SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 10

DINGYU YANG

Please email yangding@math.hu-berlin.de if anything. Lecture notes up to
now are available at www.mathematik.hu-berlin.de/~yangding/monopole.html.
Exercises sprinkled throughout lecture notes have been collected into an exercise
sheet at www.mathematik.hu-berlin.de/~yangding/Exercise_SWF.pdf.

1. LECTURE 10
We will discuss gluing and neighborhood of stratum of broken trajectories.

1.0.1. Compactness of moduli spaces of broken trajectories. Let [a] and b be (non-
degenerate) zeros of (V£)7.

M, ([a], [b]) is called non-trivial if [a] # b or z is non-trivial.

For any [7] in a non-trivial moduli space, [757] will be a different element, where
the shift 75 : v+ [y(-+5)] descends to a map between the gauge equivalence classes.
Let [§] denote its equivalence class under shift (not to be confused with 5(¢) with
t variable regarded as a path in 3d), called an unparametrized trajectory.

M. ([a], [b]) denotes the moduli space of unparametrized non-trivial trajectories.

Definition 1.1. An unparametrized broken trajectory joining [a] to [b] is a tuple
(['vyl]’ [;72]7 T [ﬁn]% where

e n >0,

o [i] € M., ([a; 1], oi]),

e [a;] for 0 < i < n are zeros of (V£)?, with a9 = a and a, = b, and

z = 21 * - - 2, the concatenated homotopy path.
We denote this as [¥*] (as the mathbb font in the lecture is not native for Greeks
in TeX) and call it n-broken (note that we have n — 1 broken points). If n = 0,
then [¥7] = [a] by convention.
The moduli space of such broken trajectories is denoted by M} ([a],[b]). #; is

the representative of the i-th component [¥;].

We now define the topology for M ([a], [5]).

Fix a point [¥F] € M ([a], [b]), we define a neighborhood of it as follows:

Choose [v;] lifting [7;] for all i, and let U; C BJ ;,.(R xY’) an open neighborhood
of [y;]. Let T € RT nonnegative reals.

Consider [01] = ([01], ..., [0m]), Where m < n (possibly less components), we
need to assign how n components get allocated to those (possibly less) m compo-
nents via a surjective and order-preserving allocation map j : n:= {1,--- ,n} — m,
and if several adjacent components indexed by a subset 41,4, + 1,--- ,43 + k of
n mapped to same component indexed j € m, one should picture that each of
those different shifted [7,, ,,d;] is in the neighborhood Uj, 1; of [yi, 4], so [d;] is in
the neighborhood of a trajectory ‘glued’ from [v;, 4], , [¥i,+%]- Let us package
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the component allocation and shift allocation map by (j,s) : n — m X
1 <1 < 42 < n implies either j(i;) < j(ia) or ‘j(i1) = j(i2) and s(i1) + T < s(iz)
(adjacent components have relative shift of at least T' away’.

To summarize the above, define

Q:=QU,--,U,,T) :={[6T] € M ([a],[b]) | [6F] is m-broken for some m < n ,

3 allocation (j,s) : n — m x R, s.t [Te3y0,()] € Uil }-

Q is considered as an open neighborhood for [§%]. Those Q for different [¥7],
U’s and T define a basis which gives the topology for M} ([a], [b]).

A misleadingly simple to state, but carrying a lot of heavy-lifting in the proof
where the most technical ingredient we have covered before is the following:

Theorem 1.2. M ([a],[b]) is compact.

1.0.2. Stratified spaces. We give a primitive version of stratified spaces for our pur-
pose (only counting points in codimension 1 strata).

Definition 1.3. N? is a d-(dim) stratified space if we have filtered inclusion
)= N1t c N c...c N1t c N st. Ne\Ne!is either empty or e-dim
manifold, and in the later case, it is called e-dim stratum (which can consist of
several connected components).

Proposition 1.4. If M,([a],[b]) is non-empty and dim d (we can always make
it regular so this notion of dim makes sense). Then M ([a],[b]) is a (d — 1)-
stratified space. If M,([a],[b]) contains an irreducible (namely, an unbroken [v]
with v = (A, s,¢) with s > 0), then (d — 1)-dim/top stratum of M} ([a],[b]) is
{irreducibles}.

We now want to know more about (d — 2)-dim stratum (aka codim-1 stratum).

Consider (1): M., ([ag],a1) x - -+ x M, ([ai_1], [w]) € M ([ag], a;).

Let the relative grading of each be gr_ ([a;—1], [a;]) = d; — €;, where d; is its
dimension and e; is 1 if it is boundaryt-obstructed (namely [a;_1] is boundary-
stable and [v;] is boundary-unstable) and 0 otherwise. We call (dy — ey, -+ ,d; —€;)
the grading vector, and (e1,---,¢) the obstruction vector. If we reserve d; for
dimension, then we can read obstruction vector from the grading vector (vice versa).

The (d—1)-dim stratum, aka top stratum, is the irreducible part of M, ([ao], [a]).
(Note that [a;] is just a notation as the limit agreeding with a given element under
consideration, this by no means implies that the elements are [-broken.)

The (d — 1)-dim stratum, aka codimension-1 stratum, is the union of

e top stratum of (}) with grading vector (di,ds) (thus obstruction vector (0, 0)),

e top stratum of () with grading vector (di,ds — 1,d3) (thus obstruction vector
(0,1,0)), and

e (only if M,([ao], [a;]) contains both reducibles and irreducibles)

M. ([ao], [a1]) N {reducibles}.

1.0.3. Moduli space on finite cylinders. We will capture the behavior of moduli
space on infinity cylinder using the finite cylinders where action is most concen-
trated.

Now consider Z = I x Y with I compact.

Cr(Z) C C[(Z) with quotient B (Z) C B{(Z).
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Since we do not have boundary condition imposed on, we do not have a Fredholm
problem. But still M(Z) = {[y] € B{(Z) | F;(v) = 0} C B[ (Z) as a Hilbert
submanifold. We also have the tilde version. M (Z) is a Hilbert submanifold with
boundary and identified as M(Z)/i where i is the involution changing signs of s
variable.

1.0.4. Spectral boundary condition on Z =Y UY . Let Ry : M(Z) — By 1/2(Y)
Ry : M(Z) — By _ 1/2( ) be restricting to the boundary, the regularity & — 1/2 is
due to Trace theorem, as taking trace costs 1/2 derivative with p = 2 here and is
onto. (We came across fractional Sobolev space before and can safely suppress this
technicality now).
[ ]EM(Z) a —vlmﬁ =1y
By _1,(Y) = K}_, 5, (transverse to the gauge orbit), s
(

dRy,dRy) : Tjy) M(Z) = K{_1/2,4(Y) x Kk71/2,a(§7)'

Using Hessgya operator, we have spectral decomposition KZ_1/2 « = Kfe Ky
(ignoring the (-) signifying the boundary), K3 (V)= K(Y).

Let IT: K7 5 &, a)(Y UY) = Kg o (Y UY), where the LHS side is defined as
K{_1)a, e K7 _1/5,(Y) and the RHS is defined as K (Y)® K7 (Y) with the

kernel the complement of the range in the above decomposition.
Theorem 1.5. Ilo(dRy,dRy) and (1—1II)o(dRy, Ry) are Fredholm and compact.
Specifying Lagrangian boundary condition, it becomes Fredholm problem again.

1.1. Gluing in finite dimension. L invertible (self-adjoint) SA linear operator
R™ — R™. 4(t) = —Lv(t), M(T) := {solution ~ : [-T,T] — R"}.

We have restriction r : M(T) — R" x R", v — (y(=T),v(T)), each factor in the
image determines v. So imr = R".

Want to parametrize imr so that it converges nicely with respect to T — oo.

Write R" x R" = (HT & H™) x (H" @& H™) spectral decomposition.

im(r) = {(uy +eTtu_,e TPy, +u) | (up,u-) E HF- x H-}to HF x H- =
M (c0) decays exponentially as T — oo.

Here M (0o0) can be thought of as {solution 7 : R9°¢ URS — R"} with restriction
r:M(co) = R" x R" r(M(o0)) = H" x H™.

To summarize this above abstractly whose statement can be easily generalized
to the SW setting:

For for T' > 0, there exist parametrizations

u(T, ) : R" - M(T) and u(o0,-) : R" — M(c0)

st. pup:=7ro(u(T,-)): R™ = R™ x R converges [ := 1 0 (u(00,")).

Let W = Ure (g, #r(R™) has singularity at 0 (all ‘slices” pr(R™) intersect at
0).

So consider

o= RO},
Te(0,00]

Unique continuation means uz, (R™\{0}) N pr, (R™\{0}) = 0 if Ty # T». So W0 is
the injective image of (0,00] x (R™\{0}), and it is a C° manifold with boundary
tioo (RV{0}), but not a smooth manifold.
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1.2. Non-linear version of the above in Morse theory. Let B be a compact
Riemannian manifold with Morse f : B — R. Let K;, K3 be closed submanifolds
lying in the level sets, f|x, = 1, and fx, = —1 and there exists a unique a €
f71([-1,1]), the flow is linear, consider 4 = —Vf o~y = —L~.

Ms(Kl,KQ) = {’y : [—S,S] — B | ’}/(—S) S Kl,’}/(s> € Ko,y = —Vf O’y}’
M(Ky, Ksy) = Us>o Mg (K1, K3) has a compactification at infinity by attaching
My (K1, K3) = M(K1,a)x M(a, Ks), where the first factor is solution v : RZ% — B
with (0) € K; and y(co0) = a and similarly for the second factor.

If S, h K7 and U, h K5 (transversely intersecting), then the compactification is
a CY manifold with boundary in the neighborhood of M., (K71, K3).

1.2.1. Abstract statement of gluing theorem. Let Ey — Y and let E denote the
pullback of Ey over R x Y. Let Du = %% + Lu with L : L?(Eo) — L?_, (Ey).

We have D : L2(Z; E) — L} _|(Z; E) where Z = ZT and Z°°.

Let L 5(Z° E) = {s | e’l'ls € L3(Z>*; E)} and we have D : L} ;(Z°; E) —
Li_15(Z2%%; E).

Suppose I: Li71/2(Y UY; Ey) — H where H is a Hilbert space and II := MoR
with R the boundary restriction. Write T := L2(ZT; E) and F> = L? | (ZT; E),
similarly we have £%°, £5°, F°°, F5°.

Suppose (D,II) : £ — F>° @ H invertible (then so is the weighted version for
0 close enough to 0).

(1) Let Cy be a constant dominating the norm of the inverse of (D, II).

Suppose we have smooth « : Li([-1,1] x Y; E) — L _,([-1,1] x Y; E) of the
following form: There exists a continuous ag : C*®°(Ey) — L?*(Ep) and « is the
extension from the induced map C*(E) — L? (E) defined by v — (ag o %(t))",
where © denotes the inverse of *. Suppose additionally, o : LZ([-1,1] x Y; E) —
L? ([-1,1] x Y; E) satisfies a(0) = 0 and dpaw = 0. This then implies that « is
smooth as a map 7 — FT, £ — F>, F5© — Fg°, and for all € > 0, there exists
n > 0s.t. ||ull,||v]|| <nimplies that ||a(u) — a(w)|| < €|jlu — /|-

Suppose n; chosen from the above for € := ﬁ with Cy chosen above.

FT=D+a: " — FT with M(T) = (FT)7Y(0), and F>*® = D+a : E* — F>
with M (00) = (F>)~1(0). M(T) c T and M (o0) C £ Hilbert submanifolds.

Then there exists n > 0 and smooth u(T,-) : B,(H) — M(T) and u(oco,-) :
B,(H) — M(oco) each diffeomorphism onto the image, with IT o (u(T,-)) = Id =
ITo(u(oo,-)), and for T' € [Tp, 00|, pr := ro(u(T,-)) smooth embedding from B, (H)
and [Ty, 00) X By(H) 3 (T, h) — pr(h), pr — pies in CF., and there exists ' > 0

loc?

(independent of T), s.t. im(u(T,-)) D {u € M(T) | |Jul| < 7n'}.

1.2.2. Applying to the SW setting. Let a € CZ(Y) be a non-degenerate (by q) zero
of (V£)?. Let 74 be the associated translational-invariant solution in 4d.
For each T > 0, think v, lives on Z7 = [T, T] x Y. Let

7Z® = (RS xY)U(RZ xY).

We can define [, (Z°°) etc.

~ Hilbert submanifold ~
M(Z*,[a]) C B 1,.(Z2%°), where we have the limit to be [a] at the

ends of two half cylinders.
We have r restricting to the boundary and we have spectral decomposition.
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Let ST (Z7) = {(A= Ay +a,s,¢) € C[(Z) | (alaz,n) = 0,Coul] (A,s,¢) =0}
with n be normal to the boundary.
r:Cr(ZT) — Cl_yp(YLY) X Li_l/g(iR) where the last coordinate is {a|gz, n).
7;{;—1/2,51 = jk?—l/Q,u(Y) o ICZ—l/Q,a(Y)'
Hess ASAFOE hyperbolic (a non-degenerate) gives a spectral decomposition
Ktae K.
Let Hy = {0} @ K~ ® L{_,,(iR) and Hy = {0} ® K™ @ Lj_, ,(iR).
Let H := Hy @ Hy and Iy : 77 @ L, ,(iR) — Hy and IIg, and define
=10y &Iy
Apply abstract theorem to
Fq(v) =0
Coul; () =0
(oi or)(y) = h,
where i is the identification of 77 to a subspace in C7, and verify the hypothesis of
the abstract theorem.
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