SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 11

DINGYU YANG

Please email yangding@math.hu-berlin.de if anything. Lecture notes up to now are available at www.mathematik.hu-berlin.de/~yangding/monopole.html. Exercises sprinkled throughout lecture notes have been collected into an exercise sheet at www.mathematik.hu-berlin.de/~yangding/Exercise_SWF.pdf.

1. Lecture 11

Lecture 11 is about gluing and the accompanying exercise session is about orientation of moduli spaces. (Lecture 12 finishes up the construction of SWF, and lectures 13-15 cover some calculations and applications.)

1.0.1. Concatenation of trajectories on adjacent finite cylinders being a trajectory on the union. Let I be compact. $I = I_1 \sqcup I_2$ with $I_1 \cap I_2 = \{0\}$.

We have restriction map to sub-cylinders

$$\rho: \tilde{M}(I \times Y) \to \tilde{M}(I_1 \times Y) \times \tilde{M}(I_2 \times Y)$$

and restriction to the common boundary

$$R_i: \tilde{M}(I_1 \times Y) \times \tilde{M}(I_2 \times Y) \to B^{\sigma}_{k-1/2}(\{0\} \times Y).$$

We have $\operatorname{im} \rho \subset \operatorname{Fib}(R_1, R_2) := \{m = (m_1, m_2)] \mid R_1(m) = R_2(m).$

 ρ , being a restriction to a Hilbert submanifold from a smooth map on the configuration space, is smooth.

- $\operatorname{im} \rho = \operatorname{Fib}(R_1, R_2)$, and ρ is a homeomorphism onto this image.
- (R_1, R_2) is transverse to the diagonal in the image, so $Fib(R_1, R_2)$ is a smooth Hilbert submanifold.
- Then ρ is a diffeomorphism.

The above is true for $M(\mathbb{R} \times Y)$ is fixing $[\mathfrak{a}]$ and $[\mathfrak{b}]$.

If $\tilde{M}([\mathfrak{a}], [\mathfrak{b}])$ is not boundary-obstructed, then (R_1, R_2) is transverse to the diagonal iff $\tilde{M}([\mathfrak{a}], [\mathfrak{b}])$ is regular.

The version for multiple segments also works with R_1 being restriction to the positive boundaries and R_2 being restriction to the negative boundaries.

1.0.2. Boundary-obstructed case. For the boundary-obstructed case (\mathfrak{a} and \mathfrak{b} are reducible, and \mathfrak{a} boundary-stable and \mathfrak{b} boundary-unstable.

We have codimension 1 inclusion $\partial B^{\sigma}_{k-1/2}(Y) \subset \tilde{B}^{\sigma}_{k-1/2}(Y)$ with the former defined by $\{s = 0\}$. (Note that we are in 3d case and middle variable is a constant.)

We have a map $\pi^{\partial}: \tilde{B}^{\sigma}_{k-1/2}(Y) \to \partial B^{\sigma}_{k-1/2}(Y), [(B, s, \psi)] \mapsto [(B, 0, \psi)].$

Let us deal with the general case, which is not much different.

$$\tilde{M}([\mathfrak{a}],[\mathfrak{b}]) \cong \tilde{M}(\mathbb{R} \times Y;[\mathfrak{a}],[\mathfrak{b}]) = \bigsqcup_{i=0}^{n} \tilde{M}(i),$$

Date: January 29, 2021.

where M(0) and M(n) are half-infinite cylinders with limit point to \mathfrak{a} and \mathfrak{b} respectively.

Let
$$1 \leq i_0 \leq n$$
. Let
 $R'_+, R'_- : \prod_{i=0}^n \tilde{M}(i) \to \tilde{B}' := \partial B^{\sigma}_{k-1/2}(\{t_0\} \times Y) \times \prod_{i \neq 0} \tilde{B}^{\sigma}_{k-1/2}(\{t_i\} \times Y)$

be the restriction (R_+, R_-) to the positive and negative boundaries followed by π^{∂} at the $\{t_0\} \times Y$ -boundary.

 ρ , restricting to sub-cylinders, is a homeomorphism from $M([\mathfrak{a}], [\mathfrak{b}])$ to $\operatorname{Fib}(R'_+, R'_-)$. If regular, then (R'_+, R'_-) is transverse to the diagonal and ρ is a diffeomorphism; vice versa.

In this boundary-obstructed case, $\operatorname{Fib}(R_+, R_-) \subsetneq \operatorname{Fib}(R'_+, R'_-)$.

Let us specialize to a simple example for notational simplicity. Case n = 1 and $t_0 = 0$ and $I_0 = \mathbb{R}^{leq_0}$ and $I_1 = \mathbb{R}^{\geq 0}$.

Let $E\tilde{M}([\mathfrak{a}], [\mathfrak{b}]) := \operatorname{Fib}(R'_+, R'_-)$ has no translation action.

We have $\tilde{M}([\mathfrak{a}], [\mathfrak{b}]) \hookrightarrow E\tilde{M}([\mathfrak{a}], [\mathfrak{b}]) \xrightarrow{\delta} \mathbb{R}$, where $\delta := s([\gamma_+]|_{\{0\} \times Y}) - s([\gamma_-]|_{\{0\}} \times Y)$.

If $E\tilde{M}$ is regular at m (the fiber product is transverse to the diagonal), then near m, it is a smooth manifold of dimension d + 1 with $d = \operatorname{gr}_{z}([\mathfrak{a}], [\mathfrak{b}])$.

1.0.3. Centered trajectory via localizing. $\gamma \in \mathcal{C}^{\sigma}_{k-1/2}(Y)$, $e(\gamma) = \|(\nabla \mathcal{L})^{\sigma}(\gamma)\|_{L^{2}(Y)}$ smooth in γ and gauge-invariant.

- Any pair of zeros of \mathfrak{a} and \mathfrak{b} of $(\nabla \mathcal{L})^{\sigma}$ (if $[\mathfrak{a}] = [\mathfrak{b}], z$ is non-trivial). There exists $\epsilon > 0$, for any component $[\gamma_i]$ of broken $[\check{\gamma}^+] \in \check{M}_z^+([\mathfrak{a}], [\mathfrak{b}])$, there exists t such that $e(\gamma_i(t)) > \epsilon$.
- For such $\epsilon > 0$, let $\beta(t)$ be a cut-off function $\begin{cases} 0, \text{ if } t \leq \epsilon. \\ > 0, \text{ if } t > \epsilon. \end{cases}$ Then, if

 $[\gamma] \in M_z([\mathfrak{a}], [\mathfrak{b}])$, then $(\beta \circ e \circ \gamma)(t) \ge 0$, not identically zero and supported in a compact interval.

Remark 1.1. $[\check{\gamma}] \in \check{M}_z([\mathfrak{a}], [\mathfrak{b}])$, there exists a unique parametrization $[\gamma] \in M_z([\mathfrak{a}], [\mathfrak{b}])$, the center of distribution $c(\gamma) := c(\beta \circ e \circ \gamma) := \frac{\int t(\beta \circ e \circ e)(t)dt}{\int (\beta \circ e \circ \gamma)(t)dt}$ of $(\beta \circ e \circ \gamma)(t)$ is at 0.

Definition 1.2. For finite $I = [t_1, t_2]$ of length > 2, $[\gamma] \in M(I \times Y)$ is centered, if

- (i) $e(\gamma(t)) < \frac{\epsilon}{2}$ for all $t \in [t_1, t_1 + 1] \cup [t_2 1, t_2]$.
- (ii) $e(\gamma(t)) > \overline{\epsilon}$ for some $t \in [t_1, t_2]$.
- (iii) $c(\gamma)$ is at the center of I, $\frac{1}{2}(t_1 + t_2)$. Let $M^{\text{cen}}(I \times Y) \subset M(I \times Y)$ denote the collection of centered ones.

A local centering interval of $[\gamma] \in M_z([\mathfrak{a}], [\mathfrak{b}])$ is I s.t. $[\gamma|_I]$ is centered.

We can have multiple intervals in this definition that are disjoint and ordered with increasing centers.

We can have this for broken trajectories.

 $\{[\gamma] \in M(I \times Y) \mid (i) \text{ and } (ii)\}$ is an open subset of $M(I \times Y)$ because conditions are open conditions. Inside it, M^{cen} is a closed smooth submanifold.

1.0.4. Description of neighborhood of strata in spaces of unparametrized broken trajectories. Consider $\check{M}_{z_1}([\mathfrak{a}_0], [\mathfrak{a}_1] \times \cdots \times \check{M}_{z_n}([\mathfrak{a}_{n-1}], [\mathfrak{a}_n]) \subset \check{M}_z^+([\mathfrak{a}], [\mathfrak{b}])$, where $[\mathfrak{a}_0] = [\mathfrak{a}], [\mathfrak{a}_n] = [\mathfrak{b}]$ and $z = z_1 * \cdots * z_n$.

 $\mathbf{2}$

Let $K_m \subset M([\mathfrak{a}_{m-1}], [\mathfrak{a}_m])$ compact, which induces $\check{K}_m \subset \check{M}$ and denote $\check{\mathbb{K}} = \prod_m \check{K}_m$. Choose ϵ and β as above which gives $M^{\text{cen}}(I \times Y)$.

Proposition 1.3. We can find L_0 depending on $\check{\mathbb{K}}$ s.t. for any $L \ge L_0$, there exists a neighborhood $\check{W} \supset \check{\mathbb{K}}$ in $\check{M}_z^+([\mathfrak{a}_0], [\mathfrak{a}_n])$ s.t. for all $[\check{\gamma}^+] = ([\check{\gamma}_1], \cdots, [\check{\gamma}_l]) \in \check{W}$ admits a unique complete collection of local centering intervals $\{I_{i,m}\}$ of length 2L, of n members.

Here, a complete collection of local centering intervals is for fixed i, $\{I_{i,m}\}_{m=1}^{n_i}$ adjoint, with increasing centers of lengths 2L each, each such interval is local centering, and $(\beta \circ e \circ \gamma)(t)$ is supported in $\bigcup_{m=1}^{n_i} I_{i,m}$.

The proposition gives an identification

$$\mu : \{1, \cdots, n\} \to \{(i, m) \mid 1 \le i \le l, 1 \le m \le n_i\}.$$

Then, we define $S_j = \begin{cases} C_{\mu(j+1)} - C_{\mu(j)} & \text{if } \mu(j+1), \mu(j) \text{ lie in the same component} \\ \infty & \text{otherwise.} \end{cases}$

So we have $S = (S_1, \dots, S_{n-1}) : \check{W} \to (0, \infty]^{n-1}$. Local choices of S agree, fit together into S defined in \check{W} neighborhood of an entire statum.

Definition 1.4. Let Q be a topological space and $q_0 \in Q$. $\Pi : S \to Q$ continuous. $S_0 \subset \pi^{-1}(q_0)$. π is a topological submersion along S_0 , if for all $s_0 \in S_0$, there exist U neighborhood of s_0 in S, Q' neighborhood of q_0 in Q and a homemomorphism $(U \cap S_0) \times Q' \to U$ which identifies the second projection with Π . $(S_0$ is necessarily is open $\pi^{-1}(q_0)$.)

Denote $\check{M}_i := \check{M}_{z_i}([\mathfrak{a}_{i-1}], [\mathfrak{a}_i]).$

Theorem 1.5. If none of the factors \check{M}_i in the stratum of the moduli space is boundary-obstructed. Then there exists neighborhood \check{W} of $\prod_{i=1}^n \check{M}_i$ in $\check{M}_z^+([\mathfrak{a}_0], [\mathfrak{a}_n])$ and $\mathbb{S} : \check{W} \to (0, \infty]^{n-1}$ s.t. $\mathbb{S}^{-1}((\infty, \cdots, \infty)) = \prod_i \check{M}_i$ and \mathbb{S} is a topological submersion along $\prod_i \check{M}_i$.

If for all $i \in O \subset \{1, \dots, n\}$, \check{M}_i is boundary-obstructed; $i \in O^c$, not boundary-obstructed.

Theorem 1.6. There exists \check{W} around $\prod_i \check{M}_i$ in $\check{M}^+([\mathfrak{a}_0], [\mathfrak{a}_n])$ s.t.

- (1) $j: \check{W} \subset E\check{W}$ topological embedding with $\mathbb{S}: E\check{W} \to (0, \infty]^{n-1}$ from which $\check{W} \to (0, \infty]^{n-1}$ is restricted via j.
- (2) $\mathbb{S}: E\check{W} \to (0,\infty]^{n-1}$ topological submersion alogn fiber at $\infty := (\infty,\cdots,\infty)$.
- (3) $j(\check{W}) \subset E\check{W}$ is the zero set of a continuous map $\delta : E\check{W} \to \mathbb{R}^O$ with $\delta|_{fiber \ at \ \infty} = 0$ (so the fiber $at \ \infty$ of $E\check{W} = the$ fiber $at \ \infty$ of $\check{W} = \prod_i \check{M}_i$).
- (4) Let \check{W}^0 and $E\check{W}^0$ denote the subset where non of S_i is ∞ , then $j|_{\check{W}^0}$ is an embedding between smooth manifolds, and $\delta|_{E\check{W}^0}$ is transverse to zero.
- (5) For $i_0 \in O$ and δ_{i_0} of δ associated, then for all $z \in E\check{W}$, we have

$$\begin{cases} if \ i_0 \ge 2 \ and \ S_{i_0-1}(z) = \infty, \ then \ \delta_{i_0}(z) \ge 0, \\ if \ i_0 \le n-1 \ and \ S_{i_0}(z) = \infty, \ then \ \delta_{i_0}(z) \le 0. \end{cases}$$

To explain the last item, let us look at the simplest boundary-obstructed case: For n = 3, $[\mathfrak{a}_0], \dots, [\mathfrak{a}_3]$. Let $\check{M}_i := \check{M}_{z_i}([\mathfrak{a}_{i-1}], [\mathfrak{a}_i]), i = 1, 2, 3$, as above. Suppose $[\mathfrak{a}_1], [\mathfrak{a}_2]$ reducible, and \check{M}_2 boundary-obstructed.

Let $\check{M}_1^{\rm irr} \subset \check{M}_1, \, \check{M}_3^{\rm irr} \subset \check{M}_3$ be the irreducible parts, the top strata. $\check{M}_1^{\rm irr}, \, \check{M}_2,$ $\dot{M}_2^{\rm irr}$ non-empty.

Then, the theorem says that there exists $E\check{W}$ and topological submersion $\mathbb{S} =$ $(S_1, S_2) : E\check{W} \to (0, \infty] \times (0, \infty]$ and map $\delta : E\check{W} \to \mathbb{R}$ vanishes on the fiber over (∞, ∞) . The zero set of δ is identified with a neighborhood \check{W} of the subset $\check{M}_1^{\text{irr}} \times \check{M}_2 \times \check{M}_3^{\text{irr}}$ in $\check{M}^+([\mathfrak{a}_0], [\mathfrak{a}_3])$; and $\delta(z) > 0$ if $S_1(z) = \infty$ and $S_2(z)$ finite, and $\delta(z) < 0$ if $S_2(z) = \infty$, $S_1(z)$ finite. Let $E\check{W}^0 := \{$ finite $\mathbb{S} \}$ and \check{W}^0 sits in $E\check{W}^0$ as a smooth submanifold and as the transverse zero of δ .

1.0.5. Simplistic structure of the proof. For the unobstructed case:

Fix L > 0, let $T_j \in (1, \infty]$, $1 \le j \le n - 1$, and let $\mathbb{T} := (T_1, \cdots, T_{n-1})$.

 $Z^T = [-T, T] \times Y$ for $T < \infty$, $Z^{\infty} = Z^+ \sqcup Z^-$ two half-infinite cylinders. $Z_{\mathbb{T}} = Z^- \sqcup Z^L \sqcup Z^{T_1} \sqcup Z^L \cdots Z^{T_n-1} \sqcup Z^L \sqcup Z^+$. Let $l := \#\{T_j = \infty\}$, and gluing

boundaries give l infinite cylinders $\mathbb{R} \times Y$.

Fix $[\mathfrak{a}]$. Let d_k metric on $B_k^{\tau}(I \times Y)$ defined by

$$d_k([\gamma], [\gamma']) = \inf\{ \|u\gamma - \gamma'\|_{L^2_{k,\mathfrak{a}}} \mid u \in \mathcal{G}_{k+1}(I \times Y) \}.$$

$$M_{\eta}(Z^{\pm}; [\mathfrak{a}]) = \{ d_j([\gamma], [\gamma_\mathfrak{a}]) \le \eta \}, M_{\eta}(Z^T; [\mathfrak{a}]) = \{ \text{ditto} \} \text{ and }$$

$$M_{\eta}(Z^{\infty}; [\mathfrak{a}]) = \{([\gamma^+], [\gamma^-]) \mid d_k([\gamma^-], [\gamma_{\mathfrak{a}}])^2 + d_k([\gamma^+], [\gamma_{\mathfrak{a}}])^2 \le \eta^2\}.$$

 $M_{\mathbb{T}} = M(Z^{-}; [\mathfrak{a}_{0}]) \times M(Z^{L}) \times M(Z^{T_{1}}) \times \cdots \times M(Z^{T_{n-1}}) \times M(Z^{L}) \times M(Z^{+}; [\mathfrak{a}_{n}],$ and contained in there is:

 $M_{\mathbb{T},\eta}^{\text{cen}} = M_{\eta}(Z^{-}; [\mathfrak{a}_{0}] \times M^{\text{cen}}(Z^{L}) \times M_{\eta}(Z^{T_{1}}; [\mathfrak{a}_{1}]) \times \cdots \times M_{\eta}(Z^{T_{n-1}}; [\mathfrak{a}_{n-1}]) \times$ $M^{\operatorname{cen}}(Z^L) \times M_{\eta}(Z^+; [\mathfrak{a}_n]).$

 $(R_{\pi}^{-}, R_{\pi}^{+})$ restricts M_{π} to the positive and negative boundaries.

 $\operatorname{Fib}(R_{\mathbb{T}}^{-}, R_{\mathbb{T}}^{+}) \subset M_{\mathbb{T}}$ fiber product.

Write
$$\mathbb{M} = \bigcup_{\mathbb{T}} M_{\mathbb{T}}, \, \mathbb{M}_{\eta}^{\text{cen}} = \bigcup_{\mathbb{T}} M_{\mathbb{T},\eta}^{\text{cen}}, \, \text{and } \operatorname{Fib}(R^-, R^+) = \bigcup_{\mathbb{T}} \operatorname{Fib}(R^-_{\mathbb{T},R^+}).$$

Concatenation: $c_{\mathbb{T}}$: Fib $(R_{\mathbb{T}}^-, R_{\mathbb{T}}^+) \to \check{M}^+([\mathfrak{a}_0], [\mathfrak{a}_n])$ into *l*-broken trajectory. If η small, $m \in \operatorname{Fib}(R^-_{\mathbb{T}}, R^+_{\mathbb{T}}) \cap M^{\operatorname{cen}}_{\mathbb{T}, n}, \mathfrak{c}_{\mathbb{T}}(m)$ has a complete collection of n local centering intervals of length 2L from those Z^{L} 's.

$$S_i(m) = \begin{cases} 2T_i + 2L \text{ if } T_i < \infty\\ \infty \quad \text{if } T_i = \infty \end{cases}$$

Let $c = \bigcup_{\mathbb{T}} c_{\mathbb{T}} : \operatorname{Fib}(R^-, R^+) \to \check{M}^+([\mathfrak{a}_0], [\mathfrak{a}_n]).$

Previous lemma on the existence of unique complete collection provides a canonical right inverse for \mathfrak{c} on \check{W} .

Proposition 1.7. Let $\check{\mathbb{K}} \subset \prod_i \check{M}_i$ compact. There exists $\eta_0 > 0$ s.t. $\eta < \eta_0$ and for all $L \ge L_1(\eta)$, $im(\mathfrak{c}) \supset \check{W} \supset \check{K}$ and $\mathfrak{c}|_{\mathfrak{c}^{-1}(\check{W}) \cap \mathbb{M}_n^{cen}}$ is injective.

Obstructed case:

For $i \in O$, take $\tilde{M}([-L,0] \times Y) \times M([0,L] \times Y)$, and R'_+ , R'_- restrict to $\partial B^{\sigma}_{k-1/2}(\{0\} \times Y)$ and repeat.

1.0.6. Orientation of moduli spaces. This is explained during the exercise session.