
HIGHER STRUCTURE: EXERCISE 4

DINGYU YANG

This is the 1.4 version and ready. Do not panic at the length of this Exercise
Sheet, it is so partly because it contains some lecture notes for people not present
in some of the recent lectures and it also contains a fairly long optional Exercise.
Hopefully it takes less time to read/work through them than I typed them up. The
lecture this Friday will cover the Weinstein neighborhood theorem for Lagrangians
and the index theorem for the virtual dimension of the moduli space Mk+1(β), so
that a large subgroup of the audience who are going to the Aachen for a 2-day
conference can safely miss it. The exercise session this Friday will cover (some of)
the following:

Exercise 1: In Lecture 6, we covered an instance of a formality criterion. In
this guided exercise, we prove the formality for Kähler manifolds. Here the full
structure is CDGA (commutative differential graded algebra) but we will ignore
the commutative aspect which is not featured in the proof below anyway (the
commutative aspect is important for discussion on rational/real homotopy types).

Show that for a Kähler manifold (X,h), the de Rham cochain complex is quasi-
isomorphic to the induced de Rham cohomology as A∞ algebras, a DGA qusi-
isomorphism for short. The proof consists of the following steps. Here all products
involved below are wedge products (with your favorite sign convention or without
signs) with higher products vanishing.

(1) (ddc-Lemma for Kähler manifold) Let (X,h) be a closed Kähler manifold, and
let α ∈ Ωk such that dα = 0 and α = dcγ. Then there exists β ∈ Ωk−2(X) such
that α = ddcβ. Here dc := −i(∂ − ∂̄), where ∂ and ∂̄ are (1, 0) and (0, 1)-parts
of d respectively.

(2) Let Ωk;c(X) := {α ∈ Ωk(X) | dcα = 0} and d : Ωk;c(X) → Ωk+1;c(X). Show
that the inclusion ι : (Ω∗;c(X), d)→ (Ω∗(X), d) is a DGA quasi-isomorphism.

(3) Define Hk
dc := Hk(Ω∗(X), dc), and we have d : Hk

dc(X)→ Hk+1
dc (X) and d acts

as d = 0. Show that the natural projection p : (Ω∗;c(X), d)→ (H∗dc(X), d = 0)
is a DGA quasi-isomorphism.

(4) (Ω∗(X), d) is DGA quasi-isomorphic to (H∗dc(X), 0) (which is DGA isomorphic
to the cohomology algebra of the former), which means (Ω∗(X), d) is formal.

Exercise 2: In the lecture, we used the formula for Hochschild cochain complex
for A∞ algebras. As an exercise, find a reference to extract the definition and basic
properties for the Hochschild cochain complex for an A-bimodule M , where A is a
(graded) algebra.
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Exercise 3: In the lecture, for a Fredholm section f : B → E of a Banach

bundle over a Banach manifold and p ∈ f−1(0), choose U such that p ∈ U
open
⊂ B

and Lp finite dimensional such that the span of the image (∇f)p : TpB → Ep and
Lp is Ep and Lp is extended to a vector bundle L (as a subbundle of E) over U . By
construction the quotient Fredholm section f |U/L : U → E|U/L is transverse to the
zero section at p, and by open condition of tranversality, it is transverse to the zero
section over Ũ which is open neighborhood of p in U . Define V := (f |Ũ/L|Ũ )−1(0)
and by construction s := f |V maps from V to E := L|V . Another equally good

alternative choice to L|Ũ (from which we can extract the data Ũ) is the following:

For any open neighborhood U ′ of p in Ũ and any finite rank L′ over U ′ (subbundle
of E) for which L|U ′ is a subbundle, we can define f |U ′/L′ which is transverse
to the zero section along and near V ∩ U ′ and thus so in an open neighborhood
Ũ ′ of V ∩ U ′ in U ′. We can also use L′|Ũ ′ to get a finite dimensional reduction
s′ : V ′ → E ′.

Actually we have an embedding of s|V ∩V ′ into s, which means a bundle embed-
ding E|V ∩V ′ → E ′ (covering embedding V ∩ V ′ → V ′) that intertwines these two
sections, which suggests the form of coordinate change between Kuranishi charts
should look like (I will cover this in more detail after I have explained more geo-
metric aspect of moduli spaces). One important property for this embedding is the
following tangent bundle condition:

As ∇s′|Tx(V ∩V ′) = ∇s|Tx(V ∩V ′) for any x ∈ V ∩ V ′, we can define the induced
normal linearization

(∇Ns′)x : TxV
′/Tx(V ∩ V ′)→ E ′x/Ex,

which is well-defined independent of the choice of ∇ for any x ∈ s−1(0). Show that
this is an isomorphism between vector spaces by construction for any x ∈ s−1(0).

Exercise 4: For a submersion e :M→ L mapping from a Kuranishi structure
and a de Rham form η on M and a de Rham form ζ on L, we have the projection
formula: ζ ∧ ec! η = ec! (e

∗ζ ∧ η), where c is some choice involved to define integration
along fibers for Kuranishi structure M as discussed in the lecture. (See the end of
this document for a semi-explanation of integration along the fibers in the Kuranishi
structure setting, for the convenience of those who was not here during this Tues-
day’s lecture.) Show that for ∂k1,β1,iMk+1(β) := Mk1+1(β1)ev0 ×evi Mk2+1(β2)
(here the index is sufficient as k2 and β2 will then be determined) with evaluation
maps

(ev21 , · · · , ev2i−1, ev11 , · · · , ev1k1 , ev
2
i+1, · · · , ev2k2)

to pullback forms and with ev20 to integrate along fibers, and with choices ∂k1,β1,ic =
c1 ev0 ×evi c2 (where c1 and c2 are the choices for Kuranishi structures Mk1+1(β1)
and Mk2+1(β2) to define integration along fibers of ev10 and ev20 respectively), we
have the following identities (modulo signs):

(ev0)
∂k1,β1,ic

! (ev∗1η1 ∧ · · · ∧ ev∗kηk)

=(ev20)c2!

(
(ev21)∗η1 ∧ · · · ∧ (ev2i )∗

(
(ev10)c1!

(
(ev11)∗ηi ∧ · · · ∧ (ev1k1)∗ηi+k1−1

))
∧ · · · ∧ (ev2k2)∗ηk

)
=mk2;β2

(η1, · · · ,mk1;β1
(ηi, · · · , ηi+k1−1), · · · , ηk).
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Exercise 5: The following is a good fun exercise (especially suited for riding
a train for extended hours), but optional. I will write some text leading up to it
(which is covered towards the end of lecture as well). Recall in the lecture, we have
the Stokes-type formula

d(ec! η) = ec! (dη) + (−1)dimM+deg η(∂e)∂c!
(
(ι∂M)∗η

)
,

where we continue using the notation from the start of Exercise 4, and the last
term is integration along fibers of ∂e : ∂M→ L which is induced from e :M→ L
by taking codimension-1 closed boundary strata, using the induced choice ∂c, and
ι∂M : ∂M → M is the immersion of the ‘inclusion’ of the boundary (recall that
the corner strata is equipped with the data remembers which iterated higher strata
it comes from, thus with multiplicities and hence an immersion only, even within
the same connected component). This when applied to

(e :M→ L, η) = (ev0 :Mk+1(β)→ L, ev∗1η1 ∧ · · · ∧ ev∗kηk)

together with the previous Exercise yields the A∞ relation which also explains why
we include m1,0 = (−1)n+1+deg η term in m1. In fact, this is only true provided
countable c := cMk+1(β)’s can be chosen all at once to be compatible, which is
very hard to do and is only done as a homotopy limit in the literature (various
finite amounts of compatible choices can be compared in a controlled way via chain
homotopies) and here we suppress this subtle point.

Note here we have m0 term in the A∞ algebra structure {mk}k≥0. The operation

m1 =
∑

β∈H2;holo(X,L;Z)

m1;βT
E(β)

is the natural candidate for the ‘differential’ for the Lagrangian (Hamiltonian) Floer
homology with 0 Hamiltonian based on de Rham cochain model in the motivating
example, where H2;holo(X,L;Z) denotes the subspace of H2(X,L;Z) whose ele-
ments are representable by nodal holomorphic disks. And the obstruction for this
being a square 0 differential is precisely explained by the second identity (the first
identity says m0(1) is m1-closed) of the he A∞ relation,

m1 ◦m1 = −m2 ◦1 (m0(1))− (−1)deg η−1m2 ◦2 (m0(1)).

Namely, have disk bubbling on either side of boundary between 0-th and 1st bound-
ary marked points. This is mentioned towards the end in the lecture, but convince

yourself that m0(1) :=
∑
β∈H2;holo(X,L;Z)

(
(ev

cM1(β)

0 )!1
)
TE(β) ∈ Ω∗(L)⊗̂Λ0, not just

in Λ0.
There are increasingly flexible ways to cook up squaring 0 differentials from this

‘curved’ A∞ algebra structure, all of which will be covered in the lecture in the near
future. The following is one and its geometric explanation is the content of this
exercise. For any b ∈ Ω1(L)⊗̂Λ+, here completed tensor with the maximal ideal
Λ+ ⊂ Λ0 is for convergence reason (however, we will cover an improvement in the
upcoming lecture). We can define

mb
k(x1, · · · , xk) :=

∑
n0≥0,n1≥0,···nk≥0

mk+
∑k
i=0 ni

(
b⊗n0 , x1, b

⊗n1 , x2, · · · , xk, b⊗nk
)
.
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Then {mb
k}k≥0 is another curved A∞ algebra. b such that mb

0(1) = 0 is called a
bounding cochain, or a Maurer-Cartan element. To be more explicit, the require-
ment

mb
0(1) = m0(1) +m1(b) +m2(b, b) + · · ·+mk(b⊗k) + · · · = 0.

The following obstruction-theoretic interpretation explains why b is called a
bounding cochain and is borrowed (and slightly reformulated) from Ohta’s survey
(also in FOOO book 1 in some way) but please attempt first before consulting:

(1) The first identity in A∞ relation says m0(1) is m1-closed, thus its first term

o1 := (ev
cM1(β1)

0 )!(1) is in particular d-closed for the de Rham differential
d. Here β1 is the class with the minimal positive area. If it is exact, then
we can find η1 that bounds it: dη1 = (−1)n+1o1 (one can ignore the sign
but this is consistent with m1,0).

(2) Countably order H+ := H2;holo(X,L;Z)\{0} into {βk}k≥1 such that if i < j
then E(βi) ≤ E(βj).

(3) Suppose we have defined d-closed forms oj for 1 ≤ j ≤ k − 1 and they are
all exact: o1 = 0, · · · , ok−1 = 0 and we have inductively chosen bounding
cochains ηj such that dηj = (−1)n+1oj for 1 ≤ j ≤ k − 1.

(4) For I := {i1, · · · , im} ⊂ k − 1 := {1, · · · , k − 1}, denote

M1(βk; I) =Mm+1(βk − βi−1 − · · · − βim)

and ck;I := cM1(βk;I). Define

ok :=
∑

m=0,1,··· , I⊂k−1, β−
∑m
j=1 βij∈H+

(−1)•
1

m!
(ev0)

ck;I
! (ev∗1ηi1 ∧ · · · ∧ ev∗mηim),

with ηj previous the previous item.
Use the previous item and the Stokes and projection formulae to show

ok is closed.
(5) If ok is exact, we can choose bounding chain ηk such that dηk = (−1)n+1ok.
(6) Show that by construction,

b :=
∑
i≥1

ηiT
E(βi)

satisfies mb
0 :=

∑
k≥0mk(b⊗k) = 0.

Exercise 6: (This gives a bridge between the ‘integration along fibers’ approach
with the usual index-0/rigid count of moduli spaces of nodal disks with appropriate
incidence conditions) Bear in mind below, things cannot descend to the homology
level because we are dealing with moduli spaces with codimension 1 boundary,
things are well-defined as part of chain level structure in the sense of higher struc-
ture.

By Thom, any class [a] ∈ Hi(L;R) can be represented by an embedded subman-
ifold Sa ⊂ L with real weight wa ∈ R. [a] = wa[Sa]. For any submanifold, we
can use tubular neighborhood and Thom form to construct a PD representative
νa. Choose cycles a1, · · · , ak and associated dual closed forms νai . We look at
mk,β(νa1 , · · · , νak) = (ev0)c! (ev

∗
1νa1 ∧ · · · ∧ ev∗kνak) where we integrate along fibers

of ev0 :Mk+1(β)→ L using some necessary choice c. The output is a d-form where
d = deg νa1 + · · ·+ deg νak + 2− k− µ(β). One knows what this form is by pairing
with all d-cycle Sa. The following is only chain level identity depending on choices c
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because Mk+1(β) has boundary and corners (besides the transversality issue) and
extracting a number by intersecting (a map from) a ‘manifold’ with boundary and
corners will not be in general well-defined independent of choices.

We have

〈(ev0)c! (ev
∗
1νa1 ∧ · · · ∧ ev∗kνak), Sa〉

=〈νa ∧ (ev0)c! (ev
∗
1νa1 ∧ · · · ∧ ev∗kνak), L〉

=〈ev∗0νa ∧ ev∗1νa1 ∧ · · · ∧ ev∗kνak ,Mk+1(β)〉
=〈pr∗0νa ∧ pr∗1νa1 ∧ · · · ∧ pr∗kνak , (ev0 × ev1 × · · · evk)∗Mk+1(β)〉
=(Sa × Sa1 × · · · × Sak) ∩ (ev0 × ev1 × · · · × evk)∗Mk+1(β)

={[Σ, (z0, z1, · · · , zk), u] ∈Mk+1(β) | u(z0) ∈ Sa, u(z1) ∈ Sa1 , · · ·u(zk) ∈ Sak}.
Try to (heuristically) justify each line (each setting might require different transver-

sality).

Recap1 7: Integration along fibers for a submersion from a Kuranishi structure
(locally or assuming only one Kuranishi chart, more global treatment is due in one
of the upcoming lectures):

For integration along fibers for map e :M→ L from a Kuranishi structure. We
unpeal this mysterious definition through several layers in increasing generality.

(1) If e is a proper submersion from a compact manifold M, then by Ehresmann
fibration theorem, e is a fiber bundle over L. For a differential form η on
M , we can define e!η which will be a smooth differential form on L. Cov-
ering L by partition of unity {λα}α∈A subordinate to a cover of L by triv-
ializing neighborhoods {Oα}: M|Oα is bundle diffeomorphic to Oα × F via
Ψα. For a differential η onM, (Ψ−1α )∗(λαη) is a compactly supported differen-
tial form on Oα × F and can be written as a finite sum

∑
I,J fIJ(x, y)γI ∧ δJ

where γI and δJ are differential forms on Oα and F respectively. We define
(pr1)!(

∑
I,J fIJγI ∧ δJ) :=

∑
I,J(

∫
F
fIJ(x, y)δJ)γI , (there are different sign

conventions, this way conforms with Bott-Tu yields projection formula with-
out signs), where the integral is 0, unless δJ is a top degree form on F . One
defines e!η :=

∑
α(pr1)!

(
(Ψ−1α )∗(λαη)

)
, this definition can be checked to be

independent of choices.
(2) If e : M → L maps from a not necessarily compact space M, and η is a

compactly supported form on M, one can define e!η using local models for
submersion and partition of unity similarly as above, and one shows it is well-
defined independent of choices.

(3) IfM is a compact manifold, and e :M→ L is not necessarily a submersion and
η is a smooth differential form onM. One can define thickening e :M×W → L
where W is open neighborhood of 0 of some vector space N , such that e(·, 0) = e
and e is a submersion. Choose a top degree form νW in N compactly supported
in W such that

∫
N
νW = 1. Then one defines

ec! η := e!(pr
∗
1η ∧ pr∗2νW )

where c := (e, νW ) keeps track of the choice made. The RHS is defined using
item (2). Here we cannot expect independence of choices, but for another choice

1For the dual purpose of Exercise 4 and providing part of the lecture note of this Tuesday
without extra delay. The note below slightly expands the lecture material.
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c′ := (e′ :M×W ′ → L, νW ′) such that there exists a linear projection prW ′W :

W ′ →W and e′ = e ◦ (IdM× prW ′W ) with (prW ′W )!νW ′ = νW , ec
′

! η = ec! η. So
this generates an equivalence relation among choices, where equivalent choices
give rise to the same output (this is due to the usual projection formula).

(4) If M is the compact zero set of a section s in a finite dimensional bundle
E → V which is trivial E := V × F and eV : V → L is a submersion with
eV ◦ ιM = e. Then the tuple (s, eV ) is called a submersion e :M→ L from a
global Kuranishi chart forM. We can find W ⊂ N such that s : V ×W → pr∗1E
has the properties that s(·, 0) = s and s is transverse to the zero section in
pr∗1E and denoting e := e ◦ pr1, e|s−1(0) restricted to the manifold s−1(0) is a
submersion to L. Choose νW as in item (3). Define

ec! η := (e|s−1(0))!
(
ι∗s−1(0)(pr

∗
1η ∧ pr∗2νW )

)
,

where the RHS is defined due to item (2) and c = (s, νW ).
A choice for such s would be sF : V × F → pr∗1(E), (x, v) 7→ s(x) + v2. We

denote this choice by cF := (sF , νF ).
(5) Same as item (4) except eV : V → L is not submersion, one can always add a

neighborhood of 0 in a finite dimensional space of vector fields on L to W and
e on those extra directions it would be exponential map on L. The rest is the
same.

(6) If M can only be locally covered by s−1(0) for s : V → E with coordinate
changes between charts in the form of Exercise 3. This directly goes deep into
the global Kuranishi structure alluded to in the lecture, which we postpone,
but we give a feeling/intuition that if we have embedding s to s′ intertwined
by embedding E = V × F → E ′ = V ′ × F ′ covering V → V ′ (where the fiber
embedding is independent of base coordinates, which is not most general form
of bundle mebdding but achievable in practice, general version also works by
tweaking below), where embeddings are notationally inclusions, we can choose
WV ′V a open neighborhood of V in V ′ and a submersion πV ′V : WV ′V → V , a
linear projection πF ′F : F ′ → F and νF and νF ′ top form compactly supported
and integrating to 1 on F and F ′ respectively such that (πF ′F )!νF ′ = νF .
Choose a Thom form Th := ThWV ′V for WV ′V as a bundle over V ′. Denote
s̃′ = sF ◦ (prV ′V × prF ′F ) and ν̃ := pr∗1Th ∧ pr∗2νF ′ which will play the role of
pr∗2νF ′ ; and denote c̃ := (s̃′, ν̃). Then we have

ecF! η = ec̃! η,

(the LHS happens for the chart s and the RHS uses the chart s′) which together
with a partition of unity and equivalence notion in item (3) will help patch local
choices together into a global operation of the integration along fibers to yield
a smooth differential form on L. We will cover this in the lecture later.

Feel free to drop by my office if you have any questions or want to discuss.

2This is a bit analogous to put Teichmüller slice to the domain to ensure the linearized tangent
CR operator to be surjective.


