
SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 10

DINGYU YANG

Please email yangding@math.hu-berlin.de if anything. Lecture notes up to
now are available at www.mathematik.hu-berlin.de/∼yangding/monopole.html.
Exercises sprinkled throughout lecture notes have been collected into an exercise
sheet at www.mathematik.hu-berlin.de/∼yangding/Exercise SWF.pdf.

1. Lecture 10

We will discuss gluing and neighborhood of stratum of broken trajectories.

1.0.1. Compactness of moduli spaces of broken trajectories. Let [a] and b be (non-
degenerate) zeros of (∇L)σ.
Mz([a], [b]) is called non-trivial if [a] 6= b or z is non-trivial.
For any [γ] in a non-trivial moduli space, [τsγ] will be a different element, where

the shift τs : γ 7→ [γ(·+s)] descends to a map between the gauge equivalence classes.
Let [γ̌] denote its equivalence class under shift (not to be confused with γ̌(t) with
t variable regarded as a path in 3d), called an unparametrized trajectory.
M̌z([a], [b]) denotes the moduli space of unparametrized non-trivial trajectories.

Definition 1.1. An unparametrized broken trajectory joining [α] to [b] is a tuple
([γ̌1], [γ̌2], · · · , [γ̌n]), where

• n ≥ 0,
• [γ̌] ∈ M̌zi([ai−1], [ai]),
• [ai] for 0 ≤ i ≤ n are zeros of (∇L)σ, with a0 = a and an = b, and
z = z1 ∗ · · · zn the concatenated homotopy path.

We denote this as [γ̌+] (as the mathbb font in the lecture is not native for Greeks
in TeX) and call it n-broken (note that we have n − 1 broken points). If n = 0,
then [γ̌+] = [α0] by convention.

The moduli space of such broken trajectories is denoted by M̌+
z ([a], [b]). γ̌i is

the representative of the i-th component [γ̌i].

We now define the topology for M̌+
z ([α], [β]).

Fix a point [γ̌+] ∈ M̌+
z ([a], [b]), we define a neighborhood of it as follows:

Choose [γi] lifting [γ̌i] for all i, and let Ui ⊂ Bτk,loc(R×Y ) an open neighborhood

of [γi]. Let T ∈ R+ nonnegative reals.
Consider [δ̌+] = ([δ1], . . . , [δm]), where m ≤ n (possibly less components), we

need to assign how n components get allocated to those (possibly less) m compo-
nents via a surjective and order-preserving allocation map j : n := {1, · · · , n} → m,
and if several adjacent components indexed by a subset i1, ik + 1, · · · , i1 + k of
n mapped to same component indexed j ∈ m, one should picture that each of
those different shifted [τsi1+i

δj ] is in the neighborhood Ui1+i of [γi1+i], so [δj ] is in

the neighborhood of a trajectory ‘glued’ from [γi1+i], · · · , [γi1+k]. Let us package
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the component allocation and shift allocation map by (j, s) : n → m × R, where
1 ≤ i1 < i2 ≤ n implies either j(ii) ≤ j(i2) or ‘j(i1) = j(i2) and s(i1) + T ≤ s(i2)
(adjacent components have relative shift of at least T away’.

To summarize the above, define

Ω := Ω(U1, · · · , Un, T ) := {[δ̌+] ∈ M̌+
z ([a], [b]) | [δ̌+] is m-broken for some m ≤ n ,

∃ allocation (j, s) : n→ m× R, s.t [τs(i)δj(i)] ∈ Ui]}.
Ω is considered as an open neighborhood for [γ̌+]. Those Ω for different [γ̌+],

Ui’s and T define a basis which gives the topology for M̌+
z ([a], [b]).

A misleadingly simple to state, but carrying a lot of heavy-lifting in the proof
where the most technical ingredient we have covered before is the following:

Theorem 1.2. M̌+
z ([a], [b]) is compact.

1.0.2. Stratified spaces. We give a primitive version of stratified spaces for our pur-
pose (only counting points in codimension 1 strata).

Definition 1.3. Nd is a d-(dim) stratified space if we have filtered inclusion
∅ = N−1 ⊂ N0 ⊂ · · · ⊂ Nd−1 ⊂ Nd, s.t. Ne\Ne−1 is either empty or e-dim
manifold, and in the later case, it is called e-dim stratum (which can consist of
several connected components).

Proposition 1.4. If Mz([a], [b]) is non-empty and dim d (we can always make
it regular so this notion of dim makes sense). Then M̌+

z ([a], [b]) is a (d − 1)-
stratified space. If Mz([a], [b]) contains an irreducible (namely, an unbroken [γ]
with γ = (A, s, φ) with s > 0), then (d − 1)-dim/top stratum of M̌+

z ([a], [b]) is
{irreducibles}.

We now want to know more about (d− 2)-dim stratum (aka codim-1 stratum).
Consider (‡): M̌z1([a0], a1)× · · · × M̌zl([al−1], [al]) ⊂ M̌+

z ([a0], al).
Let the relative grading of each be grzi([ai−1], [ai]) = di − εi, where di is its

dimension and ei is 1 if it is boundaryt-obstructed (namely [ai−1] is boundary-
stable and [γi] is boundary-unstable) and 0 otherwise. We call (d1− ε1, · · · , dl− εl)
the grading vector, and (ε1, · · · , εl) the obstruction vector. If we reserve di for
dimension, then we can read obstruction vector from the grading vector (vice versa).

The (d−1)-dim stratum, aka top stratum, is the irreducible part of M̌z([a0], [al]).
(Note that [al] is just a notation as the limit agreeding with a given element under
consideration, this by no means implies that the elements are l-broken.)

The (d− 1)-dim stratum, aka codimension-1 stratum, is the union of

• top stratum of (‡) with grading vector (d1, d2) (thus obstruction vector (0, 0)),
• top stratum of (‡) with grading vector (d1, d2 − 1, d3) (thus obstruction vector

(0, 1, 0)), and
• (only if Mz([a0], [al]) contains both reducibles and irreducibles)

M̌z([a0], [al]) ∩ {reducibles}.

1.0.3. Moduli space on finite cylinders. We will capture the behavior of moduli
space on infinity cylinder using the finite cylinders where action is most concen-
trated.

Now consider Z = I × Y with I compact.
Cτk (Z) ⊂ C̃τk (Z) with quotient Bτk (Z) ⊂ B̃τk (Z).
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Since we do not have boundary condition imposed on, we do not have a Fredholm
problem. But still M(Z) = {[γ] ∈ Bτk (Z) | Fτq (γ) = 0} ⊂ Bτk (Z) as a Hilbert
submanifold. We also have the tilde version. M(Z) is a Hilbert submanifold with

boundary and identified as M̃(Z)/i where i is the involution changing signs of s
variable.

1.0.4. Spectral boundary condition on ∂Z = Ȳ t Y . Let RY : M̃(Z)→ Bσk−1/2(Y ),

RȲ : M̃(Z)→ Bσk−1/2(Ȳ ) be restricting to the boundary, the regularity k − 1/2 is

due to Trace theorem, as taking trace costs 1/2 derivative with p = 2 here and is
onto. (We came across fractional Sobolev space before and can safely suppress this
technicality now).

[γ] ∈ M̃(Z), a := γ|Y , ā := γ|Ȳ .
T[α]B

σ
k−1/2(Y ) ∼= Kσ

k−1/2,a (transverse to the gauge orbit), so

(dRY , dRȲ ) : T[γ]M̃(Z)→ Kσ
k−1/2,a(Y )×Kσ

k−1/2,ā(Ȳ ).

Using Hessσq,a operator, we have spectral decomposition Kσ
k−1/2,a = K+

a ⊕K−a
(ignoring the (·) signifying the boundary), K−ā (Ȳ ) ∼= K+

a (Y ).
Let Π : Kσ

k−1/2,(ā,a)(Ȳ t Y ) → K−(ā,a)(Ȳ t Y ), where the LHS side is defined as

Kσ
k−1/2,ā(Ȳ ) ⊕Kσ

k−1/2,a(Y ) and the RHS is defined as K+
ā (Ȳ ) ⊕K−a (Y ) with the

kernel the complement of the range in the above decomposition.

Theorem 1.5. Π◦(dRȲ , dRY ) and (1−Π)◦(dRȲ , RY ) are Fredholm and compact.

Specifying Lagrangian boundary condition, it becomes Fredholm problem again.

1.1. Gluing in finite dimension. L invertible (self-adjoint) SA linear operator
Rn → Rn. γ̇(t) = −Lγ(t), M(T ) := {solution γ : [−T, T ]→ Rn}.

We have restriction r : M(T )→ Rn ×Rn, γ 7→ (γ(−T ), γ(T )), each factor in the
image determines γ. So imr = Rn.

Want to parametrize imr so that it converges nicely with respect to T →∞.
Write Rn × Rn = (H+ ⊕H−)× (H+ ⊕H−) spectral decomposition.
im(r) = {(u+ + e2TLu−, e

−2TLu+ + u−) | (u+, u−) ∈ H+×H−} to H+×H− =
M(∞) decays exponentially as T →∞.

Here M(∞) can be thought of as {solution γ : Rgeq tR≤ → Rn} with restriction
r : M(∞)→ Rn × Rn, r(M(∞)) = H+ ×H−.

To summarize this above abstractly whose statement can be easily generalized
to the SW setting:

For for T > 0, there exist parametrizations

u(T, ·) : Rn →M(T ) and u(∞, ·) : Rn →M(∞)

s.t. µT := r ◦ (u(T, ·)) : Rn → Rn × Rn converges µ∞ := r ◦ (u(∞, ·)).
Let W =

⋃
T∈(0,∞] µT (Rn) has singularity at 0 (all ‘slices’ µT (Rn) intersect at

0).
So consider

W 0 :=
⋃

T∈(0,∞]

µT (Rn\{0}).

Unique continuation means µT1
(Rn\{0}) ∩ µT2

(Rn\{0}) = ∅ if T1 6= T2. So W 0 is
the injective image of (0,∞] × (Rn\{0}), and it is a C0 manifold with boundary
µ∞(R\{0}), but not a smooth manifold.
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1.2. Non-linear version of the above in Morse theory. Let B be a compact
Riemannian manifold with Morse f : B → R. Let K1, K2 be closed submanifolds
lying in the level sets, f |K1 = 1, and fK2 = −1 and there exists a unique a ∈
f−1([−1, 1]), the flow is linear, consider γ̇ = −∇f ◦ γ = −Lγ.
MS(K1,K2) := {γ : [−S, S] → B | γ(−S) ∈ K1, γ(S) ∈ K2, γ̇ = −∇f ◦ γ},

M(K1,K2) =
⋃
S>0MS(K1,K2) has a compactification at infinity by attaching

M∞(K1,K2) = M(K1, a)×M(a,K2), where the first factor is solution γ : R≥0 → B
with γ(0) ∈ K1 and γ(∞) = a and similarly for the second factor.

If Sa t K1 and Ua t K2 (transversely intersecting), then the compactification is
a C0 manifold with boundary in the neighborhood of M∞(K1,K2).

1.2.1. Abstract statement of gluing theorem. Let E0 → Y and let E denote the
pullback of E0 over R× Y . Let Du = du

dt + Lu with L : L2
k(E0)→ L2

k−1(E0).

We have D : L2
k(Z;E)→ L2

k−1(Z;E) where Z = ZT and Z∞.

Let L2
k,δ(Z

∞;E) = {s | eδ|t|s ∈ L2
k(Z∞;E)} and we have D : L2

k,δ(Z
∞;E) →

L2
k−1,δ(Z

∞;E).

Suppose Π̄ : L2
k−1/2(Ȳ tY ;E0)→ H where H is a Hilbert space and Π := Π̄ ◦R

with R the boundary restriction. Write ET := L2
k(ZT ;E) and F∞ = L2

k−1(ZT ;E),
similarly we have E∞, E∞δ , F∞, F∞δ .

Suppose (D,Π) : E∞ → F∞ ⊕H invertible (then so is the weighted version for
δ close enough to 0).

(†) Let C0 be a constant dominating the norm of the inverse of (D,Π).
Suppose we have smooth α : L2

k([−1, 1] × Y ;E) → L2
k−1([−1, 1] × Y ;E) of the

following form: There exists a continuous α0 : C∞(E0) → L2(E0) and α is the
extension from the induced map C∞(E) → L2

loc(E) defined by γ 7→ (α0 ◦ γ̌(t))̂ ,
where ·̂ denotes the inverse of ·̌. Suppose additionally, α : L2

k([−1, 1] × Y ;E) →
L2
k−1([−1, 1] × Y ;E) satisfies α(0) = 0 and d0α = 0. This then implies that α is

smooth as a map ET → FT , E∞ → F∞, F∞δ → F∞δ , and for all ε > 0, there exists
η > 0 s.t. ‖u‖, ‖u′‖ ≤ η implies that ‖α(u)− α(u′)‖ ≤ ε‖u− u′‖.

Suppose η1 chosen from the above for ε := 1
2C0

with C0 chosen above.

FT = D+α : ET → FT with M(T ) = (FT )−1(0), and F∞ = D+α : E∞ → F∞
with M(∞) = (F∞)−1(0). M(T ) ⊂ ET and M(∞) ⊂ E∞ Hilbert submanifolds.

Then there exists η > 0 and smooth u(T, ·) : Bη(H) → M(T ) and u(∞, ·) :
Bη(H) → M(∞) each diffeomorphism onto the image, with Π ◦ (u(T, ·)) = Id =
Π◦(u(∞, ·)), and for T ∈ [T0,∞], µT := r◦(u(T, ·)) smooth embedding from Bη(H)
and [T0,∞)× Bη(H) 3 (T, h) 7→ µT (h), µT → µ∞ in C∞loc, and there exists η′ > 0
(independent of T ), s.t. im(u(T, ·)) ⊃ {u ∈M(T ) | ‖u‖ ≤ η′}.

1.2.2. Applying to the SW setting. Let a ∈ C̃σk (Y ) be a non-degenerate (by q) zero
of (∇L)σ. Let γa be the associated translational-invariant solution in 4d.

For each T > 0, think γa lives on ZT = [−T, T ]× Y . Let

Z∞ = (R≤ × Y ) t (R≥ × Y ).

We can define C̃τk,loc(Z∞) etc.

M̃(Z∞, [a])
Hilbert submanifold

⊂ B̃τk,loc(Z
∞), where we have the limit to be [a] at the

ends of two half cylinders.
We have r restricting to the boundary and we have spectral decomposition.
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Let Sτk,a(ZT ) = {(A = A0 + a, s, φ) ∈ C̃τk (Z) | 〈a|∂Z , n〉 = 0,Coulτγa(A, s, φ) = 0}
with n be normal to the boundary.
r : C̃τk (ZT )→ C̃σk−1/2(Ȳ tY )×L2

k−1/2(iR) where the last coordinate is 〈a|∂Z , n〉.
T σk−1/2,a

∼= J σk−1/2,a(Y )⊕Kσk−1/2,a(Y ).

ˆHess ASAFOE hyperbolic (a non-degenerate) gives a spectral decomposition
K+ ⊕K−.

Let H−Y = {0} ⊕K− ⊕ L2
k−1/2(iR) and H−

Ȳ
= {0} ⊕K+ ⊕ L2

k−1/2(iR).

Let H := H−
Ȳ
⊕ H−Y and Π−Y : T σ ⊕ L2

k−1/2(iR) → H−Y and Π−
Ȳ

, and define

Π := Π−
Ȳ
⊕Π−Y .

Apply abstract theorem to
Fτq (γ) = 0

Coulτa(γ) = 0

(Π ◦ i−1 ◦ r)(γ) = h,

where i is the identification of T τ to a subspace in C̃τ , and verify the hypothesis of
the abstract theorem.
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