SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 1

DINGYU YANG

1. Lecture 1

I will type the lecture notes from the first lecture below, as my stylus was not charged and handwriting was not ideal.

We follow Kronheimer-Mrowka's Monopoles and Three-manifolds [KM] closely. Let Y be a closed, orientable, Riemannian 3-manifold.

Definition 1.1. A spin^c structure on Y is a unitary rank 2 complex (namely U(2)) vector bundle $S \to Y$ (with Hermitian metric on S denoted by h, Riemannian metric on Y denoted by g) with Clifford multiplication $\rho : TY \to \text{Hom}(S, S)$ which is a bundle map with the image $\mathfrak{su}(S) = \{a \mid \text{tr}a = 0, a^* = -a\}$ (where a^* is defined by $h(ax, y) = h(x, a^*y)$), such that, denoting $\tilde{h}(a, b) = \frac{1}{2}\text{tr}(a^*b)$,

$$\rho:(TY,g)\to(\mathfrak{su}(S),h)$$

is a bundle isometry.

Exercise 1.2. More concretely, let $\sigma_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$. Then can choose orthonormal basis e_i of $T_y Y$ and basis for S_y such that $\rho(e_i) = \sigma_i$.

Exercise 1.3. Look up why for 3-manifold Y, TY is trivial. Then show a spin^c structure for Y always exists.

For any Hermitian line bundle $L \to Y$, any spin^c structure $\mathfrak{s}_0 = (S_0, \rho_0)$, define $\mathfrak{s} = (S, \rho)$ where $S := S_0 \otimes L$ and $\rho := \rho_0 \otimes \mathrm{Id}_L$. We remark (c.f. the main reference [KM]) up to isomorphism (bundle isomorphism intertwining the Clifford multiplications), any two spin^c structures are related this way.

Complex line bundle up to isomorphism via c_1 is $H^2(Y;\mathbb{Z})$, thus space of isomorphism classes of spin^c structures is an affine space over $H^2(Y;\mathbb{Z})$.

Let X be an oriented, Riemannian 4-manifold.

Definition 1.4. A spin^c structure on X is a Hermitian rank 4 (namely U(4)) vector bundle $S_X \to X$ with Clifford multiplication $\rho_X : TX \to \text{Hom}(S_X, S_X)$, such that for each $x \in X$, we can find orthonormal basis e_0, e_1, e_2, e_3 such that $\rho(e_0) = \begin{pmatrix} 0 & -I_2 \\ I_2 & 0 \end{pmatrix}, \ \rho(e_i) = \begin{pmatrix} 0 & -\sigma_i^* \\ \sigma_i & 0 \end{pmatrix}$ for i = 1, 2, 3 for some orthonormal basis of $(S_X)_x$. Here, I_2 is 2 by 2 identity matrix.

Using the metric g, we can induce $\rho_X : T^*X \to Hom(S_X, S_X)$ with the same notation. We can extend to forms: $\rho(\alpha \wedge \beta) = \frac{1}{2} (\rho(\alpha)\rho(\beta) + (-1)^{\deg \alpha \deg \beta}\rho(\beta)\rho(\alpha)).$

Exercise 1.5. $\rho(\text{vol}) = \begin{pmatrix} -I_2 & 0\\ 0 & I_2 \end{pmatrix}.$

Date: November 6, 2020.

Definition 1.6. Let S^+ denote the -1 eigenspace of $\rho(\text{vol})$ and S^- the 1 eigenspace of $\rho(vol)$. They are called the positive and negative spin bundle with sections called spinors. So $S_X = S^+ \oplus S^-$.

For $e \in T_x X$, $\rho(e) : S_x^+ \to S_x^-$. Hodge star operator $* : \Lambda^k X \to \Lambda^{\dim X - k} X$ is defined by $\alpha \wedge *\beta = g(\alpha, \beta)$ vol, where the metric on forms is induced from g and denoted by the same notation. Here X is a 4-manifold, and let Λ^{\pm} denote the ± 1 eigenspace of $*: \Lambda^2 X \to \Lambda^2 X$, elements of which are called self-dual and anti-self-dual 2-forms respectively.

Exercise 1.7. $\rho: \Lambda^+ \to \mathfrak{su}(S^+)$ is a bundle isometry. $\rho: \Lambda^+ \to \operatorname{End}(S^-)$ is 0. For any unit vector $e \in T_x X$, $\det \rho(e) : \Lambda^2 S_x^+ \to \Lambda^2 S_x^-$ is independent of e.

Definition 1.8. For a spin^c structure (S_X, ρ) , Aut (S_X, ρ) is the group of unitary bundle automorphisms of S_X that commute with ρ . This is precisely $\{u: X \to S^1\}$ called gauge group \mathcal{G}_X , which acts on S_X by scalar multiplication. The same is true for 3-manifold Y, $\operatorname{Aut}(S, \rho) = \{u : Y \to S^1\}.$

Definition 1.9. A connection ∇_A on a bundle $S_X \to X$ over Riemannian X is a \mathbb{C} -linear map $\nabla_A : \Gamma(S_X) \to \Gamma(T^*X \otimes S_X)$ such that $\nabla_A(fs) = f \nabla_A s + df \otimes s$. We can extend it using Levi-Civita connection ∇_X on X, and recall the curvature $F_A \in \Gamma(\Lambda^2 X \otimes \operatorname{End}(S_X))$ is defined via $\nabla_A(\nabla_A(s)) = F_A(s)$. A connection ∇_A on a unitary bundle S_X with a metric h is called unitary, if

$$d(h(s,\tilde{s})) = h(\nabla_A s,\tilde{s}) + h(s,\nabla_A \tilde{s}).$$

A connection ∇_A on an oriented Riemannian 4-manifold X with a spin^c structure $\mathfrak{s} = (S_X, \rho)$ is called a spin^c connection, if it is unitary and ρ is parallel, namely

$$(\nabla_A \rho)(v)(s) := \nabla_A (\rho(v)(s)) - \rho(\nabla_X v)(s) - \rho(v)(\nabla_A s) = 0$$

for all local sections v and s.

Remark 1.10. In particular, parallel transport via ∇_A preserves $S_X = S^+ \oplus S^-$.

Two spin^c connections \tilde{A} and A differ by $a \otimes \mathrm{Id}_{S_X} = a$ for some $a \in \Omega^1(X; i\mathbb{R})$.

Definition 1.11. The Dirac operator $D_A : \Gamma(S_X) \to \Gamma(S_X)$ is defined as the composition $\Gamma(S_X) \xrightarrow{\nabla_A} \Gamma(T^*X \otimes S_X) \xrightarrow{\rho} \Gamma(S_X)$, where the second map is pointwise $\max \left(\rho: T^*X \to \operatorname{End}(S_X)\right) = \left(\rho: T^*X \otimes S_X \to S_X\right) \text{ induced from } \rho.$

If $\nabla_{\tilde{A}} := \nabla_A + a$, then $\nabla_{\tilde{A}} = D_A + \rho(a)$.

Definition 1.12. As in Remark 1.10, we can decompose $D_A = D_A^+ + D_A^-$, where $D_A^{\pm}: \Gamma(S^{\pm}) \to \Gamma(S^{\mp}).$

A spin^c connection A induces connection on $\Lambda^2 S^+$ and $\Lambda^2 S^-$ which are identified under det $\rho(e)$ for any unit vector e, denoted by A^t . Note $\nabla_{\tilde{A}^t} = \nabla_{A^t} + 2a$.

Let $u: X \to S^1$ be an element of \mathcal{G}_X , it acts on connection via $u(A) = A - u^{-1} du$, due to S^1 is Abelian.

Definition 1.13. In dimension 3, spin^c connection B, Dirac operator D_B is defined the same way.

Let X be oriented Riemannian 4-manifold. $\mathfrak{s}_X = (S_X, \rho)$ a spin^c structure. Consider a pair (A, Φ) where A is a spin^c connection and $\Phi \in \Gamma(S^+)$.

Denote $(\Phi\Phi^*)_0$ the traceless part of $\Phi \otimes \Phi^*$ (omitting the tensor product), which is $\Phi\Phi^* - \frac{1}{2} \operatorname{tr}(\Phi\Phi^*) \operatorname{Id}_{S^+} = \Phi\Phi^* - \frac{1}{2} |\Phi|^2 \operatorname{Id}_{S^+}$. It is Hermitian and traceless, thus is *i* times skew-Hermitian. Thus lies in $i\rho(\Lambda^+) = \rho(\Lambda^+ i)$. So it makes sense to write down the following Seiberg-Witten (SW) equation.

$$\begin{cases} \frac{1}{2}\rho(F_{A^t}^+) - (\Phi\Phi^*)_0 = 0\\ D_A^+\Phi = 0 \end{cases}$$

Exercise 1.14. Denote the LHS of the above as $\mathcal{F}(A, \Phi)$. Check that

$$D_{(A,\Phi)}\mathcal{F}: (a,\phi) \mapsto (\rho(d^+a) - (\phi\Phi^* + \Phi\phi^*)_0, D_A^+\phi + \rho(a)\Phi)$$

For $u \in \mathcal{G}_X$, we have the action $u : (A, \Phi) \mapsto (u(A), u\Phi)$. \mathcal{G}_X acts freely on

$$\{(A,\Phi) \mid \mathcal{F}(A,\Phi) = 0, \Phi \neq 0\}.$$

If $\Phi = 0$, SW equation reduces to $F_{A^t}^+ = 0$, the anti-self-dual equation for A^t . We return to 3-dimension, let Y be an oriented closed Riemannian 3-manifold.

Definition 1.15. For a spin^c structure $\mathfrak{s} = (S, \rho)$, fix a reference spin^c connection B_0 . We define on the configuration space of pairs (B, Ψ) , where B is a spin^c connection and $\Psi \in \Gamma(S)$ a spinor, a functional

$$\mathcal{L}(B,\Psi) := -\frac{1}{8} \int_{Y} (B^{t} - B_{0}^{t}) \wedge (F_{B^{t}} + F_{B_{0}^{t}}) + \frac{1}{2} \int_{Y} h(D_{B}\Psi, \Psi) d\text{vol},$$

called Chern-Simons-Dirac functional. Later, we also denote h(,) by \langle , \rangle .