SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 11

DINGYU YANG

Please email yangding@math.hu-berlin.de if anything. Lecture notes up to
now are available at www.mathematik.hu-berlin.de/~yangding/monopole.html.
Exercises sprinkled throughout lecture notes have been collected into an exercise
sheet at www.mathematik.hu-berlin.de/~yangding/Exercise_SWF.pdf.

1. LECTURE 11

Lecture 11 is about gluing and the accompanying exercise session is about ori-
entation of moduli spaces. (Lecture 12 finishes up the construction of SWF, and
lectures 13-15 cover some calculations and applications.)

1.0.1. Concatenation of trajectories on adjacent finite cylinders being a trajectory
on the union. Let I be compact. I = I U Iy with Iy NI, = {0}.
We have restriction map to sub-cylinders

p:M(IXY)— M(I3 xY)x M(I, xY)
and restriction to the common boundary
Ri: M(I xY) x M(I x Y) = By, ;5({0} x ).
We have imp C Fib(Ry, R2) := {m = (m1,ms2)] | R1(m) = Ra(m).
p, being a restriction to a Hilbert submanifold from a smooth map on the con-
figuration space, is smooth.
e imp = Fib(Ry, R2), and p is a homeomorphism onto this image.
e (Ry, Rs) is transverse to the diagonal in the image, so Fib(Ry, Rp) is a
smooth Hilbert submanifold.
e Then p is a diffeomorphism.
The above is true for M (R x Y) is fixing [a] and [b].
If M ([a],[b]) is not boundary-obstructed, then (Ry, Ry) is transverse to the di-
agonal iff M ([a], [b]) is regular.
The version for multiple segments also works with R; being restriction to the
positive boundaries and Ry being restriction to the negative boundaries.

1.0.2. Boundary-obstructed case. For the boundary-obstructed case (a and b are
reducible, and a boundary-stable and b boundary-unstable.

We have codimension 1 inclusion 83271/2(}/) C 3271/2(1/) with the former
defined by {s = 0}. (Note that we are in 3d case and middle variable is a constant.)

We have a map 7 : Bg_l/g(Y) — 8B;€’_1/2(Y), [(B,s, )] — [(B,0,v)].

Let us deal with the general case, which is not much different.

M ([a], [b]) = M(R x Y; [a], [b]) = |_| M(i),
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where M (0) and M (n) are half-infinite cylinders with limit point to a and b respec-
tively.
Let 1 <ig <n. Let

Ry, R : [ M) = B :=0Bf_, ;5({te} x V) x [[ Bf_1o({t:} x )
i=0 i#0

be the restriction (R, R_) to the positive and negative boundaries followed by 72
at the {tc} x Y-boundary.

p, restricting to sub-cylinders, is a homeomorphism from M ([a], [b]) to Fib(R/,, R").

If regular, then (R!,, R") is transverse to the diagonal and p is a diffeomorphism;
vice versa.

In this boundary-obstructed case, Fib(R4, R_) C Fib(R!_, R_).

Let us specialize to a simple example for notational simplicity. Case n = 1 and
to =0 and Io = Rler and Il = RZO.

Let EM ([a], [b]) := Fib(R/,, R") has no translation action.

~ ~ 5
We have M ([a], [b]) — EM([a], [b]) = R, where ¢ := s([v+]l{o}xy) — s([7=]l0} ¥
Y).
If EM is regular at m (the fiber product is transverse to the diagonal), then
near m, it is a smooth manifold of dimension d + 1 with d = gr_([a], [b]).

1.0.3. Centered trajectory via localizing. v € C,‘C’_l/Z(Y), e(y) = (VL) (VL2 vy
smooth in v and gauge-invariant.
e Any pair of zeros of a and b of (V£)7 (if [a] = [b], z is non-trivial). There

exists € > 0, for any component [y;] of broken [¥] € M+ ([a],[b]), there
exists ¢ such that e(v;(t)) > e.

. 0, ift <e. .
e For such € > 0, let (t) be a cut-off function ) Then, if
>0, ift >e.
[v] € M. ([a], [b]), then (Boeo)(t) > 0, not identically zero and supported

in a compact interval.

Remark 1.1. [§] € M. ([a], [b]), there exists a unique parametrization [y] € M., ([a], [b]),

the center of distribution ¢() := ¢(Boeoy) := % of (Boeow)(t) is at 0.

Definition 1.2. For finite I = [t1,?2] of length > 2, [y] € M (I xY') is centered, if
(i) e(y(t)) < § for all t € [ty,t1 + 1] U [ta — 1,1o].
(i) e(y(t)) > € for some ¢t € [t1,ta].
(iif) c(v) is at the center of I, 1(t; +t2). Let M**(I xY) C M(I x Y) denote the
collection of centered ones.

A local centering interval of [y] € M, ([a], [b]) is I s.t. [|7] is centered.

We can have multiple intervals in this definition that are disjoint and ordered
with increasing centers.

We can have this for broken trajectories.

{[v] € M(I xY) | (i) and (ii)} is an open subset of M (I x Y") because conditions
are open conditions. Inside it, M" is a closed smooth submanifold.

1.0.4. Description of neighborhood of strata in spaces of unparametrized broken tra-
jectories. Consider M., ([ao], [a1] X -+ x M, ([an—1],[an]) € M ([a],[b]), where
[ag] = [a], [an] = [b] and z = 21 * -+ - % 2.
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Let K,, € M([ap—1],[am]) compact, which induces K,, C M and denote K =
L, K. Choose € and § as above which gives M (I x Y).

Proposition 1.3. We can find Lo depending on K s.t. for any L > Ly, there exists
a neighborhood W > K in M} ([ag], [a,]) s.t. for all 5] = (5ul,---,[%]) € W
admits a unique complete collection of local centering intervals {I; ,} of length 2L,
of n members.

Here, a complete collection of local centering intervals is for fixed i, {I; m}mi_y
adjoint, with increasing centers of lengths 2L each, each such interval is local cen-
tering, and (B oeo~)(t) is supported in \Ji_y Lim.-

The proposition gives an identification
wi{l,-- n} = {@GEm)]|1<i<,1 <m<n;t.

Then, we define §; = {C’M(j;ll) _.Ou(j) if u(j+ 1), 1(j) lie in the same component
oo otherwise.

So we have S = (5, - V,Sn_l) : W — (0,00]" . Local choices of S agree, fit
together into S defined in W neighborhood of an entire statum.

Definition 1.4. Let Q be a topological space and gg € Q. I : S — @ continuous.
So € m(qo). 7 is a topological submersion along Sy, if for all sg € Sy, there exist
U neighborhood of sy in S, Q" neighborhood of ¢y in @ and a homemomorphism
(UNSy) x Q" — U which identifies the second projection with IT. (Sy is necessarily
is open 7 1(qo).)

Denote Mi = Mz,i([ai—l]a [a])-

Theorem 1.5. If none of the factors M; in the stratum of the moduli space is
boundary-obstructed. Then there exists neighborhood W of [T\, M; in M7 ([ag], [a,])
and S : W — (0,00 s.t. S1((00,- -+ ,00)) = [[; M; and S is a topological sub-

mersion along [], M;.

Ifforalli € O cC {1,---,n}, M; is boundary-obstructed; i € O¢, not boundary-
obstructed.

Theorem 1.6. There exists W around [[; M; in M~ ([ao], [a,]) s.t.

(1) j : W C EW topological embedding with S : EW — (0,00]™~! from which
W — (0,001 is restricted via j.

(2) S: EW — (0,00]"! topological submersion alogn fiber at 0o := (00, -+ ,00).

(3) j(W) C EW s the zero set of a continuous map 6 : EW — RO with
O fiber at 0o = 0 (0 the fiber at oo of EW = the fiber at co of W = IL M;).

(4) Let W° and EW? denote the subset where non of S; is oo, then jlyo is an
embedding between smooth manifolds, and &| g0 is transverse to zero.

(5) Forig € O and §;, of § associated, then for all z € EW, we have

if io > 2 and Si,—1(2) = oo, then d;,(z) >0,
if io <n—1 and S;,(z) = oo, then d;,(z) <O0.
To explain the last item, let us look at the simplest boundary-obstructed case:

For n = 3, [ag],--- , [a3]. Let M; := M., ([a;_1],[as]), i = 1,2, 3, as above.
Suppose [a1], [az] reducible, and M, boundary-obstructed.
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Let Mi™ C M, Mi™ C M3 be the irreducible parts, the top strata. Mi™, Mo,
M3Y™ non-empty.

Then, the theorem says that there exists FW and topological submersion S =
(S1,S2) : EW — (0,00] x (0,00] and map § : EW — R vanishes on the fiber
over (00,00). The zero set of § is identified with a neighborhood W of the subset
M x My x Mi™ in M+ ([ao], [a]); and §(2) > 0 if S1(z) = oo and Sy(z) finite, and
5(2) < 0 if Sy(z) = oo, Si(z) finite. Let EW? := {finite S} and W sits in EW?
as a smooth submanifold and as the transverse zero of 9.

1.0.5. Simplistic structure of the proof. For the unobstructed case:
Fix L>0,let Tj € (1,00, 1<j<n—1,and let T := (T1, -+ ,Tp—1).
ZT = [-T,T] x Y for T < oo, Z* = Z*+ U Z~ two half-infinite cylinders.
Zr=2z"uztuzthuzb...Zz0=1uzbuZ*t. Let | := #{T; = oo}, and gluing
boundaries give [ infinite cylinders R x Y.
Fix [a]. Let dj metric on B (I x Y') defined by

di (), 1)) = inf{lluy = v'llz | [w € Grar (I x V)1
My(2*;[a]) = {d;([7], [va]) < n}, Myy(Z7;[a]) = {ditto} and

My(2%;[a]) = {(*], 7D L di(r7] [ra))? + di( 7], [va])® < 0}
My = M(Z ;[ag)) x M(ZE)x M(ZTv) x -+ - x M(ZTn=1) x M(Z1)x M(Z*; [a,],
and contained in there is:
M5 = My (Z7 5 [ao] x Meen(ZL) x My (Z75[a1]) x - x My (ZTn=1; [a,—1])
Men(Z2) x My (Z+ [an).
(R7, R) restricts Mt to the positive and negative boundaries.
Fib(Ry, Rf) C My fiber product.
Write M= Uy Mr, M5y = Uy M55, and Fib(R™, R*) = Ur Fib(R, . ).
Concatenation: cr : Fib(Ry, RY) — M7 ([ao], [a,]) into I-broken trajectory.
If  small, m € Fib(Ry, Rf) N M), cr(m) has a complete collection of n local
centering intervals of length 2L from those Z1’s.
Su(m) = {QTi +92L %f T, < 00
if T; =00
Let ¢ = [y c1 : Fib(R™, RT) — M*([ao], [an)).
Previous lemma on the existence of unique complete collection provides a canon-
ical right inverse for ¢ on W.

Proposition 1.7. Let K C IL M; compact. There exists 19 > 0 s.t. 7 < 19 and
for all L > Ly(n), im(c) D W DK and Cle—1 (1 )nmeen B8 injective.
n

Obstructed case:
For i € O, take M([-L,0] x Y) x M([0,L] x Y), and R/ , R’ restrict to
83,‘:_1/2({0} x Y) and repeat.

1.0.6. Orientation of moduli spaces. This is explained during the exercise session.
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