SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 10

DINGYU YANG

Please email yangding@math.hu-berlin.de if anything. Lecture notes up to now are available at www.mathematik.hu-berlin.de/~yangding/monopole.html. Exercises sprinkled throughout lecture notes have been collected into an exercise sheet at www.mathematik.hu-berlin.de/~yangding/Exercise_SWF.pdf.

1. Lecture 10

We will discuss gluing and neighborhood of stratum of broken trajectories.

1.0.1. Compactness of moduli spaces of broken trajectories. Let $[\mathfrak{a}]$ and \mathfrak{b} be (non-degenerate) zeros of $(\nabla \mathcal{L})^{\sigma}$.

 $M_z([\mathfrak{a}], [\mathfrak{b}])$ is called non-trivial if $[\mathfrak{a}] \neq \mathfrak{b}$ or z is non-trivial.

For any $[\gamma]$ in a non-trivial moduli space, $[\tau_s \gamma]$ will be a different element, where the shift $\tau_s : \gamma \mapsto [\gamma(\cdot + s)]$ descends to a map between the gauge equivalence classes. Let $[\tilde{\gamma}]$ denote its equivalence class under shift (not to be confused with $\check{\gamma}(t)$ with t variable regarded as a path in 3d), called an unparametrized trajectory.

 $M_z([\mathfrak{a}], [\mathfrak{b}])$ denotes the moduli space of unparametrized non-trivial trajectories.

Definition 1.1. An unparametrized broken trajectory joining $[\alpha]$ to $[\mathfrak{b}]$ is a tuple $([\check{\gamma}_1], [\check{\gamma}_2], \cdots, [\check{\gamma}_n])$, where

- $n \ge 0$,
- $[\check{\gamma}] \in \check{M}_{z_i}([\mathfrak{a}_{i-1}], [\mathfrak{a}_i]),$
- $[\mathfrak{a}_i]$ for $0 \leq i \leq n$ are zeros of $(\nabla \mathcal{L})^{\sigma}$, with $\mathfrak{a}_0 = \mathfrak{a}$ and $\mathfrak{a}_n = \mathfrak{b}$, and $z = z_1 * \cdots z_n$ the concatenated homotopy path.

We denote this as $[\check{\gamma}^+]$ (as the mathbb font in the lecture is not native for Greeks in TeX) and call it *n*-broken (note that we have n-1 broken points). If n = 0, then $[\check{\gamma}^+] = [\alpha_0]$ by convention.

The moduli space of such broken trajectories is denoted by $\check{M}_{z}^{+}([\mathfrak{a}], [\mathfrak{b}])$. $\check{\gamma}_{i}$ is the representative of the *i*-th component $[\check{\gamma}_{i}]$.

We now define the topology for $\dot{M}_z^+([\alpha], [\beta])$.

Fix a point $[\check{\gamma}^+] \in \check{M}_z^+([\mathfrak{a}], [\mathfrak{b}])$, we define a neighborhood of it as follows:

Choose $[\gamma_i]$ lifting $[\check{\gamma}_i]$ for all i, and let $U_i \subset B_{k,loc}^{\tau}(\mathbb{R} \times Y)$ an open neighborhood of $[\gamma_i]$. Let $T \in \mathbb{R}^+$ nonnegative reals.

Consider $[\delta^+] = ([\delta_1], \ldots, [\delta_m])$, where $m \leq n$ (possibly less components), we need to assign how *n* components get allocated to those (possibly less) *m* components via a surjective and order-preserving allocation map $j : \underline{n} := \{1, \cdots, n\} \to \underline{m}$, and if several adjacent components indexed by a subset $i_1, i_k + 1, \cdots, i_1 + k$ of \underline{n} mapped to same component indexed $j \in \underline{m}$, one should picture that each of those different shifted $[\tau_{s_{i_1+i}}\delta_j]$ is in the neighborhood U_{i_1+i} of $[\gamma_{i_1+i}]$, so $[\delta_j]$ is in the neighborhood of a trajectory 'glued' from $[\gamma_{i_1+i}], \cdots, [\gamma_{i_1+k}]$. Let us package

Date: January 22, 2021.

DINGYU YANG

the component allocation and shift allocation map by $(j, s) : \underline{n} \to \underline{m} \times \mathbb{R}$, where $1 \leq i_1 < i_2 \leq n$ implies either $j(i_i) \leq j(i_2)$ or $j(i_1) = j(i_2)$ and $s(i_1) + T \leq s(i_2)$ (adjacent components have relative shift of at least T away'.

To summarize the above, define

 $\Omega := \Omega(U_1, \cdots, U_n, T) := \{ [\check{\delta}^+] \in \check{M}_z^+([\mathfrak{a}], [\mathfrak{b}]) \mid [\check{\delta}^+] \text{ is } m \text{-broken for some } m \leq n ,$

 $\exists \text{ allocation } (j,s): \underline{n} \to \underline{m} \times \mathbb{R}, \text{ s.t } [\tau_{s(i)} \delta_{j(i)}] \in U_i] \}.$

 Ω is considered as an open neighborhood for $[\check{\gamma}^+]$. Those Ω for different $[\check{\gamma}^+]$, U_i 's and T define a basis which gives the topology for $\check{M}_z^+([\mathfrak{a}], [\mathfrak{b}])$.

A misleadingly simple to state, but carrying a lot of heavy-lifting in the proof where the most technical ingredient we have covered before is the following:

Theorem 1.2. $\check{M}_z^+([\mathfrak{a}], [\mathfrak{b}])$ is compact.

1.0.2. *Stratified spaces.* We give a primitive version of stratified spaces for our purpose (only counting points in codimension 1 strata).

Definition 1.3. N^d is a *d*-(dim) stratified space if we have filtered inclusion $\emptyset = N^{-1} \subset N^0 \subset \cdots \subset N^{d-1} \subset N^d$, s.t. $N^e \setminus N^{e-1}$ is either empty or *e*-dim manifold, and in the later case, it is called *e*-dim stratum (which can consist of several connected components).

Proposition 1.4. If $M_z([\mathfrak{a}], [\mathfrak{b}])$ is non-empty and dim d (we can always make it regular so this notion of dim makes sense). Then $\check{M}_z^+([\mathfrak{a}], [\mathfrak{b}])$ is a (d-1)stratified space. If $M_z([\mathfrak{a}], [\mathfrak{b}])$ contains an irreducible (namely, an unbroken $[\gamma]$ with $\gamma = (A, s, \phi)$ with s > 0), then (d-1)-dim/top stratum of $\check{M}_z^+([\mathfrak{a}], [\mathfrak{b}])$ is {irreducibles}.

We now want to know more about (d-2)-dim stratum (aka codim-1 stratum). Consider (‡): $\check{M}_{z_1}([\mathfrak{a}_0], \mathfrak{a}_1) \times \cdots \times \check{M}_{z_l}([a_{l-1}], [a_l]) \subset \check{M}_z^+([\mathfrak{a}_0], \mathfrak{a}_l).$

Let the relative grading of each be $\operatorname{gr}_{z_i}([\mathfrak{a}_{i-1}], [\mathfrak{a}_i]) = d_i - \epsilon_i$, where d_i is its dimension and e_i is 1 if it is boundaryt-obstructed (namely $[\mathfrak{a}_{i-1}]$ is boundary-stable and $[\gamma_i]$ is boundary-unstable) and 0 otherwise. We call $(d_1 - \epsilon_1, \dots, d_l - \epsilon_l)$ the grading vector, and $(\epsilon_1, \dots, \epsilon_l)$ the obstruction vector. If we reserve d_i for dimension, then we can read obstruction vector from the grading vector (vice versa).

The (d-1)-dim stratum, aka top stratum, is the irreducible part of $\dot{M}_z([\mathfrak{a}_0], [\mathfrak{a}_l])$. (Note that $[\mathfrak{a}_l]$ is just a notation as the limit agreeding with a given element under consideration, this by no means implies that the elements are *l*-broken.)

The (d-1)-dim stratum, aka codimension-1 stratum, is the union of

- top stratum of (\ddagger) with grading vector (d_1, d_2) (thus obstruction vector (0, 0)),
- top stratum of (\ddagger) with grading vector $(d_1, d_2 1, d_3)$ (thus obstruction vector (0, 1, 0)), and
- (only if $M_z([\mathfrak{a}_0], [\mathfrak{a}_l])$ contains both reducibles and irreducibles)

$$M_z([\mathfrak{a}_0], [\mathfrak{a}_l]) \cap \{\text{reducibles}\}.$$

1.0.3. *Moduli space on finite cylinders*. We will capture the behavior of moduli space on infinity cylinder using the finite cylinders where action is most concentrated.

Now consider $Z = I \times Y$ with I compact.

 $\mathcal{C}_k^{\tau}(Z) \subset \tilde{\mathcal{C}}_k^{\tau}(Z)$ with quotient $B_k^{\tau}(Z) \subset \tilde{B}_k^{\tau}(Z)$.

Since we do not have boundary condition imposed on, we do not have a Fredholm problem. But still $M(Z) = \{ [\gamma] \in B_k^{\tau}(Z) \mid \mathcal{F}_q^{\tau}(\gamma) = 0 \} \subset B_k^{\tau}(Z)$ as a Hilbert submanifold. We also have the tilde version. M(Z) is a Hilbert submanifold with boundary and identified as $\tilde{M}(Z)/i$ where *i* is the involution changing signs of *s* variable.

1.0.4. Spectral boundary condition on $\partial Z = \bar{Y} \sqcup Y$. Let $R_Y : \tilde{M}(Z) \to B^{\sigma}_{k-1/2}(Y)$, $R_{\bar{Y}} : \tilde{M}(Z) \to B^{\sigma}_{k-1/2}(\bar{Y})$ be restricting to the boundary, the regularity k - 1/2 is due to Trace theorem, as taking trace costs 1/2 derivative with p = 2 here and is onto. (We came across fractional Sobolev space before and can safely suppress this technicality now).

$$\begin{split} &[\gamma] \in \tilde{M}(Z), \, \mathfrak{a} := \gamma|_{Y}, \, \bar{\mathfrak{a}} := \gamma|_{\bar{Y}}. \\ &T_{[\alpha]}B^{\sigma}_{k-1/2}(Y) \cong K^{\sigma}_{k-1/2,\mathfrak{a}} \text{ (transverse to the gauge orbit), so} \\ & (dR_{Y}, dR_{\bar{Y}}) : T_{[\gamma]}\tilde{M}(Z) \to K^{\sigma}_{k-1/2,\mathfrak{a}}(Y) \times K^{\sigma}_{k-1/2,\bar{\mathfrak{a}}}(\bar{Y}). \end{split}$$

Using $\operatorname{Hess}_{q,\mathfrak{a}}^{\sigma}$ operator, we have spectral decomposition $K_{k-1/2,\mathfrak{a}}^{\sigma} = K_{\mathfrak{a}}^{+} \oplus K_{\mathfrak{a}}^{-}$ (ignoring the (·) signifying the boundary), $K_{\overline{\mathfrak{a}}}^{-}(\bar{Y}) \cong K_{\mathfrak{a}}^{+}(Y)$. Let $\Pi : K_{k-1/2,(\overline{\mathfrak{a}},\mathfrak{a})}^{\sigma}(\bar{Y} \sqcup Y) \to K_{(\overline{\mathfrak{a}},\mathfrak{a})}^{-}(\bar{Y} \sqcup Y)$, where the LHS side is defined as

Let $\Pi: K^{\sigma}_{k-1/2,(\bar{\mathfrak{a}},\mathfrak{a})}(Y \sqcup Y) \to K^{-}_{(\bar{\mathfrak{a}},\mathfrak{a})}(Y \sqcup Y)$, where the LHS side is defined as $K^{\sigma}_{k-1/2,\bar{\mathfrak{a}}}(\bar{Y}) \oplus K^{\sigma}_{k-1/2,\mathfrak{a}}(Y)$ and the RHS is defined as $K^{+}_{\bar{\mathfrak{a}}}(\bar{Y}) \oplus K^{-}_{\mathfrak{a}}(Y)$ with the kernel the complement of the range in the above decomposition.

Theorem 1.5. $\Pi \circ (dR_{\bar{Y}}, dR_{Y})$ and $(1 - \Pi) \circ (dR_{\bar{Y}}, R_{Y})$ are Fredholm and compact.

Specifying Lagrangian boundary condition, it becomes Fredholm problem again.

1.1. Gluing in finite dimension. L invertible (self-adjoint) SA linear operator $\mathbb{R}^n \to \mathbb{R}^n$. $\dot{\gamma}(t) = -L\gamma(t), M(T) := \{\text{solution } \gamma : [-T,T] \to \mathbb{R}^n\}.$

We have restriction $r: M(T) \to \mathbb{R}^n \times \mathbb{R}^n$, $\gamma \mapsto (\gamma(-T), \gamma(T))$, each factor in the image determines γ . So $\operatorname{im} r = \mathbb{R}^n$.

Want to parametrize imr so that it converges nicely with respect to $T \to \infty$. Write $\mathbb{R}^n \times \mathbb{R}^n = (H^+ \oplus H^-) \times (H^+ \oplus H^-)$ spectral decomposition.

 $\operatorname{im}(r) = \{ (u_+ + e^{2TL}u_-, e^{-2TL}u_+ + u_-) \mid (u_+, u_-) \in H^+ \times H^- \} \text{ to } H^+ \times H^- = M(\infty) \text{ decays exponentially as } T \to \infty.$

Here $M(\infty)$ can be thought of as {solution $\gamma : R^{geq} \sqcup \mathbb{R}^{\leq} \to \mathbb{R}^{n}$ } with restriction $r : M(\infty) \to \mathbb{R}^{n} \times \mathbb{R}^{n}, r(M(\infty)) = H^{+} \times H^{-}.$

To summarize this above abstractly whose statement can be easily generalized to the SW setting:

For for T > 0, there exist parametrizations

$$u(T, \cdot) : \mathbb{R}^n \to M(T) \text{ and } u(\infty, \cdot) : \mathbb{R}^n \to M(\infty)$$

s.t. $\mu_T := r \circ (u(T, \cdot)) : \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^n$ converges $\mu_\infty := r \circ (u(\infty, \cdot))$.

Let $W = \bigcup_{T \in (0,\infty]} \mu_T(\mathbb{R}^n)$ has singularity at 0 (all 'slices' $\mu_T(\mathbb{R}^n)$ intersect at 0).

So consider

$$W^0 := \bigcup_{T \in (0,\infty]} \mu_T(\mathbb{R}^n \setminus \{0\}).$$

Unique continuation means $\mu_{T_1}(\mathbb{R}^n \setminus \{0\}) \cap \mu_{T_2}(\mathbb{R}^n \setminus \{0\}) = \emptyset$ if $T_1 \neq T_2$. So W^0 is the injective image of $(0, \infty] \times (\mathbb{R}^n \setminus \{0\})$, and it is a C^0 manifold with boundary $\mu_{\infty}(\mathbb{R}^{\setminus}\{0\})$, but not a smooth manifold.

DINGYU YANG

1.2. Non-linear version of the above in Morse theory. Let B be a compact Riemannian manifold with Morse $f: B \to \mathbb{R}$. Let K_1, K_2 be closed submanifolds lying in the level sets, $f|_{K_1} = 1$, and $f_{K_2} = -1$ and there exists a unique $a \in$ $f^{-1}([-1,1])$, the flow is linear, consider $\dot{\gamma} = -\nabla f \circ \gamma = -L\gamma$.

 $M_{S}(K_{1}, K_{2}) := \{ \gamma : [-S, S] \to B \mid \gamma(-S) \in K_{1}, \gamma(S) \in K_{2}, \dot{\gamma} = -\nabla f \circ \gamma \},\$ $M(K_1, K_2) = \bigcup_{S>0} M_S(K_1, K_2)$ has a compactification at infinity by attaching $M_{\infty}(K_1, K_2) = M(K_1, a) \times M(a, K_2)$, where the first factor is solution $\gamma : \mathbb{R}^{\geq 0} \to B$ with $\gamma(0) \in K_1$ and $\gamma(\infty) = a$ and similarly for the second factor.

If $S_a \pitchfork K_1$ and $U_a \pitchfork K_2$ (transversely intersecting), then the compactification is a C^0 manifold with boundary in the neighborhood of $M_{\infty}(K_1, K_2)$.

1.2.1. Abstract statement of gluing theorem. Let $E_0 \to Y$ and let E denote the pullback of E_0 over $\mathbb{R} \times Y$. Let $Du = \frac{du}{dt} + Lu$ with $L : L_k^2(E_0) \to L_{k-1}^2(E_0)$. We have $D : L_k^2(Z; E) \to L_{k-1}^2(Z; E)$ where $Z = Z^T$ and Z^{∞} . Let $L_{k,\delta}^2(Z^{\infty}; E) = \{s \mid e^{\delta|t|}s \in L_k^2(Z^{\infty}; E)\}$ and we have $D : L_{k,\delta}^2(Z^{\infty}; E) \to C_{k,\delta}^2(Z^{\infty}; E)$

 $L^2_{k-1,\delta}(Z^\infty; E).$

Suppose $\overline{\Pi}: L^2_{k-1/2}(\overline{Y} \sqcup Y; E_0) \to H$ where H is a Hilbert space and $\Pi := \overline{\Pi} \circ R$ with R the boundary restriction. Write $\mathcal{E}^T := L_k^2(Z^T; E)$ and $\mathcal{F}^\infty = L_{k-1}^2(Z^T; E)$, similarly we have \mathcal{E}^{∞} , $\mathcal{E}^{\infty}_{\delta}$, \mathcal{F}^{∞} , $\mathcal{F}^{\infty}_{\delta}$. Suppose $(D, \Pi) : \mathcal{E}^{\infty} \to \mathcal{F}^{\infty} \oplus H$ invertible (then so is the weighted version for

 δ close enough to 0).

(†) Let C_0 be a constant dominating the norm of the inverse of (D, Π) .

Suppose we have smooth $\alpha: L^2_k([-1,1] \times Y; E) \to L^2_{k-1}([-1,1] \times Y; E)$ of the following form: There exists a continuous $\alpha_0 : C^{\infty}(E_0) \to L^2(E_0)$ and α is the extension from the induced map $C^{\infty}(E) \to L^2_{loc}(E)$ defined by $\gamma \mapsto (\alpha_0 \circ \check{\gamma}(t))$, where $\hat{\cdot}$ denotes the inverse of $\check{\cdot}$. Suppose additionally, $\alpha : L^2_k([-1,1] \times Y; E) \to$ $L^2_{k-1}([-1,1] \times Y; E)$ satisfies $\alpha(0) = 0$ and $d_0 \alpha = 0$. This then implies that α is smooth as a map $\mathcal{E}^T \to \mathcal{F}^T$, $\mathcal{E}^{\infty} \to \mathcal{F}^{\infty}$, $\mathcal{F}^{\infty}_{\delta} \to \mathcal{F}^{\infty}_{\delta}$, and for all $\epsilon > 0$, there exists $\eta > 0$ s.t. $||u||, ||u'|| \le \eta$ implies that $||\alpha(u) - \alpha(u')|| \le \epsilon ||u - u'||.$

Suppose η_1 chosen from the above for $\epsilon := \frac{1}{2C_0}$ with C_0 chosen above. $F^T = D + \alpha : \mathcal{E}^T \to \mathcal{F}^T$ with $M(T) = (F^T)^{-1}(0)$, and $F^{\infty} = D + \alpha : \mathcal{E}^{\infty} \to \mathcal{F}^{\infty}$ with $M(\infty) = (F^{\infty})^{-1}(0)$. $M(T) \subset \mathcal{E}^T$ and $M(\infty) \subset \mathcal{E}^{\infty}$ Hilbert submanifolds.

Then there exists $\eta > 0$ and smooth $u(T, \cdot) : B_n(H) \to M(T)$ and $u(\infty, \cdot) :$ $B_n(H) \to M(\infty)$ each diffeomorphism onto the image, with $\Pi \circ (u(T, \cdot)) = \mathrm{Id} =$ $\Pi \circ (u(\infty, \cdot))$, and for $T \in [T_0, \infty]$, $\mu_T := r \circ (u(T, \cdot))$ smooth embedding from $B_\eta(H)$ and $[T_0,\infty) \times B_{\eta}(H) \ni (T,h) \mapsto \mu_T(h), \ \mu_T \to \mu_{\infty} \text{ in } C_{loc}^{\infty}$, and there exists $\eta' > 0$ (independent of T), s.t. $\operatorname{im}(u(T, \cdot)) \supset \{u \in M(T) \mid ||u|| \le \eta'\}$.

1.2.2. Applying to the SW setting. Let $\mathfrak{a} \in \tilde{\mathcal{C}}_k^{\sigma}(Y)$ be a non-degenerate (by q) zero of $(\nabla \mathcal{L})^{\sigma}$. Let $\gamma_{\mathfrak{a}}$ be the associated translational-invariant solution in 4d.

For each T > 0, think $\gamma_{\mathfrak{a}}$ lives on $Z^T = [-T, T] \times Y$. Let

$$Z^{\infty} = (\mathbb{R}^{\leq} \times Y) \sqcup (\mathbb{R}^{\geq} \times Y).$$

We can define $\tilde{\mathcal{C}}_{k,loc}^{\tau}(Z^{\infty})$ etc.

 $\tilde{M}(Z^{\infty}, [\mathfrak{a}]) \overset{k, oc}{\subset} \tilde{B}_{k, loc}^{\tau}(Z^{\infty})$, where we have the limit to be $[\mathfrak{a}]$ at the ends of two half cylinders.

We have r restricting to the boundary and we have spectral decomposition.

Let $\mathcal{S}_{k,\mathfrak{a}}^{\tau}(Z^T) = \{ (A = A_0 + a, s, \phi) \in \tilde{\mathcal{C}}_k^{\tau}(Z) \mid \langle a |_{\partial Z}, n \rangle = 0, \operatorname{Coul}_{\gamma_\mathfrak{a}}^{\tau}(A, s, \phi) = 0 \}$ with n be normal to the boundary.

$$\begin{split} r: \tilde{\mathcal{C}}_{k}^{\tau}(Z^{T}) &\to \tilde{\mathcal{C}}_{k-1/2}^{\sigma}(\bar{Y} \sqcup Y) \times L_{k-1/2}^{2}(i\mathbb{R}) \text{ where the last coordinate is } \langle a|_{\partial Z}, n \rangle. \\ \mathcal{T}_{k-1/2,\mathfrak{a}}^{\sigma} &\cong \mathcal{J}_{k-1/2,\mathfrak{a}}^{\sigma}(Y) \oplus \mathcal{K}_{k-1/2,\mathfrak{a}}^{\sigma}(Y). \\ \text{Hess ASAFOE hyperbolic } (\mathfrak{a} \text{ non-degenerate) gives a spectral decomposition} \end{split}$$

 $K^+ \oplus K^-$.

Let $H_Y^- = \{0\} \oplus K^- \oplus L^2_{k-1/2}(i\mathbb{R})$ and $H_{\overline{Y}}^- = \{0\} \oplus K^+ \oplus L^2_{k-1/2}(i\mathbb{R})$. Let $H := H_{\overline{Y}}^- \oplus H_{\overline{Y}}^-$ and $\Pi_{\overline{Y}}^- : \mathcal{T}^\sigma \oplus L^2_{k-1/2}(i\mathbb{R}) \to H_{\overline{Y}}^-$ and $\Pi_{\overline{Y}}^-$, and define
$$\begin{split} \Pi &:= \Pi^-_{\bar{Y}} \oplus \Pi^-_{Y}. \\ \text{Apply abstract theorem to} \end{split}$$

$$\begin{cases} \mathcal{F}_q^\tau(\gamma) = 0\\ \operatorname{Coul}_\mathfrak{a}^\tau(\gamma) = 0\\ (\Pi \circ i^{-1} \circ r)(\gamma) = h \end{cases}$$

where *i* is the identification of \mathcal{T}^{τ} to a subspace in $\tilde{\mathcal{C}}^{\tau}$, and verify the hypothesis of the abstract theorem.