
SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 12

DINGYU YANG

Please email yangding@math.hu-berlin.de if anything. Lecture notes up to
now are available at www.mathematik.hu-berlin.de/∼yangding/monopole.html.
Exercises sprinkled throughout lecture notes have been collected into an exercise
sheet at www.mathematik.hu-berlin.de/∼yangding/Exercise SWF.pdf.

1. Lecture 12: Construction for Floer homologies and calculation
for S3

Last time in exercise session,
2 element set (of orientations)

Λ([a], q) :=
⊔

[a0] reducible

Λ([a], q; [a0], 0)/
(
λ ∼ q(λ, τ−1(0))

)
,

where [a] ∈ Bσk (Y ) and q a tame perturbation, τ : Λ([a0], 0; [a′0, 0]) → Z/2 trivial-
ization, and q concatenation.

Remark 1.1. Analogous to orientation set of Ua in f.d. Morse theory.

Λ([a1], q1)Λ([a2], q2) → Λ([a1], q1; [a2], q2), [(λ1, λ2)] 7→ q(λ1, ρ(λ2)) where ρ is
take the inverse of the path. This way two absolute orientation (relative orientations
relative to reducibles, equivalent over all reducibles) induces a relative orientation.

Here, for 2-element sets A and B, AB := A ×Z/2 B where Z/2 acts on both
factors non-trivially.

1.1. Inducing orientation of moduli spaces from relative orientation. Fix
q, write Λ([a]) := Λ([a], q), and Λ[a1], [a2] := Λ([a1], q; [a2], q).

How does an element of Λ([a1], [a2]) determine an orientation of M([a1], [a2])?
[γ] ∈M([a1], [a2]), ζ = [γ̌] path in Bσk (Y ), Pγ := Qγ = d

dt +L. Critical points ai
nondegenerate so L(t) hyperbolic for |t| ≥ T for T large enough. H−(L(t)) varies
continuously for |t| ≥ T , so Λ([a1], [a2]) = Λ(ζ(t1), ζ(t2)) for any t1 ≤ −T and
t2 ≥ T .

1.1.1. ∂-unobstructed case. ΛtopT[γ]M([a1], [a2]) ∼= detPγ .
γ = γ1 ∪ γ0 ∪ γ+, where γ− and γ+ are for t ≤ t1 and t ≥ t2 respectively.
The earlier restriction map restricting to the fiber product is an isomorphism,

which implies detPγ = detPγ−⊗detPγ0⊗detPγ+ . Pγ± close to constant coefficient
operator, thus invertible, and orientation is canonical, and Pγ0 has orientation set
Λ(ζ(t1), ζ(t2)) = Λ([a1], [a2]).

Date: February 5, 2021.

1



2 DINGYU YANG

1.1.2. ∂-obstructed case. kerPγ = M([a1], [a2]), and cokPγ = cok( ddt + λ(t)) which
is oriented by (0, 0,−1) (just as already in definition of Λ([a0], q; [a′0], q′) done in
the exercise session).

Λ([a1], [a2]) = detPγ = detT[γ]M([a1], [a2])⊗ cok∗ ∼= ΛtopT[γ]M([a1], [a2]).
Therefore, regularity of moduli spaces implies orientability.

1.2. Orientation for the unparametrized moduli spaces. R ↪→Mz([a], [b])→
M̌z([a], [b]). t : [γ] 7→ [τ∗t γ].

For bundle, fiber first convention plus standard orientation for R implies orien-
tation of M̌ .

1.3. Orientation under gluing.

1.3.1. ∂-unobstructed. M̌z1([a0], [a1])× M̌z2([a1], [a2]) ⊂ M̌+
z ([a0], [a2])

Let λij be the induced relative orientation for M̌([ai], [aj ]).
The LHS has orientation q(λ01, λ12). The RHS has an orientation induced from

M̌z([a0], [a2]) which has λ0,2 and using outwards normal first, we have an orientation

for ∂M̌+.
Those two orientations differ by (−1)dimMz1 ([a0],[a1]).

1.3.2. ∂-obstructed. Mii+1 := Mzi+1([ai], [ai+1]). Let

M :=

2∏
i=0

M̌ii+1 = M̌01 × M̌12 × M̌23.

Let us assume M̌12 is ∂-obstructed. We have orientation λ01, λ12, λ23, thus an
orientation q(λ01λ12λ23) on M .

The description of neighborhood of M in M̌+([a0], [a3]) =: N . ∃ W
open
⊂ N gives

M
fiber−−−−→ W

top. emb. j−−−−−−−→ EW
δ−−−−→ Ry y top. subm.

y
{(∞,∞)} −−−−→ (0,∞]2 −−−−→ (0,∞]2

This structure is called codim 1 δ-structure along M .
EW locally M×(0,∞]2 (fiber first order) and get an orientation from orientation

q(λ01λ12λ23) and standard one on (0,∞]2.

W ↪→ EW
δ→ R with fiber first convention gives an orientation on W , and thus

an orientation on N .

Definition 1.2. M is said to have boundary orientation if the orientation λ03 on
the top stratum of N := M̌+([a0], [a3]) and the induced orientation on W (thus N)

differ by (−1)dimM̌([a0],[a3]) = (−1)dimM([a0],[a3])+1.

For M =
∏2
i=0Mii+1, the boundary orientation and q(λ01λ12λ23) differ by

(−1)dimM01+1.

1.4. Reducible moduli spaces. The reducible moduli space consists of trajecto-
ries in reducible part.

• If [a] boundary-unstable and [b] boundary-stable, M red([a], [b]) = ∂M([a], [b])
which has orientation from outwards normal first convention. Otherwise,
M red = M which inherits an orientation.
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• Repeat early using reducible part (which behaves nicely under gluing), this
gives orientation on M red.
• Both orientations agree, except when both [a] and [b] are both boundary-

unstable and they differ by (−1)dimM = (−1)dimMred

.

1.5. Evaluation at the boundary components. U , an open cover for topologi-
cal space B, has covering order ≤ d+1 if every d+2 intersection Ui0∩· · ·∩Uid+1

= ∅
for distinct Ui ∈ U .

A metric space has covering dimension ≤ d if every open cover has a refinement
with covering order ≤ d+ 1.

Čech cohomology Ȟn(B; Z) := lim
→
Hn

Simp(K(U); Z) where K(U) is the nerve

which is a simplicial space to which one can attach simplicial cohomology.

If B′ ⊂ B, U ′ := U|B := {U ∩B}. K(U|B)
subcomplex
⊂ K(U).

We have Ȟ(B,B′; Z) = lim
→
Hn

Simp(K(U),K(U ′); Z).

If Nd ⊃ Nd−1 ⊃ · · · ⊃ N0 stratified, we have covering dimension ≤ d (fact).
If each Me := Ne\Ne−1 is oriented, we have Ȟd(Nd, Nd−1; Z) = Hd

c (Md; Z).
Here Md =

⊔
αM

d
α.

Let Iα : Ȟd(Nd, Nd−1; Z)→ Z, µdα 7→ 1, where µdα is the generator for Md
α.

LES for (Nd, Nd−1, Nd−2) gives coboundary map δ∗ : Hd−1
c (Md−1; Z)→ Hd

c (Md; Z),

namely ,
⊕

β H
d−1
c (Md−1

β ; Z) →
⊕

αH
d
c (Md

α; Z), defined as
∑
δαβ wrt this split-

ting, where δαβ = Iαδ∗µ
d−1
β is the multiplicity of Md−1

β in the boundary of Md
α.

Boundary multiplicity is δβ =
∑
α δαβ .

Nd d-dimensional stratified space compact with an embedding to a metric B.
An open cover U of B is transverse to Nd if U|Ne has covering order ≤ e+ 1.

Fact: {Ndk
k } countable locally finite collection of stratified manifolds. Then

every open cover of B has a refinement that is transverse to {Ndk
k }.

This implies that Ȟn(B; Z) = lim
→
Hn

Sim(K(U ; Z)).

u ∈ Čd(U|Nd ; Z) = CdSim(K(U|Nd); Z) is coclosed and vanishes on Cd−1
Sim (K(U|Nd−1); Z),

so [u ∈ Ȟd(Nd, Nd−1; Z)] can integrate over
⊔
αM

d
α = Md = Nd\Nd−1.

〈u, [Mα]〉 := Iα[u|Nd ]

Stokes theorem says for v ∈ Čd−1(U ; Z),
∑
β δαβ〈v, [M

d−1
β ]〉 = 〈δv.[Md

α]〉.
For ∂-obstructed case.

Lemma 1.3. Nd d-dimensional compact stratified and stratum-oriented. If Nd has
codim 1 δ-structure along Md−1

β . Then δβ = 1.

For d = 1, N0 has boundary orientation, then #signN
0 = 0.

1.6. Floer homology. Y compact connected oriented Riemannian 3-manifold (with
Riem. metric g) and spinc structure s. P tame perturbation Banach space. q ∈ Pres

chosen s.t. all zeros of (∇L)σ non-degenerate and M([a], [b]) regular. Moreover,
if f c1(s) not torsion, q small, 6 ∃ reducible solution/zero (doable, remark after
proposition 16.4.3. in [KM]), such q is called admissible.

Define ˇHM∗(Y, s), ĤM∗(Y, s), HM∗(Y, s). M for monopole.
c ⊂ Bσk (Y, s) zeros of (∇L)σ split into co t cs t cu, irreducible, boundary-stable,

boundary-unstable zeros.
Λ = {x, y} 2-element (orientation) set. ZΛ = Z〈x, y〉/(x = −y) ∼= Z if preferred

element in Λ is chosen.
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C0 =
⊕

[a]∈co ZΛ([a]), Cs and Cu similarly.

Define Č = C0 ⊕ Cs, Ĉ = C0 ⊕ Cu, C = Cs ⊕ Cu.
A choice of Λ([a], [b]) determines an orientation of M̌z([a], [b]), which leads to

ε[γ] : Z]Λ([a])→ ZΛ([b]) for all [γ] ∈ M̌z([a], [b]).
For [γ] ∈ M̌ redMz([a], [b]), we have similarly ε[γ] agrees with ε[γ] except ε[γ] =

−ε[γ] when both [a], [b] ∈ cu.
Define ∂̄ : C → C as

∑
[a],[b]

∑
[γ]∈M̌red

z ([a],[b), 0-dim ε̄γ], here the sum is finite for

each ZΛ([a]). It can be written as

(
∂̄ss ∂̄us
∂̄su ∂̄uu

)
.

Similar can define ∂oo , ∂os , ∂us , ∂uo ,
e.g. ∂oo =

∑
[a]∈co supscript

∑
[b]∈co subscript

∑
[γ]∈M̌z([a],[b]), 0-dim ε[γ].

Define ∂̌ =

(
∂oo −∂uo ∂̄su
∂os ∂̄ss − ∂us ∂̄su

)
on Č = Co ⊕ Cs, this calculates Morse homology

of Bσk (Y, s) w.r.t. gradient-like (∇L)σ.

Define ∂̂ =

(
∂oo ∂uo
−∂̄su∂os −∂̄uu − ∂̄su∂us

)
on Ĉ = Co ⊕ Cu, this calculates Morse

homology of
(
Bσk (Y, s), ∂Bσk (Y, s)

)
w.r.t. gradient-like (∇L)σ.

Note that we are able to upgrade mod 2 into signed coefficient after discussion
of orientation.
∂̄, ∂̌, ∂̂ squares to 0, by considering the 1-dimensional stratified compactified

space of broken trajectory and use #signN
0(M̌+) = 0 (same line of reasoning as in

Morse theory with vertical boundary and see some proofs earlier in the lecture).
We have L.E.S. relating all three (see verbatim construction and proof in earlier

lecture).

Definition 1.4. HM∗(Y, s) = im(j∗) called reduced monopole Floer homology,

where ˇHM∗(Y, s)
j∗→ ĤM∗(Y, s), j =

(
1 0
0 −∂̄su

)
.

Proposition 1.5. HM(Y, s) is of finite rank.

Proof. If c1(s) not torsion, c = co finite due to compactness and ˇHM = ĤM =
HM .

If c1(s) torsion, ∂̄su, ∂̄us , ∂us finitely many nonzero matrix entries, because nonzero
only when grz([ai], [bj ]) = d + 2i − 2j = 0 and i > 0 and j < 0. Here ai and bj
blow down [α] and [β]. a = (α, λ) and α = (B, 0).

i = i(a) =

{
|SpecDq,B ∩ [0, λ)|, λ > 0
1
2 − |SpecDq,B ∩ [λ, 0]|, λ < 0

,

and j := i(bj) similarly.
rkHM∗(Y, s) ≤ rkC0 + rk∂̄su.
Suppose H ⊂ HM∗(Y, s) generated in 0⊕ Cs such that j∗|H injective.
Then j(H) ⊂ (0, ∂̄su(H)) finite rank. �

1.7. Grading. Define J(s) grading for ˇHM∗ etc.
J(Y, s) := Bσk (Y, s× P × Z)/ ∼, where ([a], q1,m) ∼ ([b, q2, n]) if ∃ path ζ = [γ̌]

joining [a] to [b], and p 1-parameter perturbation from q1 to q2, s.t. indDγ,p = n−m.
Z acts on J(s), ([a, q,m]) 7→ ([a, q,m+ 1]).
gr[a] = ([a, q, 0])/ ∼ ∈ J(s).



SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 12 5

a reducible, define ḡr[a] =

{
gr[a], a ∈ cs,

gr[a]− 1, a ∈ cu
.

Čj =
⊕

[a]∈co∪ss, gr[a]=j ZΛ([a]), etc.

∂̌, ∂̂, ∂̄ differential of degree −1, ∂̌(Čj) ⊂ Čj−1.
Z acts transitively on J(s) with stabilizer im([σ] ∈ H2(Y ; Z) 7→ 〈c1(s), [σ]〉) ⊂ 2Z.

Thus free, iff c1(s) torsion.

1.8. Calculation of Monopole Floer homology for S3 with round metric.
The unperturbed CSD for the unique spinc structure s has 1 critical point, reducible
[B, 0] with FBt = 0 (becuase 3d Riemannian Y with scalar curative ≥ 0, the only
critical [B,ψ] of unperturbed CSD is reducible).

In Bσk (S3, s), zeros of (∇L)σ degenerate (as the spectrum DB is not simple).
Choose small q ∈ P still unique critical point, [B, 0] reducible, but Dq,B now has
simple nonzero eigenvalues. Label increasinglyly λi with λ0 being the first positive
eigenvalue. Eigenvalues are 1-1 corresponding to gauge equivalence classes of zeros
of (∇L)σ, [ai] = ([B, 0], λi).

[ai], i ≥ 0,∈ cs.
[ai], i < 0,∈ cu.
By assigning [a0] 7→ 0, then J(S3, s) ∼= Z, having free transitive Z-action.
If λi, λi−1 have the same sign, then grz([ai], [ai−1]) = 2 independent of z.
The remaining case: grz([a0], [a−1]) = 1.

Therefore, gr[ai] has Z-grading, =

{
2i i ≥ 0

−2i+ 1 i < 0
.

Λ[ai] = Λ([ai], [ai])/ ∼ has preferred element.

So Čj = Z for even j ≥ 0 and 0 otherwise; Ĉ=Z for odd j < 0 and 0 otherwise;

and Cj = Z for even j (due to the shift in grading as detailed above).

Differentials are 0 trivially, as either domain or the target is 0. ˇHM j
∼= Čj etc,

homologies equal to the chain groups.
Therefore HM∗(S

3, s) = 0 as j∗ = 0.
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