distributions ξ0 and ξ′0
defining the correct orientations, and maps the unit vector ∂t in the R-direction to the vector
field X0 or X ′

0.
It was shown in [Wen] that for a suitable choice of almost complex structure J0 on R×M

compatible with (λ0, dλ), the pages of the blown up summed open book π in M0 admit lifts
to embedded J0-holomorphic curves in R×M which match the fibers of the mapping torus Sψ
outside of the neighborhoods Ni of B ∪ I ∪ ∂M0, have positive cylindrical ends approaching
closed orbits of X0 in B ∪I ∪∂M0 and satisfy a suitable finite energy condition. We can now
define an admissible almost complex structure on (W∞, ω) which matches J0 outside of U∞

I0

and is ω-compatible on Ĥ∞
Σ . The J0-holomorphic curves in (R×M)\U∞

I0
can be extended into

Ĥ∞
Σ as symplectic surfaces that are diffeomorphic to Σ and foliate Ĥ∞

Σ , thus we can extend J0
into the handle so that it is ω-compatible and these surfaces become J0-holomorphic. In doing
this, we can also make the natural completion of the core

K̂Σ,∞ := K̂Σ ∪
B̂0

((−∞, 0]× B̂0)

J0-holomorphic, as well as its translations under the S1-action by translating the local φ-
coordinates, and the completion of the co-core

K̂′
Σ,∞ := K̂′

Σ ∪
∂K̂′

Σ

([1,∞) × ∂K̂′
Σ).

The result is a foliation of W∞ (or at least the region outside of R × (M \M0)) by finite
energy J0-holomorphic curves. We summarize this construction as follows (see Figure 7).

Proposition 3.19. One can choose an admissible almost complex structure J0 on the com-
pletion (W∞, ω) of a Σ-decoupling cobordism (W,ω), such that there exists a foliation F by
embedded J0-holomorphic curves with the following properties:

(1) In each cylindrical end, the leaves of F match the holomorphic lifts of the pages of π
and π

′ constructed in [Wen].

(2) The completed core K̂Σ,∞ and all its S1-translations are leaves of F .
(3) The trivial cylinders over periodic orbits in B, ∂M0 and I \ I0 are all leaves of F .
(4) All other leaves of F have only positive cylindrical ends asymptotic to orbits in B ∪

(I \ I0)∪ ∂M , and they are homotopic in the moduli space to the holomorphic lifts of
the pages of π′ in [1,∞) ×M ′.

(5) The completed co-core K̂′
Σ,∞ is also J0-holomorphic and intersects the leaves of F

transversely.

In considering the behavior of holomorphic curve invariants under symplectic cobordisms,
a special role is typically played by curves that have no positive ends—such curves can only
exist in non-exact cobordisms. One useful application of the foliation constructed above is
that we can now characterize all such curves precisely:

Proposition 3.20. Suppose u : Σ̇ → W∞ is a finite energy J0-holomorphic curve that is
connected, somewhere injective and has no positive ends. Then u is a leaf of F , specifically

it is an S1-translation of the core K̂Σ,∞.

Proof. There are no curves without positive ends outside the region of surgery since here the
symplectic form is exact, thus we may assume u intersects both the handle and its complement.
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(M, ξ)

(M ′, ξ′)

N (T ), T ⊂ I0 N (∂M0)N (B)

Figure 7. The J0-holomorphic foliation described by Proposition 3.19 for
a Σ-decoupling cobordism, not including the cylindrical ends. The picture
shows the t and ρ coordinates near various binding, interface and boundary
components, including an interface torus T where a handle Σ × A has been
attached. The circles at the ends of leaves in this region represent capping

by Σ. The core K̂Σ,∞ is shown as the vertical leaf directly in the center, which
emerges from −∞ and is capped off in the handle.

If u is a leaf of F then it must be an S1-translation of the core, as all other leaves have positive
ends. If it is not a leaf of F then it has a positive intersection with some leaf v, and without
loss of generality we may suppose that v has only positive ends. Then v is homotopic in the
moduli space to a holomorphic lift of a page of π′, which we may assume lives in the region
[c,∞) × M ′ for an arbitrarily large number c > 0 and thus cannot intersect u. This is a
contradiction, due to positivity of intersections. �

To apply these constructions to ECH, or to Symplectic Field Theory for that matter, one
must perturb ξ0 and ξ′0 to contact structures and perturb J0 with them. The J0-holomorphic
leaves of F will not generally behave well under this perturbation: a leaf with only positive
ends for instance, if it has genus g, will have Fredholm index 2−2g and thus disappears under
any generic perturbation of the data unless g = 0. Proposition 3.20, however, should still
hold under a sufficiently small perturbation, because for any sequence Jk of perturbed almost
complex structures converging to J0, a sequence of Jk-holomorphic curves should converge in
the sense of [BEH+03] to a J0-holomorphic building, and Proposition 3.20 determines what
this building can look like. This is a variation on the uniqueness argument used in [Wen]
to prove vanishing of the ECH contact invariant: higher genus holomorphic curves do not
generically exist, but they remain useful for proving that no other curves can exist either.
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