SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 14

DINGYU YANG

Please email yangding@math.hu-berlin.de if anything. Lecture notes up to now are available at www.mathematik.hu-berlin.de/~yangding/monopole.html. Exercises sprinkled throughout lecture notes have been collected into an exercise sheet at www.mathematik.hu-berlin.de/~yangding/Exercise_SWF.pdf.

1. Lecture 14: Detecting volume in 3d contact geometry

Let (Y, λ) be a closed connected contact 3-manifold. Recall from last time that, λ is a 1-form such that $\lambda \wedge d\lambda$ nowhere 0, thus a volume form.

For any $\Gamma \in H_1(Y)$, which (using the volume form/orientation) is under Poincaré duality corresponds to $PD(\Gamma) \in H^2(Y)$ which corresponds to a (iso class of) line bundle denoted still by $PD(\Gamma)$, and a spin^c structure $\mathfrak{s}_{\xi} \otimes PD(\Gamma)$. Here, recall the spin bundle of \mathfrak{s}_{ξ} is $\underline{\mathbb{C}} \oplus \xi$ with $\xi = \ker \lambda$ the contact structure. We assume $c_1(\mathfrak{s}_{\xi} \otimes PD(\Gamma)) = c_1(\xi) + 2PD(\Gamma)$ is torsion. Thus we have absolute \mathbb{Z} grading.

Let $\{\sigma_k\}_k$ be a sequence of nonzero homogeneous classes in \widehat{HM}^* , $* \in \mathbb{Z}$ with $\lim_{k\to\infty} -\operatorname{gr}(\sigma_k) = \infty$. Here, in the monopole Floer cohomology, we count trajectories from right to left, namely, $\partial[\mathfrak{b}] = \sum_{[\mathfrak{a}]} \#\check{M}([\mathfrak{a}], [\mathfrak{b}])[\mathfrak{a}]$. Then, the topic of today's lecture is about the following volume detecting property:

$$\lim_{k \to \infty} \frac{c_{\sigma_k}(Y, \lambda)^2}{-\operatorname{gr}(\sigma_k)} = \operatorname{vol}(Y, \lambda) := \int_Y \lambda \wedge d\lambda.$$

Now we explain the undefined term c_{σ} for a nonzero class:

There is a filtered version of \widehat{HM}^* as follows: $\widehat{C}_L^* := \{a \in \widehat{C}^{**} \mid \mathcal{E}(a) \leq L\}$, with $a = \sum_i n_i c_i = \sum_i n_i [(A_i, \psi_i)]$ and $\mathcal{E}(a) := \sum_i n_i (i \int_Y \lambda \wedge F_{A_i})$, is a subcomplex of \widehat{C}^{**} , inducing $\iota_L : \widehat{HM}_L^* \to \widehat{HM}^{**}$.

Given $\sigma \in \widehat{HM}^{\uparrow} \setminus \{0\}$, define

$$c_{\sigma}(Y,\lambda) = \inf_{L} \{ L \mid \sigma \in \operatorname{im}(\iota_{L}) \}$$

This volume detecting result is proved by Cristofaro-Gardiner–Hutchings–Ramos, in their "The asymptotics to ECH capacities" paper.

1.1. **Proof of "**
$$\leq$$
". (‡)_r
$$\begin{cases} *F_A = (r\langle c(\cdot)\psi,\psi\rangle - i\lambda) + (i*d\mu + \pi\overline{w})\\ D_A\psi = 0. \end{cases}$$

Here π is the universal constant.

Last time, (†) $|\text{gr}(A,\psi) + \frac{1}{4\pi^2}CS(A)| < \kappa r^{31/16}$ for $r > r_*$. (We can shift the degree to get rid of one grading term from last time.)

Fix $\delta \in (0, \frac{1}{16})$. Given $j \in \mathbb{N}$, define r_j to be the largest real number s.t.

$$(\circledast) \quad j = \frac{1}{16\pi^2} r_j^2 \operatorname{vol}(Y, \lambda) - r_j^{2-\delta}$$

Date: February 19, 2021.

DINGYU YANG

Since $r \gg 0$, no generators from reducibles (using a spectral flow estimate). So for j,

 $s_j := \{r \mid \exists \text{ a generator with grading } \geq -j \text{ associated to reducible solution to } (\ddagger)_r \} < \infty.$

Claim: $s_j < r_j$ if $j \gg 0$. (This is one of significance of r_j .)

(\odot) (Taubes): For (A, ψ) solution to $(\dagger)_r$, $\mathcal{E}(A) := i \int_Y \lambda \wedge F_A \leq \frac{r}{2} \operatorname{vol}(Y, \lambda) + C$. $CSD(A,\psi) = \frac{1}{2}(CS(A) - r\mathcal{E}(A)) + I \int_{Y} \mu \wedge F_A + r \int_{Y} \langle D_A\psi,\psi\rangle dvol.$

Fix $\sigma \in \widehat{HM}^*$ nonzero with $\operatorname{gr}(\sigma) \geq -j$ (h defined last time using minmax for homology \widehat{HM}_* , here we have cohomolohy, so maxmin)

$$h(r) = \max_{\sum_{i} n_{i}^{r} c_{i}^{r} \in \sigma} \min_{i} CSD(c_{i}^{r}) = CSD(c_{\text{maxmin}}^{r}).$$

 $(A(r), \psi(r)) := c_{\text{maxmin}}^r$, and h(r) piecewise smooth. Define $CSD(r) = CSD(A(r), \psi(r))$ and $\mathcal{E}(r) := \mathcal{E}(A(r)).$

 $\frac{d}{dr}CSD(r) = -\frac{1}{2}\mathcal{E}(r)$ for all $r > s_i$ (no reducible) s.t. \hat{C}^* is defined.

Proposition 1.1. $\lim_{r \to \infty} \mathcal{E}(r) = 2\pi c_{\sigma}(Y, \lambda).$

Lemma 1.2 ((a)). $r \gg 0$, $\begin{cases} \mathcal{E}(A) > 2\pi L_0 \text{ a universal threshold} \\ |CS(A)| \leq Cr^{2/3} \mathcal{E}^{4/3} \text{ appeared in the last lecture} \end{cases}$ for (A, ψ) to $(\dagger)_r$ that is not (A_{triv}, ψ_{triv}) .

Fix $\gamma \in (0, \frac{\delta}{4})$ and $\delta \in (0, \frac{1}{16})$.

Lemma 1.3 ((b). For all $j, \exists \rho \ s.t. \ r \gg \rho$ and \hat{C}^{*} defined, (A, ψ) non-trivial solution to $(\dagger)_r$ of grading -j, then $|CS(A)| \leq r^{1-\gamma} \mathcal{E}(A)$.

Proof. (of Lemma (b)) If not, \exists such a (A, ψ) with

$$r^{1-\gamma}\mathcal{E}(A) < |CS(A)| \le Cr^{2/3}\mathcal{E}(A)^{4/3}$$

if $r \gg 0$. This implies that $r^{\gamma-1}|CS(A)| > \mathcal{E}(A) > C^{-3}r^{1-3\gamma}$, thus $|CS(A)| > C^{-3}r^{1-3\gamma}$. $C^{-3}r^{2-4\gamma}$ and this exponent is bigger than $\frac{31}{16}$ by choice $(4\gamma < \delta < \frac{1}{16})$ and and thus contradicts to (\dagger) as $r \gg 0$. \square

Proof. (of Proposition) Assume $r \gg 0$, (a) and (b) $(\operatorname{gr}(\sigma) = -j)$ and non-trivial solution in $\operatorname{gr}(\sigma)$ irreducible with energy $\mathcal{E} > 0$.

$$\begin{cases} \int |F_A| \stackrel{\text{rames}}{\leq} \kappa(\mathcal{E}(A) + 1) \implies (\textcircled{a}) \ |i \int_Y \mu \wedge F_A| \leq \kappa \mathcal{E}(A). \\ \text{Lemma (a)} \end{cases}$$
As $CSD(A, \psi) = \frac{1}{2}(CS(A) - r\mathcal{E}(A)) + i \int \mu \wedge F_A$, by Lemma (a) and Inequality (c), we have:

$$\begin{cases} (1 - r^{-\gamma} - 2\kappa r^{-1})\mathcal{E}(A) \leq \frac{-2}{r}CSD(A, \psi) \leq (1 + r^{-\gamma} + 2\kappa r^{-1})\mathcal{E}(A) \\ \lim_{r \to \infty} \mathcal{E}(A_{triv}) = \lim_{r \to \infty} \frac{CSD(A_{triv}, \psi_{triv})}{r} = 0. \\ \text{This implies the proposition by the definition of } c_{\sigma}. \qquad \Box$$

This implies the proposition by the definition of c_{σ} .

To see the " \leq " part of the statement, heuristically:

Suppose σ_j nonzero of gr -j. Then,

$$\begin{split} \lim_{j} \frac{4\pi^{2}c_{\sigma_{j}(Y,\lambda)^{2}}}{j} \\ \stackrel{\text{Prop}}{=} \lim_{j} \frac{\mathcal{E}(A(r_{j}))^{2}}{j} \\ \stackrel{\text{o}}{\leq} \frac{\left(\frac{r_{j}}{2} \operatorname{vol}(Y,\lambda) + C\right)^{2}}{\frac{1}{16\pi^{2}}r_{j}^{2} \operatorname{vol}(Y,\lambda) + r_{j}^{2-\delta}} \\ = & 4\pi^{2} \operatorname{vol}(Y,\lambda). \end{split}$$

1.2. **Proof of "** \geq ". Let (Y_{\pm}, λ_{\pm}) closed oriented contact 3-manifolds. A strong symplectic cobordism $(Y_+, \lambda_+) \rightarrow (Y_-, \lambda_-)$ is a compact symplectic 4-manifold (X, ω) (where 2-form ω satisfies $d\omega = 0$ and ω^2 nowhere zero) with $\partial X = Y_+ \sqcup \bar{Y}_-$ s.t. $\omega|_{Y_{\pm}} = d\lambda_{\pm}$.

A weakly exact symplectic cobordism is a strong symplectic cobordism with $\omega = d\lambda$ exact. This gives rise to a morphism

$$\Phi_L(X,\omega): \widehat{HM}_L^{*}(Y_+,\lambda_+,0) \to \widehat{HM}_L^{*}(Y_-,\lambda_-,0).$$

Let $A \in H_2(X, \partial)$, $\partial A = \Gamma_+ - \Gamma_-$. For a strong cobordism, the filtration level might get shifted but between the limits is well-defined $\widehat{HM}^{-*} := \lim \widehat{HM}_L^{-*}$. Here Γ_+ is identified as $PD(\Gamma_+)$ the line bundle to tensor with \mathfrak{s}_{ξ} . Thus, we have $\Phi_L(X, \omega) : \widehat{HM}^{-*}(\Gamma_+) \to \widehat{HM}^{-*}(\Gamma_-)$. This is defined by counting SW trajectories in the (completed) cobordism with limits in the \pm pieces. We have the following properties:

- Trivial cobordism $\Rightarrow \Phi = \text{Id.}$
- $\phi(X_r) \circ \phi(X_l) = \phi(X_l \circ X_r).$
- $\phi(X_1 \sqcup X_2) = \phi(X_1) \otimes \phi(X_2).$
- We have U map increasing $\widehat{HM}^{*} \to \widehat{HM}^{*+2}$, corresponding to cup product with c_1 of tautological line bundle in coupled homology picture. We have $\phi(X) \circ U_+ = U_- \circ \phi(X)$.

Proof. (of " \geq ") Step 1: \widehat{HM}^{*} finitely generated and U is isomorphism.

* large enough, $\Rightarrow \exists$ finite collection of sequence satisfying (§) $U\sigma_{k+1} = \sigma_k$ for all k, s.t. every nonzero homogeneous σ_k of sufficiently large k is in one of these sequences in (§). Thus suffice to prove " \geq " for (§).

Step 2: $([-a, 0] \times Y, d(e^s \lambda))$. For $\epsilon > 0$, $B(r) := \{z \in \mathbb{C}^2 \mid \pi |z|^2 \leq r\}$ with standard ω_0 . Let $\varphi_i : B(r_i) \to [-a, 0] \times Y$, $i = 1, \dots, N$, with disjoint images, s.t. $\omega^2([-a, 0] \times Y \setminus \bigsqcup_i \varphi_i(B(r_i))) < \epsilon$ (using Darboux charts). Denote $X := [-a, 0] \times Y \setminus \bigsqcup_i \varphi_i(B(r_i))$.

Weakly exact cobordism $X : (Y, \lambda) \to (Y, e^{-a}\lambda) \sqcup \bigsqcup_i \partial B(r_j)$. Step 3: $\Phi(X)$ formula; $\widehat{HM}^*(\partial B(r_i))$ has basis $\{\zeta_k\}_{k\leq 0}$. $\zeta_0 = [(A_{triv}, \psi_{triv})]$ and $U\zeta_i = \zeta_{i+1}$. For any $\sigma \in \widehat{HM}^*$, $\Phi(\sigma) = \sum_{k\leq 0} \sum_{k_1+\dots+k_N=k} U^k \sigma \otimes \zeta_{k_1} \otimes \dots \otimes \zeta_{k_N}$. Step 4: $\sigma_k, k \leq 0$ with $U\sigma_k = \sigma_{k+1}$.

$$c_{\sigma_{k}}(Y,\lambda) \geq c_{\Phi(\sigma_{k})}\left((Y,e^{-a}\lambda) \sqcup \bigsqcup_{i=1}^{N} \partial B(r_{i})\right)$$
$$= \max_{U^{\bar{k}}\sigma_{k}\neq 0\bar{k}=k_{1}+\dots+k_{N}} \max\left(c_{U^{\bar{k}}\sigma_{k}}(Y,e^{-a}\lambda) + \sum_{i=1}^{N} c_{\zeta_{k_{i}}}(\partial B(r_{i}))\right)$$
$$\geq \max_{k_{1}+\dots+k_{N}=k-1} \sum_{i=1}^{N} c_{\zeta_{k_{i}}}(\partial B(r_{i})).$$

Here $c_{\zeta_{k_i}}(\partial B(r_i)) = dr_i$ where d is the unique nonnegative integer s.t. $\frac{d^2+d}{2} \leq k_i \leq \frac{d^2+3d}{2}$.

This implies $\liminf \frac{c_{\sigma_k}^2}{k} \ge 4 \sum_i \operatorname{vol}(B(r_i))^2 = \frac{1-e^{-a}}{2} \operatorname{vol}(Y, \lambda) - \epsilon$, with a > 0 and ϵ arbitrary. This immediately implies " \ge ".