
SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 13

DINGYU YANG

Please email yangding@math.hu-berlin.de if anything. Lecture notes up to
now are available at www.mathematik.hu-berlin.de/∼yangding/monopole.html.
Exercises sprinkled throughout lecture notes have been collected into an exercise
sheet at www.mathematik.hu-berlin.de/∼yangding/Exercise SWF.pdf.

1. Lecture 13: Non-vanishing of ĤM∗ and Weinstein conjecture

Coupled Morse theory associates homology group to manifold Q equipped with
a family of self-adjoint (s.a.) Fredholm operators of index 0 parametrized by Q.
We will introduce it below.

1.1. Family of self-adjoint operator over Q. Let H be a separable complex
Hilbert space of ∞ dimensionality. K : H → H compact s.a. with kerK = 0
(injective), and H1 := K(H) dense in H thus Hilbert, with ‖v‖1 := ‖K−1v‖.
K = K+⊕K− splitting into the ±ve parts with respective images H±1 with the

closure in H being H±. E.g. H1 = L2
1(Y ;E) ⊂ H := L2(Y ;E).

Definition 1.1. J compact positive s.a. operator on H with ker J = 0. Let
its eigenvalues enumerated as follows: µi = λ−1

i with 0 < λ0 ≤ λ1 ≤ · · · . The

spectrum of J is called mild if ∃ C s.t. λ2N

λN
≤ C.

B(H : H1) := {x : H → H | bounded linear s.t. x(H1) ⊂ H1, x
∗(H1) ⊂ H1

with finite operator norms in H1}.
Let U(H : H1) := {x ∈ B(H : H1) | x∗x = 1}.
S(H : H1) := {L : H → H | Fredholm, index 0, s.a.} ⊃ {SAFOE diff operator}

(if H is a function space).

Remark 1.2. L ∈ S(H : H1), ∃ complete orthonormal (o.n.) system {ei}i for H
with ei ∈ H1 and eigenvectors with eigenvalues λi.

As {λi} has no accumulation point, we have either (i) bdd from below, (ii) bdd
from above, or (iii) unbounded in both directions.

Definition 1.3. S∗(H : H1) := {L ∈ S(H : H1) | satisfying (iii) above, H±1 (L),
with H-closure H±(L) eigenspaces of eigenvalues ≥ 0 and < 0 of L, s.t.
∃u ∈ U(H : H1)with u(H±) = H±(L), u(H±1 ) = H±1 (L)}.

We now define (Q,L): Q a compact Riem. maniold, P → Q principle bundle
with structure group U(H : H1), with associated vector bundles H1 and H over Q.

Definition 1.4. A family of s.a. operators of type S∗(H : H1) over Q is a principle
U(H : H1) bundle above with a bundle map L : H1 → H between the associated
vector bundles (v.b.), equivalently, a smooth section of S∗(H : H1)→ Q with fiber
S∗(H : H1).
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We have the following properties:

• (Kuiper) U(H) contractible.
• If the spectrum of |K| := K+ − K− is mild, then U(H : H1) is con-

tractible (lengthy but ok proof, similar to proving the previous item, see
[KM] 33.1.5).
• If K+ and −K− have mild spectrum, then S∗(H : H1) has homotopy type

of U(∞) = limU(n).
• By points 2 (we can homotopically uniquely trivialize any U(H : H1)-

bundle) and 3, we have that families of s.a. operator of type S∗(H : H1)
over Q are classified by [Q,U(∞)] homotopy maps between them.

This means any such family over Q is the pullback of the universal family
over U(∞) via a map (called classifying map) from Q to U(∞).

Now, we give a description (a model) of the universal family of s.a. operator
over U(∞). Any other over some Q is a pullback via a map above [Q,U(∞)].

We describe a criterion to tell whether two such maps are homotopic. Let
Uf (H) := {u ∈ U(H) | u− 1 has finite rank}.
Lemma 1.5. Let u1, u2 : Q → Uf (H). Suppose ∃ continuous θ : Q → Uf (H) s.t.
θu1 = u2θ and for all q ∈ Q, θ|ker(u+1) : ker(u1 + 1)→ ker(u2 + 1) is isomorphism,
then u1 and u2 are homotopic.

U(∞) = limNU(N), we describe family of L over U(N) and show the classifying
map is (homotopic to) inclusion, which then induces the family over U(∞).

For z ∈ U(N), let C∞(S1, z) := {h : R → CN | smoothh(t + 1) = zh(t)} with
L2 and L2

1 norms (integration over [0, 1]) and the respective completions denoted
by H(z) and H1(z). We denote H := H(1) and H1 := H1(1). We have a bundle
over U(N) with structure group U(H : H1). Let L(z) : H1(z)→ H(z), h 7→ −i ddth
of type S∗(H : H1). L(z) is classified by ψ : U(N)→ U(∞), which using the above
lemma is homotopic to the inclusion.

We have described the object for which we can define a homology theory, and
we describe it now:

1.2. Coupled homology H(Q,L). Let (g, f) be a Morse-Smale pair on Q, which
means g is a Riemannian metric and f is Morse function such that the moduli
spaces of trajectories of ∇f defined using g are regular. Let ∇ be a connection on
a principle bundle, which means 1-form valued in Lie algebra of U(H : H1) with
equivariant properties (it is instructive to recall this exactly, but we will not need
this below).

For each q ∈ Crit(f), a critical point, assume L(q) : H1(q) → H(q) has simple
nonzero spectrum.

Assume there is no spectral flow around loops in Q (⇐⇒ classifying map Q→
SU(∞) ⊂ U(∞) factoring through SU(∞)), which means we can label eigenvalues
of L(q), q ∈ Crit(f), . . . λ−1(q) < λ0(0) < λ1(q) < · · · , s.t. any path q(t) joining q1

to q2, the spectral flow along q(t) is s(q2)− s(q1) where absolute spectral flow can
be arranged as s(q) = |{i | i < 0, and λi(1) > 0}|.

Let φi(q) be a unit eigenvector for λi(q).
Define Cn = Cn(Q,L) =

⊕
q∈Crit(f)

⊕
i,indq+2i=n ZΛq, where Λq is the orien-

tation 2-element set for the unstable manifold at q (from which we can get stable
manifold orientation, and thus the moduli space orientation through intersection of
two oriented submanifolds).
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d
dtγ + (∇f)γ(t) = 0

(γ∗∇)φ+ (L(γ(t))φ)dt = 0

Define M(q0, i; q1, j) the C∗ = C\{0} (acting on the second variable) quotient of
(γ, φ) of solutions of the above equation s.t.

• γ(t) from q0 to q1,
• φ(t) has the leading asymptotic c0e

−λitφi(q0) as t→ −∞,
• φ(t) has the leading asymptotic c1e

−λjtφj(q1) as t→ +∞.

We need weighted Sobolev space to make φ 7→ (γ∗∇)φ+(L(γ(t))φ)dt a Fredholm
problem with indC = i− j + 1.

We can make the moduli space regular so that M(q0, i; q1, j) is a smooth manifold
with dimension ind(q0)− ind(q1) + 2(i− j). We also have M̌ and M̌+ as before.

We define the differential as ∂̄ =
∑
M̌, dim 0

∑
[γ,[φ]]∈M̌ ε([γ, [φ]]).

Homotopic L’s give isomorphic H∗(Q,L)’s.
H∗(Q,L) is a module over H∗(P(H))
For the tautological line bundle L over P(H), u2 := −c1(L) and we can construct

Morse chain level operation (ũ2 ∩ ·) : Ck → Ck−2 which is invertible for all k.
There is also a version with spectral flow, which we suppress, as we do not need

it below.

1.3. Calculation of HM∗ for 3-manifold with torsion spinc structure. Let
Y be a 3-manifold oriented with spinc structure s s.t. c1(s) := c1(S) torsion.

Reducible critical points of unperturbed CSD L in B(Y, s)
=T torus of gauge equivalence class of spinc connection A s.t. tr(A) is flat.
∼= H1(Y ; R)/H1(Y ; Z).

Let A∗(Y ) be the exterior algebra generated by A1(Y ) := H1(Y ; Z). Then
A∗(Y ) ∼= Hk(T; Z).

We have βk : Ak(Y )→ Ak−3(Y ),
α1α2 · · ·αk 7→

∑
i1<i2<i3

(−1)i1+i2+i3〈αi1∪αi2∪αi3 , [Y ]〉α1 · · · α̂i1 · · · α̂i2 · · · α̂i3 · · ·αk.

Theorem 1.6. Y closed connected oriented 3-manifold, s has c1 torsion. Then
HM := HM(Y, s; Q) has a filtration HM ⊃ · · · ⊃ FsHM ⊃ Fs−1HM ⊃ · · · , s.t.

the graded pieces FsHM
Fs−1HM

∼= ker βs

imβs+3
⊗ Q[T−1, T ], the expression to the right of the

tensor product is the polynomial ring generated by formal variables T−1 and T .

Proof. We have retraction p : B(Y, s)→ T, and f Morse on T. Consider f ◦ p = f1

which is an example of a cylinder function. Define L = L+ f1.
Reducible critical points of Lis critical points [α] of f in T ⊂ B(Y, s).
The flow of −∇L preserves T.
In Bσ(Y, s), reducible zeros [α] are gauge orbits of (α, [φ]) where α ∈ [α] is a

critical point of f and φ ∈ L2(Y ;S) is an eigenvector of Dirac Dα.
Using perturbation in P that vanishes at the reducible locus, everything above re-

mains, exceptDα becomesDq,α and [α] is now non-degenerate inBσ andM red
z ([α], [β])’s

are regular.
Claim: HM(Y, s) is homology of C∗(Q,L) where Q = T and L := {Dq,α}[α]∈T .
L corresponds to a classifying map T → SU(2) ↪→ U(∞). The pullback of the

3-d generator of SU(2) = S3 is ξ3 : (a1, a2, a3) 7→ 〈a1 ∪a2 ∪a3.[Y ]〉 ∈ Λ3H1(Y ; Z)∗.
This is seen through a computation involving Chern character ch. We quickly

remark ch(V ⊕W ) = ch(V ) + ch(W ), ch(V ⊗W ) = ch(V )ch(W ), and ch(V ) =
tr(exp(iΩ/2π)) where Ω is the curvature of a connection using Chern-Weil theory.
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Then ∃ a Riemannian metric on Q, Morse f and homotopic L̃ s.t. HM(Q, L̃) =

C∗(Q, f) ⊗ Z[T−1, T ], here the differential ∂̄x = ∂x + T (ξ̃ ∩ x) where ∂ is Morse

differential, and ξ̃ is Morse chain level cap product with ξ. This squares to 0. �

I gave a lecture in another lecture series about spectral sequence, its intuition
generalizing SES inducing LES, and how it works and I will put that part here
soon. For now, it is a way to calculate homology using doubly graded complex with
differential pointing left and up and homology of it is the next page with induced
longer differential, at infinite page if it stabilizes, it is said to converge/abut.
∃ spectral sequence abutting to H∗(Q,L) where E2 and E3 terms are: E2

s,2j =

E3
s,2j = T jHs(Q) and differential on E3 page is

d3
s,2j : E3

s,2j → E3
s−3,2j+2, T

j [x] 7→ T j+1ξ ∩ [x].

If the higher differentials for pages 4 or later vanish, then H := H∗(Q,L) has
· · · ⊃ FsH ⊃ Fs−1H ⊃ · · · with FsH/Fs−1H ∼= kerβs/imβs+3 ⊗ Z[T−1, T ].

1.4. Non-vanishing at infinite gradings. The previous subsection implies that
HM∗(Y, s) with c1(s) torsion is nonzero and has infinite rank.

Proof. Suffice to show ker βs

imβs+3
has nonzero rank for at least one of s. Let ζ = e2πi/6.∑

s

rank(
kerβs

imβs+3
)ζs

=
∑
s

rank(As)ζ
s

=evaluation of Poincaré polynomial of T at ζ

=(1− ξ)b1(Y ), which is always nonzero.

�

Thus, ĤM∗(Y, s) nonzero in infinitely many grading for s with c1 torsion.

Proof. ĤM∗(Y, s) graded by J(Y, s) ∼= Z if c1(s) torsion.

By definition, ĤM∗: non-trivial grading (grading that is not trivial) is bounded
from above.

ˇHM∗: non-trivial grading is bounded from below.
HM∗ has nontrivial gradings that are infinite in both directions, seen above.

LES relating these 3 implies that we have isomorphism between HM and ĤM
when grading is sufficiently below. �

1.5. Application in proof of Weinstein conjecture. Following Hutchings’ ex-
position, we will give a sketch on how an application of the nonvanishing result in
the previous section together with lots of new insights gives a deep result in dy-
namics in Taubes’ proof of Weinstein conjecture. One should argue the following is
loosely related to the subject matter in this lecture series, and can omit it without
continuity, but partly because of the interests of the department and partly because
of lots of interests of HM in recent years have come from outside like dynamics, it
is helpful to be aware of reasoning using the concepts and results in the Seiberg-
Witten world, even if one is to study SW per se, and we will see lots of notions we
have familiarized ourselves with in past lecturees have come into play.
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Let Y be a closed 3-manifold, and λ 1-form on Y such that λ ∧ dλ is nowhere
vanishing. ξ := kerλ is called a (cooriented) contact structure.

For such λ, we have ι•dλ : TY → T ∗Y,X 7→ ιXdλ := dλ(X, ·) and it has 1-
dimensional kernel denoted by L, and λ|L is a nowhere zero, so we can define a
vector field R ∈ Γ(L) ⊂ Γ(TY ) s.t. ιRdλ = 0 and λ(R) = 1, so R is a nowhere
zero vector field, called Reeb vector field. One can study its dynamics e.g. whether
R has a closed orbit γ : R/TR → Y such that γ̇ = R ◦ γ with period T < ∞ as
the first approximation. This does not do the justice of the following question, but
it is an important question that drives lots of development in contact geometry,
and earlier work by Hofer on proof for the case of Y = S3 and overtwisted case
introduces holomorphic curve into contact geometry and establishes the connection
of existence of Reeb orbits and existence of finite energy punctured holomorphic
curves, lays the foundation and inspires the creation of a powerful invariant called
symplectic field theory (SFT) and its variants.

Weinstein conjecture (3d): For (Y, λ) closed contact 3-manifold. ∃ a closed orbit
of the Reeb vector field R (associated to λ).

Taubes approached this using Seiberg-Witten theory and used in an essential
way the non-vanishing result in the earlier subsection.

How do we get the initial data needed to construct SW from the current setting.
First fix a Riemannian metric g on Y such that |λ|g = 1 and dλ = 2 ∗g λ (both
2-forms are nonvanishing and one can define ∗ using a multiple of λ∧ dλ as volume
form and adjust the proportion using g).
ξ = kerλ = K−1 (the anticanonical line bundle (for symplectization), at the

following one can just regard it as a notation). Denote the associated spinc structure
as sξ := (S, c) where S = Sξ = C ⊕K−1 with the first factor denoting the trivial
bundle and the Clifford multiplication acts by c(λ) acts as i and −i in each factor
respectively.

Any spinc structure s is E ⊗ S = E ⊕K−1E for some complex line bundle E.
We perturb SW equation by exact 2-form as follows

(‡)

{
∗FA = r(〈ρ(·)ψ,ψ〉 − iλ) + iw

DAψ = 0

Here w is a harmonic 1-form, such that [∗wπ ] = c1(K−1) with π = 3.14... the
universal constant.
∃ unique Hermitian connection A0 and spinor ψ0 = (1, 0) ∈ Γ(C ⊕ K−1) s.t.

DA0
ψ0 = 0. A trivial solution to the equation for any r.

We want to let r →∞.
After scaling, and small perturbation (to achieve regularity etc), IFT shows that

we still have:
For all δ > 0 if r >> 0 (my notation for being large enough), we have
∃ unique (up to gauge transformation) (Atriv, ψtriv) to (‡) for sξ such that:{

1− |ψtriv| ≤ δ on Y (†) in fact, LES is of order O(r−1/2)

grading of (Atriv, ψtriv)in HM chain group is independent of r.

So for δ small enough, ψ is a nowhere vanishing section.
Fix E, s = E ⊗ sξ.
Let (An, ψn) be a sequence of solutions to (‡)rn with rn →∞. Suppose{

(1) ∃δ > 0, with supY (1− |ψn|) > δ (thus not the trivial solution above),

(2) ∃C <∞, with i
∫
Y
λ ∧ FAn

< C (energy control for the following convergence).
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Then ∃ non-empty orbit set a (a formal sum of closed Reeb orbits with nonzero
integer weights) s.t. [a] = PD(c1(E)).

The idea is that ψn = (αn, β) ∈ Γ(E ⊕ EK−1) w.r.t the splitting. We have
α−1
n converges to a as a current (in the dual space of smooth compactly supported

dR forms) under energy bound (2) and which would be non-empty due to (1) and
uniqueness of the perturbed trivial solution, while |βn| → 0. Topological property is
one definition of c1. This is inspired by Taubes’ earlier work of getting a holomorphic
curve from SW solution (with r parameter) in closed symplectic 4-manifolds.

Fix E s.t. sE = E ⊗ sξ has torsion c1 (note that c1(sE) = c1(K−1) + 2c1(E) as
S = E ⊕K−1E).

Theorem 1.7 ([KM] in previous subsection). ∃ solution to (‡)r for all r ≥ 1

Need to find a sequence of solutions satisfying conditions (1) and (2):

1.5.1. Condition (1). If c1(E) 6= 0, ∃c > 0 s.t. for r >> 0 if (A,ψ) is solution to
(‡)r, then ∃ point p ∈ Y , s.t. 1− |ψ(p)| ≥ 1− c√

r
.

For c1(E) = 0, since “trivial” solution is unique at one degree (independent of

r), but ĤM nonzero in infinitely many gradings.

1.5.2. Condition (2). In the current perturbed form CSw(A) := −
∫
Y

(A − A1) ∧
(FA + FA1 − 2i ∗ w). Want to show that it is a sum of 2 functionals to control. It
is gauge-invariant as c1 is torsion.

Definition 1.8. E(A) := i
∫
Y
λ ∧ FA (appeared in condition (2)).

CSD(A,ψ) := − 1
8

∫
Y

(A − A0) ∧ (FA + FA0 − 2iµ) + 1
2

∫
Y
〈DAψ,ψ〉dvol (with

dvol = λ ∧ dλ).
(µ = −rdλ− iFA0

+ 2 ∗ w). Let the reference base point be A0 + 2A1.
From these, we have CSD(A,ψ) = 1

2 (CS(A)− rE(A)) + r
2

∫
〈DAψ,ψ〉dvol.

For SW solution, we have CSD(A,ψ) = 1
2 (CS(A)− rE(A)). (So indeed we have

CS written as a sum of two meaningful quantities).
We first find a piecewise smooth canonical family in r:
~: For r >> 0, ∃ (A(r), ψ(r)) to (‡)r.
• (A(r), ψ(r)) is piecewise smooth in r.
• CSD(A(r), ψ(r)) continuous in r.
• For r. s.t. (A(r), ψ(r)) is smooth, (A(r), ψ(r)) is nondegenerate and its

grading in ĤM is independent of r.
• (A(r), ψ(r)) is not gauge equivalent to (Atriv, ψtriv).

Proof. For any grading k, r >> 0, all generators defining ĤMk(Y, s) are irreducible,
via a spectral flow argument.

This implies that the differential of Floer chain just counts for pertrubed (-ve)
gradient flow of CSD without reducibles.

[KM] in the earlier s says that ∃ nonzero clas σ in ĤM∗(Y, s) and when c1(E) = 0,
we can assume grading of σ is not the same as (Atriv, ψtriv). Fix σ.

(Using tame perturbation in P, suppressed in notation,) We can assume ĤM∗
defined for generic r.

For such r, σ is represented by
∑
i nici where ci is a critical point of CSD L(they

are distinct), and ni’s are nonzero, and the index set is finite.
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Define h(r) := min∑
i n

r
i c

r
i∈σ maxi CSD(cri ) =: CSD(crminmax), where we show

the r-dependence as superscripts.
Define (A(r), ψ(r)) := crminmax. Need to show h(r) extends to a continuous

function for all r >> 0, using bifurcation.
We give a baby version of this in Morse theory. (fr, gr) fails Morse-Smale con-

dition for finitely many r. Let r < r′ be two such that M-S condition does hold.
We have continuation map Φ : CM∗ (fr′ , gr′) → CM∗ (fr, gr), which is defined by

counting maps γ : R→ B s.t. γ̇(s) = −∇fφ(s)γ(s), where φ : R→ [r, r′] monotone
is fixed before hand with φ|(−∞,0] = r′ and φ|[1,∞) = r.

By chain rule, d
dsfφ(s)(γ(s)) = |∇fφ(s)(γ(s))|2 + dφ(s)

ds
∂fr(x)
∂r |r=φ(s),x=γ(s). The

second factor of the last term is bounded by C as [r, r′]×X is compact.
If p′ and p critical points of fr′ and fr respectively, suppose 〈Φ(p′), p〉 6= 0, namely

the cofficient of p in Φ(p′) is nontrivial, then integrating, fr′(p
′) ≥ fr(p)−C(r′−r).

Plus the other direction, we have Lipschitz, thus continuous. �

We can show by differentiation and definition of (A(r), ψ(r)), that

(�)
d CSD

dr
(A(r), ψ(r)) = −1

2
E(A(r)).

We only need to show E bounded, by analyzing the growth rates in subsequences.

1.6. Dichotomy. We have the following dichotomy:

• ∃rn →∞, E(A(rn)) < C for all n.
• ∃rn →∞, E(A(rn)) ≥ Crn and then CS(A(rn)) ≥ Cr2

n.

Proof. Denote CS(r), E(r) and CSD(r) for the respective corresponding quantities
with (A(r), ψ(r)) substituted in. Can assume E(r) > 1 for r >> 0, or the first case
holds. Fix ε0 ∈ (0, 1/5).

Case A: ∃rn →∞ with CS(rn) ≥ ε0rnE(rn) for all n.
We claim as a blackbox: (�) ∃C, if (A,ψ) satisfies (‡)r with E(A) > 1, then

|CS(A)| ≤ Cr2/3E(A)4/3.
From this and hypothesis of Case A, we are in the second case of the dichotomy.
Case B: we have CS(r) < ε0rE(r) (labelled as (a)).

Define v(r) := E(r)− CS(r)
r = 2 2CSD(r)

r .

(�) implies dv
dr = CS

r2 (labelled (b)). (a) is equivalent to E < v
1−ε0 (labelled (c)).

(a), (b) and (c) imply that dv
dr <

εv
r with ε := ε0

1−ε0 <
1
4 .

From these, we can deduce v < C1r
ε for some C1 (labelled as (d)).

(�), (c) and (d) imply that CS < C2r
2
3 + 4

3 ε. Putting this into (b), we get that
dv
dr < C2r

4
3 (ε−1), and as ε < 1

4 , the exponent 4
3 (ε− 1) < −1. Integrating, we have v

bounded from above.
Then by (c), E < v

1−ε0 < C. �

But then we have the following result:

Proposition 1.9. ∃κ > 0 s.t. for r >> 0, (A,ψ) solution to (‡), we have
|deg(A,ψ) − deg(Atriv, ψtriv) + 1

4π2CS(A)| < κr31/16, where it is important that
the exponent is less than 2.

Suppose we are not in the first scenario in the dichotomy statement, then we have
CS(rn) ≥ Cr2

n for some subsequence rn → ∞; however, by the above inequality
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where two degrees are constant, we have CS(rn) grows less than r2
n, which is a

contradiction.
We have obtained a sequence (Arn , ψrn) with finite uniform energy bound (condi-

tion (2)) and nontrivial specified in condition (1), by the statement at the beginning
of this section, we have a nontrivial orbit set, in particular a closed Reeb orbit.
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