
SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 15

DINGYU YANG

Please email yangding@math.hu-berlin.de if you want to take exam to get
credit for this course. The format is informal and involves a presentation of 20
mins of something covered or related in the lecture series. Lecture notes up to
now are available at www.mathematik.hu-berlin.de/∼yangding/monopole.html.
Exercises sprinkled throughout lecture notes have been collected into an exercise
sheet at www.mathematik.hu-berlin.de/∼yangding/Exercise SWF.pdf.

1. Lecture 15: Smooth closing Lemma + non-simplicity

1.1. Smooth closing lemma in 3d contact dynamics. Recall (Y, ξ) contact 3-
manifold, where contact structure ξ = kerλ for some 1-form λ with λ∧dλ nowhere
zero. λ is called contact form. We also sometimes call (Y, λ) contact manifold. Can
associate Reeb vector field Xλ by ιXλdλ = 0 and λ(Xλ) = 1.

For f > 0, fλ is another contact form defining the same ξ, but dynamics (Reeb
flow ϕt, periodic orbits etc) of Xfλ can be quite different to Xλ. (Ex: write Xfλ

in terms of Xλ and f .) Here, we quickly recall the idea of flow: We associates a
1-parameter family {ϕt}t∈R of diffeomorphism for a vector field Xλ on closed Y as
follows: γ̇ = Xλ ◦ γ is an ODE and solution γx : R → Y exists all time (as Y is
closed) and unique upon specifying the initial condition γx(0) = x, and we define
ϕt(x) = γx(t).

Theorem 1.1 (Kei Irie). (Y, λ) closed contact 3-manifold.
{f ∈ C∞(Y,R>0) | the union of periodic Reeb orbits of Xfλ is dense in Y } is

residual in C∞(Y,R>0) (with C∞ topology). (Here, residual means it contains a
countable intersection of open dense subsets.)

Denote P(Y, λ) = {γ : R/TγZ→ Y | Tγ > 0, γ̇ = Xλ ◦ γ} the set of closed Reeb
orbits.
A : P(Y, λ) → R>0, γ 7→ A(γ) := Tγ =

∫
γ∗λ, action. A(λ) = Im(A) action

spectrum of (Y, λ).
Define A(λ)+ set of actions for orbits sets, namely, let A(λ)0 = {0}, A(λ)m =

{
∑m
i=1 Ti | Ti ∈ A(λ)}, and A(λ)+ =

⋃
m≥0A(λ)m.

Fact: A(λ)+ is a closed set of (Lebesgue) measure 0 in R≥0.
(A(λ) ⊂ {critical values of a fixed real smooth function} ⇒ A(λ)+ is measure

0; A(λ) closed, minA > 0 ⇒ A(γ)+ is closed.)
Choose Γ ∈ H1(Y ), s.t. c1(ξ) + 2PD(Γ) torsion like last time.

For a nonzero σ ∈ ĤM
-∗

(Γ), define cσ(Y, λ) = inf{L | σ ∈ Im(ιL)} where

ιL : ĤM
-∗
L → ĤM

-∗
.
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Here remark, although the filtration is defined as

E(
∑
i

ni[(Ai, φi)]) :=
∑
i

ni(i

∫
Y

λ ∧ FAi) ≤ L,

as r → ∞, and φr = (αrφ, β
r
φ) with (αrφ)−1(0) converges to a Reeb orbit set α :=

(α∞φ )−1(0). (Hope the overuse of α will not be confusing as we will denote α an orbit

set and αφ the first component of φ w.r.t. the splitting PD(Γ)⊕(PD(Γ)⊗ξ).) And
in this (subsequential) limiting process for solution (Ar, φr) to (‡)r with bounded
energy E , E(Ar) converges to A(α). So this the following which values cσ(Y, λ)
makes sense.
cσ(Y, λ) is called spectral invariant, because:

• f ≥ 1, cσ(Y, fλ) ≥ cσ(Y, λ).
• a ∈ R>0, cσ(Y, aλ) = acσ(Y, λ).
• (fj)j∈N in C∞(Y,R>0) with fj →

C0
1, we have lim

j→∞
cσ(Y, fjλ) = cσ(Y, λ).

• (Action selector, spectrality) σ ∈ ĤM
-∗

, cσ(Y, λ) ∈ A+.

Before the proof, let me quickly recap a standard notion in contact geometry
which we have not used/needed so far.
λ is nondegenerate if for all x ∈ Fix(ϕT ) for all T > 0, dϕT := ξx → ξϕT (x) = ξx

(preserves the contact structure direction) has no eigenvalue 1, this implies that
T -periodic orbits are isolated among such (T -periodic orbits). We also say x ∈
Fix(ϕT ) is non-degenerate, where (ϕt(x))t∈[0,T ] is an embedded periodic orbit, if

ϕT : ξx → ξx and all the iterates do not have 1 as eigenvalue.

Proof. (spectrality) λ is non-degenerate. If cσ := cσ(Y, λ) 6∈ A(λ)+, as the latter

being closed, ∃ε > 0 s.t. (cσ − ε, cσ + ε) ∩ A(λ)+ = ∅. ⇒ ĤM
-∗
cσ−ε(Γ) = ĤM

-∗
cσ+ε

(recall again, Taubes showed E(Ar) (which is tied to φr = (αrφ, β
r
φ) through SW

equation) converges to A(α) with α := (α∞φ )−1(0).) ⇒ im(ιcσ−ε) = im(ιcσ+ε),
which contradicts to the definition of cσ.
λ degenerate, ∃ (fj)j≥1 with fj > 0, fj →

C1
1 and fjλ non-degenerate. Each

cσ(Y, fjλ) ∈ A(fjλ)m(j) where total multiplicity m(j) is defined as m(j) :=
∑
i ni

(where α =
⊔
i(γi, ni) where γi is the underlying embedded closed Reeb orbit and ni

is its multiplicity). We have supjm(j) < 0, since infj minA(fjλ) > 0 bounded away
from zero (the number of max allocation to create m(j) is bounded above). Thus,
(up to subsequence) m(j) = m constant, cσ(Y, fjλ) = a1

j + ... + amj , akm = lim
j→∞

akj

exists 1 ≤ k ≤ m and akj ∈ A(fjλ). As fj →
C1

1 ⇒
Reeb orbit sets converge

ak∞ ∈ A(Y, λ)

for all k. Thus, cσ(Y, λ) = a1
∞ + · · ·+∞m

∞ ∈ A(λ)m ⊂ A(λ)+. �

Theorem 1.2 (volume detecting, CG-H-R, covered last time). Let (Y, λ) closed
connected contact 3-manifold. Γ ∈ H1(Y ; Z) s.t. c1(ξ) + 2PD(Γ) torsion. Let σk

be sequence of nonzero homogeneous classes in ĤM
-∗

(Γ) s.t. −gr(σk) → ∞. (We
always have such thanks to the existence result in monopole homology that we have
covered.) Then the volume detecting property holds:

lim
k→∞

cσk(Y, λ)2

−gr(σk)
=

∫
Y

λ ∧ dλ =: vol(Y, λ).

As an important corollary:
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Corollary 1.3. Let λ, λ′ be contact forms with same ξ = kerλ = kerλ′. Suppose

for any Γ ∈ H1(Y ; Z) s.t. c1(ξ) + 2PD(Γ) torsion and any σ ∈ ĤM
-∗

(Γ)\{0}
thereof, we have cσ(Y, λ) = cσ(Y, λ′), then vol(Y, λ) = vol(Y, λ′).

Proof. Due to the calculation 2 lectures ago, there exists σk nonzero with−gr(σk+1) =
−gr(σk) + 2. With hypothesis applied to this sequence, the conclusion follows by
volume detecting. �

Define ‖f‖C∞ :=
∑∞
l=0 2−l

‖f‖
Cl

1+‖f‖
Cl

which is always ≤ 2.

Lemma 1.4 (C∞ closing lemma, Kei Irie). For any non-empty open set U in Y ,
ε > 0, ∃ f ∈ C∞(Y ) s.t. ‖f − 1‖C∞ < ε and ∃ non-degenerate γ ∈ P(Y, fλ) which
intersects U .

Proof. Take any h ∈ C∞(Y,R≥0) s.t. supp(h) ⊂ U , ‖h‖C∞ < ε and h 6≡ 0. Then a
calculation shows (�) vol(Y, (1 + h)λ) > vol(Y, λ).

Claim: ∃ t ∈ [0, 1] and γ ∈ P(Y, (1 + th)λ) which intersects U .

Proof. (of Claim) Suppose not, then for any t ∈ [0, 1], for all γ ∈ P(Y, (1 + th)λ),
γ avoids U . Then P(Y, (1 + th)λ) = P(Y, λ) for all t, since closed Reeb orbits for
(1 + th)λ and λ coincide in Y \U . ⇒ A((1 + th)λ)+ = (A)(λ)+.

For any Γ ∈ H1(Y ) with c1(ξ) + 2PD(Γ) torsion, and for all σ ∈ ĤM
-∗
\{0},

cσ(Y, (1 + th)λ) ∈ A((1 + th)λ)+ = A(λ)+, the latter is measure 0 in R≥0, and
cσ(Y, (1+th)λ) is continuous in t, thus constant. ⇒

Corollary
vol(Y, λ) = vol(Y, (1+h)λ),

which is contradicting to �. [Claim] �

Take g ∈ C∞(Y ) with ‖g‖C∞ sufficiently small, g|imγ ≡ 0, and dg|imγ ≡ 0, so
γ ∈ P(Y, eg(1 + th)λ) s.t. γ is moreover nondegenerate (ϕT : ξx 	 is twisted by
Hess(g)). f := eg(1 + th) is the desired. [Closing lemma] �

Proof. (Theorem of {f s.t. Reeb orbits of Xfλ is dense} is residual)
Let U ⊂ Y be nonempty open. Let

FU := {f ∈ C∞(Y,R>0) | ∃ nondegenerate γ ∈ P(Y, fλ) that intersects U}.
FU is open (due to open condition) and dense (closing lemma) in C∞(Y,R>0).

Take a countable basis (Ui)i∈N of open sets in Y . Then
⋂
i FUi is residual and any

f in it has Reeb orbits of Xfλ dense in Y . (For any open neighborhood of any point,
there will be a point on closed periodic orbits in it.) [Theorem] �

Remark 1.5. There is a variant (same argument) for closed geodesics on a closed
Riemannian surface (as closed geodesics on (Σ, g) correspond to periodic Reeb orbits
of the associated contact 3-manifold cosphere bundle).

1.2. Simplicity conjecture. Exercise session is converted into the final session of
lecture to cover a recent exciting progress partly using ideas/tools in this lecture
series.

Volume detecting lim
k→∞

cσk (Y,λ)2

−gr(σk) =
∫
Y
λ ∧ dλ.

“≤” uses structure and intrinsic property of Seiberg-Witten (‡)r very deeply via
intricate analysis.

“≥” needs Seiberg-Witten, but potentially replaceable. Because the other ap-
proach (e.g. embedded contact homology, which is more direct at set-up with orbit
set as generators of homology) still needs to associate a map φ(cob) for a cobordism
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cob which is used essentially in the calculation for “≥”, and at the moment, this
is not well-defined (except in Seiberg-Witten Floer homology and via isomorphism

ECH∗(Γ)
Taubes∼= ĤM

-∗
(Γ) through it) due to geometric transversality issue.

For the discussion in our “exercise session”, we follow the “Simplicity conjecture”
paper by Cristofaro-Gardiner–Humilière–Seyfaddini.

(S, ω) surface with area 2-form (symplectic 2-manifold).
A homeomorphism φ : S → S is an area-preserving homeomorphism if it pre-

serves the measure (from ω defined as ω(A) :=
∫
A
ω): ω(φ−1(U)) = ω(U).

(D,ω) a unit disk with boundary with standard area form. Homeoc(D,ω) group
of area-preserving homeomorphisms of 2-disk that are identity near the boundary
(i.e., compactly supported).

Definition 1.6. A group G is simple if any normal subgroup (denoted by H / G,
meaning that the subgroup H satisfies gHg−1 ⊂ H for g ∈ G) is either {e} or G.
I.e., it does not have a non-trivial (not {e}) proper (not G) normal subgroup.

Question: (Fathi, ’80) Is Homeoc(D,ω) simple?
Why is it a good/interesting question?

• dim ≥ 3 understood by Fathi, SIMPLE.
• ICM 2006. 4 different mathematicians in different areas ask about this.
• Motivation for C0-symplectic topology.

Theorem 1.7. (CG-H-S) Homeoc(D,ω) is NOT simple.

Remark 1.8. • No natural (possibly discontinuous) homeomorphism anal-
ogous to flux, Calabi, mass-flow.
• Le Roux fragmentation ⇒ If not simple, then lots of proper normal sub-

groups. (This might partly explain why it is hard to find one.)

Why we end the course with this topic and what are the connections between
various topics?

Thom conj. solved by KM SW Floer homology ĤM etc

using SW on W 4 w. ∂ = Y 3
valued in−−−−−−→ SW on R× Y

calculation

yand existence

Taubes’ equiv of counts −−−−→ 4d SW on R× Y : (Ar, (αr, βr))
r→∞→

betw. 4d SW & holo. curves (α∞)−1(0) holo. curve w. orbit sets as limits −−−−→ Weinstein conj.

Hutchings’ ECH∗ ∼= KM’s ĤM
-∗

Taubes’ proof

Hutchings’s cσ

yTaubes’ ECH∗(Γ)∼=ĤM
-∗

(Γ)

C∞ closing lemma
Irie←−−−− volume detecting

CG-H-R←−−−−−−−
“≤′′ & “≥′′

properties on

spectral invariant

analogue betw.

yPFH=ECH

non-simple Homeoc(D,ω)
CG-H-S←−−−−− “ ≥′′ part of Calabi detecting
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1.2.1. Stable Hamiltonian structure. S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1},
ωS2 = 1

4πdθ ∧ dz, Area(S2) = 1.

D = {(x, y) | x2 + y2 ≤ 1}, S+ = {(x, y, z) ∈ S2 | z ≥ 0}.
ι : D → S2, (r, θ) 7→ (θ, 1− r2) with the image S+.
ω = ι∗ωS2 = 1

2π rdr ∧ dθ. Disk (D,ω) has area 1/2.
More general notion to contact structure (odd dimension in general, here we

focus on 3dim)
Stable Hamiltonian structure (SHS) (α,Ω) on a 3-manifold Y is a pair, where

α 1-form, Ω closed 2-form, and α ∧ Ω nowhere zero, and (stability) ker Ω ⊂ ker dα
(equivalent to dα = gΩ for some g ∈ C∞(Y,R), here ker Ω means kernel of the map
ι•Ω = Ω(•, ) : TM → T ∗M). Reeb vector field X = Xα,Ω is defined by ιXΩ = 0
and α(X) = 1.

Example 1.9. • Contact (λ, dλ).
• Mapping torus. (S, ω) closed surface with area 2-form, ϕ area-preserving

diffeomorphism ϕ∗ω = ω. Mapping torus Yϕ := S×[0,1]r
(x,1)∼(ϕ(x),0) . α = dr and

Ω = pr∗1ω/ ∼= ωϕ. SHS. Reeb X = ∂
∂r . Reeb orbits=periodic orbits of ϕ.

1.2.2. Periodic Floer homology and cd. Floer homology (has the spirit of HM)
PFH(ϕ, h) periodic Floer homology. Here h ∈ H1(Yϕ)\{0}.

• Generators (over Z/2) α = {(αi,mi)}i orbit set. αi embedded periodic
Reeb orbits, mi positive integer, 1 if αi hyperbolic (linearized return map
ϕTx : ξx → ξx has real eigenvalues). h =

∑
imi[αi].

• There is relative grading I(α, β, Z) for orbit sets α, β and Z a spanning
surface homology class from α to β, which calculate the dimension of the
moduli space below.
• Rs × Yϕ. The tangent bundle TYϕ = RX ⊕ ξ with X Reeb and ξ = kerα.

Almost complex structure (90o rotation) J : T (R × Yϕ) → T (R × Yϕ),

J : ∂
∂s 7→ X, and ξ → ξ with Ω(·, J ·) metric.
u : (Σ, j) → (R × Yϕ, J) mapping from a Riemann surface Σ with j

(almost) complex structure is (J-)holomorphic if du◦ i = J(u)◦du, namely,
du intertwines almost complex structures. This equation gives a Fredholm
problem and forms a moduli space.
• M1

J(α, β) denotes the space of holomorphic embedded curve/current C (al-
ready mod out domain reparametrization) of dimension I(α, β, [C]) = 1
with asymptotics to α as s → +∞ and to β as s → −∞, then modulo R
translation in R×Yϕ. This index I(α, β, [C]) has the property that C in the
moduli space with I(α, β, [C]) = 1 (if transverse as a point in the moduli
space) is automatically embedded.

(Taubes 4d SW on R×Yϕ with first component of spinor having the zero

set (αr)−1(0)
r→∞→ holomorphic curves with ends Reeb orbit sets.)

• ∂α =
∑
β #2M

1
J(α, β)β. We have ∂2 = 0 (this is super non-trivial involving

elaborate definition and argument of gluing). The homology is called PFH.
(This is an SHS variant of embedded contact homology for Y contact.)

Specialize to (S, ω) = (S2, ωS2), ϕ ∈ Diff(S2, ωS2) supported in S+. Yϕ ∼=
S2 × S1. h ∈ H1(Yϕ) = Z. π : Yϕ → S1, d = deg(h) = #inters([fiber], h).

Choose a cycle γ0 in Yϕ s.t. π|γ0 : γ0 → S1 is an orientation preserving.
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• generator for P̃FC which comes with an action filtration. (α,Z) with Z
spanning surface homology class between α and dγ0.
• absolute grading: I(α,Z) with I(α, β, Z − Z ′) = I(α,Z)− I(β, Z ′).
• differential counts J-holomorphic current C from α (from generator (α,Z))

to β (from generator (β, Z ′)) s.t. Z ′+[C] = Z, as follows: M1
J((α,Z), (β, Z ′))

is the moduli spaces of such with index I(α, β, [C]) = I(α, beta, Z − Z ′) =
I(α,Z) − I(βZ ′) = 1, then quotiented by Z translation in R × Yϕ. Define
∂(α,Z) =

∑
(β,Z′) #2M

1
J((α,Z), (β, Z ′))(β, Z ′).

∂2 = 0 gives rise to P̃FH.

• Action A(α,Z) =
∫
Z
ωϕ. P̃FC

L
= {(α,Z) | A(α,Z) ≤ L}. ∂ : P̃FC

L
	.

⇒ ιL : P̃FH
L
→ P̃FH.

• cσ(ϕ) = inf{L | σ ∈ im(ιL)}.

P̃FH∗(Yϕ, d) depends on the homotopy class of ϕ.

We calculate P̃FH∗(Yϕ, d) =

{
Z/2 if ∗ = d mod 2

0 otherwise.
by using ϕ irrational ro-

tation (z, θ) 7→ (z, θ + α) with α irrational.
For every (d, k), k = d(mod2), there exists a unique class σd,k in grading k.

Define cd,k(ϕ) := cσd,k(ϕ), cd(ϕ) := cd,−d(ϕ).

1.2.3. Finite energy homeomorphism. Define H ∈ C∞c (S1
t × D) time-dependent

function on D2 supported in D̊.
There exists a unique XH such that ω(XH , ·) := dH as ω is an area form. Flow

of XH , ϕtH , Hamiltonian flow.
Every area preserving diffeomorphism φ ∈ Diffc(D,ω) is ϕ1

H for some H ∈
C∞c (S1 ×D).

Hofer norm/energy: ‖H‖(1,∞) =
∫ 1

0

(
max
x∈D

H(t, x)−min
x∈D

H(t, x)
)
dt.

Definition 1.10. φ ∈ FHomeoc(D,ω) is called finite energy homeomorphism if
φ ∈ Homeoc(D,ω) and ∃ Hi ∈ C∞c (S1×D) s.t. ‖Hi‖(1,∞) ≤ C <∞ and ϕ1

Hi
→
C0
φ.

One can show that the FHomeoc(D,ω) is a normal subgroup.
The main focus of the lecture is to show:

Theorem 1.11. FHomeoc(D,ω) is a proper normal subgroup of Homeoc(D,ω).
(Namely, ∃ φ ∈ Homeoc(D,ω)\FHomeoc(D,ω) s.t. any {Hi} with ϕ1

Hi
→
C0

φ has

‖Hi‖(1,∞) →∞.) Therefore, Homeoc(D,ω) is not simple.

We will construct an example of such φ:
Let f : (0, 1]→ R smooth, vanishes near 1, decreasing. lim

r→0
f(r) =∞.

Define φf with φf (0) = 0, φf (r, θ) = (r, θ + 2πf(r)). φf ∈ Homeoc(D,ω) called
∞-twist.

We first define Calabi invariant to motivate the condition below. Let θ ∈
Diffc(D,ω), ∃ H ∈ C∞c (S1 × D) s.t. θ = ϕ1

H . Define Cal(θ) =
∫
S1

∫
D
Hωdt.

Cal : Diffc(D,ω) → R thus defined is a non-trivial group homomorphism indepen-
dent of such H.

We can construct ∞-twist with a f such that
∫ 1

0

∫ 1

r
sf(s)dsrdr =∞.
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Remark 1.12. ω = 1
2π rdr ∧ dθ, φf smooth, defined by f : [0, 1] → R (defined at

0 now) as in the above formula. Then Cal(φf ) =
∫ 1

0

∫ 1

r
sf(s)dsrdr, which explains

the above quantity.

1.2.4. Spectral invariant cd and Calabi detecting for monotone twist. Claim: cd
defined above has the following properties:

• cd(Id) = 0.
• H ≤ G in C∞c (S1 ×D) ⇒ cd(ϕ

1
H) ≤ cd(ϕ1

G) for all d.
• Hofer-continuous: |cd(ϕ1

H)− cd(ϕ1
G)| ≤ d‖H −G‖(1,∞).

• Spectrality: ϕd(ϕ
1
H) ∈ Specd(H) analogous to A+, which is the image of

critical points of the action functional in the current setting.
• (C0) cd : Diffc(D,ω) ⊂ Diffc(S

2, ωS2) → R continuous w.r.t. C0 on
Diffc(D,ω) extends continuously to Homeoc(D,ω).

Theorem 1.13. For a monotone twist ϕ = φf , namely, φf defined by the same

formula above but with smooth function f : [0, 1] → R. Then lim
d→∞

cd(ϕ)
d = Cal(ϕ).

(We only need the “≥” part.)

1.2.5. ∞-twist is not of finite energy and proof of non-simplicity.

Lemma 1.14 ((�), linear growth for FHomeoc). ψ ∈ FHomeoc(D,ω) ⇒ ∃ C =

C(ψ) s.t. cd(ψ)
d ≤ C for all d.

Proof. By definition, ∃ Hi ∈ C∞c (S1 ×D) with ‖Hi‖(1,∞) bounded by C.

Hofer continuous and cd(Id) = 0, ϕ1
Hi
→
C0
ψ. ⇒ cd(ϕ

1
Hi

) ≤ d‖Hi‖(1,∞) ≤ dC.

cd extends to Homeoc(D,ω) continuously ⇒ cd(ψ) = lim
i→∞

cd(ϕ
1
Hi

) ≤ dC ∀d. �

Lemma 1.15 ((~), ∞-twist has super-linear growth). ∃ φfi ∈ Diffc(D,ω).

• φfi →
C0
φf ∞-twist.

• ∃ Fi supported in D̊ s.t. ϕ1
Fi

= φfi and Fi ≤ Fi+1.
• lim
i→∞

Cal(φfi) =∞.

Proof. Choose smooth fi : [0, 1]→ R. fi = f on [ 1
i , 1] and fi ≤ fi+1.

φfi defined using twist. φfi = φf outside D( 1
i ), so φ−1

f φfi →
C0

Id.

φfi is ϕ1
Fi

for Fi(r, θ) =
∫ 1

r
sfi(s)ds, Fi ≤ Fi+1.

By definition of Cal,

Cal(φfi) =

∫ 1

0

∫ 1

r

sfi(s)dsrdr

≥
∫ 1

1
i

∫ 1

r

sfi(s)dsrdr

=

∫ 1

1
i

∫ 1

r

sf(s)dsrdr →∞.

So, lim
i→∞

Cal(φfi) =∞. �

Proof. (∞-twist is not a finite energy homeomorphism, thus FHomeoc(D,ω) is
proper, and Homeoc(D,ω) is not simple.)
cd(φfi) ≤ cd(φfi+1

).
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φfi →
C0
φ, cd(φ) = lim

i→∞
cd(φfi).

So cd(φfi) ≤ cd(φf ) ∀i ∀d.

Thus, lim
d→∞

cd(φf )
d ≥ lim

d→∞

cd(φfi )

d ≥
“≥′′ of Calabi detecting

Cal(φi)→
~
∞.

Thus, lim
d→∞

cd(φf )
d =∞ and (�) ⇒ φf 6∈ FHomeoc(D,ω). �

The end of the lecture series. Thank you very much for following along. If you
want to take the example to get credit, please email me.
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