SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 15

DINGYU YANG

Please email yangding@math.hu-berlin.de if you want to take exam to get
credit for this course. The format is informal and involves a presentation of 20
mins of something covered or related in the lecture series. Lecture notes up to
now are available at www.mathematik.hu-berlin.de/~yangding/monopole.html.
Exercises sprinkled throughout lecture notes have been collected into an exercise
sheet at www.mathematik.hu-berlin.de/~yangding/Exercise_SWF.pdf.

1. LECTURE 15: SMOOTH CLOSING LEMMA + NON-SIMPLICITY

1.1. Smooth closing lemma in 3d contact dynamics. Recall (Y,¢) contact 3-
manifold, where contact structure £ = ker A for some 1-form A with A A d\ nowhere
zero. A is called contact form. We also sometimes call (Y, A) contact manifold. Can
associate Reeb vector field X by tx,d\ =0 and A(X)) = 1.

For f > 0, f\ is another contact form defining the same &, but dynamics (Reeb
flow ¢!, periodic orbits etc) of Xy can be quite different to X. (Ex: write X\
in terms of X, and f.) Here, we quickly recall the idea of flow: We associates a
1-parameter family {¢!};cr of diffeomorphism for a vector field X on closed Y as
follows: ¥ = X o~ is an ODE and solution v, : R — Y exists all time (as Y is
closed) and unique upon specifying the initial condition «,(0) = z, and we define

@' () = 72 (t).

Theorem 1.1 (Kei Irie). (Y, ) closed contact 3-manifold.

{f € C=(Y,R>%) | the union of periodic Reeb orbits of Xy is dense in Y} is
residual in C*(Y,R>%) (with C*° topology). (Here, residual means it contains a
countable intersection of open dense subsets.)

Denote P(Y,\) ={v:R/T,Z =Y | T, > 0,7 = X o~} the set of closed Reeb
orbits.

A:PY,N) = R v = A(y) =T, = [+*), action. A(A\) = Im(A) action
spectrum of (Y, ).

Define A()) set of actions for orbits sets, namely, let A(X)g = {0}, A(N)y, =
{2 T | Ti € AV}, and A(N)4 = Umzo AN

Fact: A()\); is a closed set of (Lebesgue) measure 0 in R=0.

(A(X) C {critical values of a fixed real smooth function} = A()\)y is measure
0; A(X) closed, min A > 0 = A(v)4 is closed.)

Choose ' € Hy(Y), s.t. ¢1(§) + 2PD(T") torsion like last time.

For a nonzero o € ﬁl_*(r), define ¢,(Y,\) = inf{L | ¢ € Im(cr)} where
A, — A
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Here remark, although the filtration is defined as
& ml(An o) = Yomli [ AnFa) <L,
i i Y

as 7 — oo, and ¢" = (ay, Bj) with (a;)_l(O) converges to a Reeb orbit set a :=
(a(‘f)_l (0). (Hope the overuse of « will not be confusing as we will denote a an orbit
set and oy the first component of ¢ w.r.t. the splitting PD(I') & (PD(T') ®¢).) And
in this (subsequential) limiting process for solution (A", ¢") to (1), with bounded
energy &, E(A") converges to A(w). So this the following which values ¢, (Y, A)
makes sense.

¢y (Y, A) is called spectral invariant, because:
[ 21, c(Y, fA) > co (Y, A).
a € R7% ¢, (Y,a\) = ac, (Y, ).
(fj)jen in C>(Y,R>?) with f; s 1, we have leIgOCU(K [id) = co (Y, A).

(Action selector, spectrality) o € HM e, (Y,\) € A;.

Before the proof, let me quickly recap a standard notion in contact geometry
which we have not used/needed so far.

A is nondegenerate if for all x € Fix(¢T) for all T > 0, dp” := &, — §oT () = &2
(preserves the contact structure direction) has no eigenvalue 1, this implies that
T-periodic orbits are isolated among such (T-periodic orbits). We also say x €
Fix(¢?) is non-degenerate, where (¢'(z))¢eo,) is an embedded periodic orbit, if
o7 1 €, — &, and all the iterates do not have 1 as eigenvalue.

Proof. (spectrality) A is non-degenerate. If ¢, := ¢, (Y, A) € A(X\)4, as the latter
being closed, Je > 0 s.t. (¢, —€,¢6 +€)NAN) L = 0. = }TJT/[;U_E(F) = HM,

co+e
(recall again, Taubes showed E(A") (which is tied to ¢" = (ag, 8;) through SW
equation) converges to A(a) with a := (ag)7'(0).) = im(i,—c) = im(ic, ),

which contradicts to the definition of c,.

A degenerate, 3 (f;);>1 with f; > 0, f; gl> 1 and f;A non-degenerate. Each
co (Y, f;A) € A(fjN)m(j) where total multiplicity m(j) is defined as m(j) := >, n;
(where a = | |;(7s,n;) where ; is the underlying embedded closed Reeb orbit and n;
is its multiplicity). We have sup; m(j) < 0, since inf; min A(f;A) > 0 bounded away
from zero (the number of max allocation to create m(j) is bounded above). Thus,

(up to subsequence) m(j) = m constant, ¢, (Y, f;\) = aj + ... +af", ak = lim a?
j—oo
i <k< k ). . k
exists 1 <k <m and aj € A(fj\). As f; =t 1 Reeh orbit s converge % e AY, )
for all k. Thus, ¢, (Y,\) =al, +-- + 007 € A(N)ym C AN 4. O

Theorem 1.2 (volume detecting, CG-H-R, covered last time). Let (Y, ) closed
connected contact 3-manifold. T € H((Y;Z) s.t. ¢1(§) +2PD(T) torsion. Let o
be sequence of nonzero homogeneous classes in W*(F) s.t. —gr(or) = oco. (We
always have such thanks to the existence result in monopole homology that we have
covered.) Then the volume detecting property holds:

2
lim S22 (¥, A)

= [ AAdX=:vol(Y, \).
k—o0 —gT‘(O’k) L ( )

As an important corollary:
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Corollary 1.3. Let A\, X be contact forms with same & = ker A\ = ker \'. Suppose
for any T € H1(Y;Z) s.t. c1(§) + 2PD(T) torsion and any o € HM (T")\{0}
thereof, we have co (Y, \) = ¢ (Y, N'), then vol(Y, ) = vol(Y, \').

Proof. Due to the calculation 2 lectures ago, there exists o nonzero with —gr(og11) =
—gr(ok) + 2. With hypothesis applied to this sequence, the conclusion follows by
volume detecting. O

Define ||fce = 312,27 1%%; which is always < 2.

Lemma 1.4 (C* closing lemma, Kei Irie). For any non-empty open set U inY,
€e>0,3 feC®Y) s.t. |f —1]ce < € and 3 non-degenerate v € P(Y, fA) which
intersects U.

Proof. Take any h € C*°(Y,R=Y) s.t. supp(h) C U, ||h|c~ < € and h # 0. Then a
calculation shows (@) vol(Y, (14 h)A) > vol(Y, A).
Claim: 3¢ € [0,1] and v € P(Y, (1 + th)A) which intersects U.

Proof. (of Claim) Suppose not, then for any ¢ € [0, 1], for all v € P(Y, (1 + th)\),
v avoids U. Then P(Y, (1 + th)A) = P(Y,\) for all ¢, since closed Reeb orbits for
(14 th)X and A coincide in Y\U. = A((1 +th)\)+ = (A)(N)+.

For any I' € Hy(Y) with ¢;(¢) + 2PD(T) torsion, and for all ¢ € HM \{0},
co (Y, (1 +th)\) € A((1 +th)A\)L = A(\)4, the latter is measure 0 in RZ°, and

¢ (Y, (14th) ) is continuous in ¢, thus constant. ot vol(Y, A) = vol(Y, (1+h)N),
orollary

which is contradicting to @. [Claim] O

Take g € C(Y') with ||g||c~ sufficiently small, g|imy = 0, and dg|imy = 0, so
v € P(Y,e9(1 + th)A) s.t. ~ is moreover nondegenerate (o7 : &, O is twisted by
Hess(g)). f :=e?(1+th) is the desired. [Closing lemma] O

Proof. (Theorem of {f s.t. Reeb orbits of Xy, is dense} is residual)
Let U C Y be nonempty open. Let

Fu = {f € C°°(Y,R”%) | 3 nondegenerate v € P(Y, f\) that intersects U?}.

Fu is open (due to open condition) and dense (closing lemma) in C*°(Y,R>?).
Take a countable basis (U;)ien of open sets in Y. Then [, Fy, is residual and any

f in it has Reeb orbits of X7 dense in Y. (For any open neighborhood of any point,

there will be a point on closed periodic orbits in it.) [Theorem] O

Remark 1.5. There is a variant (same argument) for closed geodesics on a closed
Riemannian surface (as closed geodesics on (X, g) correspond to periodic Reeb orbits
of the associated contact 3-manifold cosphere bundle).

1.2. Simplicity conjecture. Exercise session is converted into the final session of
lecture to cover a recent exciting progress partly using ideas/tools in this lecture
series.

. . Coy, (Y,2)2 o
Volume detecting khm Ty = Jy AN
—00

“<” uses structure and intrinsic property of Seiberg-Witten (), very deeply via
intricate analysis.

“>” needs Seiberg-Witten, but potentially replaceable. Because the other ap-
proach (e.g. embedded contact homology, which is more direct at set-up with orbit
set as generators of homology) still needs to associate a map ¢(cob) for a cobordism
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cob which is used essentially in the calculation for “>”, and at the moment, this
is not well-defined (except in Seiberg-Witten Floer homology and via isomorphism

ECH.(T) e HM *(F) through it) due to geometric transversality issue.

For the discussion in our “exercise session”, we follow the “Simplicity conjecture”
paper by Cristofaro-Gardiner—-Humiliere-Seyfaddini.

(S,w) surface with area 2-form (symplectic 2-manifold).

A homeomorphism ¢ : S — S is an area-preserving homeomorphism if it pre-
serves the measure (from w defined as w(4) := [, w): w(¢~1(U)) = w(U).

(D,w) a unit disk with boundary with standard area form. Homeo.(D,w) group
of area-preserving homeomorphisms of 2-disk that are identity near the boundary
(i.e., compactly supported).

Definition 1.6. A group G is simple if any normal subgroup (denoted by H < G,
meaning that the subgroup H satisfies gHg~! C H for g € G) is either {e} or G.
Le., it does not have a non-trivial (not {e}) proper (not G) normal subgroup.

Question: (Fathi, '80) Is Homeo.(D,w) simple?
Why is it a good/interesting question?

e dim > 3 understood by Fathi, SIMPLE.
e ICM 2006. 4 different mathematicians in different areas ask about this.
e Motivation for C°-symplectic topology.

Theorem 1.7. (CG-H-S) Homeo.(D,w) is NOT simple.

Remark 1.8. e No natural (possibly discontinuous) homeomorphism anal-
ogous to flux, Calabi, mass-flow.
e Le Roux fragmentation = If not simple, then lots of proper normal sub-
groups. (This might partly explain why it is hard to find one.)

Why we end the course with this topic and what are the connections between
various topics?

Thom conj. solved by KM SW Floer homology HM ete
using SW on W* w. 8 = Y3 m SWonR xY
CalculationJ/and existence
Taubes’ equiv of counts ——— 4d SWon R x Y : (A", (a”, f7)) "=
betw. 4d SW & holo. curves (a®)71(0) holo. curve w. orbit sets as limits ~———  Weinstein conj.
Hutchings’ ECH, = KM’s @* Taubes’ proof

Hutchings’s ¢ JrTaubes’ ECH,(T)~HM ™ (T)

C® closing lemma frie volume detecting “Sf};i” properties on
) ) spectral invariant
analogue betw.lPFH:ECH
non-simple Homeo. (D, w) LSEHS “>" part of Calabi detecting
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1.2.1. Stable Hamiltonian structure. S? = {(z,y,2) € R® | 22 + y? + 22 = 1},
wg2 = 2=df A dz, Area(S?) = 1.

D ={(z,y) |2® +y2 <1}, 5* = {(w,,2) € $ | 2 > 0}.

t:D — 5% (r,0) — (0,1 —r?) with the image ST.

w = t*wg2 = 5=rdr A df. Disk (D,w) has area 1/2.

More general notion to contact structure (odd dimension in general, here we
focus on 3dim)

Stable Hamiltonian structure (SHS) («,2) on a 3-manifold Y is a pair, where
a 1-form, Q closed 2-form, and a A 2 nowhere zero, and (stability) ker Q C ker do
(equivalent to da = g€ for some g € C*°(Y,R), here ker Q2 means kernel of the map
162 = Qo) : TM — T*M). Reeb vector field X = X, o is defined by ¢xQ =0
and a(X) = 1.

Example 1.9. e Contact (A, d)).
e Mapping torus. (S,w) closed surface with area 2-form, ¢ area-preserving
diffeomorphism ¢*w = w. Mapping torus Y, := %.

Q =priw/ ~=w,. SHS. Reeb X = %. Reeb orbits=periodic orbits of .

« = dr and

1.2.2. Periodic Floer homology and c4. Floer homology (has the spirit of HM)
PFH(p, h) periodic Floer homology. Here h € H,(Y,)\{0}.

e Generators (over Z/2) o = {(a;,m;)}; orbit set. «; embedded periodic
Reeb orbits, m; positive integer, 1 if «; hyperbolic (linearized return map
oI ¢, — &, has real eigenvalues). h =Y, m;[a;).

e There is relative grading I(a, 8, Z) for orbit sets «, § and Z a spanning
surface homology class from « to §, which calculate the dimension of the
moduli space below.

e R, xY,. The tangent bundle TY, = RX @ { with X Reeb and § = kera.
Almost complex structure (90° rotation) J : T(R x Y,) — T(R x Yy,),
J: 2 X, and € — & with Q(-, J-) metric.

u: (X,j5) = (RxY,,J) mapping from a Riemann surface ¥ with j
(almost) complex structure is (J-)holomorphic if duoi = J(u) o du, namely,
du intertwines almost complex structures. This equation gives a Fredholm
problem and forms a moduli space.

e M}(a,B) denotes the space of holomorphic embedded curve/current C' (al-
ready mod out domain reparametrization) of dimension I(«,3,[C]) = 1
with asymptotics to a as s — 400 and to 8 as s — —oo, then modulo R
translation in R x Y,,. This index I(a, 3, [C]) has the property that C in the
moduli space with I(«, 8,[C]) = 1 (if transverse as a point in the moduli
space) is automatically embedded.

(Taubes 4d SW on R x Y, with first component of spinor having the zero
set (a”)~1(0) "= holomorphic curves with ends Reeb orbit sets.)

° Jda=3 4 #2 M3 (v, B)B. We have 9 = 0 (this is super non-trivial involving
elaborate definition and argument of gluing). The homology is called PFH.
(This is an SHS variant of embedded contact homology for Y contact.)

Specialize to (S,w) = (S?,ws2), ¢ € Diff(S? wg2) supported in S*. Y, =
S%x St he Hi(Y,) =Z. 7:Y, — S, d =deg(h) = #inters([fiber], h).
Choose a cycle yp in Y, s.t. 7|, : 70 — S! is an orientation preserving.
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e generator for PFC which comes with an action filtration. (o, Z) with Z
spanning surface homology class between o and d~p.

e absolute grading: I(a, Z) with I(«,3,Z — Z') =1(a, Z) — I(5,Z").

e differential counts J-holomorphic current C from « (from generator (o, Z))
to 3 (from generator (8, Z')) s.t. Z'+[C] = Z, as follows: M}((«, Z), (B, 2"))
is the moduli spaces of such with index I(a, 8, [C]) = I(«a,beta, Z — Z') =
I(a, Z) — I(8Z') = 1, then quotiented by Z translation in R x Y,,. Define
e, Z) = Z(ﬂ,zl) #2M}((O‘v 2),(B8,2"))(B,2").

0% = 0 gives rise to PFH.
o Action A(a,Z) = [,w,. PFC = {(o,2) | A, Z) < L}. 9: PFC 0©.
L
=, : PFH — PFH.
e ¢, (p)=inf{L | o €im(ep)}.

PFH «(Y,,d) depends on the homotopy class of ¢.
Z/2 if x = d mod 2
0 otherwise.
tation (z,0) — (z,0 + «) with « irrational.

For every (d,k), k = d(mod2), there exists a unique class o4 in grading k.
Define cq,k(¢) = €0y, (), ca(p) := cq,—a(¥)-

We calculate PFH (Y, d) = by using ¢ irrational ro-

1.2.3. Finite energy homeomorphism. Define H € C°(S} x D) time-dependent
function on D? supported in D.

There exists a unique Xg such that w(Xpg, ) := dH as w is an area form. Flow
of Xy, ¢4, Hamiltonian flow.

Every area preserving diffeomorphism ¢ € Diff.(D,w) is ¢}, for some H €
C (St x D).

Hof L ||H = [} (maxH(t,x) — minH :

ofer norm/energy: ||H||(1,00) = J, (I;leag( (t,x) min (t,z))dt

Definition 1.10. ¢ € FHomeo.(D,w) is called finite energy homeomorphism if
¢ € Homeo,(D,w) and 3 H; € C°(S' x D) s.t. ||Hyl|(1,00) < C < 00 and @y = ¢.

One can show that the FHomeo.(D,w) is a normal subgroup.
The main focus of the lecture is to show:

Theorem 1.11. FHomeo.(D,w) is a proper normal subgroup of Homeo.(D,w).
(Namely, 3 ¢ € Homeo.(D,w)\FHomeo.(D,w) s.t. any {H;} with ¢} s ¢ has

| Hill(1,00) = 00.) Therefore, Homeo.(D,w) is not simple.

We will construct an example of such ¢:

Let f : (0,1] — R smooth, vanishes near 1, decreasing. ll_r}réf(r) = 0.

Define ¢ with ¢¢(0) =0, ¢5(r,0) = (r,0 + 27f(r)). ¢5 € Homeo.(D,w) called
oo-twist.

We first define Calabi invariant to motivate the condition below. Let 6 €
Diff.(D,w), 3 H € CX(S' x D) st. 6 = ¢p. Define Cal(f) = [q [, Hwdt.
Cal : Diff.(D,w) — R thus defined is a non-trivial group homomorphism indepen-
dent of such H.

We can construct co-twist with a f such that fol frl sf(s)dsrdr = cc.
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Remark 1.12. w = z-rdr A df, ¢y smooth, defined by f : [0,1] — R (defined at

0 now) as in the above formula. Then Cal(¢y) = fol frl sf(s)dsrdr, which explains
the above quantity.

1.2.4. Spectral invariant cq and Calabi detecting for monotone twist. Claim: cq
defined above has the following properties:

Cd(Id) =0.

H < Gin CX(S' x D) = calely) < calpl) for all d.

Hofer-continuous: |cq(py;) — ca(og)| < dl[H — Gl|(1,00)-

Spectrality: q4(p};) € Spec,(H) analogous to A, which is the image of
critical points of the action functional in the current setting.

(C°) ¢q : Diff.(D,w) C Diff.(S?,wg2) — R continuous w.r.t. C° on
Diff.(D,w) extends continuously to Homeo.(D,w).

Theorem 1.13. For a monotone twist ¢ = ¢, namely, ¢5 defined by the same
formula above but with smooth function f :[0,1] — R. Then dlim %ﬁ = Cal(p).
— 00

(We only need the “>” part.)
1.2.5. oo-twist is not of finite energy and proof of non-simplicity.

Lemma 1.14 ((®), linear growth for FHomeo.). ¢ € FHomeo.(D,w) = 3 C =
C(y) s.t. W < C for all d.

Proof. By definition, 3 H; € C2°(S* x D) with ||H,||(1,00) bounded by C.
Hofer continuous and ¢4(Id) = 0, ¢ = V. = caley,) < d|Hillq,00) < dC.

ca extends to Homeo, (D, w) continuously = c4(¢) = lim cy(pl, ) < dC Vd. O
i—00 ¢
Lemma 1.15 ((®), oo-twist has super-linear growth). 3 ¢y, € Diff.(D,w).
° Py, 53 ¢ oo-twist.
e 1 F; supported in D s.t. cp}mi = ¢y, and F; < Fiqq.
o lim Cal(¢y,) = 0.
11— 00
Proof. Choose smooth f; : [0,1] = R. fi = fon [,1] and f; < fiy1.
J o _ o 1y o -1
¢y, defined using twist. ¢y, = ¢y outside D(3), so ¢, ¢, s Id.
¢y, is go}pi for F;(r,0) = f: sfi(s)ds, F; < Fi1q.
By definition of Cal,

cattog) = [ [ sitopsran
> / 1 / " sfi(s)dsrr
= [1 /T1 sf(s)dsrdr — co.

So, lim Cal(¢y,) = oco. O
71— 00

Proof. (co-twist is not a finite energy homeomorphism, thus FHomeo.(D,w) is
proper, and Homeo,.(D,w) is not simple.)

Cd((vbfi) < Cd(¢fi+l)'
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b5, =2 ¢, ca(p) = iliglocd(@i)-
So ca(¢y,) < ca(dy) Vi Vd.

Thus, lim % > lim %2(¢s) > Cal(¢;) — oo.
d— 00 d—oo “>1 of Calabi detecting ®
Thus, dlim % =00 and (©) = ¢; ¢ FHomeo (D, w). O
—00

The end of the lecture series. Thank you very much for following along. If you
want to take the example to get credit, please email me.
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