
SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 3

DINGYU YANG

1. Lecture 3

Please email yangding@math.hu-berlin.de to be added to the mail list for
possible future (last minute) announcement. Lectures start at 9:15 AM.

This is a slightly updated version fixing some obvious typos to an earlier version.

1.1. Broken flow lines not being limited from smooth ones. We have seen:

• In proving ∂2 = 0, it is crucial to have broken flow lines being limited to
by smooth flow lines. There, 1-broken flow lines are boundary (points) of
the compact 1-dimensional “flow space” manifolds (thus counted as 0 mod
2). Namely, starting from a 1-broken flow line and moving inside the flow
space, flow lines become smooth until reaching the boundary of the flow
space, which is another 1-broken one, thus 1-broke flow lines exist in pairs.
• Notation ∂2 is a succinct way to keep track of broke flow lines.
• In the case where the background B has vertical boundary ∂B, we can

have broken flow lines not limits of smooth ones. For example, there is no
smooth flow lines limiting to a 1-broken flow line from a ∈ co to b ∈ cs to
c ∈ cu (because Uc ⊂ ∂B, the smooth flow lines from a stays in B\B, thus
the limiting smooth flow lines would have to be in both B\∂B and ∂B).

Remark 1.1. Due to bullet points 1 and 3, to have a chain complex with both co

and c∂ , cannot have both cs and cu in the same complex.

1.2. Examining the boundary combinatorial types of broken flow lines.

Lemma 1.2. Consider B with ∂B with metric and Morse function respecting the
doubling. Let a ∈ cok, c ∈ cok−2. Recall M̌(a, c) = M(a, c)/R denotes the space

of unparametrized smooth flow lines, and M̌+(a, c) is the compactification of it by
adding broken flow lines (limits). Then M̌+(a, c)\M̌(a, c) consists of

either (x̌1, x̌2) ∈ M̌(a, b)× M̌(b, c) for some b ∈ co,

or (x̌1, x̌2, x̌3) ∈ M̌(a, b1)× M̌(b1, b2)× M̌(b2, c) for b1 ∈ csk−1 and b2 ∈ cuk−1.

Proof. If broken once, then the intermediate critical point 6∈ c∂ , because a critical
point at the boundary cannot be both forwards and backwards limiting point of
flow lines in the interior.

If broken twice with three flow lines, the middle flow line has to be exceptional
case in the definition of regularity (we call it “obstructed” for short, in the view of
transversality), from cs to cu, without dropping in index. Constraints of limiting
end points also mean that we cannot have adjacent obstructed flow lines.
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Cannot be broken 3+ times, (due to the last line in the last paragraph), as we
would need to have at least three flow lines connecting points in co, which would
involve a factor with negative dimension (not possible due to being manifold). �

1.3. Definition of various operators ∂̄∗∗ and ∂∗∗ . (Not to be confused with
similarly looking differential operators.) Another notational remark: In the lecture
for ease of writing we wrote c in the place of c and C∗ in the place of C∗ below.

For a, b ∈ c∂ , consider M(a, b) = Ua ∩ Sb.

• for a ∈ cu, b ∈ cs, both M(a, b) and M∂(a, b) =: M(a, b)∩∂B are manifolds
and they are distinct, in fact ∂M(a, b) = M∂(a, b). (Note that the nature
of critical points implies that Ua ∩ ∂B intersects transversely with Sb ∩ ∂B
in ∂B.)
• for the other three cases

(
(i) a ∈ cu, b ∈ cu, (ii) a ∈ cs, b ∈ cs, a ∈ cs, b ∈ cu

)
,

we have M(a, b) = M∂(a, b) being manifolds, as the flow lines have to lie
in ∂B. Here, in case (iii), the obstructed case, M(a, b) is manifold due to
“being regular”.

Denote M̌∂(a, b) := M∂(a, b)/R. We define the following four operations ∂̄∗∗
counting points (mod 2) in 0-dimensional manifold M̌∂(a, b). Here ·̄ signifies bound-
ary ∂B. The index difference between the domain and the target in each case
ensures the spaces to be counted are 0 dimensional.

Denote Cu
k :=

⊕
a∈cuk

(Z/2Z)ea, where ea denotes the generator labelled by a.

Similarly for Cs
k.

Define ∂̄u
s : Cu

k → Cs
k−2 (super/subscripts indicate flow lines flowing from top to

bottom) by defining on generators and extending by linearity:
∂̄u
s (ea) =

∑
b∈csk−2

|M̌∂(a, b)|eb, here | · | counts points of a 0-dimensional space

mod 2, and index drops two because we mod by R-action and restricting to the
boundary of a manifold with boundary.

We contrast it with ∂u
s : Cu

k → Cs
k−1 defined by ea 7→

∑
|M̌(a, b)|eb.

We can similarly define ∂̄s
s : Cs

k → Cs
k−1, ∂̄u

u : Cu
k → Cu

k−1 and ∂̄s
u : Cs

k → Cu
k .

Note that last preserves the index, ∂̄s
u(ea) =

∑
b∈cuk
|M̌∂(a, b)|eb. (Here, recall that

dimM̌∂(a, b) = dimM∂(a, b)−1
regularity

= dimUa +dimSb−dim∂B−1 = i(a)− i(b).)
We also have:

∂o
o : Co

k → Co
k−1

∂o
s : Co

k → Cs
k−1

∂u
o : Cu

k → Co
k−1

∂u
s : Cu

k → Cs
k−1, the last of which we have seen,

as the only 4 possibilities counting dimension-0 space of unparametrized flow lines
in B\∂B. Other combinations will lie inside ∂B and have been covered in above
∂̄∗∗ .

1.4. Recasting boundary combinatorial types into equations. The above
lemma says 1© ∂o

o∂
o
o + ∂u

o ∂̄
s
u∂

o
s = 0 mod 2. Note that we work in Z/2Z, and − is +.

By considering boundary of 1-dimensional compactified space we have:
For a ∈ cok, c ∈ csk−2, analogously consider configurations of broken flow lines in

M̌+(a, c)\M̌(a, c), we have 2© ∂o
s∂

o
o + ∂̄s

s∂
o
s + ∂u

s ∂̄
s
u∂

o
s = 0.

For a ∈ cuk , c ∈ cok−2, 3© ∂o
o∂

u
o + ∂u

o ∂̄
u
u + ∂u

o ∂̄
s
u∂

u
s = 0.
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For a ∈ cuk , c ∈ csk−2, interesting case 4© ∂̄u
s + ∂o

s∂
u
o + ∂̄s

s∂
u
s + ∂u

s ∂̄
u
u + ∂u

s ∂̄
s
u∂

u
s = 0.

Note that in the case 4©, the first term counts the dimensional 0 space, as we
mod out by R and take the boundary. Draw a picture for the last term.

Remark 1.3. Here the magic is that a sequence of smooth flow lines can break
in a limit into allowable types of broken flow lines, and broken flow lines can be
glued back to smooth flow lines, and those are captured exactly as the situation
near a point at the boundary in a 1-dimensional manifold with boundary. We have
suppressed this crucial detail now. Proving such a statement is more accessible from
the functional analytic viewpoint (to be seen later) than the intersection theoretic
approach above, which might be easier to meet and visualize at the first.

1.5. Three variants of chain complexes. We try to build chain complexes using
Co
∗ , C

s
∗ and Cu

∗ .
Recall if we use Co

∗ , can only use one of Cs
∗ and Cu

∗ , due to Remark 1.1.
If we do not use Co

∗ , we can use both boundary critical points and define

C̄k := Cs
k ⊕ Cu

k+1,

the last summand has an index shift because i is defined in B, and if defined in
∂B, i∂ = i− 1. Define

∂̄ =

(
∂̄s
s ∂̄u

s

∂̄s
u ∂̄u

u

)
.

The off-diagonal operators ∂̄u
s : Cu

k+1 → Cs
k−1 ⊂ C̄k−1 and ∂̄s

u : Cs
k → Cu

k ⊂ C̄k−1
indeed counts the dimensional 0 spaces, as we discussed before. The complex (C̄∗, ∂̄)
is none other than the Morse chain complex for ∂B, just with different (boundary)
critical points distinguished. Arguing as in the last lecture, we have ∂̄2 = 0. We
write this out into

∂̄s
s ∂̄

s
s + ∂̄u

s ∂̄
s
u = 0. (‡)

∂̄s
u∂̄

s
s + ∂̄u

u ∂̄
s
u = 0. (?)

∂̄s
s ∂̄

u
s + ∂̄u

s ∂̄
u
u = 0

∂̄s
u∂̄

u
s + ∂̄u

u ∂̄
u
u = 0

After Morse theory for ∂B, now we want to consider Co
∗ as well, and we can define

two versions:

Čk := Co
k⊕Cs

k with differential ∂̌ =

(
∂o
o ∂u

o ∂̄
s
u

∂o
s ∂̄s

s + ∂u
s ∂̄

s
u

)
. Check is also pronounced

as “to”, as the interior flow lines flowing to the bundary-stable critical points here,
the overhead arrow also points to C. The boundary operator may look complicated,
but it just includes all counts of dimension 0 spaces of (broken) unparametrized flow
lines between appropriate critical points.

Ĉk := Co
k⊕Cu

k with differential ∂̂ =

(
∂o
o ∂u

o

∂̄s
u∂

o
s ∂̄u

u + ∂̄s
u∂

u
s

)
. Hat is also pronounced

as “from”, as the interior flow lines flowing from the bundary-unstable critical points
here and the overhead arrow also points away from C.

We now show ∂̌2 = 0. Composing the matrix with itself, we want to show:

• The (1,1) entry of ∂̌2 is 0, namely ∂o
o∂

o
o + ∂u

o ∂̄
s
u∂

o
s = 0 which is just 1©.

• ∂o
s∂

o
o + ∂̄s

s∂
o
s + ∂u

s ∂̄
s
u∂

o
s = 0, which is just 2©.

• ∂o
o∂

u
o ∂̄

s
u + ∂u

o ∂̄
s
u∂̄

s
s + ∂u

o ∂̄
s
u∂

u
s ∂̄

s
u cannot factorize, but changing the second

term into ∂u
o (∂̄u

u ∂̄
s
u) according to (?), it reads now (LHS of 3©)∂̄s

u = 0.
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• ∂o
s∂

u
o ∂̄

s
u + ∂̄s

s ∂̄
s
s + ∂u

s ∂̄
s
u∂̄

s
s + ∂̄s

s∂
u
s ∂̄

s
u + ∂u

s ∂̄
s
u∂

u
s ∂̄

s
u will be of the form of

(LHS of 4©)∂̄s
u = 0, after replacing the second term by ∂̄u

s ∂̄
s
u due to (‡)

and the third term by ∂u
s (∂̄u

u ∂̄
s
u) due to (?).

Thus ∂̌2 = 0.

Exercise 1.4. ∂̂2 = 0.

Remark 1.5. (Č∗, ∂̌) calculates H∗(B;Z/2Z), (Ĉ∗, ∂̂) calculates H∗(B, ∂B;Z/2Z),
and (C̄∗, ∂̄) calculates H(∂B;Z/2Z).

1.6. LES. SES 0 → C∗(∂B) → C∗(B) → C∗(B, ∂B) → 0 leads to the long exact

sequence. Can homologies of those chain models (C̄∗, ∂̄), (Č∗, ∂̌), (Ĉ∗, ∂̂) fit into
LES with induced morphisms from natural maps between these chain models?

The answer is yes. Define

i :C̄k := Cs
k ⊕ Cu

k+1 → Čk := Co
k ⊕ Cs

k by i =

(
0 ∂u

o

1 ∂u
s

)
.

j :Čk := Co
k ⊕ Cs

k → Ĉk := Co
k ⊕ Cu

k by j =

(
1 0
0 ∂̄s

u

)
.

p :Ĉk := Co
k ⊕ Cu

k → Čk−1 := Cs
k−1 ⊕ Cu

k by p =

(
∂o
s ∂u

s

0 1

)
.

Exercise 1.6. Check i, j and p are chain maps. (p is only a chain map up to a
sign when working over Z after taking care of orientations of spaces).

Proposition 1.7. There is an LES · · · → Ȟ∗
j∗→ Ĥ∗

p∗→ H̄∗−1
i∗→ Ȟ∗−1 → · · · .

This respects the LES from the above SES, which reads

· · · → H∗(B)→ H∗(B, ∂B)→ H∗−1(∂B)→ H∗−1(B)→ · · · .
The p∗ is exhibited at the center of the repeated pattern because it plays a role

in the proof where we want to identify Č under a quasi-isomorphism to

Cone(p) := (Ĉ ⊕ C̄,

(
∂̂ 0
p ∂̄

)
).

We will prove the proposition next time and discuss the compactness of solutions
to SW equation.
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