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NON-EXACT SYMPLECTIC COBORDISMS BETWEEN CONTACT3-MANIFOLDSCHRIS WENDLAbstrat. We show that the pre-order de�ned on the ategory of ontat manifolds byarbitrary sympleti obordisms is onsiderably less rigid than its ounterparts for exat orStein obordisms: in partiular, we exhibit large new lasses of ontat 3-manifolds whih aresympletially obordant to something overtwisted, or to the tight 3-sphere, or whih admitsympleti aps ontaining sympletially embedded spheres with vanishing self-intersetion.These onstrutions imply new and simpli�ed proofs of several reent results involving �lla-bility, planarity and non-separating ontat type embeddings. The obordisms are built fromsympleti handles of the form �� D and �� [�1; 1℄�S1, whih have sympleti ores andan be attahed to ontat 3-manifolds along suÆiently large neighborhoods of transverselinks and pre-Lagrangian tori. We also sketh a onstrution of J-holomorphi foliations inthese obordisms and formulate a onjeture regarding maps indued on Embedded ContatHomology with twisted oeÆients. Contents1. Introdution 21.1. Some bakground and sample results 31.2. The main theorems on handle attahing 72. Further appliations, examples and disussion 162.1. The Gromov-Eliashberg theorem using holomorphi spheres 162.2. Eliashberg's obordisms from T 3 to S3 t : : : t S3 182.3. Gay's obordisms for Giroux torsion 182.4. Some new examples with M� 2M+ but M� �M+ 202.5. Open books with reduible monodromy 212.6. Etnyre's planarity obstrution 222.7. Some remarks on planar torsion 233. The details 243.1. Review of summed open books and planar torsion 243.2. A model for a blown up summed open book 273.3. A model deoupling obordism 303.4. Modi�ations for the apping obordism 363.5. Sympleti deformation in a ollar neighborhood 373.6. Cohomology 393.7. Proofs of the results from x1.1 443.8. Holomorphi urves 46Referenes 482010 Mathematis Subjet Classi�ation. Primary 57R17; Seondary 53D35, 57Q20, 53D42.Researh supported by an Alexander von Humboldt Foundation fellowship.1

2 CHRIS WENDL1. IntrodutionMany important notions and results in ontat topology an be expressed in terms of sym-pleti obordisms. For example, the existene of a sympleti obordism between partiularontat manifolds an be used to determine whether one of them is sympletially �llable,assuming the �lling properties of the other are already understood. Moreover, obordismsare intimately assoiated with various notions of surgery, e.g. Weinstein [Wei91℄ de�ned anotion of sympleti handle attahment in whih handles with Lagrangian ores an be at-tahed along Legendrian spheres in a ontat manifold (M; �), giving a Stein obordism (see[CE12℄) to the ontat manifold obtained from (M; �) by Legendrian surgery. In dimensionthree, Eliashberg [Eli04℄, Gay [Gay06℄ and Gay-Stipsiz [GS12℄ have de�ned various othertypes of surgeries on ontat manifolds that yield sympleti obordisms whih are not Stein.In some ases, these obordisms have also been shown to indue surprisingly well-behavedmorphisms for ertain ontat invariants, e.g. in Heegaard Floer homology [Bal℄. The obor-dism of [Gay06℄ and its preursor in [Eli96℄ yielded breakthroughs in the study of sympleti�llings, resulting in the proof that ontat manifolds with Giroux torsion are not strongly �ll-able. The latter result was reently reinterpreted by the author [Wen℄ in the wider ontext ofblown up summed open book deompositions, leading to an in�nite hierarhy of more general�lling obstrutions that an be deteted via holomorphi urves.The main purpose of the present artile is to show that the various seemingly unrelatedonstrutions of non-Stein obordisms mentioned above are all speial ases of a muh moregeneral phenomenon, whih arises naturally in the setting of blown up summed open booksand produes non-exat sympleti obordisms in many situations where exat or Stein obor-disms are forbidden. The overall pattern seems to be that while exat and Stein obordismsare rigidly onstrained by a variety of sympleti obstrutions (for instane in SympletiField Theory [LW11℄ or Heegaard Floer homology [Kar℄), non-exat sympleti obordismsare quite exible: they tend to exist whenever there is no obvious reason why they shouldnot.Our onstrutions are based on a new notion of generalized sympleti handles, whihhave sympleti ores and o-ores and an be attahed to ontat 3-manifolds along \suf-�iently wide" neighborhoods of transverse links and pre-Lagrangian tori. The notion of a\suÆiently wide" neighborhood here is somewhat subtle, and indiates that in ontrast toWeinstein handle attahment and many other forms of surgery, our surgery is not a truly loaloperation|e.g. the surgery along a transverse knot requires a neighborhood of a size that isonly guaranteed to exist in ertain situations, notably when the knot is one of several bindingomponents in a supporting open book.We begin by stating in x1.1 the essential de�nitions and explaining some existene resultsfor non-exat sympleti obordisms that follow from the handle onstrution. As easy appli-ations, these results imply new and substantially simpli�ed proofs of several reent theoremsof the author and ollaborators on obstrutions to sympleti �llings, ontat type embed-dings and embeddings of partially planar domains. The main results onerning the handleonstrution itself will be explained in x1.2, together with a simple appliation to EmbeddedContat Homology and a onjetured generalization. In x2 we disuss further appliationsand examples, providing a uni�ed framework for reproving several important previous resultsof Eliashberg, Gay, Etnyre and others involving the existene of sympleti obordisms. Thehard work is then undertaken in x3, of whih the �rst several setions onstrut the sympletihandles desribed in x1.2, x3.7 ompletes the proofs of the results stated in the introdution,
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NON-EXACT SYMPLECTIC COBORDISMS 3and x3.8 disusses the onstrution of a holomorphi foliation in the obordisms, whih we ex-pet should have interesting appliations in Embedded Contat Homology and/or SympletiField Theory.Aknowledgments. The writing of this artile bene�ted substantially from disussions withJohn Etnyre, David Gay, Mihael Huthings, Klaus Niederkr�uger, Andr�as Stipsiz, Cli�Taubes and Jeremy Van Horn-Morris. Several of these onversations took plae at the Marh2010 MSRI Workshop Sympleti and Contat Topology and Dynamis: Puzzles and Hori-zons. I would also like to thank Patrik Massot for suggesting the use of the term \o-�llable,"as well as Paolo Ghiggini and an anonymous referee, both of whom read the original versionquite arefully and made several suggestions for improving the exposition.1.1. Some bakground and sample results. In topology, an oriented obordism fromone losed oriented manifold M� to another M+ is a ompat oriented manifold W suhthat �W =M+ t (�M�). If W has dimension 2n and also arries a sympleti struture !,then it is natural to onsider the ase where (W;!) is sympletially onvex at M+ andonave at M�: this means there exists a vetor �eld Y near �W whih points transverselyoutward at M+ and inward at M�, and is a Liouville vetor �eld, i.e. LY ! = !. In this asethe 1-form � := �Y ! is a primitive of ! and its restrition to eah boundary omponent M�is a (positive) ontat form, meaning it satis�es � ^ (d�)n�1 > 0. The indued ontatstruture onM� is the o-oriented1 hyperplane �eld �� := ker (�jTM�), and up to isotopy itdepends only on the sympleti struture near the boundary. We thus all (W;!) a (strong)sympleti obordism from (M�; ��) to (M+; �+), and when suh a obordism exists, wesay that (M�; ��) is (strongly) sympletially obordant to (M+; �+). If � also extendsto a global primitive of !, or equivalently, Y extends to a global Liouville �eld on W , thenwe all (W;!) an exat sympleti obordism from (M�; ��) to (M+; �+). Whenever(M�; ��) and (M+; �+) are both onneted, we shall abbreviate the existene of a onnetedsympleti obordism from (M�; ��) to (M+; �+) by writing(M�; ��) 2 (M+; �+)for the general ase, and (M�; ��) � (M+; �+)for the exat ase.2When dimW = 4, it is also interesting to onsider a muh weaker notion: without assumingthat ! is exat near �W , we all (W;!) a weak sympleti obordism from (M�; ��) to(M+; �+) if �� are any two positive o-oriented (and hene also oriented) ontat struturessuh that !j�� > 0. We then say that ! dominates the ontat strutures on both boundaryomponents. In order to distinguish strong sympleti obordisms from this weaker notion,we will sometimes refer to onvex/onave boundary omponents of strong obordisms asstrongly onvex/onave.1Though ontat strutures need not be o-orientable in general, all ontat strutures onsidered in thispaper will be, and we shall regard the o-orientation always as an essential part of the data, though it willusually be suppressed in the notation.2The reason to single out onneted obordisms is that tehnially, every losed ontat 3-manifold (M; �) issympletially obordant to the standard ontat 3-sphere (S3; �0), namely via the disjoint union of a sympletiap for (M; �) with a sympleti �lling of (S3; �0). We will see however that if the obordism is required to beonneted, then the question of when (M; �) 2 (S3; �0) beomes an interesting one, f. Theorems 4, 40 and 10.

4 CHRIS WENDLIt is a standard fat that strong or exat sympleti obordisms an always be glued togetheralong ontatomorphi boundary omponents, thus the relations 2 and � de�ne preorders onthe ategory of losed and onneted ontat manifolds, i.e. they are reexive and transitive.They are neither symmetri nor antisymmetri, as is lear from some simple examples that weshall reall in a moment. Regarding the empty set as a trivial example of a ontat manifold,we say that (M; �) is weakly/strongly/exatly �llable if there exists a weak/strong/exatsympleti obordism from ; to (M; �). For example, the tight 3-sphere (S3; �0) is exatly�llable, as it is the onvex boundary of the unit 4-ball with its standard sympleti struture.There are many known examples of ontat 3-manifolds that are not �llable by these variousde�nitions: the original suh result, that the so-alled overtwisted ontat manifolds are notweakly �llable, was proved by Gromov [Gro85℄ and Eliashberg [Eli89℄. In ontrast, Etnyreand Honda [EH02℄ showed that every ontat 3-manifold admits a sympleti ap, meaningit is strongly obordant to ; (though never exatly, due to Stokes' theorem).There is an obvious obstrution to the relation (M�; ��) 2 (M+; �+) whenever (M�; ��) isstrongly �llable but (M+; �+) is not, e.g. (M�; ��) annot be the tight 3-sphere if (M+; �+)is overtwisted. Put another way, sympleti obordisms imply �lling obstrutions, as (M; �)annot be �llable if it is obordant to anything overtwisted. The following question may beviewed as a test ase for the existene of subtler obstrutions to sympleti obordisms.Question 1. Is every ontat 3-manifold (M; �) that is not strongly �llable also sympletiallyobordant to some overtwisted ontat manifold (MOT; �OT)?This question was open when the �rst version of the present artile appeared, but it hassine been answered in the negative: by an argument of Huthings [Hut℄, (M; �) 2 (MOT; �OT)implies that the ontat invariant in the Embedded Contat Homology of (M; �) must van-ish, and therefore (using [CGH℄), so does the Ozsv�ath-Szab�o ontat invariant. A negativeexample for Question 1 is therefore furnished by any non�llable ontat manifold with non-vanishing Ozsv�ath-Szab�o invariant; the �rst suh examples were found by Lisa and Stipsizin [LS04℄.The answer to the orresponding question for exat obordisms is muh less subtle: byan argument originally due to Hofer [Hof93℄, (M; �) � (MOT; �OT) implies that every Reebvetor �eld on (M; �) admits a ontratible periodi orbit, yet there are simple examples ofontat manifolds without ontratible orbits that are known to be non-�llable, e.g. all of thetight 3-tori other than the standard one. More generally, it has reently beome lear thatovertwistedness is only the �rst level in an in�nite hierarhy of �lling obstrutions alled planark-torsion for integers k � 0, f. [Wen℄. A ontat manifold is overtwisted if and only if it hasplanar 0-torsion, and there are many examples whih are tight or have no Giroux torsion buthave planar k-torsion for some k 2 N, and are thus not strongly �llable. The aforementionedargument of Hofer then generalizes to de�ne an algebrai �lling obstrution [LW11℄ that livesin Sympleti Field Theory and sometimes also gives obstrutions to exat obordisms fromk-torsion to (k � 1)-torsion. Our �rst main result says that no suh obstrutions exist fornon-exat obordisms, thus giving a large lass of ontat 3-manifolds for whih the answerto Question 1 is yes.Theorem 1. Every losed ontat 3-manifold with planar torsion admits a (non-exat) sym-pleti obordism to an overtwisted ontat manifold.This of ourse yields a new and omparatively low-teh proof of the fat, proved �rst in[Wen℄, that planar torsion obstruts strong �llings. It also generalizes a result proved by



NON-EXACT SYMPLECTIC COBORDISMS 5David Gay in [Gay06℄, that any ontat manifold with Giroux torsion at least 2 is obordantto something overtwisted; as shown in [Wen℄, positive Giroux torsion implies planar 1-torsion(f. x2.3). By a result of Etnyre and Honda [EH02℄, every onneted overtwisted ontatmanifold admits a onneted Stein obordism to any other onneted ontat 3-manifold, andGay [Gay06℄ showed that the word \onneted" an be removed from this statement at theost of dropping the Stein ondition. We thus have the following onsequene:Corollary 1. Every losed onneted ontat 3-manifold with planar torsion admits a on-neted strong sympleti obordism to every other losed ontat 3-manifold.It should be emphasized that due to the obstrutions mentioned above, Corollary 1 is nottrue for exat obordisms, not even if the positive boundary is required to be onneted.In fat, there is no known example of an exat obordism from anything tight to anythingovertwisted, and many examples that are tight but non-�llable (e.g. the 3-tori with positiveGiroux torsion) ertainly do not admit suh obordisms.There is also a version of Theorem 1 that implies the more general obstrution to weak�llings proved in [NW11℄. Reall (see De�nitions 3.1 and 3.3) that for a given losed 2-form 
 on a ontat 3-manifold (M; �), we say that (M; �) has 
-separating planar torsion ifit ontains a planar torsion domain in whih a ertain set of embedded 2-tori T all satisfyZT 
 = 0:If this is true for all losed 2-forms 
, then (M; �) is said to have fully separating planartorsion.Theorem 2. Suppose (M; �) is a losed ontat 3-manifold with 
-separating planar torsionfor some losed 2-form 
 on M with 
j� > 0. Then there exists a weak sympleti obordism(W;!) from (M; �) to an overtwisted ontat manifold, with !jTM = 
.Using a Darboux-type normal form near the boundary, weak sympleti obordisms anbe glued together along ontatomorphi boundary omponents of opposite sign wheneverthe restritions of the sympleti forms on the boundaries math (see Lemma 3.14). Thus if(M; �) has 
-separating planar k-torsion and admits a weak �lling (W;!) with [!jTM ℄ = [
℄ 2H2dR(M), then Theorem 2 yields a weak �lling of an overtwisted ontat manifold, and henea ontradition due to the well known theorem of Gromov [Gro85℄ and Eliashberg [Eli90℄. Wethus obtain a muh simpli�ed proof of the following result, whih was proved in [NW11℄ by adiret holomorphi urve argument and also follows from a omputation of the twisted ECHontat invariant in [Wen℄.Corollary ([NW11℄). If (M; �) has 
-separating planar torsion for some losed 2-form 
on M , then it does not admit any weak �lling (W;!) with [!jTM ℄ = [
℄ 2 H2dR(M). Inpartiular, if (M; �) has fully separating planar torsion then it is not weakly �llable.We now state some related results that also apply to �llable ontat manifolds. The afore-mentioned existene result of [EH02℄ for sympleti aps was generalized independently byEliashberg [Eli04℄ and Etnyre [Etn04a℄ to weak obordisms: they showed namely that forany (M; �) with a losed 2-form 
 that dominates �, there is a sympleti ap (W;!) with�W = �M and !jTM = 
. Our next result onerns a large lass of ontat manifolds forwhih this ap may be assumed to have a ertain very restritive property.

6 CHRIS WENDLTheorem 3. Suppose (M; �) is a ontat 3-manifold ontaining an 
-separating partiallyplanar domain M0 � M (see De�nition 3.1) for some losed 2-form 
 on M with 
j� >0. Then (M; �) admits a sympleti ap (W;!) suh that !jTM = 
 and there exists asympletially embedded 2-sphere S �W with vanishing self-intersetion number.As the work of MDu� [MD90℄ makes lear, sympleti manifolds that ontain sympletispheres of square 0 are quite speial, and for instane any losed sympleti manifold obtainedby gluing the ap from Theorem 3 to a �lling of (M; �) must be rational or ruled. An easyadaptation of the main result in [ABW10℄ also provides the following onsequene, whih wasproved using muh harder puntured holomorphi urve arguments in [Wen,NW11℄:Corollary 2. Suppose (M; �) ontains an 
-separating partially planar domain for somelosed 2-form 
 onM . If (W;!) is a losed sympleti 4-manifold andM admits an embedding� :M ,! W suh that ��!j� > 0 and [��!℄ = [
℄ 2 H2dR(M), then �(M) separates W .Sine planar torsion domains are also partially planar domains, this implies that planartorsion is atually an obstrution to ontat type embeddings into losed sympleti manifolds,not just sympleti �llings.Some examples of ontat manifolds admitting non-separating embeddings arise from spe-ial types of sympleti �llings: we shall say that (M; �) is (strongly or weakly) o-�llableif there is a onneted (strong or weak) �lling (W;!) whose boundary is the disjoint unionof (M; �) with an arbitrary non-empty ontat manifold. Put another way, (M; �) admitsa onneted semi-�lling with disonneted boundary. Given suh a �lling, one an alwaysattah a sympleti 1-handle to onnet distint boundary omponents and then ap o� theboundary to realize (M; �) as a non-separating ontat hypersurfae. Various examples ofontat manifolds that are or are not o-�llable have been known for many years:� The tight 3-sphere (S3; �0) is not weakly o-�llable, by arguments due to Gromov[Gro85℄, Eliashberg [Eli90℄ and MDu� [MD91℄. Etnyre [Etn04b℄ extended this resultto all planar ontat manifolds.� MDu� [MD91℄ showed that for any Riemann surfae � of genus at least 2, the unitotangent bundle ST �� with its anonial ontat struture is strongly o-�llable.Further examples were found by Geiges [Gei95℄ and Mitsumatsu [Mit95℄.� Giroux [Gir94℄ showed that every tight ontat struture on T 3 is weakly o-�llable.However, none of them are strongly o-�llable, due to a result of the author [Wen10℄.All of the negative results just mentioned an be viewed as speial ases of Corollary 2, andso an the losely related result in [ABW10℄, that partially planar ontat manifolds neveradmit non-separating ontat type embeddings. Observe that any ontat manifold obordantto one for whih Corollary 2 holds also annot be o-�llable: in partiular this shows thatnot every ontat 3-manifold is obordant to (S3; �0). We are thus led to an analogue ofQuestion 1 that also applies to �llable ontat manifolds:Question 2. Does every losed and onneted ontat 3-manifold (M; �) that is not stronglyo-�llable satisfy (M; �) 2 (S3; �0)?To the author's knowledge, this question is open. The answer is again learly no for exatobordisms, as a variation on Hofer's argument from [Hof93℄ also shows that (M; �) mustalways admit ontratible Reeb orbits if (M; �) � (S3; �0). The following result providessome evidene for a positive answer in the non-exat ase, though it is not quite as generalas one might have hoped. (See also Remark 1.1 below for a andidate ounterexample.)



NON-EXACT SYMPLECTIC COBORDISMS 7Theorem 4. Suppose (M; �) is a onneted ontat 3-manifold ontaining a partially planardomain whih either has more than one irreduible subdomain or has nonempty binding.Then (M; �) 2 (S3; �0), hene (M; �) admits a onneted strong sympleti obordism to everyonneted strongly �llable ontat 3-manifold.The onditions of Theorem 4 hold in partiular for all planar ontat manifolds, and infat a stronger version an be stated sine the fully separating ondition is always satis�ed.We will show in x2.6 that this implies Etnyre's planarity obstrution from [Etn04b℄.Theorem 40. Suppose (M; �) is a onneted planar ontat 3-manifold. Then there exists aompat onneted 4-manifold W with �W = S3 t (�M), with the property that for everylosed 2-form 
 on M with 
j� > 0, W admits a sympleti struture ! suh that !jTM = 
and (W;!) is a weak sympleti obordism from (M; �) to (S3; �0).Remark 1.1. Let us desribe a ontat manifold that ould oneivably furnish a negativeanswer to Question 2. Consider the standard ontat 3-torus (T 3; �1) (the de�nition of �1 isrealled in (2.1) below), and divide it by the Z2-ation indued by the ontat involutionT 3 ! T 3 : (�; �; �) 7! (� + 1=2;��;��):The quotient T 3=Z2 then inherits a ontat struture �, whih is supported by a summedopen book with empty binding, one interfae torus T := f2� 2 Zg and �bration�([�; �; �℄) = (� for 0 < � < 1=2,�� for 1=2 < � < 1.Sine the pages are ylinders, (T 3=Z2; �) is a partially planar domain, so Corollary 2 impliesthat it is not strongly o-�llable. (Note that (T 3=Z2; �) is Stein �llable, as it an be on-struted from the Stein �llable torus (T 3; �1) by a sequene of ontat (�1)-surgeries alongLegendrian urves in the pre-Lagrangian �bers f� = onstg.) Theorem 4 however does notapply, as there is only one irreduible subdomain and no binding. It is not lear whether(T 3=Z2; �) 2 (S3; �0).1.2. The main theorems on handle attahing. The obordisms of the previous setionare onstruted by repeated appliation of two handle attahing onstrutions that we shallnow desribe. The handles we will work with take the form��� D and � �� [�1; 1℄ � S1;where in eah ase � is a ompat oriented surfae with boundary, appearing with reversedorientation beause we think of it as a \sympleti ap" for the page of an open book de-omposition. In the �rst ase, we shall attah �� � D to the neighborhood of a transverselink, and in the seond ase, ��� [�1; 1℄ � S1 is attahed to the neighborhood of a disjointunion of pre-Lagrangian tori. It is important however to understand that these onstrutionsare not truly loal, as the attahing requires neighborhoods that are in some sense suÆientlylarge. This ondition on the neighborhoods is most easily stated in the language of (possiblyblown up and summed) open books|that is not neessarily the only natural setting in whihthese operations make sense, but it is the �rst that omes to mind.We have derived onsiderable inspiration from the sympleti apping tehnique introduedby Eliashberg in [Eli04℄. The goal of Eliashberg's onstrution was somewhat di�erent, namelyto embed any weak sympleti �lling into a losed sympleti manifold, but it an also beused to onstrut sympleti obordisms between ontat manifolds with supporting open

8 CHRIS WENDLbooks that are related to eah other by apping o� binding omponents. Indeed, Eliashberg'sapping onstrution works as follows:(1) Given (M; �) with a supporting open book � : M n B ! S1, attah 2-handles to[0; 1℄�M at f1g�M along eah omponent of B via the page framing. This transformsM by a 0-surgery along eah binding omponent, produing a new 3-manifold M 0with a �bration M 0 ! S1 whose �bers are the losed surfaes obtained by appingthe original pages with disks. Any sympleti struture on [0; 1℄ �M dominating �an then be extended over the handles so that the �bers of M 0 ! S1 are sympleti.(2) Cap o� the boundary of the obordism above by presenting M 0 as the boundary of aLefshetz �bration over the disk with losed �bers.The �rst step an be generalized by observing that if we hoose to attah 2-handles alongsome but not all omponents of the binding, then the new manifoldM 0 inherits an open bookdeomposition �0 :M 0 n B0 ! S1obtained from � by apping o� the orresponding boundary omponents of the pages (f. [Bal℄),and we will show that the sympleti struture an always be arranged so as to produe aweak sympleti obordism from (M; �) to (M 0; �0), where �0 is supported by �0. Under someadditional topologial assumptions one an atually arrange the weak obordism to be strong;this variation on Eliashberg's onstrution has already been worked out in detail by Gay andStipsiz [GS12℄. To generalize further, one an also imagine replaing the usual 2-handleD � D by �� D for any ompat orientable surfae �. We shall arry out this generalizationbelow, though the reader may prefer to pretend � = D on �rst reading, and this suÆes formost of the appliations we will disuss.The key to our onstrution will be to ombine the above brand of handle attahmentwith a \blown up" version, in whih a round handle is attahed to (M; �) along a 2-torusthat an be thought of as a blown up binding irle. This is most naturally desribed inthe language of blown up summed open books, a generalization of open book deompositionsthat was introdued in [Wen℄ and will be reviewed in more detail in x3.1. Rougly speaking,a blown up summed open book on a ompat 3-manifold M , possibly with boundary, de�nesa �bration � :M n (B [ I)! S1;where the binding B �M n �M is an oriented link and the interfae I �M n �M is a set ofdisjoint 2-tori, and the onneted omponents of the �bers, whih interset �M transversely,are alled pages. An ordinary open book is the speial ase where I = �M = ;, and ingeneral we allow any or all of B, I and �M to be empty, so there may be losed pages. Aswith ordinary open books there is a natural notion of ontat strutures being supported by ablown up summed open book, in whih ase binding omponents beome positively transverselinks and interfae and boundary omponents beome pre-Lagrangian tori. Suh a ontatstruture exists and is unique up to deformation unless the pages are losed.Suppose (M; �) is a losed ontat 3-manifold ontaining a ompat 3-dimensional subman-ifold M0 �M , possibly with boundary, whih arries a blown up summed open book � thatsupports �jM0 and has nonempty binding. Pik a set of binding omponentsB0 = 1 [ : : : [ N � B;eah of whih omes with a natural framing determined by the pages adjaent to , alledthe page framing. For eah j � B0, we identify a tubular neighborhood N (j) �M of j



NON-EXACT SYMPLECTIC COBORDISMS 9with the oriented solid torus S1 � D via this framing so that j = S1 � f0g with the orretorientation and the �bration � takes the form�(�; �; �) = �on N (j)nj , where (�; �) denote polar oordinates on the disk, normalized so that � 2 S1 =R=Z. Assign to �N (j) its natural orientation as the boundary of N (j) and denote byf�j ; �jg � H1(�N (j))the distinguished positively oriented homology basis for whih �j is a meridian and �j is thelongitude determined by the page framing. Denote N (B0) = N (1) [ : : : [N (N ).Now pik a ompat, onneted and oriented surfae � with N boundary omponents�� = �1� [ : : : [ �N�and hoose an orientation preserving di�eomorphism of eah �j� to S1, thus de�ning aoordinate s 2 S1 for �j�. Using this, we de�ne new ompat oriented manifoldsM 0 = (M n N (B0)) [ (��� S1);M 00 = (M0 n N (B0)) [ (��� S1)by gluing in �� S1 via orientation reversing di�eomorphisms ��j � S1 ! �N (j) that takethe form (s; t) 7! (s; 1; t)in the hosen oordinates. On the level of homology, the map ��� S1 ! �N (B0) identi�es[�j�� f�g℄ with �j and [fzg � S1℄ for z 2 �j� with �j .Remark 1.2. In the speial ase � = D , the operation just de�ned is simply a Dehn surgeryalong a binding omponent  � B with framing 0 relative to the page framing.The �bration � : M n (B [ I) ! S1 extends smoothly over � � S1 as the projetion tothe seond fator, thus M 00 inherits from � a natural blown up summed open book �0, withbinding B nB0, interfae I and pages that are obtained from the pages of � by attahing ��,gluing �j� to the boundary omponent adjaent to j. We say that �0 is obtained from � by�-apping surgery along B0. If �0 does not have losed pages, then it supports a ontatstruture �0 on M 00 whih an be assumed to math � outside the region of surgery, and thusextends to M 0.The �-apping surgery an also be de�ned by attahing a generalized version of a 4-dimensional 2-handle: de�ne H� = ��� D ;with boundary �H� = ���H� [ �+H� := �(��� D ) [ (��� S1):The above identi�ations of the neighborhoods N (j) with S1 � D yield an identi�ation ofN (B0) with ��H� = ��� D , whih we use to attah H� to the trivial obordism [0; 1℄�Mby gluing ��H� to N (B0) � f1g �M , de�ning(1.1) W = ([0; 1℄ �M) [N (B0) H�;whih after smoothing the orners has boundary�W =M 0 t (�M):

10 CHRIS WENDLWe will refer to the oriented submanifoldsK� := ([0; 1℄ �B0) [B0 (��� f0g) �Wand K0� := fpg � D �Wfor an arbitrary interior point p 2 � as the ore and o-ore respetively. Note that �K� =�B0 �M , �K0� �M 0 and K� �K0� = 1, where � denotes the algebrai ount of intersetions.The following generalizes results in [Eli04℄ and [GS12℄.Theorem 5. Suppose ! is a sympleti form on [0; 1℄ �M with !j� > 0, and let W denotethe handle obordism de�ned in (1.1), after smoothing orners. Then after a sympletideformation of ! away from f0g �M , ! an be extended sympletially over W so that it ispositive on K�, K0� and the pages of �0. Moreover, if the latter pages are not losed, then! also dominates a supported ontat struture �0 on M 0, thus de�ning a weak sympletiobordism from (M; �) to (M 0; �0).We will refer to the obordism (W;!) of Theorem 5 heneforward as a �-apping obor-dism. In general it is a weak obordism, but under ertain onditions that depend only onthe topology of the setup, it an also be made strong. Reall the standard fat, observedoriginally by Eliashberg [Eli91, Proposition 3.1℄ (see also [Eli04, Prop. 4.1℄), that whenever(W;!) has a boundary omponent M on whih ! dominates a positive ontat struture �and is exat, ! an be deformed in a ollar neighborhood to make M strongly onvex, with �as the indued ontat struture. In x3.6 we will use routine Mayer-Vietoris arguments toharaterize the situations in whih this trik an be applied to the above onstrution.Theorem 50. The sympleti obordism (W;!) onstruted by Theorem 5 an be arranged sothat the following holds. Choose a real 1-yle h in M n N (B0) suh that [h℄ 2 H1(M ;R) isPoinar�e dual to the restrition of ! to f0g �M . Then there is a number  > 0 suh thatPD([!℄) = [0; 1℄ � [h℄ +  [K0�℄ 2 H2(W;�W ;R);where PD : H2dR(W ) ! H2(W;�W ;R) denotes the Poinar�e-Lefshetz duality isomorphism.In partiular, if f0g �M � (W;!) is (strongly) onave then the following onditions areequivalent:(i) ! is exat.(ii) [K0�℄ = 0 2 H2(W;�W ;R).(iii) [1℄ + : : :+ [N ℄ is not torsion in H1(M).Further, assuming that f0g �M is onave, the following onditions are also equivalent:(i) (W;!) an be arranged to be a strong sympleti obordism from (M; �) to (M 0; �0).(ii) [�K0�℄ = 0 2 H1(M 0;R).(iii) �1+ : : :+�N is not torsion in H1(M nB0), where �j denote the longitudes on �N (j)determined by the page framing.It should be emphasized that the above theorem assumes � is onneted. The ase where� is disonneted is equivalent to performing multiple surgery operations in suession, butthe statement of Theorem 50 would then beome more ompliated.Remark 1.3. For the ase � = D , if  � B denotes the binding omponent where 0-surgery isperformed, then Theorem 50 means that ! will be exat on W if and only if  is not torsion inH1(M), and (W;!) an be made into a strong obordism if and only if  has no nullhomologous



NON-EXACT SYMPLECTIC COBORDISMS 11over whose page framing mathes its Seifert framing. An equivalent ondition is assumed in[GS12℄, whih only onstruts strong obordisms.Remark 1.4. Though ! in the above onstrution is sometimes an exat sympleti form,(W;!) is never an exat obordism, i.e. it does not admit a global primitive that restritsto suitable ontat forms on both boundary omponents. This follows immediately from theobservation that the ore K� � W is a sympleti submanifold whose oriented boundary isa negatively transverse link in (M; �), hene if ! = d� and �jTM de�nes a ontat form on(M; �) with the proper o-orientation, then0 < ZK� ! = Z�K� � < 0;a ontradition. A similar remark applies to the round handle obordism onsidered in The-orems 6 and 60 below. The non-exatness of (W;!) is important beause there are examplesin whih it is known that no exat obordism from (M; �) to (M 0; �0) exists (see x2.4).To desribe the blown up version of these results, we ontinue with the same setup as aboveand hoose a set of interfae tori, I0 = T1 [ : : : [ TN � I;together with an orientation for eah Tj � I0. There is then a distinguished positively orientedhomology basis f�j; �jg � H1(Tj);where �j is represented by some oriented boundary omponent of a page adjaent to Tj , and�j is represented by a losed leaf of the harateristi foliation de�ned on Tj by �. Choosetubular neighborhoods N (Tj) � M of Tj and identify them with S1 � [�1; 1℄ � S1 to de�nepositively oriented oordinates (�; �; �) in whih �j = [S1�f�g℄ and �j = [f�g�S1℄. We maythen assume that for every �0 2 S1 the loop f(�0; 0)g � S1 is Legendrian, and the �bration �takes the form �(�; �; �) = (� for � > 0;�� for � < 0:Denote the two oriented boundary omponents of N (Tj) by�N (Tj) = �+N (Tj) t ��N (Tj);where we de�ne the oriented tori ��N (Tj) = �(S1�f�1g�S1) with orresponding homologybases f��j ; ��j g � H1(��N (Tj)) suh that��j := �j 2 H1(N (Tj)) and ��j := ��j 2 H1(N (Tj)):Denote the union of all the neighborhoodsN (Tj) by N (I0). Then writing two idential opiesof � as �� and hoosing a positively oriented oordinate s 2 S1 for eah boundary omponent�j��, we onstrut new ompat oriented manifoldsM 0 = (M n N (I0)) [ (��+ � S1) [ (��� � S1);M 00 = (M0 n N (I0)) [ (��+ � S1) [ (��� � S1)from M and M0 respetively by gluing along orientation reversing di�eomorphisms �j�� �S1 ! ��N (Tj) that take the form (s; t) 7! (s;�1;�t)

12 CHRIS WENDLin the hosen oordinates. Thus in homology, [�j���f�g℄ 2 H1(�j���S1) is identi�ed with��j and [f�g � S1℄ 2 H1(�j�� � S1) with ��j .One again the �bration � : M n (B [ I)! S1 extends smoothly over the glued in region(�+ t ��)� S1 as the projetion to S1, so M 00 inherits from � a natural blown up summedopen book �0, with interfae I n I0, binding B and �bers that are obtained from the �bersof � by attahing �(�+ t ��) along the boundary omponents adjaent to I0. We say that�0 is obtained by �-deoupling surgery along I0.Remark 1.5. The hoie of the term deoupling is easiest to justify in the speial ase � = D :then the surgery uts openM along T and glues in two solid tori that ap o� the orrespondingboundary omponents of the pages.Even ifM is onneted,M 0 may in general be disonneted, and there is a (possibly empty)omponent M 0at �M 0;de�ned as the union of all the losed pages of �0. Denote M 0onvex :=M 0 nM 0at, so thatM 0 =M 0onvex tM 0at:On M 0onvex there is a ontat struture �0 whih mathes � away from the region of surgeryand is supported by �0 in M 0onvex \M 00.The above surgery orresponds topologially to the attahment of a round handle: denotethe annulus by A = [�1; 1℄ � S1and de�ne bH� = ��� A ;with boundary � bH� = ��� bH� [ �+ bH� := � (��� A ) [ (��� �A ) ;where we identify the two onneted omponents of �+ bH� = ���f�1; 1g�S1 with����S1via the orientation preserving maps(1.2) � �� � S1 ! ��� f�1g � S1 : (p; �) 7! (p;�1;��):Using the identi�ations of the neighborhoods N (Tj) with S1� [�1; 1℄�S1 hosen above, wean identify �� bH� = ��� A = NGj=1 �j�� [�1; 1℄ � S1with N (I0) and use this to attah bH� to [0; 1℄ �M by gluing �� bH� to N (I0) � f1g �M ,de�ning an oriented obordism(1.3) W = ([0; 1℄ �M) [N (I0) bH�with boundary �W = M 0 t (�M). Use the oordinates (�; �; �) 2 S1 � [�1; 1℄ � S1 on eahN (Tj) � N (I0) to de�ne an oriented link bB0 as the union of all the loopsS1 � f(0; 0)g � Tj � I0:Then the ore and o-ore respetively an be de�ned as oriented submanifolds bybK� := ([0; 1℄ � bB0) [ bB0 (��� f(0; 0)g) �W



NON-EXACT SYMPLECTIC COBORDISMS 13and bK0� := fpg � A �Wfor an arbitrary interior point p 2 �. We have � bK� = � bB0 �M , � bK0� �M 0 and bK�� bK0� = 1.Theorem 6. Suppose ! is a sympleti form on [0; 1℄ �M whih satis�es !j� > 0 and(1.4) NXj=1 ZTj ! = 0;and W denotes the round handle obordism of (1.3). Then after a sympleti deformationaway from f0g �M , ! an be extended sympletially over W so that it is positive on bK�,bK0� and the pages of �0, and ! dominates a supported ontat struture �0 on M 0onvex. Inpartiular, after apping M 0at by attahing a Lefshetz �bration over the disk as in [Eli04℄,this de�nes a weak sympleti obordism from (M; �) to (M 0onvex; �0).We will refer to (W;!) in this onstrution from now on as a �-deoupling obordism.Remark 1.6. The homologial ondition (1.4) is learly not removable sine the 2-ylesPNj=1[��N (Tj)℄ both beome nullhomologous in M 0. Note that here the hosen orienta-tions of the tori Tj play a role, i.e. they annot in general be hosen arbitrarily unless ! isexat. No suh issue arose in Theorem 5 beause ! is always exat on a neighborhood of abinding irle. This is the reason why the \
-separating" ondition is needed for many of theresults in x1.1, and there are easy examples to show that those theorems are not true withoutit (f. Remark 2.3).For the analogue of Theorem 50 in this ontext, we shall restrit for simpliity to the asewhere RTj ! vanishes for every Tj � I0. Note that in this ase, the Poinar�e dual of !jTM anbe represented by a real 1-yle in M n N (I0).Theorem 60. If RTj ! = 0 for eah T1; : : : ; TN � I0, then the sympleti obordism (W;!)onstruted by Theorem 6 an be arranged so that the following holds. Choose a real 1-yleh in M n N (I0) with [h℄ 2 H1(M ;R) Poinar�e dual to the restrition of ! to f0g �M . Thenthere is a number  > 0 withPD([!℄) = [0; 1℄ � [h℄ +  [bK0�℄ 2 H2(W;�W ;R):In partiular, if f0g �M � (W;!) is (strongly) onave then the following onditions areequivalent:(i) ! is exat.(ii) [bK0�℄ = 0 2 H2(W;�W ;R).(iii) There are no integers k;m1; : : : ;mN 2 Z with k > 0 and PNj=1mj = 0 suh that thehomology lass k(�1 + : : :+ �N ) + NXj=1mj�j 2 H1(I0)is trivial in H1(M).Further, if f0g �M is onave and M 0at = ;, the following onditions are also equivalent:(i) (W;!) an be arranged to be a strong sympleti obordism from (M; �) to (M 0; �0).(ii) [� bK0�℄ = 0 2 H1(M 0;R).

14 CHRIS WENDL(iii) There are no integers k�;m�1 ; : : : ;m�N 2 Z with k�+k+ > 0 andPjm+j =Pjm�j = 0suh thatk+ NXj=1 �+j + k� NXj=1 ��j + NXj=1m+j �+j + NXj=1m�j ��j = 0 2 H1(M n I0):Finally, if M 0at and M 0onvex are both nonempty, assume the labels are hosen so that �+ �S1 �M 0onvex and �� � S1 �M 0at, and onsider the weak obordism(W;!) = (W;!) [M 0at (X;!X)from (M; �) to (M 0onvex; �0) obtained by apping o� M 0at with a sympleti Lefshetz �brationX ! D as in [Eli04℄. The following onditions are then equivalent:(i) (W;!) an be arranged to be a strong sympleti obordism from (M; �) to (M 0onvex; �0).(ii) [� bK0� \M 0onvex℄ = 0 2 H1(M 0onvex;R).(iii) There are no integers k;m1; : : : ;mN 2 Z with k > 0 and Pjmj = 0 suh that thehomology lass k NXj=1 �+j + NXj=1mj�+jis trivial in H1(M n I0).We now disuss some appliations of the apping and deoupling obordisms to EmbeddedContat Homology (f. [Hut10℄). Reall that for a losed ontat 3-manifold (M; �) andhomology lass h 2 H1(M), ECH�(M; �;h) is the homology of a hain omplex generated bysets of Reeb orbits with multipliities whose homology lasses add up to h, with a di�erentialounting embedded index 1 holomorphi urves with positive and negative ylindrial endsin the sympletization R �M . Similarly, ounting embedded index 2 holomorphi urvesthrough a generi point in M yields the so-alled U -map,U : ECH�(M; �;h)! ECH��2(M; �;h):The ECH ontat invariant (M; �) 2 ECH�(M; �; 0)is the homology lass represented by the \empty orbit set". It is equivalent via an isomor-phism of Taubes [Tau10℄ to a orresponding invariant in Seiberg-Witten theory, and also tothe Ozsv�ath-Szab�o ontat invariant [OS05℄ by reent work of Colin-Ghiggini-Honda [CGH℄and independently Kutluhan-Lee-Taubes [KLT℄. Like those invariants, its vanishing gives anobstrution to strong sympleti �llings, and a version with twisted oeÆients also obstrutsweak �llings.Remark 1.7. Tehnially the de�nitions of ECH�(M; �;h) and (M; �) depend not just on � butalso on a hoie of ontat form and almost omplex struture. However, Taubes' isomorphismto Seiberg-Witten Floer homology implies that they are atually independent of these hoies,thus we are safe in writing ECH�(M; �;h) without expliitly mentioning the extra data.



NON-EXACT SYMPLECTIC COBORDISMS 15An argument due to Eliashberg3 shows that (M; �) = 0 whenever (M; �) is overtwisted,and a muh more general omputation in [Wen℄ established the same result whenever (M; �)has planar k-torsion for any k � 0. The latter result an now be reovered as a onsequene ofTheorem 1, using a result reently announed by Huthings [Hut℄ that (M�; ��) 2 (M+; �+)and (M+; �+) = 0 imply (M�; ��) = 0. This is highly non-obvious sine the obordismswe onstrut are never exat (see Remark 1.4), and non-exat obordisms do not in generalgive rise to well-behaved maps on ECH in its standard form. The situation beomes slightlysimpler however under striter assumptions, e.g. Huthings and Taubes have explained in[HT℄ how to onstrut suh maps for the ase h = 0 whenever (W;!) is a strong obordismwith an exat sympleti form, sometimes alled a \weakly exat" obordism:Proposition 1.8 ([HT℄). Suppose (W;!) is a strong sympleti obordism from (M�; ��) to(M+; �+) suh that ! is exat. Then there is a U -equivariant mapECH�(M+; �+; 0)! ECH�(M�; ��; 0)that takes (M+; �+) to (M�; ��).Remark 1.9. For the example of a 2-handle obordism onstruted from an ordinary openbook deomposition, the analogue of Proposition 1.8 in Heegaard Floer homology has beenestablished by John Baldwin [Bal℄.Let us now disuss a onjetural generalization of Proposition 1.8 whih ould remove allonditions on !. Reall that for any losed 2-form 
 onM , one an de�ne ECH with twistedoeÆients in the group ring Z[H2(M)= ker 
℄, whih we shall abbreviate byECH(M; �;h;
) := ECH�M; �;h;Z[H2(M)= ker 
℄�:Here the di�erential keeps trak of the homology lasses in H2(M)= ker 
 of the holomorphiurves being ounted, see [HS06℄. The U -map an again be de�ned as a degree �2 map onECH(M; �;h;
), and the twisted ontat invariant (M; �; 
) is again the homology lassin ECH(M; �; 0;
) generated by the empty orbit set. The vanishing results in [Wen℄ giveonvining evidene that a more general version of the map in Proposition 1.8 should exist,in partiular with the following onsequene:Conjeture 1. Suppose (W;!) is a �-apping or �-deoupling obordism from (M�; ��) to(M+; �+), and write 
� = !jTM�. Then:(1) If (M+; �+; 
+) vanishes, then so does (M�; ��; 
�).(2) If (M+; �+; 
+) is in the image of the map Uk on ECH(M+; �+; 0;
+) for somek 2 N, then (M�; ��; 
�) is in the image of Uk on ECH(M�; ��; 0;
�).The �rst part of the onjeture would redue both the untwisted and twisted vanishingresults in [Wen℄ to the fat, proved essentially by Eliashberg in the appendix of [Yau06℄,that the fully twisted ontat invariant vanishes for every overtwisted ontat manifold. Theseond part is related to another result proved in [Wen℄, namely the twisted ECH version ofthe planarity obstrution of Oszv�ath-Stipsiz-Szab�o [OSS05℄ in Heegaard Floer homology: if(M; �) is planar, then (M; �; 
) is in the image of Uk for all k and all 
. If the onjetureholds, then this fat follows from Theorem 40 and the omputation of ECH(S3; �0).3In the appendix of [Yau06℄, Eliashberg skethes an argument to show that every overtwisted ontatmanifold has trivial ontat homology, and this argument also implies the vanishing of the ECH ontatinvariant.

16 CHRIS WENDLThe obvious way to try to prove Conjeture 1 would be by onstruting a U -equivariantmap ECH(M+; �+; 0;
+)! ECH(M�; ��; 0;
�)whih takes (M+; �+; 
+) to (M�; ��; 
�). Due to the non-exatness of ! and a resultinglak of energy bounds, it seems unlikely that suh a map would exist in general, but a moreprobable senario is to obtain a mapECH(M+; �+; 0;�!)! ECH(M�; ��; 0;�!);where �! is a Novikov ompletion of Z[H2(W )= ker!℄, and we take advantage of the naturalinlusions H2(M�)= ker 
� ,! H2(W )= ker!to de�ne the ECH of (M�; ��) with oeÆients in �!. In ases where M+ has onnetedomponents with losed leaves, one would expet this map to involve also the Periodi FloerHomology (f. [HS05℄) of the resulting mapping tori. De�ning suh a map would require aslightly more areful onstrution of the weak obordism (W;!), suh that both boundaryomponents inherit stable Hamiltonian strutures whih an be used to attah ylindrialends and de�ne reasonable moduli spaes of �nite energy puntured holomorphi urves.This an always be done due to a onstrution in [NW11℄, whih shows that suitable stableHamiltonian strutures exist for any desired ohomology lass on the boundary. It is probablyalso useful to observe that for an intelligent hoie of data, the holomorphi urves in (W;!)with no positive ends an be enumerated preisely: we will show in Proposition 3.20 that allof them arise from the sympleti ore of the handle.2. Further appliations, examples and disussionWe shall now give some onrete examples of apping and deoupling obordisms andsurvey a few more appliations, inluding new proofs of several known results and one or twonew ones.2.1. The Gromov-Eliashberg theorem using holomorphi spheres. In [Wen,NW11℄,holomorphi urve arguments were used to show that planar torsion is a �lling obstrution, butTheorems 1 and 2 make these proofs muh easier by using essentially \soft" methods to reduethem to the well-known result of Gromov-Eliashberg that overtwisted ontat manifolds arenot weakly �llable. This does not of ourse make everything elementary, as the Gromov-Eliashberg theorem still requires some tehnology|the original proof used a \Bishop family"of holomorphi disks with totally real boundary, and these days one an instead use punturedholomorphi urves, Seiberg-Witten theory or Heegaard Floer homology if preferred. Whilethis tehnologial overhead is probably not removable, we an use a deoupling obordism tosimplify the level of tehnology a tiny bit: namely we an redue it to the following standardfat whose proof requires only losed holomorphi spheres, e.g. the methods used in [MD90℄.Lemma 2.1. If (W;!) is a onneted weak �lling of a nonempty ontat manifold (M; �),then it ontains no embedded sympleti sphere with vanishing self-intersetion.This lemma follows essentially from MDu�'s results [MD90℄, but by today's standardsit is also easy to prove on its own: if one hooses a ompatible almost omplex strutureto make the boundary J-onvex and the embedded sympleti sphere J-holomorphi, thenvanishing self-intersetion implies that the latter lives in a smooth 2-dimensional moduli spae
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T1T2T3T0M0M1M2M3(T3; �2)(S1 � S2; �OT)(S1 � S2; �0) t (S1 � S2; �0)T�T+M�M+M 0�ZZ 0GT(M; �) � 1���+�overtwistedFigure 1. A proof of the Gromov-Eliashberg theorem using a D -deouplingobordism. The left shows the e�et on the pages when a round handle D �A is attahed to a planar 0-torsion domain. The right shows the resultingobordism and onsequent weak �lling whih furnishes a ontradition toLemma 2.1.of holomorphi spheres that foliateW (exept at �nitely many nodal singularities). This foressome leaf of the foliation to hit the boundary tangentially, thus ontraditing J -onvexity.Corollary ([Gro85,Eli90℄). Every weakly �llable ontat manifold is tight.Proof. A shemati diagram of the proof is shown in Figure 1. Suppose (W;!) is a weak �llingof (M; �) and the latter is overtwisted. Then (M; �) ontains a planar 0-torsion domain4 M0,whose planar piee MP0 is a solid torus with disk-like pages, attahed along an interfae torusT = �MP0 to another subdomain whose pages are not disks. Sine [T ℄ = 0 2 H2(M), RT ! = 0and we an attah a D -deoupling obordism along T , produing a larger sympleti manifold(W 0; !) whose boundary has two onneted omponents�W 0 =M 0at tM 0onvex;of whih the latter arries a ontat struture �0 dominated by !. The omponent M 0athas losed sphere-like pages, and is thus the trivial sympleti �bration S1 � S2 ! S1.After apping M 0at by a sympleti �bration D � S2 ! D , we then obtain a weak �llingof (M 0onvex; �0) ontaining a sympleti sphere with vanishing self-intersetion, ontraditingLemma 2.1. �Remark 2.2. A related argument appears in [Gay06℄, using the fat that overtwisted ontatmanifolds always have Giroux torsion; see also x2.3 below.4The fat that overtwistedness implies planar 0-torsion relies on Eliashberg's lassi�ation of overtwistedontat strutures [Eli89℄, quite a large result in itself. The original \Bishop disk" argument of Gromov andEliashberg had the advantage of not requiring this.
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T�T+M�M+M 0�ZZ 0GT(M; �) � 1���+�overtwisted Figure 2. The torus (T 3; �2) an be onstruted out of four irreduiblesubdomains ontaining ylindrial pages with trivial monodromy. Attahingone D -deoupling obordism yields an overtwisted S1 � S2, and one an thenattah a seond one to obtain a disjoint union of two opies of the tight S1�S2.2.2. Eliashberg's obordisms from T 3 to S3 t : : : t S3. Let T 3 = S1 � S1 � S1 withoordinates (�; �; �) and de�ne for n 2 N the ontat struture(2.1) �n = ker [os(2�n�) d� + sin(2�n�) d�℄ :These ontat strutures are all tight, but Eliashberg showed in [Eli96℄ that they are notstrongly �llable for n � 2, whih follows from the fat that disjoint unions of multiple opiesof (S3; �0) are not �llable, together with the following:Theorem ([Eli96℄). For any n 2 N, (T 3; �n) is sympletially obordant to the disjoint unionof n opies of the tight 3-sphere.Proof. The torus (T 3; �n) admits a supporting summed open book deomposition with 2nirreduible subdomains Mj eah having ylindrial pages and trivial monodromy, attahedto eah other along 2n interfae tori I = Sj Tj suh that Tj = Mj \ Mj+1 for j = Z2n.Attahing round handles D � A along every seond interfae torus T0; T2; : : : ; T2n�2 yields aweak sympleti obordism to the disjoint union of n opies of the tight S1 � S2 (Figure 2).The latter is also supported by an open book with ylindrial pages and trivial monodromy,so we an attah a 2-handle D � D along one binding omponent to reate a weak obordismto the tight S3. The resulting weak obordism from T 3 to S3 t : : : t S3 an be deformed toa strong obordism sine the sympleti form is neessarily exat near S3 t : : : t S3. �Remark 2.3. Note that (T 3; �n) is always weakly �llable [Gir94℄, and indeed, the above obor-dism annot be attahed to any weak �lling (W;!) of (T 3; �n) for whih RTj ! 6= 0. This showsthat the homologial ondition in Theorem 6 annot be removed.2.3. Gay's obordisms for Giroux torsion. Reall that a ontat manifold (M; �) is saidto have Giroux torsion GT(M; �) = n 2 N if n is the largest integer for whih (M; �) admitsa ontat embedding of ([0; 1℄� T 2; �n), where �n is given by (2.1); we write GT(M; �) = 0 ifthere are no suh embeddings and GT(M; �) =1 if they exist for arbitrarily large n. Everyontat manifold with positive Giroux torsion also has planar 1-torsion (see [Wen℄), thus asa speial ase of Theorem 1, every (M; �) with GT(M; �) � 1 is sympletially obordantto something overtwisted; this was proved by David Gay in [Gay06℄ for GT(M; �) � 2. A
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Figure 3. Attahing a D -deoupling obordism to (M; �) with Giroux tor-sion at least 1 yields an overtwisted ontat manifold (M 0; �0). Attahing onemore yields the disjoint union of a ontat manifold with a trivial sympletiS2-�bration over S1.onrete piture of this obordism5 is shown in Figure 3: namely, if GT(M; �) � 1, then Montains a domain [0; 1℄ � T 2 �= M0 � M on whih � is supported by a blown up summedopen book with three irreduible subdomainsM0 =M� [T� Z [T+ M+attahed to eah other in a hain along two interfae tori T� = Z \M�. As is explained in[Wen℄, M0 is literally the losure of some open neighborhood of the standard Giroux torsiondomain ([0; 1℄�T 2; �1) inM , and the middle segment Z an be identi�ed with [1=4; 3=4℄�T 2in ([0; 1℄ � T 2; �1): in partiular it has ylindrial pages with trivial monodromy. LikewiseM+ and M� have ylindrial pages but nontrivial monodromy in general|this detail willplay no role in the following. Attahing a round handle D � A along T� produes a weaksympleti obordism to a new ontat manifoldM 0, ontaining the disonneted domainM 00shown in Figure 3: in partiular M� and Z are eah transformed into subdomains M 0� andZ 0 with disk-like pages. Now Z 0 [M+ � M 0 ontains an overtwisted disk; indeed, it is aplanar 0-torsion domain. Observe that this onstrution an also be used to show that (M; �)is not weakly �llable if the torsion domain separates M , as then RT� ! = 0 for any sympletiform ! arising from a weak �lling.Gay's proof in [Gay06℄ that Giroux torsion obstruts strong �lling did not diretly use theabove obordism, but proved instead that (M; �) with GT(M; �) � 1 admits a sympletiobordism to some non-empty ontat manifold suh that the obordism itself ontains asympleti sphere with vanishing self-intersetion|Gay's argument then used gauge theory5Both the obordism in Figure 3 and the one that is onstruted expliitly in [Gay06℄ for the ase GT(M; �) �2 are weak obordisms, not strong in general. As David Gay has pointed out to me, these an always be turnedinto strong obordisms by attahing additional 2-handles to make the positive boundary an overtwisted rationalhomology sphere (see the proof of Theorem 1 in x3.7).

20 CHRIS WENDLto derive a ontradition if (M; �) has a �lling, but one an just as well use Lemma 2.1 above.A lose relative of Gay's obordism onstrution is easily obtained from the above piture:attahing round handles D � A along both T� and T+, the top of the obordism ontains aonneted omponent with losed sphere-like pages (the top piture in Figure 3), whih an beapped by D �S2 to produe a obordism that ontains sympleti spheres of self-intersetionnumber 0.2.4. Some new examples with M� 2M+ but M� �M+. Gromov's theorem [Gro85℄ onthe non-existene of exat Lagrangians in R2n provides perhaps the original example of a pairof ontat manifolds that are strongly but not exatly obordant: indeed, viewing (T 3; �1) asthe boundary of a Weinstein neighborhood of any Lagrangian torus in the standard strong�lling of the tight 3-sphere (S3; �0), we obtain(T 3; �1) 2 (S3; �0) but (T 3; �1) � (S3; �0):The nonexistene of the exat obordism here an also be proved by the argument of Hofer[Hof93℄ mentioned in the introdution, whih implies that if (M; �) admits a Reeb vetor�eld with no ontratible periodi orbit, then (M; �) � (M 0; �0) whenever either (M 0; �0) isovertwisted or M 0 �= S3. Together with Theorem 1, this implies that for any (MOT; �OT)overtwisted and n � 2,(T 3; �n) 2 (MOT; �OT) but (T 3; �n) � (MOT; �OT):A subtler obstrution to exat obordisms is de�ned in joint work of the author with JankoLatshev [LW11℄ via Sympleti Field Theory, leading to the following example. For anyinteger k � 1, suppose � is a losed, onneted and oriented surfae of genus g � k, and� � � is a multiurve onsisting of k disjoint embedded loops whih divide � into exatlytwo onneted omponents � = �+ [� ��;suh that �+ has genus 0 and �� has genus g � k + 1 > 0. By a onstrution due to Lutz[Lut77℄, the produt Mk;g := S1 � �then admits a unique (up to isotopy) S1-invariant ontat struture �k;g suh that the onvexsurfaes f�g � � have dividing set �. The ontat manifold (Mk;g; �k;g) then has planar(k� 1)-torsion, as the two subsets S1��� an be regarded as the irreduible subdomains ofa supporting summed open book with pages f�g���, so we view S1��+ as the planar pieeand S1 � �� as the padding (see De�nition 3.3). In partiular, (Mk;g; �k;g) is overtwisted ifand only if k = 1, and for k � 2 it has a Reeb vetor �eld with no ontratible periodi orbits.It turns out in fat that eah inrement of k ontains an obstrution to exat �llings that isinvisible in the non-exat ase.Theorem 7. If k > ` � 1 then for any g � k and g0 � `,(Mk;g; �k;g) 2 (M`;g0 ; �`;g0) but (Mk;g; �k;g) � (M`;g0 ; �`;g0)Proof. The nonexistene of the exat obordism is a result of [LW11℄. The existene ofthe non-exat obordism follows immediately from Corollary 1, but in ertain ases one anonstrut it muh more expliitly as in Figure 4. In partiular, (Mk;g; �k;g) is supported by asummed open book onsisting of the two irreduible subdomains S1��� with pages f�g���attahed along k interfae tori. Attahing D � A along one of the interfae tori gives a weakD -deoupling obordism to (Mk�1;g�1; �k�1;g�1). Theorem 60 then implies that this an be
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PSfrag replaements(M; �)(M 0; �0)N (T ), T � I0N (�M0)N (B)1�1rr0�r�r0� = 1� = �1� = 0�tWjUTjf1g � Tj[0; 1℄ �N (Tj)HTj = �UTjM 0at(M 0onvex; �0)MP0� � �T(W 0; !)D � S2S1 � S2(W;!)T1T2T3T0M0M1M2M3(T3; �2)(S1 � S2; �OT)(S1 � S2; �0) t (S1 � S2; �0)T�T+M�M+M 0�ZZ 0GT(M; �) � 1 ���+�overtwistedFigure 4. An expliit obordism from (M3;3; �3;3) to (M2;2; �2;2) as in theproof of Theorem 7 an be realized as a D -deoupling obordism.deformed to a strong obordism, as the restrition of the sympleti form to Mk�1;g�1 isPoinar�e dual to a multiple of the boundary of the o-ore; the latter onsists of two loops ofthe form S1 � f�g with opposite orientations and is thus nullhomologous. �2.5. Open books with reduible monodromy. Any ompat, onneted and orientedsurfae � with boundary, together with a di�eomorphism ' : � ! � �xing the boundary,determines a ontat 3-manifold (M'; �'), namely the one supported by the open book de-omposition with page � and monodromy '. Reall that the mapping lass of the monodromymap ' is said to be reduible if it has a representative that preserves some multiurve � � �suh that no omponent of � n� is a disk or an annulus. Consider the simple ase in whih 'preserves eah individual onneted omponent  � � and also preserves its orientation (notethat this is always true for some iterate of '). In this ase we may assume after a suitableisotopy that ' is the identity on a neighborhood of �� [ �, so that for some open annularneighborhood  � N () � � of eah urve  � �, M' ontains a thikened torus regionS1 �N () �M'on whih the open book deomposition is the projetion to the �rst fator. Let N (�) � �denote the union of all the neighborhoodsN () and de�ne the possibly disonneted ompatsurfae �� = � n N (�)with boundary; then ' restrits to this surfae as an orientation preserving di�eomorphism'� : �� ! �� that preserves eah onneted omponent and equals the identity near ���.Denote the onneted omponents of �� by�� = �1� t : : : t �N�and the orresponding restritions of '� by'j� : �j� ! �j�for j = 1; : : : ; N . Sine eah �j� neessarily has nonempty boundary, eah gives rise to aonneted ontat manifold (M'j� ; �'j�).Theorem 8. Given a reduible monodromy map ' : � ! � as desribed above, there existsa weak sympleti obordism (W;!) from(M'1� ; �'1�) t : : : t (M'N� ; �'N� ) to (M'; �');

22 CHRIS WENDLwhih is (strongly) onave at the negative boundary and suh that the restrition of ! to thepositive boundary is Poinar�e dual to a positive multiple ofX��[S1 � fpg℄ 2 H1(M';R);where the summation is over the onneted omponents of � and p � N () denotes anarbitrarily hosen point.Moreover, given any losed 2-form 
 on M'1� t : : : tM'N� that dominates the respetiveontat strutures, one an also onstrut a weak obordism between the ontat manifoldsabove suh that ! mathes 
 at the negative boundary.Proof. The obordism is a stak of A -apping obordisms, onstruted by attahing handlesof the form [�1; 1℄�S1�D via Theorem 5 along all pairs of binding irles inM'1�t : : :tM'N�that orrespond to the same urve in �. The o-ore of eah of these handles is a disk withboundary of the form S1 � f�g � S1 � N () � M', thus the ohomology lass of ! at thepositive boundary follows immediately from Theorem 50. �Corollary 3. If the ontat manifolds (M'j� ; �'j�) for j = 1; : : : ; N are all weakly �llable,then so is (M'; �').Remark 2.4. John Baldwin [Bal℄ has observed that topologially, the obordism of Theo-rem 8 an also be obtained by performing boundary onneted sums on the pages and thenusing D -apping obordisms to remove extra boundary omponents; in [Bal℄ this is used todedue a relation between the Ozsv�ath-Szab�o ontat invariants of (M'; �') and the piees(M'1� ; �'1�); : : : ; (M'N� ; �'N� ). Additionally, Jeremy Van Horn-Morris and John Etnyre havepointed out to me that if one also assumes every omponent of �n� to interset ��, then onean replae the weak obordism of Theorem 8 with a Stein obordism. This does not appearto be possible if any omponent of � n � has its full boundary in �.2.6. Etnyre's planarity obstrution. Let us say that a onneted ontat 3-manifold(M; �) is maximally obordant to S3 if there exists a ompat onneted 4-manifold Wwith �W = S3 t (�M) suh that for every losed 2-form 
 on M with 
j� > 0, there is asympleti form ! onW with !jTM = 
 de�ning a weak sympleti obordism from (M; �) to(S3; �0). Theorem 40 says that every planar ontat manifold is maximally obordant to S3.It turns out that this suÆes to give an alternative proof of the planarity obstrution in[Etn04b, Theorem 4.1℄.Theorem 9. Suppose (M; �) is maximally obordant to S3. Then every onneted weak semi-�lling of (M; �) has onneted boundary and negative-de�nite intersetion form.Proof. Let W1 be the ompat 4-manifold with �W1 = S3t(�M) guaranteed by the assump-tion, and suppose (W0; !) is a weak �lling of (M; �) t (M 0; �0), where (M 0; �0) is some otherontat manifold, possibly empty. If W =W0[MW1 is de�ned by gluing these two along M ,then by assumption ! an be extended over W1 so that (W;!) beomes a weak �lling of(S3; �0) t (M 0; �0), implying that M 0 must be empty sine (S3; �0) is not weakly o-�llable.Now ! is exat near �W = S3, so without loss of generality we may assume (W;!) is a strong�lling of (S3; �0).We laim that the map indued on homology H2(W0;Q) ! H2(W ;Q) by the inlusion� : W0 ,! W is injetive. Indeed, if A 2 H2(W0;Q) satis�es RA ! 6= 0, then obviously R��A !



NON-EXACT SYMPLECTIC COBORDISMS 23is also nonzero and thus ��A 6= 0 2 H2(W ;Q). If RA ! = 0 but A 2 H2(W0;Q) is nontrivial,we an pik any losed 2-form � on W0 with RA � 6= 0 and replae ! by ! + �� for any� > 0 suÆiently small so that (W0; ! + ��) remains a weak �lling of (M; �). Then ! + ��also extends over W1, so that the above argument goes through again to prove that ��A isnontrivial.Finally, we use the fat that the strong �llings of (S3; �0) have been lassi�ed: by a resultof Gromov [Gro85℄ and Eliashberg [Eli90℄, W is neessarily di�eomorphi to a sympletiblow-up of the 4-ball, i.e. W �= B4#C P 2# : : :#C P 2 :Sine the latter has a negative-de�nite intersetion form and �� : H2(W0;Q) ! H2(W ;Q) isinjetive, the result follows. �Our proof of Theorem 40 ombined with Conjeture 1 would also reprove the algebraiplanarity obstrution established in [Wen℄, whih is the twisted ECH version of a HeegaardFloer theoreti result by due to Oszv�ath, Stipsiz and Szab�o [OSS05℄. Note that the onditionof being maximally obordant to S3 does not require (M; �) to be �llable. It is also not learwhether there an exist non-planar ontat manifolds that also satisfy this ondition; theauthor is unaware of any known invariants that would be able to detet this distintion.Question 3. Is there a non-planar ontat 3-manifold whih is maximally obordant to S3?Note that if the assumption of Theorem 9 is relaxed to (M; �) 2 (S3; �0), then the resultbeomes false: a ounterexample is furnished by the standard 3-torus (T 3; �1), whih admitsa obordism to (S3; �0) by Theorem 4 but also is strongly �lled by T �T 2, whose intersetionform is inde�nite. Assuming a strong �lling (W0; !) of (M; �), the proof above fails preiselyat the point where the inlusionW0 ,!W is required to indue an injetive mapH2(W0;Q) !H2(W ;Q). However, it still follows by the same argument that H2(W0;Q) annot ontainany lass with stritly positive square, hene we obtain the following weaker result withmore general assumptions|it applies in partiular to all the ontat manifolds overed byTheorem 4.Theorem 10. Suppose (M; �) is a losed onneted ontat 3-manifold with (M; �) 2 (S3; �0).Then every strong semi-�lling (W;!) of (M; �) has onneted boundary and b+2 (W ) = 0.2.7. Some remarks on planar torsion. The �lling obstrution known as planar torsionwas introdued in [Wen℄ with mainly holomorphi urves as motivation, as it provides themost general setting known so far in whih the existene and uniqueness of ertain embeddedholomorphi urves leads to a vanishing result for the ECH ontat invariant. In light ofour obordism onstrution, however, one an now provide an alternative motivation for thede�nition in purely sympleti topologial terms. The �rst step is to understand what kindsof blown up summed open books automatially support overtwisted ontat strutures: usingEliashberg's lassi�ation theorem [Eli89℄ and Giroux's riterion (f. [Gei08℄), this naturallyleads to the notion of planar 0-torsion. Then a more general blown up summed open bookde�nes a planar k-torsion domain for some k � 1 if and only if it an be transformed intoa planar 0-torsion domain by a sequene of D -apping and D -deoupling surgeries; this isthe essene of Proposition 3.4 proved below. From this perspetive, the de�nition of planartorsion and the ruial role played by blown up summed open books seem ompletely natural.More generally, the partially planar domains are preisely the blown up summed open booksfor whih a sequene of D -apping and D -deoupling obordisms an be used to onstrut a

24 CHRIS WENDLsympleti ap that ontains a sympleti sphere with square 0. As far as the author is aware,almost all existing uniqueness or lassi�ation results for sympleti �llings (e.g. [Wen10,Lis08,OO05℄) apply to ontat manifolds that admit aps of this type. However, it does not alwayssuÆe to onstrut an appropriate ap and then apply MDu�'s results [MD90℄: e.g. thelassi�ation of strong �llings of planar ontat manifolds in terms of Lefshetz �brations[Wen10, LVW℄ truly relies on puntured holomorphi urves, as there is no obvious way toprodue a Lefshetz �bration with bounded �bers out of a family of holomorphi spheres ina ap.Finally, we remark that while Theorems 1 and 2 substantially simplify the proof that planartorsion is a �lling obstrution, they do not reprodue all of the results in [Wen℄: in partiularthe tehnology of Embedded Contat Homology is not yet far enough along to dedue thevanishing of the ontat invariant from a non-exat obordism. Moreover, a proof usingapping and deoupling obordisms simpli�es the tehnology needed but does not remove it,as a simpli�ed version of the very same tehnology is required to prove the Gromov-Eliashbergtheorem (f. x2.1). From the author's own perspetive, the idea for onstruting sympletiobordisms out of these types of handles would never have emerged without a holomorphiurve piture in the bakground (f. Figure 7), and as we will disuss in x3.8, after one hasonstruted the sympleti struture, it is pratially no extra e�ort to add a foliation byembedded J -holomorphi urves whih reprodues the J -holomorphi blown up open booksof [Wen℄ on both boundary omponents. The moral is that whether one prefers to provenon-�llability results by diret holomorphi urve arguments or by onstruting obordismsto redue them to previously known results, it is essentially the same thing: neither proofwould be possible without the other. 3. The detailsThe plan for proving the main results is as follows. We begin in x3.1 by reviewing the fun-damental de�nitions involving blown up summed open books and planar torsion, ulminatingwith the (more or less obvious) observation that one an always use apping or deouplingsurgery to derease the order of a planar torsion domain. In x3.2, we introdue a useful on-rete model for a blown up summed open book and its supported ontat struture. This isapplied in x3.3 to write down a model of a weak �-deoupling obordism, and minor modi�a-tions explained in x3.4 yield a similar model for the �-apping obordism. This ompletes theobordism onstrution for the ase where the negative boundary is strongly onave (or moregenerally when the given sympleti form ! in Theorem 5 or 6 is exat), see Remark 3.12. Forthe general ase, we need to show additionally that any given sympleti form on [0; 1℄ �Msatisfying the neessary ohomologial ondition an be deformed so as to attah smoothlyto the model obordisms we've onstruted; this is shown in x3.5, thus ompleting the proofsof Theorems 5 and 6. We prove Theorems 50 and 60 in x3.6, answering the essentially oho-mologial question of when the weak obordism an be made strong, and when its sympletiform is exat. With these ingredients all in plae, the proofs of the main results from x1.1are ompleted in x3.7. Finally, x3.8 gives a brief disussion of the existene and uniquenessof holomorphi urves in the obordisms we've onstruted.3.1. Review of summed open books and planar torsion. The following notions wereintrodued in [Wen℄, and we refer to that paper for more preise de�nitions and furtherdisussion.



NON-EXACT SYMPLECTIC COBORDISMS 25Assume M is a ompat oriented 3-manifold, possibly with boundary, the latter onsistingof a union of 2-tori. A blown up summed open book � on M an be desribed via thefollowing data.(1) An oriented link B �M n �M , alled the binding.(2) A disjoint union of 2-tori I �M n �M , alled the interfae.(3) For eah interfae torus T � I a distinguished basis (�; �) of H1(T ), where � is de�nedonly up to sign.(4) For eah boundary torus T � �M a distinguished basis (�; �) of H1(T ).(5) A �bration � :M n (B [ I)! S1whose restrition to �M is a submersion.The distinguished homology lasses �; � 2 H1(T ) assoiated to eah torus T � I [ �M arealled longitudes and meridians respetively, and the oriented onneted omponents ofthe �bers ��1(onst) are alled pages. We assume moreover that the �bration � an beexpressed in the following normal forms near the omponents of B [ I [ �M . As in anordinary open book deomposition, eah binding irle  � B has a neighborhood admittingoordinates (�; �; �) 2 S1 � D , where (�; �) are polar oordinates on the disk (normalized sothat � 2 S1 = R=Z), suh that  = f� = 0g and(3.1) �(�; �; �) = �:Near an interfae torus T � I, we an �nd a neighborhood with oordinates (�; �; �) 2S1 � [�1; 1℄ � S1 suh that T = f� = 0g = S1 � f0g � S1 with (�; �) mathing the naturalbasis of H1(S1 � f0g � S1), and(3.2) �(�; �; �) = (� for � > 0,�� for � < 0.A neighborhood of a boundary torus T � �M similarly admits oordinates (�; �; �) 2 S1 �[0; 1℄ � S1 with T = S1 � f0g � S1 and(3.3) �(�; �; �) = �:Observe that unlike the normal form (3.1), the map (3.3) is well de�ned at � = 0, sine thereare no polar oordinates and hene no oordinate singularity. The above onditions implythat the losure of eah page is a smoothly immersed surfae, whose boundary omponentsare eah embedded submanifolds of B, I or �M , and in the last two ases homologous tothe distinguished longitude �. The \generi" page has an embedded losure, but in isolatedases there may be pairs of boundary omponents that are idential as oriented 1-dimensionalsubmanifolds in I.In general, any or all of B, I and �M may be empty, and M may also be disonneted.If B [ I [ �M = ; we have simply a �bration � : M ! S1 whose �bers are losed orientedsurfaes. If I [ �M = ; but B 6= ; and M is onneted, we have an ordinary open book.We say that � is irreduible if the �bers ��1(onst) are onneted, i.e. there is only oneS1-parametrized family of pages. More generally, any blown up summed open book an bepresented uniquely as a union of irreduible subdomainsM =M1 [ : : : [MN ;whih eah inherit irreduible blown up summed open books and are attahed together alongboundary tori (whih beome interfae tori in M).

26 CHRIS WENDLThe notion of a ontat struture supported by an open book generalizes in a natural way:we say that a ontat struture � on M is supported by � if it is the kernel of a Girouxform, a ontat form whose Reeb vetor �eld is everywhere positively transverse to the pagesand positively tangent to their boundaries, and whih indues a harateristi foliation onI [ �M with losed leaves parallel to the distinguished meridians. A Giroux form exists andis unique up to homotopy through Giroux forms on any onneted manifold with a blownup summed open book, exept in the ase where the pages are losed, i.e. B [ I [ �M = ;.The binding is then a positively transverse link, and the interfae and boundary are disjointunions of pre-Lagrangian tori.De�nition 3.1. An irreduible blown up summed open book is alled planar if its pageshave genus zero. An arbitrary blown up summed open book is then alled partially planarif its interior ontains a planar irreduible subdomain, whih we all a planar piee. Apartially planar domain is a ontat 3-manifold (M; �), possibly with boundary, togetherwith a supporting blown up summed open book that is partially planar. For a given losed2-form 
 on M , and a partially planar domain (M; �) with planar piee MP � M , we saythat (M; �) is 
-separating if RT 
 = 0 for all interfae tori T of M that lie in MP , andfully separating if this is true for all 
.De�nition 3.2. A blown up summed open book is alled symmetri if it has empty bound-ary, all its pages are di�eomorphi and it ontains exatly two irreduible subdomainsM =M+ [M�;eah of whih has empty binding and interfae.The simplest example of a symmetri summed open book is the one whose pages are disks:this supports the tight ontat struture on S1 � S2 (f. Figure 2, right).De�nition 3.3. For any integer k � 0, an 
-separating partially planar domain (M; �) withplanar piee MP � M is alled an 
-separating planar k-torsion domain if it satis�esthe following onditions:� (M; �) is not symmetri.� �MP 6= ;.� The pages in MP have k + 1 boundary omponents.The (neessarily nonempty) subdomain M nMP is then alled the padding.We say that a ontat manifold (M; �) with losed 2-form 
 has 
-separating planark-torsion if it ontains an 
-separating planar k-torsion domain. If this is true for all losed2-forms 
 on M , then we say (M; �) has fully separating planar k-torsion.It was shown in [Wen℄ that a ontat manifold is overtwisted if and only if it has planar0-torsion, whih is always fully separating sine the interfae then intersets the planar pieeonly at its boundary, a single nullhomologous torus. The proofs of Theorems 1 and 2 thusrest on the following easy onsequene of the preeeding de�nitions.Proposition 3.4. If M is a planar k-torsion domain for some k � 1, then it ontains abinding irle  or interfae torus T in its planar piee suh that the following is true. LetM 0 denote the manifold with orresponding blown up summed open book obtained from M byD -apping surgery along  or D -deoupling surgery along T respetively. Then some onnetedomponent of M 0 is a planar `-torsion domain for some ` 2 fk � 2; k � 1g.



NON-EXACT SYMPLECTIC COBORDISMS 27Proof. By assumption, M ontains a planar piee MP with nonempty boundary, and if T0 ��MP denotes a boundary omponent, then the pages in MP have exatly one boundaryomponent adjaent to T0. The pages in MP have k +1 boundary omponents, and withoutloss of generality we may assume no other irreduible subdomain in the interior of M hasplanar pages with fewer boundary omponents than this. Sine k � 1, these pages have atleast one boundary omponent adjaent to some binding irle  or interfae torus T distintfrom T0. Performing D -apping sugery to remove  or D -deoupling surgery to remove Tprodues a new manifold M1 ontaining a planar irreduible subdomain MP1 whose pageshave ` boundary omponents where ` is either k or k � 1; the latter an only result froma deoupling surgery along T � MP n �MP . Thus M1 is a planar (` � 1)-torsion domainunless it is symmetri. The latter would mean �M1 = ;, hene also �M = ;, and M1 nMP1is also irreduible and has planar pages with ` boundary omponents. This annot arise fromapping surgery along a binding irle or deoupling surgery along a torus in the interior ofMP , as we assumed all planar pages in the interior of M outside of MP to have at leastk + 1 � ` + 1 boundary omponents. The only remaining possibility would be deouplingsurgery along T � �MP , but then symmetry of M1 would imply that M must also have beensymmetri, hene a ontradition. �3.2. A model for a blown up summed open book. Assume (M0; �) is a ompat ontat3-manifold, possibly with boundary, supported by a blown up summed open book � withbinding B, interfae I and �bration� :M0 n (B [ I)! S1:We assume that eah onneted omponent of M0 ontains at least one omponent of B [I [ �M0, so that � will support a ontat struture everywhere. It will be useful to identifythis with the following generalization of the notion of an abstrat open book (f. [Etn06℄).The losure of a �ber ��1(onst) �M0 is the image of some ompat oriented surfae S withboundary under an immersion � : S #M0;whih is an embedding on the interior. The monodromy of the �bration then determines (upto isotopy) a di�eomorphism  : S ! S whih preserves onneted omponents and is theidentity in a neighborhood of the boundary, and we de�ne the mapping torusS = (S � R)= �with (z; t+ 1) � ( (z); t) for all t 2 R, z 2 S. Denote by� : S ! R=Z = S1the natural �bration.Let us label the onneted omponents of �S by�S = �1S [ : : : [ �nS;and for eah i = 1; : : : ; n hoose an open ollar neighborhood U i � S of �iS on whih  is theidentity. Denote the union of all these neighborhoods by U � S. Now for eah i = 1; : : : ; n,hoose positively oriented oordinates(�; �) : U i ! S1 � [r; 1)

28 CHRIS WENDLfor some r 2 (0; 1). These neighborhoods give rise to orresponding ollar neighborhoods of�S , U i = U i � S1 � S ;whih an be identi�ed with S1 � [r; 1) � S1 via the oordinates (�; �; �). The index setI := f1; : : : ; ng omes with an obvious partitionI = IB [ II [ I� ;where IB = fi 2 I j �(�iS) � Bg;II = fi 2 I j �(�iS) � Ig;I� = fi 2 I j �(�iS) � �M0g:There is also a free Z2-ation on II de�ned via an involution� : II ! IIsuh that j = �(i) if and only if �(�iS) and �(�jS) lie in the same onneted omponent of I.Now de�ne for eah i 2 I the domainNi = 8><>:S1 � D if i 2 IB ,S1 � [�1; 1℄ � S1 if i 2 II ,S1 � [0; 1℄ � S1 if i 2 I� ,and denote by (�; �; �) the natural oordinates on Ni, where for i 2 IB we view (�; �) as polaroordinates on the disk with the angle normalized to take values in S1 = R=Z. Denote thesubsets f� = 0g byBabs = Gi2IB S1 � f0g � Gi2IBNi; Iabs = Gi2II S1 � f0g � S1 � Gi2IINi:The hosen oordinates on the neighborhoods U i then determine a gluing map� :[i2I U i !Gi2INiwhih takes U i to Ni, and we use this to de�ne a new ompat and oriented manifold, possiblywith boundary, Mabs0 = S [�  Gi2INi!, �;where the equivalene relation identi�es (�; �; �) 2 Ni for i 2 II with (�;��;��) 2 N�(i).This naturally ontains Babs and Iabs as submanifolds, and the �bration � : S ! S1 anbe extended over Mabs0 n (Babs [ Iabs) so that it mathes the anonial �-oordinate on Niwherever � > 0. Now M0 an be identi�ed with Mabs0 via a di�eomorphism that maps B toBabs and I to Iabs, and transforms the �bration � :M0 n (B [ I)! S1 to �.A supported ontat struture on Mabs0 an be de�ned as follows. First, de�ne a smooth1-form of the form �0 = (d� on S ,fi(�) d� + gi(�) d� on Ni, i 2 I,where fi; gi : [0; 1℄! R are smooth funtions hosen to have the following properties:



NON-EXACT SYMPLECTIC COBORDISMS 29(1) As � moves from 0 to 1, � 7! (fi(�); gi(�)) 2 R2 n f0g de�nes a path through the �rstquadrant from (1; 0) to (0; 1).(2) �0 is ontat on f0 � � < rg � Ni.(3) fi(�) = 0 for � 2 [r; 1℄.(4) gi(�) = 1 for � 2 [r0; 1℄, for some positive number r0 < r.(5) g0i(�) > 0 for � 2 (0; r0).Remark 3.5. The ontat ondition is satis�ed if and only if fig0i � f 0igi 6= 0, exept at Babs,where the oordinate singularity hanges the ondition to g00i (0) 6= 0. One onsequene is thatf 0i(�) < 0 for � 2 [r0; r), hene fi(r0) > 0. The assumption that �0 is a smooth 1-form imposessome additional onditions, namely for i 2 IB, (�; �) 7! fi(�) and (�; �) 7! gi(�)=�2 mustde�ne smooth funtions at the origin in R2 (in polar oordinates), and for i 2 II , fi and gian be extended smoothly over [�1; 1℄ suh thatfi(�) = f�(i)(��); gi(�) = �g�(i)(��):In partiular this implies (fi(�); gi(�)) = (0;�1) for � 2 [�1;�r℄. We will assume theseonditions are always satis�ed without further omment.The o-oriented distribution �0 := ker�0is a onfoliation on Mabs0 , whih is integrable on the mapping torus S and outside of this isa positive ontat struture. To perturb it to a global ontat struture, hoose a 1-form �on S whih satis�es d� > 0 and takes the form(3.4) � = (2� �) d�on U i. By a simple interpolation trik (f. [Etn06℄), � an be used to onstrut a 1-form � on S that satis�es d� j�0 > 0 and � = (2� �) d� on U i :Choosing � > 0 suÆiently small, we an bring ker(d�+ �� ) suÆiently C0-lose to �0 on S so that d� jker(d�+�� ) > 0. Then a ontat form that equals �0 near �Mabs0 an be de�nedby(3.5) �� = 8><>:d�+ � � on S ,fi;�(�) d� + d� on f� 2 [r0; r℄g � Ni,�0 on f� � r0g � Ni,where the fat that fi(r0) > 0 allows us for � > 0 suÆiently small to hoose smooth funtionsfi;� : [0; 1℄! R satisfying� fi;�(�) = fi(�) for � 2 [0; r0℄,� f 0i;� < 0 for � 2 [r0; r℄, and� fi;�(�) = �(2� �) for � 2 [r; 1℄.Note that for i 2 II , fi;� also extends naturally over [�1; 1℄ with fi;�(�) = f�(i);�(��). Allontat forms that one an onstrut in this way are homotopi to eah other through familiesof ontat forms, so the resulting ontat struture�� := ker��is uniquely determined up to isotopy. Moreover, it is easy to hek that the Reeb vetor�eld determined by �� is everywhere positively transverse to the pages: in partiular, �� is a

30 CHRIS WENDLGiroux form for the blown up summed open book we've onstruted on Mabs0 , thus (Mabs0 ; ��)is ontatomorphi to (M0; �).3.3. A model deoupling obordism. Assume now that the manifoldM0 from the previ-ous setion is embedded into a losed ontat 3-manifold (M; �) suh that � is an extension ofthe ontat struture that was given onM0. Without loss of generality, we an identify (M0; �)with the abstrat model (Mabs0 ; ��), and assume in partiular that �0 and �� are 1-forms onMwhih restrit on M0 to the models onstruted above, and on a neighborhood of M nM0de�ne mathing ontat forms whose kernel is �.Our goal in this setion is to onstrut a weak sympleti obordism that realizes a �-deoupling surgery along some set of oriented interfae toriI0 = T1 [ : : : [ TN � I:The hosen orientation of eah Tj splits a tubular neighborhood N (Tj) � M of Tj naturallyinto positive and negative parts N (Tj) = N�(Tj) [N+(Tj)whose intersetion is Tj . To simplify notation in the following, let us assume these neighbor-hoods are hosen and the page boundary omponents �S = �1S [ : : : [ �nS are ordered sothat for eah j = 1; : : : ; N ,N (Tj) = Nj = S1 � [�1; 1℄ � S1 and N+(Tj) = S1 � [0; 1℄ � S1:We will �x on N (Tj) the standard oordinates (�; �; �) of Nj, and assume all the funtionshosen to de�ne �0 and �� are the same for all of these neighborhoods, so we an writef = fj; g = gj ; f� = fj;�for j = 1; : : : ; N .For Theorems 5 and 6, the obordism we onstrut will need to be attahed to a trivialobordism of the form ([0; 1℄ �M;!), whih will be impossible if our model sympleti formdoes not math ! at least ohomologially at f1g�M . In order to realize the right ohomologylass in the model, we hoose a losed 2-form 
0 on M representing an arbitrary ohomologylass for whih the ondition (1.4) is satis�ed. Sine we only are about 
0 up to ohomology,we are free to add an exat 2-form and thus assume 
0 satis�es
0 = j d� ^ d� on N (Tj)for eah j = 1; : : : ; N , where j 2 R are onstants satisfying(3.6) NXj=1 j = 0:Sine �0 ^ d�� > 0 everywhere on M , we an de�ne an exat sympleti form on the trivialobordism [0; 1℄ �M as follows: �x any smooth, stritly inreasing funtion ' : [0; 1℄ ! Rwith '(0) = 0 and j'(t)j uniformly small, and set(3.7) !0 = d ('(t)�0 + ��) :If k'kL1 is suÆiently small then !0 is sympleti and restrits positively to both � and thepages of �, everywhere on [0; 1℄ �M . Now if C > 0 is a suÆiently large onstant, then the2-form(3.8) !C := C!0 +
0



NON-EXACT SYMPLECTIC COBORDISMS 31also has these properties. In the following we shall always assume C is arbitrarily largewhenever onvenient. Note that for the ase of Theorems 5 and 6 where the given ! on[0; 1℄ �M is exat, we may assume without loss of generality that 
0 � 0, see Remark 3.12.To onstrut a obordism orresponding to the round handle attahment, we shall �rst\dig a hole" in the trivial obordism [0; 1℄ �M near eah of the tori f1g � Tj . In order to�nd nie oordinates near the boundary of the hole, it will be useful to onsider the vetor�eld X� on [0; 1℄ �N (Tj) de�ned by the ondition!0(X�; �) = �d�:Lemma 3.6. The vetor �eld X� is loally Hamiltonian with respet to !C and takes the form(3.9) X� = A(t; �) �t +B(t; �) ��for some smooth funtions A;B : [0; 1℄ � [1; 1℄! R with the following properties:(1) For �� 2 [r; 1℄, A(t; �) = 0 and B(t; �) = �1� .(2) For �� 2 [r0; r℄, A(t; �) = 0 and �B(t; �) > 0.(3) For � 2 (�r0; r0), A(t; �) < 0.Proof. By a diret omputation, X� takes the form (3.9) with A and B satisfying the linearsystem ��'0(t)f(�) � ['(t)f 0(�) + f 0�(�)℄'0(t)g(�) ['(t) + 1℄ g0(�) ��A(t; �)B(t; �)� = �10� :The determinant �(t; �) of this matrix is always negative sine the ontat ondition requiresf(�)g0(�) � f 0(�)g(�) > 0 for j�j < r, and for �� 2 [r; 1℄ we have g(�) = �1, �f 0(�) � 0 and�f 0�(�) < 0. The general solution for A and B an thus be written as�A(t; �)B(t; �)� = 1�(t; �) �['(t) + 1℄ g0(�)�'0(t)g(�) � :The stated onditions on A(t; �) and B(t; �) then follow immediately from the onditionswe've plaed on f , g, f� and '.In light of (3.9), X� is in the kernel of d� ^ d�, and we onlude easily that it is loallyHamiltonian sine LX�!C = d�X� (C!0 + j d� ^ d�) = d (�C d�) = 0: �Due to the lemma, we an hoose a smoothly embedded urve[�1; 1℄! [1=2; 1℄ � [�1; 1℄ : � 7! (t(�); �(�))that is everywhere transverse to the vetor �eld (3.9) and also satis�es (t(0); �(0)) = (1=2; 0)and (t(�); �(�)) = (��;�1)near � = �1 (see Figure 5). Writing the annulus as A = [�1; 1℄ � S1, use the urve justhosen to de�ne an embedding	 : S1 � A ,! [0; 1℄ �N (Tj) : (�; �; �) 7! (t(�); �; �(�); �);whih traes out a smooth hypersurfae HTj � [0; 1℄�N (Tj) that meets f1g�M transverselyat the pair of tori f1g � �N (Tj). Denote byUTj � [0; 1℄ �M
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WjUTjf1g � Tj[0; 1℄ �N (Tj)HTj = �UTjM 0at(M 0onvex; �0)MP0� � �T(W 0; !)D � S2S1 � S2(W;!)T1T2T3T0M0M1M2M3(T3; �2)(S1 � S2; �OT)(S1 � S2; �0) t (S1 � S2; �0)T�T+M�M+M 0�ZZ 0GT(M; �) � 1���+�overtwistedFigure 5. The path (t(�); �(�)) transverse to the vetor �eld of (3.9).the interior of the omponent of ([0; 1℄�M)nHTj that ontains f1g�Tj (see Figure 6). Observethat by onstrution, UTj lies entirely within [1=2; 1℄ � N (Tj), and the loally Hamiltonianvetor �eld X� points transversely outward at �UT = HTj . Thus for suÆiently small Æ > 0,we an use the ow 'tX� of X� to parametrize a neighborhood of HTj in UT by an embeddinge	 : (1� Æ; 1℄ � S1 � A ,! [0; 1℄ �M(�; �; �; �) 7! '��1X� (	(�; �; �)):Lemma 3.7. We have(3.10) e	�!0 = �d (� d�) + d�;where � is an S1-invariant 1-form on S1 � A that satis�es� = � ['(��) + 1℄ d� near f� = �1g = �(S1 � A );and d� ^ d� > 0 everywhere.Proof. In [0; 1℄ �N (T ) we an write !0 = d�, where� := '(t)�0 + �� � � d�:Then de�ning � := 	�� on S1�A , we have d� = 	�!0 and an write � expliitly near � = �1by plugging in t = �� , � = �1, f(�) = 0, g(�) = �1 and f�(�) = �(2� �) = �, hene� = 	� ('(t)�0 + �� � � d�) = '(��)(�d�) + � d� � d�� � d�= � ['(��) + 1℄ d�as desired. Sine � is invariant under the S1-ation by translation of �, � is also S1-invariant.The laim d� ^ d� > 0 is a onsequene of the fat that HTj is transverse to the vetor �eldX�, whih is !0-dual to �d�: indeed, ignoring ombinatorial fators we �ndd� ^ d�(��; �� ; ��) = �	�(�X�!0) ^	�!0(��; �� ; ��)/ �!0 ^ !0(X�;	���;	��� ;	���) 6= 0:It follows that d�^d� is positive sine this is obviously true near � = �1. The formula (3.10)now follows from the fat that �d� = �X�!0 and X� has a sympleti ow. �
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M 0at(M 0onvex; �0)MP0� � �T(W 0; !)D � S2S1 � S2(W;!)T1T2T3T0M0M1M2M3(T3; �2)(S1 � S2; �OT)(S1 � S2; �0) t (S1 � S2; �0)T�T+M�M+M 0�ZZ 0GT(M; �) � 1���+�overtwisted Figure 6. Digging a hole in [0; 1℄ �N (Tj) near f1g � Tj.Remark 3.8. The embedding e	 reverses orientations. This will be onvenient in the followingsine the handle bH� = ��� A also omes with a reversed orientation.Sine e	 ats trivially on the oordinates � and �, the lemma also yields a formula for thepullbak of !C , namely(3.11) e	�!C = C [�d (� d�) + d�℄ + j d� ^ d�:For eah j = 1; : : : ; N , denote by Wj � [0; 1℄�N (Tj) the image of the map e	 as onstrutedabove (Figure 6): Wj thus inherits negatively oriented oordinates (�; �; �; �) 2 (1 � Æ; 1℄ �S1 � [�1; 1℄� S1 in whih !C has the form given in (3.11).We are now ready to write down a smooth model of the round handle attahment. As inx1, assume � is a ompat, onneted and oriented surfae with N boundary omponents�� = �1� [ : : : [ �N�:Near eah omponent �j�, identify a ollar neighborhood Vj � � with (1 � Æ; 1℄ � S1 anddenote the resulting oriented oordinates by (�; �). Then denote the union of all the subsetsUTj by UI0 and de�ne the obordismW = (([0; 1℄ �M) n UI0) [ (��� A )by removing UI0 from [0; 1℄�M and replaing it by the handle ��� A , gluing Vj � A to Wjvia the natural identi�ation of the oordinates (�; �; �; �). This yields a smooth 4-manifoldwith two boundary omponents �W =M 0 t (�M);where we identify M with f0g �M and writeM 0 = ((f1g �M) n N (I0)) [ (��+ � S1) [ (��� � S1);using the identi�ation � � �A = (�+ � S1) t (�� � S1) de�ned in (1.2). The orientedsurfaes �(�+ t��)�f�g now glue together smoothly with the �bers ��1(�) in M n N (I0)to form the pages of the natural blown up summed open book �0 on M 0 obtained from � by�-deoupling surgery along I0. It remains to de�ne a suitable sympleti form on �� A thatmathes (3.11) near ��� A and is positive on these pages.Lemma 3.9. There exists a sympleti form on ���A that mathes (3.10) near ���A andis positive on the oriented surfaes fpg� A for any p 2 � n (V1 [ : : :[VN ) and ���f(�; �)g

34 CHRIS WENDLfor any (�; �) 2 A , and makes T (� � f�g) and T (f�g � A ) into sympletially orthogonalsympleti subspaes everywhere along �� �A .Proof. We will use a standard deformation trik to simplify (3.10) on eah of the regionsVj � A so that it an be extended as a split sympleti form. Choose a 1-form �0 on A withd�0 > 0 and lift it in the obvious way to S1 � A . SineZf�g��A � = 2 ['(1) + 1℄ > 0and � has no d�-term near S1��A , we an also arrange for �0 to math � on a neighborhoodof S1� �A . Next hoose a smooth uto� funtion ~� : (1� Æ; 1℄! [0; 1℄ that satis�es ~�(�) = 0near � = 1�Æ and ~�(�) = 1 near � = 1, and use this to de�ne a smooth funtion � : �! [0; 1℄whih satis�es �(�; �) = ~�(�) on Vj, � � 0 on � n (V1 [ : : : [ VN ):We observe that the expression �� + (1� �) �0now gives a well-de�ned 1-form on �� A by lifting �0 from A to � � A and � from S1 � Ato (1� Æ; 1℄ � S1 � A = Vj � A in the obvious ways.Choose also a smooth funtion  : (1� Æ; 1℄! [1;1) satisfying  0 > 0 and  0(�) = 1 near� = 1, and a 1-form � on � suh that� =  (�) d� in Vj, d� > 0 everywhere.A suitable sympleti form on �� A an then be de�ned by(3.12) !00 = �d�+ d��� + (1� �) �0�:By onstrution, !00 mathes (3.10) near ���A , while near ���A and outside of the regionsVj � A it takes the split form �d�+ d�0;whih is sympleti and makes eah of T (��f�g) and T (f�g � A ) into sympleti subspaeswhih are sympletially orthogonal to eah other. To test whether !00 is sympleti on Vj�A ,we ompute 12!00 ^ !00 =  0 d� ^ d� ^ [� d� + (1� �) d�0℄+ ��0 d� ^ (� � �0) ^ [� d� + (1� �) d�0℄ :The �rst term is always nonzero sine d� ^ d� and d� ^ d�0 are both positive. The wholeexpression is therefore nonzero whenever either �0(�) = 0 or  0(�) is suÆiently large, andwe are free to hoose  so that it inreases fast in the region where � is not onstant. Thishoie also ensures !00(��; ��) > 0 everywhere on Vj � A . �To �nd a sympleti extension of (3.11) over � � A , hoose now a losed 1-form � on �whih takes the form � = j d�near eah boundary omponent �j�; this is possible due to the homologial ondition (3.6).Then if !00 denotes the extension of e	�!0 given by Lemma 3.9, we extend (3.11) as!0C := C!00 + d� ^ �:



NON-EXACT SYMPLECTIC COBORDISMS 35Whenever C is suÆiently large, Lemma 3.9 implies that this form is also sympleti andrestrits positively to the surfaes ���f(�; �)g and fpg� A if p 2 � lies outside a neighbor-hood of the boundary. This implies that it is positive on the pages of �0, as well as on theore bK� = ([0; 1=2℄ � bB0) [ (��� f(0; 0)g) �W and o-ore bK0� = fpg � A �W (f. x1.2).To summarize: we have onstruted a smooth obordism W with sympleti form !0C thatmathes !C nearM = f0g�M and is positive on the ore and o-ore and on the pages of theindued blown up summed open book at the other boundary omponent M 0. An appropriateonfoliation 1-form �00 an now be de�ned on M 0 by(3.13) �00 = (�0 on M n N (I0);d� on �� � S1;where we use � to denote the natural S1-oordinate on ���S1. The distribution �00 := ker �00is then tangent to the pages on the glued in region, hene !0C j�00 > 0. It follows that on anyonneted omponent of M 0 that does not ontain losed pages, �00 has a perturbation to aontat struture �0 that is supported by �0 and dominated by !0C .Remark 3.10. It will be useful later to observe that RbK� !0C is not only positive but an beassumed to be arbitrarily large. In fat it must in general be large due to the deformationtrik used in the proof of Lemma 3.9.Remark 3.11. If the onstants j all vanish, i.e. 
0 = 0 on N (I0), then one an hoose the1-form � in the above onstrution to be identially zero. This has the useful onsequenethat for any � 2 [�1; 1℄ and any losed embedded loop ` � � outside a neighborhood of ��,the torus ` � f�g � S1 � � � A is Lagrangian. More generally, if ` � � is any properlyembedded ompat 1-dimensional submanifold transverse to ��, thenZ`�f�g�S1 !0C = 0:Indeed, with � = 0 it is equivalent to show that the integral of !00 vanishes, and using (3.12)we �nd Z`�f�g�S1 !00 = Z�`�f�g�S1 �sine � vanishes on the S1-fator in �` � f�g � S1. Sine � is S1-invariant on S1 � A , thisintegral doesn't depend on the position of any point in �` � �� but only on the algebraiount of these points, whih is zero, thusZ�`�f�g�S1 � = #(�`)Zf(�;�)g�S1 � = 0:Remark 3.12. The reader who is only interested in strong obordisms, or more generallythe ase where the negative boundary of the obordism is (strongly) onave, may assumethroughout this setion that 
0 � 0. In this ase, the sympleti form we have de�ned on Wis exat near M � �W and has a primitive there whih restrits to a onstant multiple ofthe ontat form ��, so this boundary omponent is onave. The ontents of this and thenext setion therefore suÆe to omplete the proofs of Theorems 6 and 5 respetively if thegiven ! on [0; 1℄�M is exat: indeed, by [Eli91, Proposition 3.1℄, ! an then be deformed tomake it (strongly) onvex at the positive boundary, so after a further deformation to maththe ontat forms, the Liouville ow an be used to attah it smoothly to our model as long

36 CHRIS WENDLas the onstant C > 0 is hosen suÆiently large. The ase where ! is not exat requires theadditional deformation argument of x3.5 below.3.4. Modi�ations for the apping obordism. The above onstrution works essentiallythe same way for the handle ��D , so we will be ontent to briey summarize the di�erenes.Here we pik binding omponents B0 = 1 [ : : : [ N � Band denote the orresponding solid torus neighborhoods by N (j) = S1� D with oordinates(�; �; �), viewing (�; �) as polar oordinates, and denote the union of these neighborhoodsby N (B0). The model sympleti form !C on the trivial obordism [0; 1℄�M is again de�nedvia (3.7) and (3.8), with the di�erene that sine every losed 2-form on N (j) is exat, wean assume (after adding an exat 2-form) that 
0 vanishes on all of these neighborhoods.The role of HTj is now played by a hypersurfaeHj � [0; 1℄ �N (j)parametrized by an embedding 	 : S1 � D ! [0; 1℄ �M;thus de�ning a similar set of oordinates (�; �; �) 2 S1 � D on Hj , where (�; �) are nowpolar oordinates on D . We an again arrange Hj to be transverse to the vetor �eld X�,de�ned exatly as before, and then use its ow to parametrize a neighborhood of Hj in theregion Uj that it bounds via a mape	 : (1� Æ; 1℄ � S1 � D ,! [0; 1℄ �N (j) : (�; �; �; �) 7! '��1X� (	(�; �; �))for whih e	�!0 again takes the form �d(� d�)+d� for some 1-form � on S1� D that satis�es� = ['(�) + 1℄ d�near S1 � �D and d� ^ d� > 0 everywhere. Denote the image of e	 orresponding to eah jby Wj , with negatively oriented oordinates (�; �; �; �) 2 (1 � Æ; 1℄ � S1 � D . Writing theunion of the regions Uj as UB0 , the smooth obordism is then de�ned byW = (([0; 1℄ �M) n UB0) [ (��� D );where �� D is glued in by identifying Vj � D with Wj so that the oordinates math. Thishas boundary �W =M 0 t (�M), where M = f0g �M andM 0 = ((f1g �M) n N (B0)) [ (��� S1);hene the glued in region ��S1 arries the oordinates (�; �; �) near its boundary. Choosinga 1-form �0 on D that mathes � near �D and satis�es d�0 > 0, the interpolation trik (3.12)an again be used to deform !0 in a ollar neighborhood of �� � D so that it admits asympleti extension over the rest of �� D in the form !00 = �d�+ d�0. The resulting form!0C = C!00 +
0 is sympleti everywhere on W and is also positive on the pages of �0 at M 0if C is suÆiently large, as well as on the ore(3.14) K� = ([0; 1=2℄ �B0) [ (��� f0g) �Wand the o-ore K0� = fpg � D �W



NON-EXACT SYMPLECTIC COBORDISMS 37for an appropriate hoie of p 2 �. The onfoliation 1-form extends smoothly over � � S1as �00 = d�, so that !0C is also positive on �00 := ker �00 and thus dominates any ontat formobtained as a small perturbation.3.5. Sympleti deformation in a ollar neighborhood. To apply the onstrutions ofthe previous setions in proving Theorems 5 and 6 when the given sympleti form ! on[0; 1℄ � M dominating � is non-exat, we must show that ! an be deformed away fromf0g �M to reprodue the model(3.15) !C = C d ('(t)�0 + �) + 
0;where � := �� and �0 are 1-forms as desribed at the beginning of x3.3, ' : [0; 1℄ ! R is asmooth funtion with '0 > 0, '(0) = 0 and k'kL1 small, 
0 is some losed 2-form on Min the appropriate ohomology lass, and C > 0 is a onstant that we an assume to beas large as neessary. The following appliation of a standard Moser deformation argument(f. [NW11, Lemma 2.3℄) will be useful.Lemma 3.13. Suppose (W;!) is a sympleti 4-manifold, M is a losed oriented 3-manifoldwith an embedding � :M ,!W and � is a 1-form on M that satis�es �^��! > 0. Then forsuÆiently small � > 0, � extends to an embeddinge� : (��; �)�M ,!Wsuh that e�(0; �) = � and e��! = d(t�) + ��!.Observe that ifM �W is an oriented hypersurfae in a sympleti 4-manifold (W;!) witha positive ontat struture �, then ! dominates � if and only if it satis�es� ^ !jTM > 0for every ontat form � on (M; �). Using the obvious variants of Lemma 3.13 when thehypersurfae is a positive or negative boundary omponent of W , we obtain the followinguseful onsequene:Lemma 3.14. Suppose (M; �) is a losed ontat 3-manifold and ((�1; 0℄ � M;!�) and([0; 1) � M;!+) are two sympleti manifolds suh that the restritions of !� and !+ tof0g�M de�ne the same 2-form 
 on M , with 
j� > 0. Then for any small � > 0, (�1; 1)�Madmits a sympleti form whih mathes !+ on [�; 1) �M and !� on (�1;��℄�M .Proposition 3.15. Suppose (M; �) is any losed ontat 3-manifold with ontat form �, �0is a 1-form on M satisfying �0 ^ d� > 0, ! is a sympleti form on [0; 1℄ �M with !j� > 0,and 
0 is a losed 2-form on M with [
0℄ = [!jTM ℄ 2 H2dR(M). Then for any Æ 2 (0; 1) andsuÆiently large C > 0, there exists a sympleti form !0 on [0; 1℄ �M that mathes ! on aneighborhood of f0g �M and takes the form (3.15) on [Æ; 1℄ �M .Proof. By Lemma 3.13 we an assume without loss of generality that ! has the form! = d(t�) + 
;near f0g �M , where 
 is the losed 2-form on M de�ned as the restrition of ! to f0g �M .The proof now proeeds in two steps, of whih the �rst is to put the sympleti struture!C of (3.15) into a slightly simpler form via a oordinate hange near f0g �M . De�ne the1-form �0 = '(t)�0 + �

38 CHRIS WENDLon [0; 1℄ �M and write !0 := d�0, so !C = C!0 +
0. Let V denote the vetor �eld that is!C-dual to C�0, i.e. !C(V; �) = C�0. For C suÆiently large, V is then a small perturbationof the vetor �eld that is !0-dual to �0, whih is a Liouville (with respet to !0) vetor �eldpositively transverse to f0g �M sine �0jf0g�M = � is ontat. Hene we may assume V isalso positively transverse to f0g �M and use its ow 'tV to de�ne an embedding : [0; �) �M ,! [0; 1℄ �M : (t;m) 7! 'tV (m)for � > 0 suÆiently small. If X� denotes the Reeb vetor �eld determined by �, alongf0g �M we then have ��t( �!C) = C�and  �!C jT (f0g�M) = C d�+
0:Hene  �!C mathes the sympleti form d(t C�) + C d� + 
0 pointwise at f0g �M , andanother Moser deformation argument thus allows us to isotop the embedding  so that  �!Ctakes this form on some neighborhood of f0g �M . Equivalently, this means !C admits adeformation to a new sympleti form !0C whih takes the form(3.16) !0C = d(tC�) + C d�+
0on an arbitrarily small neighborhood of f0g�M and mathes the original !C outside a slightlylarger neighborhood.For step two, we show that the given ! an be deformed outside a small neighborhood off0g �M to a new sympleti form !0 that mathes (3.16) outside a slightly larger neighbor-hood. Indeed, hoose a onstant C 0 > 0 large enough so that(C 0 d�+
0)j� > 0;and sine 
 and 
0 are ohomologous by assumption, hoose a 1-form � on M suh thatC 0 d�+
0 � 
 = d�. For some Æ > 0 small, hoose a uto� funtion �(t) that equals 0 neart = 0 and 1 near t = Æ, and de�ne!0 = d (f(t)�) + 
 + d (�(t) �) ;with f : [0; Æ℄ ! [0;1) a smooth funtion satisfying� f(t) = t near t = 0,� f 0 > 0,� f(Æ) + C 0 = C(Æ + 1).If f is hosen to inrease suÆiently fast, then !0 is sympleti, and this an always be arrangedif C > 0 is made suÆiently large. This depends in partiular on the fat that the 2-forms
 and C d� + 
0 are both positive on �. The restritions of !0 and !0C to the hypersurfaefÆg �M now math, thus the two an be glued together smoothly by Lemma 3.14. �Combining Proposition 3.15 with the obordism onstrutions of x3.3 and x3.4 ompletesthe proofs of Theorems 5 and 6.



NON-EXACT SYMPLECTIC COBORDISMS 393.6. Cohomology. We now prove Theorems 50 and 60 by haraterizing the situations inwhih ! an be made exat on W or on M 0onvex.Assume �rst that (W;!) is a �-apping obordism ([0; 1℄ �M) [H�, with H� = ��� Dattahed along a neighborhood N (B0) of B0 = 1 [ : : : [ N . Write �W =M 0 t (�M) and
 := !jTM ; 
0 := !jTM 0 :Due to x3.5, we may assume without loss of generality that 
 has the form(3.17) 
 = C d�+
0where C > 0 is arbitrarily large, � is the usual ontat form onM and 
0 vanishes on N (B0).By Remark 3.10, we an also assume in the following that RK� ! is arbitrarily large.The deomposition of W into [0; 1℄ �M and H�, whih interset at N (B0) � f1g �M ,gives rise to the Mayer-Vietoris sequene,: : :! H2(N (B0))! H2(M)�H2(H�)! H2(W )! H1(N (B0))! H1(M)�H1(H�)! : : :in whih H2(N (B0)) = H2(H�) = 0, H1(H�) = H1(�) and H1(N (B0)) = H1(B0) = ZN.Thus there is an isomorphismH2(W ) �= im �H2(M)!H2(W )�� ker �H1(N (B0))! H1(M)�H1(H�)�;(3.18)in whih the �rst summand is an isomorphi opy of H2(M). Denote by �M : N (B0) ,! Mand �� : N (B0) ,! H� the natural inlusions. Then ��� ([j ℄) = [�j�℄ 2 H1(�) = H1(H�),so sine � is onneted, ker ��� is isomorphi to Z and is generated by [1℄ + : : : + [N ℄. Itfollows that the seond summand in (3.18) onsists of all integer multiples of [1℄ + : : :+ [N ℄whih are also in ker �M� , i.e. it is isomorphi to Z if [1℄ + : : : + [N ℄ is torsion in H1(M),and is otherwise trivial. In the former ase, let k0 2 N be the smallest number for whihk0([1℄ + : : :+ [N ℄) = 0 2 H1(M), and onstrut a yle Ak0 2 H2(W ) in the form(3.19) Ak0 = CM + k0[K�℄;where CM is any 2-hain in f0g�M with �CM = k0([1℄+ : : :+[N ℄) and K� �W is the ore(3.14). The isomorphism (3.18) implies that everything in H2(W ) is an element of H2(M)plus an integer multiple of (3.19).Let h denote a real 1-yle in M n N (B0) suh that [h℄ = PD([
℄) 2 H1(M ;R); note thatthis is always possible sine 
 is neessarily exat on N (B0). The produt [0; 1℄ � h thenrepresents a relative homology lass in H2(W;�W ;R).Proposition 3.16. There is a number  > 0 suh that PD([!℄) = [0; 1℄ � [h℄ + [K0�℄ 2H2(W;�W ;R).Proof. It suÆes to show that for every A 2 H2(W ), the evaluation of ! on A mathes theintersetion produt(3.20) ZA ! = A � �[0; 1℄ � [h℄ + [K0�℄� :For any A 2 im(H2(M)! H2(W )) this is immediately lear sineZA ! = ZA
 = A � [h℄;

40 CHRIS WENDLwhere the latter is the intersetion produt in M , and A does not interset anything in thehandle. By (3.18), either the image of H2(M)! H2(W ) is the entirety of H2(W ) or there isone more generator Ak0 = CM + k0[K�℄. For the latter we haveZAk0 ! = ZCM 
+ k0 ZK� !and Ak0 � �[0; 1℄ � [h℄ + [K0�℄� = CM � [h℄ + k0;so (3.20) is satis�ed if and only if = ZK� ! + 1k0 �ZCM 
� CM � [h℄� :This is positive without loss of generality sine RK� ! was assumed to be arbitrarily large. �The above argument also shows that if f0g �M � (W;!) is onave, then ! an never beexat if [1℄ + : : : + [N ℄ 2 H1(M) is torsion, even without assuming RK� ! to be arbitrarilylarge. Indeed, in this ase we have 
 = d� for a ontat form � on (M; �), and [h℄ = 0, heneZAk0 ! = ZCM d�+ k0 ZK� ! = k0 NXj=1 Zj �+ k0 ZK� ! > 0;and  = ZK� ! + NXj=1 Zj � > 0:On the other hand if [1℄+: : :+[N ℄ 2 H1(M) is not torsion, thenH2(M) generates everythingin H2(W ), so RA ! always vanishes sine 
 is exat. This proves the �rst half of Theorem 50.We also onlude from the above that if f0g �M � (W;!) is onave, then there is aonstant  > 0 suh that PD([
0℄) = [�K0�℄ 2 H1(M 0;R);so the seond half of the theorem is proved by showing that [�K0�℄ = 0 2 H1(M 0;R) if and onlyif the stated homologial ondition on 1; : : : ; N is satis�ed. Writing M 0 = (M n N (B0)) [(��� S1), we obtain the Mayer-Vietoris sequene: : :! H2(M 0)! H1(�N (B0))! H1(M n B0)�H1(�� S1)! : : : ;where H1(�N (B0)) �= Z2N, with eah omponent �N (j) arrying the two distinguishedgenerators �j; �j de�ned in x1. Denote the inlusions �M : �N (B0) ! M n B0 and �� :�N (B0)! ��S1. Then ��� �j = [�j��f�g℄ 2 H1(��S1) and ��� �j = [f�g�S1℄ 2 H1(��S1),so ker ��� onsists of all lasses of the formk NXj=1 �j + NXj=1mj�jwith k;m1; : : : ;mN 2 Z and Pjmj = 0. Now, [�K0�℄ is represented by the yle f�g � S1 ��� S1 �M 0, and it vanishes in H1(M 0;R) if and only ifA � [f�g � S1℄ = 0



NON-EXACT SYMPLECTIC COBORDISMS 41for every A 2 H2(M 0). This is true if and only if the image of the mapH2(M 0)! H1(�N (B0))in the above sequene ontains only yles of the form Pjmj�j. In light of the abovedesription of ker ��� , this is true if and only ifk(�1 + : : :+ �N ) 62 ker �M�for all k 6= 0. This ompletes the proof of Theorem 50.The proof of Theorem 60 proeeds similarly: AssumeW = ([0; 1℄�M)[ bH� is a �-deouplingobordism, with bH� = ��� A attahed along a neighborhood N (I0) of I0 = T1 [ : : : [ TN ,write �W = M 0 t (�M), 
 := !jTM and 
0 := !jTM 0 . We again assume that RbK� ! isarbitrarily large, and that 
 takes the form of (3.17), and we also impose the extra onditionZTj 
 = 0 for every omponent Tj � I0.In this ase we an �nd a real 1-yle h in M n N (I0) that represents PD([
℄) 2 H1(M ;R).Without hanging the ohomology lass or the sympleti properties of !, we an then alsoassume that 
0 is supported in a tubular neighborhood of the yle h.Reall from x1 that eah oriented torus Tj � I0 omes with a distinguished homology basisf�j ; �jg � H1(Tj), where �j is a boundary omponent of a page and �j is represented bya Legendrian loop in Tj. This also gives rise to bases f��j ; ��j g of H1(��N (Tj)), where theorientation of ��j is reversed ompared with �j. For W = ([0; 1℄ �M) [ bH� we have theMayer-Vietoris sequene: : :! H2(M)�H2( bH�)! H2(W )! H1(N (I0))! H1(M)�H1( bH�)! : : :and resulting isomorphismH2(W ) �= im �H2(M)�H2( bH�)!H2(W )�� ker �H1(N (I0))! H1(M)�H1( bH�)�:(3.21)Denote the generator ofH1(A ) = Z by [S1℄, whih an also naturally be regarded as a primitivelass in H1( bH�) = H1(�) � H1(A ). Then writing the inlusions as �M : N (I0) ,! M and�� : N (I0) ,! bH�, we have ��� (�j) = [�j� � f�g℄ and ��� (�j) = [S1℄, hene ker ��� onsists ofall lasses of the form k NXj=1 �j + NXj=1mj�jfor k;m1; : : : ;mN 2 Z with Pjmj = 0. For any � 2 H1(I0) of this form whih is alsonullhomologous in M , we an form a yle A� 2 H2(W ) as follows. First hoose a 2-hainCM in f0g �M with �CM = �. Choose also a 1-hain ` in � with boundary in �� suh thatthe 2-hain `� f�g � S1 in bH� has boundary�(`� f�g � S1) = � NXj=1mj�j;whih is always possible sine Pjmj = 0. We an represent ` by a properly immersedsubmanifold in � so that by Remark 3.11, R`�f�g�S1 ! = 0. Now extend `� f�g � S1 to a 2-hain inW with boundary in f0g�M by attahing trivial ylinders over the appropriate overs

42 CHRIS WENDLof Legendrian representatives of �j . Sine these ylinders are Lagrangian, this onstrutionyields an immersed submanifold L` �W whih satis�es(3.22) ZL` ! = 0and �L` � I0 � f0g �M , with [�L`℄ = �Pjmj�j 2 H1(I0). We de�ne A� 2 H2(W ) by(3.23) A� = CM + [L`℄ + k[bK�℄:Proposition 3.17. There is a number  > 0 suh that PD([!℄) = [0; 1℄ � [h℄ + [bK0�℄ 2H2(W;�W ;R).Proof. The goal is again to prove(3.24) ZA ! = A � �[0; 1℄ � [h℄ + [bK0�℄�for every A 2 H2(W ), and it is again immediate if A 2 im(H2(M)! H2(W )). It is also learfor A 2 im(H2( bH�) ! H2(W )), as H2( bH�) is generated by lasses of the form `0 � [S1℄ for`0 2 H1(�), hene both sides of (3.24) vanish (see Remark 3.11).The rest of H2(W ) is generated by lasses of the form A� de�ned in (3.23), for whihZA� ! = ZCM 
+ k ZbK� !in light of (3.22). Similarly, L` does not interset either [0; 1℄ � h or bK0�, thusA � �[0; 1℄ � [h℄ + [bK0�℄� = CM � [h℄ + k;and (3.24) is thus satis�ed if and only if = ZbK� ! + 1k �ZCM 
� CM � [h℄� ;whih is positive if RbK� ! is made suÆiently large. To see that this formula for  doesn'tdepend on any hoies, observe that if 
 is exat, then h = 0 and 
 = C d�, soZCM 
� CM � [h℄ = C Z�CM �is proportional to k, as the integral of � vanishes on all the meridians �j. When 
 is notexat but equals C d�+
0 with 
0 supported in a tubular neighborhood of h, we an �nd areal homology lass B 2 H2(M ;R) with B � [h℄ = CM � [h℄ and thus de�ne a real 2-hainC 0M := CM �Bwith �C 0M = �CM and C 0M � [h℄ = 0. Then up to relative homology, C 0M an be representedby a real linear ombination of immersed surfaes that have no geometri intersetion with h,hene RC0M 
0 = 0. Now sine RB 
 = B � [h℄,ZCM 
� CM � [h℄ = ZC0M 
 = C ZC0M d� = C Z�CM �;and this is again proportional to k. �



NON-EXACT SYMPLECTIC COBORDISMS 43If f0g �M � (W;!) is onave, then writing h = 0 and 
 = d� givesZA� ! = Z� �+ k ZbK� !for any yle � = k(�1+: : :+�N )+Pjmj�j 2 H1(I0) withPjmj = 0 that is nullhomologousin M . Sine R� � is also positively proportional to k, this proves that ! is exat if and onlyif there is no suh nullhomologous yle � with k > 0. Moreover, PD([
0℄) = [� bK0�℄ 2H1(M 0;R) for some  > 0, so it remains to haraterize the situations where this homologylass vanishes. WriteM 0 = (M nN (I0))[(��+�S1)[(����S1) and onsider the resultingMayer-Vietoris sequene: : :! H2(M 0)! H1(�N (I0))! H1(M n I0)�H1((�+ t ��)� S1)! : : : ;where H1(�N (I0)) is freely generated by the 4N yles ��j ; ��j . Denote the inlusions �M :�N (I0)!M n I0 and �� : �N (I0)! (�+ t ��)� S1, where the latter maps ��N (Tj) into�� � S1. Then ��� ��j = [�j�� f�g℄ 2 H1(�� � S1) and ��� ��j = [f�g � S1℄ 2 H1(�� � S1),thus ker ��� onsists of all lasses of the form(3.25) k+ NXj=1 �+j + k� NXj=1 ��j + NXj=1m+j �+j + NXj=1m�j ��j ;with k�;m�1 ; : : : ;m�N 2 Z satisfyingPjm+j =Pjm�j = 0. The o-ore bK0� has two boundaryomponents, one generating eah of the yles f�g�S1 � ���S1 �M 0, whih we will denoteby [S1℄� 2 H1(M 0). Thus [� bK0�℄ vanishes in H1(M 0;R) if and only ifA � ([S1℄+ + [S1℄�) = 0for every A 2 H2(M 0). This is true if and only if the image of the map H2(M 0)! H1(�N (I0))in the above sequene ontains only yles of the form (3.25) with k++k� = 0, meaning thatyles of this form with k+ + k� 6= 0 are never trivial in H1(M n I0).We've now haraterized the ases in whih 
0 is globally exat on M 0; of ourse this neverhappens if M 0at 6= ; sine the latter then ontains losed pages on whih 
0 is positive. Ifboth M 0onvex and M 0at are nonempty, then the interesting question is when 
0 will be exaton M 0onvex, whih is the ase if and only if[� bK0� \M 0onvex℄ = 0 2 H1(M 0onvex;R):Assuming the labels are hosen so that �+�S1 �M 0onvex and ���S1 �M 0at, [� bK0�\M 0onvex℄is now represented by f�g�S1 � �+�S1, and a repeat of the above argument shows that thisyle vanishes if and only if H1(�N (I0)) ontains no yle of the form (3.25) whih vanishesin H1(M nI0) and has k+ 6= 0. We observe however that in this situation, I0 must separateMso that eah �+N (Tj) lies in a di�erent onneted omponent of M n I0 from eah ��N (Ti),hene a yle of the form (3.25) vanishes in H1(M nI0) if and only if both the plus and minusparts vanish. Our ondition is thus redued to the nonexistene of a ylek NXj=1 �+j + NXj=1mj�+jwith k 6= 0 that vanishes in H1(M n I0).

44 CHRIS WENDL3.7. Proofs of the results from x1.1.Proofs of Theorems 1 and 2. To prove Theorem 2, suppose (M; �) ontains an 
-separatingplanar k-torsion domain M0 for some losed 2-form 
 with 
j� > 0 and an integer k � 1.Then RT 
 = 0 for every interfae torus T in M0 that lies in the planar piee, so we are freeto remove any suh torus by attahing a D -deoupling obordism whose sympleti struturemathes 
 atM . By Proposition 3.4, one an �nd a binding omponent  or interfae torus Tsuh that if (W;!) with �W =M 0 t (�M) denotes the result of attahing the orrespondingD -apping or D -deoupling obordism respetively, thenM 0 ontains a planar torsion domainof order either k � 1 or k � 2. Writing 
0 := !jTM 0 , the latter is also 
0-separating sinenear eah of the remaining interfae tori, whih lie outside the region of surgery, ! is stillohomologous to the original 
. The proess an therefore be repeated until the manifold atthe top has planar 0-torsion, meaning it is overtwisted.Theorem 1 is essentially the speial ase of Theorem 2 for whih we assume 
 is exatto start with, exept that the above argument atually gives a weak sympleti obordism(W;!) from (M; �) to some overtwisted (MOT; �OT), where we an assume M � (W;!) isonave and MOT � (W;!) is not neessarily onvex, but !j�OT > 0. This an now beturned into a strong obordism by the following trik whih was suggested to me by DavidGay: �rst, observe that if MOT is a rational homology sphere, then ! is exat near MOTand an thus be deformed to make MOT onvex using the argument of Eliashberg in [Eli91,Proposition 3.1℄. Otherwise, take any knot K � MOT that is nontrivial in H1(MOT;Q),and isotop it if neessary so that it is disjoint from some overtwisted disk. Then after aC0-small perturbation to make K Legendrian, one an attah a sympleti 2-handle along Kso that the new positive boundary beomes an overtwisted ontat manifold (M 0OT; �0OT) withdimH1(M 0OT;Q) = dimH1(MOT;Q) � 1, see Lemma 3.18 below. Repeating this proessenough times, the positive boundary eventually beomes an overtwisted rational homologysphere, so that the weak obordism an be deformed to a strong one. �The �nal step in the above proof is justi�ed by the following simple homologial lemma:Lemma 3.18. Suppose M is a losed oriented 3-manifold, K �M is a knot with [K℄ 6= 0 2H1(M ;Q) and M 0 is the result of performing Dehn surgery along K with any framing. ThendimH1(M 0;Q) = dimH1(M ;Q) � 1.Proof. As preparation, suppose K is any knot in a losed oriented 3-manifold M , denote aneighborhood of K in M by NK and let (�; �) denote any basis of H1(�NK) suh that � is ameridian. If � : �NK ,!M nK denotes the inlusion, we laim thatdimH1(M ;Q) = (dimH1(M nK;Q) if ��� = 0 2 H1(M nK;Q);dimH1(M nK;Q) � 1 if ��� 6= 0 2 H1(M nK;Q):This follows from the Mayer-Vietoris sequene for M = NK [ (M nK):: : : H2(M ;Q) ! H1(�NK ;Q) �! H1(NK ;Q) �H1(M nK;Q) ! H1(M ;Q) ! H0(�NK ;Q) : : :Sine any 1-yle in M an be disjoined from NK , the map H1(M ;Q) ! H0(�NK ;Q) in thissequene is trivial, thus exatness impliesH1(M ;Q) �= (H1(NK ;Q) �H1(M nK;Q)). im�:



NON-EXACT SYMPLECTIC COBORDISMS 45The map � : H1(�NK ;Q) ! H1(NK ;Q) �H1(M n K;Q) is nontrivial sine � maps to thegenerator of H1(NK ;Q) = Q . Sine � maps to 0 in H1(NK ;Q), im� is thus 1-dimensional ifand only if ��� = 0 2 H1(M nK;Q), and is otherwise 2-dimensional. This proves the laim.Now assume [K℄ 6= 0 2 H1(M ;Q), and we are given a framing suh that � is the preferredlongitude. This implies immediately that ��� 6= 0 2 H1(M n K;Q). Likewise, ��� = 0 2H1(M n K;Q): to see this, note that by the nondegeneray of the intersetion form, thereexists a 2-yle C in M suh that [C℄ � [K℄ = 1, hene the restrition of C to the omplementof NK de�nes a hain whose boundary is �; alternatively, one an also derive this from theexat sequene above by onsidering the image of [C℄ under H2(M ;Q) ! H1(�NK ;Q). Wetherefore have dimH1(M ;Q) = dimH1(M nK;Q) by the laim above. If M 0 is now de�nedby gluing another solid torus into M nNK suh that � beomes the meridian, then the laimis again appliable and implies dimH1(M 0;Q) = dimH1(M nK;Q) � 1. �Proof of Theorem 3. Suppose (M; �) ontains an 
-separating partially planar domainM0 �M with planar piee MP0 � M0, where 
 is a losed 2-form on M satisfying 
j� > 0. Thenfor every binding irle or interfae torus in MP0 , we an attah D -apping or D -deouplingobordisms to produe a sympleti manifold (W;!) with �W =M 0 t (�M), !jTM = 
 andM 0 =M 0at tM 0onvex;where M 0at ontains a omponent that is a sympleti S2-�bration over S1, and M 0onvexarries a ontat struture �0 with !j�0 > 0. The desired ap is then obtained from (W;!)after apping M 0at tM 0onvex via [Eli04℄ or [Etn04a℄. �Proof of Theorem 4. Note that sine H2dR(S3) = 0, any weak obordism from (M; �) to(S3; �0) that is onave at M an be deformed to a strong obordism, so it suÆes to provethat (S3; �0) an be obtained from (M; �) by a �nite sequene of (generally weak) appingand deoupling obordisms.Suppose M0 � M is a partially planar domain. If it is also a planar torsion domain thenthe result already follows from Corollary 1, thus assume not. If M0 has only one irreduiblesubdomain with nonempty binding, we an remove binding omponents by D -apping obor-disms and interfae tori by D -deoupling obordisms until the planar piee has exatly onebinding omponent left and no interfae or boundary, whih means it is the tight S3. Thedesired obordism an then be obtained by apping any additional omponents that mayremain at the end of this proess.If M0 has more than one irreduible subdomain but does not have planar torsion, then itmust be symmetri (see De�nition 3.2). This means thatM =M0, the binding and boundaryare empty and the interfae tori divideM into exatly two irreduible subdomains that havedi�eomorphi planar pages. Then we an remove interfae tori by D -deoupling obordismsuntil exatly one remains, and the resulting ontat manifold is the tight S1�S2. The latteris obordant to S3 by a D -apping obordism that removes one binding omponent from thesupporting open book with ylindrial pages and trivial monodromy.Theorem 40 follows essentially by the same argument sine every planar open book is also afully twisted partially planar domain. We only need to add that the topologial onstrutionof the obordism by attahing 2-handles along binding omponents does not depend on thehoie of 2-form 
 on M , whih after the deformation arried out in x3.5, always looks thesame on a large tubular neighborhood of the binding. �

46 CHRIS WENDL3.8. Holomorphi urves. For appliations to Embedded Contat Homology and Symple-ti Field Theory among other things, it may be quite helpful to observe that the obordism(W;!) generally admits not only a sympleti struture but also a foliation by J-holomorphiurves. We don't plan to pursue this here in full detail, but we shall give a sketh of the generalpiture. For simpliity, we onsider only the �-deoupling obordism along I0 = T1[ : : :[TNin the ase where the negative boundary omponent (M; �) is onave, so we an arrange !near f0g �M to have the form(3.26) ! = d ('(t)�0 + �)as in x3.3, where �0 and � are the onfoliation 1-form and ontat form respetively that wereonstruted in x3.2. These have the following onvenient properties:� �0 ^ d� > 0� ker d� � ker d�0Together with the obvious fat that d� is losed, these properties mean that the pair (�0; d�)is a stable Hamiltonian struture, to whih we assoiate the o-oriented distribution�0 = ker �0 and positively transverse vetor �eld X0 on M suh that�0(X0) � 1; d�(X0; �) � 0:Similarly, writing 
0 := !jTM 0 and realling the onfoliation 1-form �00 de�ned onM 0 by (3.13),the pair (�00;
0) forms a stable Hamiltonian struture onM 0, and we de�ne the orrespondingdistribution �00 = ker �00 and vetor �eld X 00 on M 0 suh that�00(X 00) � 1; 
0(X 00; �) � 0:In fat, on omponents of M 0 where the pages are not losed, one an show with a little moree�ort that �00 admits a perturbation to a ontat form �0 on M 0 suh that �0 := ker �0 isdominated by 
0, where 
0 = F d�0for some smooth funtion F :M 0 ! (0;1) that satis�es dF ^d�0 � 0 and is onstant outsidea neighborhood of the boundary of the o-ore, � bK0� �M 0, hene X 00 is olinear with the Reebvetor �eld determined by �0. There is now a ollar neighborhood (��; 0℄ �M 0 � W of M 0on whih ! takes the form d(t�00) + 
0, thus we an attah positive and negative ylindrialends to de�ne the ompletion of (W;!),W1 :=W [ ((�1; 0℄ �M) [ �[0;1)�M 0�and extend ! sympletially so that it takes the form d('(t)�0) + d� on (�1; 0℄ �M andd( (t)�00)+
0 on [0;1)�M 0 for suitable hoies of funtions ' and  . Equivalently, (W1; !)an be onstruted diretly from the sympletization of (M; �) as follows: extend the funtion'(t) to R so that (3.26) de�nes a sympleti form on R �M , and extend the \hole" UI0de�ned in x3.3 to a hole in R �M by inluding the interior of the region (1;1)�N (I0); letU1I0 � R �Mdenote the extended hole. Then (W1; !) an be obtained by removing U1I0 from (R �M;d('(t)�0 + �)) and replaing it with the ompletion of the round handle,bH1� := �� (�1;1)� S1;extending the sympleti form over bH1� by an adaptation of the argument in x3.3.



NON-EXACT SYMPLECTIC COBORDISMS 47An almost omplex struture J on (W1; !) is now admissible if it is !-ompatible on Wand is ompatible with the stable Hamiltonian strutures on both ylindrial ends, meaningit is R-invariant, restrits to a omplex struture on the respetive distributions �0 and �00de�ning the orret orientations, and maps the unit vetor �t in the R-diretion to the vetor�eld X0 or X 00.It was shown in [Wen℄ that for a suitable hoie of almost omplex struture J0 on R �Mompatible with (�0; d�), the pages of the blown up summed open book � in M0 admit liftsto embedded J0-holomorphi urves in R�M whih math the �bers of the mapping torus S outside of the neighborhoods Ni of B [ I [ �M0, have positive ylindrial ends approahinglosed orbits of X0 in B [I [�M0 and satisfy a suitable �nite energy ondition. We an nowde�ne an admissible almost omplex struture on (W1; !) whih mathes J0 outside of U1I0and is !-ompatible on bH1� . The J0-holomorphi urves in (R�M)nU1I0 an be extended intobH1� as sympleti surfaes that are di�eomorphi to � and foliate bH1� , thus we an extend J0into the handle so that it is !-ompatible and these surfaes beome J0-holomorphi. In doingthis, we an also make the natural ompletion of the orebK�;1 := bK� [ bB0 ((�1; 0℄� bB0)J0-holomorphi, as well as its translations under the S1-ation by translating the loal �-oordinates, and the ompletion of the o-orebK0�;1 := bK0� [� bK0� ([1;1) � � bK0�):The result is a foliation of W1 (or at least the region outside of R � (M nM0)) by �niteenergy J0-holomorphi urves. We summarize this onstrution as follows (see Figure 7).Proposition 3.19. One an hoose an admissible almost omplex struture J0 on the om-pletion (W1; !) of a �-deoupling obordism (W;!), suh that there exists a foliation F byembedded J0-holomorphi urves with the following properties:(1) In eah ylindrial end, the leaves of F math the holomorphi lifts of the pages of �and �0 onstruted in [Wen℄.(2) The ompleted ore bK�;1 and all its S1-translations are leaves of F .(3) The trivial ylinders over periodi orbits in B, �M0 and I n I0 are all leaves of F .(4) All other leaves of F have only positive ylindrial ends asymptoti to orbits in B [(I n I0)[ �M , and they are homotopi in the moduli spae to the holomorphi lifts ofthe pages of �0 in [1;1) �M 0.(5) The ompleted o-ore bK0�;1 is also J0-holomorphi and intersets the leaves of Ftransversely.In onsidering the behavior of holomorphi urve invariants under sympleti obordisms,a speial role is typially played by urves that have no positive ends|suh urves an onlyexist in non-exat obordisms. One useful appliation of the foliation onstruted above isthat we an now haraterize all suh urves preisely:Proposition 3.20. Suppose u : _� ! W1 is a �nite energy J0-holomorphi urve that isonneted, somewhere injetive and has no positive ends. Then u is a leaf of F , spei�allyit is an S1-translation of the ore bK�;1.Proof. There are no urves without positive ends outside the region of surgery sine here thesympleti form is exat, thus we may assume u intersets both the handle and its omplement.
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