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DINGYU YANG

1. Lecture 4

Please email yangding@math.hu-berlin.de to be added to the mail list for
possible future announcement. Lectures start at 9:15 AM. Lecture notes up to now
are available at www.mathematik.hu-berlin.de/ yangding/monopole.html

1.1. LES (continued). SES 0 → C∗(∂B) → C∗(B) → C∗(B, ∂B) → 0 leads to

the long exact sequence. As (C̄∗, ∂̄), (Č∗, ∂̌), (Ĉ∗, ∂̂) calculate respective homologies
in the aforementioned LES, we can see the LES using natural maps between these
chain models. Define

i :C̄k := Csk ⊕ Cuk+1 → Čk := Cok ⊕ Csk by i =

(
0 ∂uo
1 ∂us

)
.

j :Čk := Cok ⊕ Csk → Ĉk := Cok ⊕ Cuk by j =

(
1 0
0 ∂̄su

)
.

p :Ĉk := Cok ⊕ Cuk → Čk−1 := Csk−1 ⊕ Cuk by p =

(
∂os ∂us
0 1

)
.

Proposition 1.1. There is an LES · · · → Ȟ∗
j∗→ Ĥ∗

p∗→ H̄∗−1
i∗→ Ȟ∗−1 → · · · .

Proof. Define Ě := Cone(p) := (Ĉ ⊕ C̄, ě :=

(
∂̂ 0
p ∂̄

)
). (Anti-)chain map property

of p : Ĉ → C̄ is incorporated into ě2 = 0. By construction of mapping cone, we

have SES C̄
ī→ Ě

j̄→ Ĉ. Now we want to establish a quasi-isomorphism (map
inducing isomorphism between homologies) between Ě and Č (respecting the maps
on homology), then we are done. Indeed, define

(C0 ⊕ Cs)⊕ (Cs ⊕ Cu∗+1) = Ě
l

�
k
Č = Co ⊕ Cs,

where k : (x, y) 7→ (x, ∂̄suy, y, 0), and l : (e, f, g, h) 7→ (e + ∂uo h, g + ∂us h). We have
l◦k = Id and k◦l = Id+ě◦K+K◦ě for chain homotopy K : (e, f, g, h) 7→ (0, h, 0, 0).
Moreover, j∗ = j̄∗ ◦ k∗ and ī∗ = k∗ ◦ i∗.

�

1.2. Weizenböck, 4d-3d expression, and energies. We follow [KM], also c.f.
[Morgan].

Let X = (X, gX) be a compact oriented Riemannian 4-manifold with ∂X = Y ,
where the metric is cylindrical metric near Y (as [−ε, 0] × Y ). A spinc structure
sX = (SX , ρX) induces s = (S, ρ) along the boundary Y as follows. Denote n ∈
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Γ(Y ) the outward unit normal vector field, then ρX(n) : S+|Y
∼=→ S−|Y , and define

S := S+|Y . Let v ∈ TY , then ρ(v) is S+|Y
ρX(v)→ S−|Y

ρ(n)−1

→ S+|Y .
Let A (or ∇A) be a spinc connection in temporal gauge, so restricts to Y to a

spinc connection on Y .
We have Weitzenböck formula D−AD

+
AΦ = ∇∗A∇AΦ + 1

2ρX(F+
At)Φ + 1

4sΦ, where
s is the scalar curvature for Levi-Civita connection ∇ on X recalled below:

For curvature F (X,Y )Z := ∇X∇Y Z̃ − ∇Y∇X Z̃ − ∇[X̃,Ỹ ]|Z̃, where ·̃ denotes

any extension to a vector field and ·| denotes restriction to a point (well-defined
independent of choices), we have gX(F (X,Y )Z,W ) anti-symmetric in X and Y ,
anti-symmetric in Z and W , and symmetric in (X,Y ) and (Z,W ). Define Ricci
curvature Ric(X,Y ) :=

∑
i gX(F (ei, X)Y, ei) for any orthonormal basis ei (this

order of summing reproduces Gaussian curvature in 2d), and define s := trRic.
Note that adjoint operator is defined using C∞c (X\∂X) (smooth function of

compact support away from boundary) in L2 metric, so having boundry or not

does not affect the formula. As DA =

(
0 D−A
D+
A 0

)
) is self-adjoint, D−A is adjoint

to D+
A . ρX maps imaginary valued self-adjoint 2-form to Hermitian (self-adjoint).

So all four operators in front of Φ are self-adjoint.
Adjoint expression involving terms on Y (omitting dvol):∫
Z
〈Φ, D−AD

+
AΦ〉 =

∫
X
|D+

AΦ|2 −
∫
Y
〈ρX(n)Φ, D+

AΦ〉, and∫
Z
〈Φ,∇∗A∇AΦ〉 =

∫
X
|∇AΦ|2 −

∫
Y
〈Φ, (∇A)nΦ〉.

One can derive from the definition that

DB(Φ|Y ) = (ρX(n)−1D+
AΦ− (∇A)nΦ)|Y +

H

2
Φ|Y ,

where H-term can be dropped if using cylindrical metric near Y .
Take 〈Φ, ·〉 to the Weitzenböck formula and integrate and using the above ex-

pression about adjoint (involving boundary terms), we have:
‖F(A,Φ)‖2L2 :=

∫
X

(| 12ρX(F+
At)− (ΦΦ∗)0|2 + |D+

AΦ|2) = Ean − Etop, where

Ean := 1
4

∫
X
|FAt |2 +

∫
X
|∇AΦ|2 + 1

4

∫
X

(|Φ|2 + s
2 )2 −

∫
X

s2

16 , and

Etop := 1
4

∫
X
FAt ∧ FAt −

∫
Y
〈Φ|Y , DB(Φ|Y )〉+

∫
Y
H
2 |Φ|

2.
In the cylindrical situation [t1, t2]×Y (which we currently have near Y ) (denoting

γ = (A,Φ) in 4d as γ(t) in 3d), Ean =
∫ t2
t1

(|γ̇|2 + |∇L(γ)|2)dt (see [KM] (4.20) for

a gauge invariant expression), and Etop = 2(L(t1)− L(t2)).
For SW equation solution (A,Φ), Ean = Etop.

Exercise 1.2. Show
∫
|FAt |2 −

∫
FAt ∧ FAt = 2

∫
X
|F+
At |2, and use this and the

above to show for s ≥ 0, we have Φ = 0 for SW solution.

1.3. Compactness theorem.

Theorem 1.3. Let us be in the above setting.

(1) For any constant C, only finitely many sX ’s admit solution (A,Φ) to SW with
E top(A,Φ) ≤ C.

(2) Let (An,Φn) be a sequence of smooth SW solution with E top-bound C. Then
exist smooth gauge transformations un : X → S1 such that

(a) a subsequence of un(An,Φn)
weakly in L2

1→ (A,Φ) for some (A,Φ) ∈ L2
1 (ex-

plained below);
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(b) if the same subsequence (denoted with same index) satisfies

limsup E top(An,Φn) = E top(A,Φ),

then convergence un(An,Φn) to (A,Φ) in L2
1 is strong; and

(c) the same subsequence (without need to satisfying hypothesis in (b)) con-
verges in C∞ on every X ′ ⊂⊂ X\∂X.

Here Lpk is Sobolev space, completion of smooth functions/sections in ‖f‖Lp
k

:=

(
∑

0≤i≤k
∫
X
|∇if |pdvol)1/p, with 1 < p <∞. Finite regularity but complete.

Let H be a Banach space, with dual H∗, an → a weakly, if for all f ∈ H∗,
f(an)− f(a)→ 0. If H is Hilbert with inner product 〈·, ·〉, an → a weakly if for all
f ∈ H, 〈an−a, f〉 → 0. an → a (strongly) in H, if ‖an−a‖H → 0. As an example,
a orthonormal countable basis converges weakly to 0 but not strongly.

Proof. For SW solution, we have Ean = Etop. We then have
∫
X
|FAt

n
|2 ≤ C1,∫

X
|Φn|4 ≤ C2 (can also seen from first SW equation), and

∫
X
|∇An

Φn|2 ≤ C3 (as
we can bound s due to compactness). The first gives that c1(sX) lies in a compact
set. spinc structure in 4d is also affine over H2, which gives conclusion (i).

Therefore, can restrict to a fixed spinc structure and fix a base spinc connection
A0, we want to choose u′n : X → S1 such that

d∗(Atn −At0 − 2(u′n)−1du′n) = 0 in X

〈Atn −At0 − 2(u′n)−1du′n, n〉 = 0 at ∂X

where non-subscript n is the unit outward normal.
u′n can be of the form eξn for ξn : X → iR, if we can solve

2∆ξn = d∗(Atn −At0) in X

2〈dξn, n〉 = 〈Atn −At0, n〉 at ∂X.

This is Neumann boundary value problem. eξn is unique up to multiplying by
constant for this trivial homotopy class case [u′n] = 0.
An−(u′n)−1du′n =: u′n(An) is said to be in Coulomb-Neumann gauge if the above

pair of conditions for u′n = eξn holds.
For non-trivial homotopy class a ∈ [X,S1], there exists v : X → S1 with [v] = a

satisfying the homogeneous equation (thus the Coulomb-Neumann gauge condition
can be solved for any homotopy class)

d∗(v−1dv) = 0 in X

〈v−1dv, n〉 = 0 at ∂X.

We have uniqueness if asking further i
∫
βr ∧ (Atn − At0 − 2u−1

n dun) ∈ [0, 2π),
where {βr} represents basis of H3(X;R) (this can be viewed as period condition
on loops via Poincaré duality).

We need a lemma whose proof is delegated to the exercise session (see [KM]
5.1.2, 5.1.3 and the paragraph that follows):

Lemma 1.4. For any imaginary-valued 1-form a satisfying 〈a, n〉 = 0 at ∂X and
i
∫
βr ∧ a ∈ [0, 2π), we have

‖a‖2L2
1

:=

∫
X

(|∇a|2 + |a|2)dvol ≤ K1

∫
X

(|d∗a|2 + |da|2)dvol +K2

for Ki constant.
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To see (2)(a), write (Ãn, Φ̃n) := (un(An), unΦn). Apply Lemma 1.4 to Ãtn−At0,
then |d∗a|2-term on RHS is 0 due to Coulomb gauge, and

∫
X
|da|2 term is bounded

due to curvature bound (and finiteness of FAt
0

in L2), so we get a L2
1 bound for

Ãtn −At0.
We have Sobolev embedding Lp1 ↪→ Lp

∗
, where 1

p∗ = 1
p −

1
dimX = 1

2 −
1
4 = 1

4 .

(Useful when dimX > p, so that p∗ > 0. Note that p∗ > p > 1.) So we have L4

bound for Ãtn −At0.

We have ‖∇Ãn
Φ̃n‖L2 bounded at the start of the proof.

Then ∇A0
Φ̃n = ∇Ãn

Φ̃n− (Ãn−A0)Φ̃n is L2 bounded as the last term has both

factors L4 bounded, thus itself L2 bounded (by Cauchy-Schwarz inequality) and the

first term is ∇Ãn
Φ̃n = un(∇An

(u−1
n (un(Φn)))) = u(∇An

Φn) has the same norm as

∇An
Φn which is L2 bounded at the start of the proof.

We also have Φ̃n L2 bounded (due to L4 bounded and compactness of X via

Cauchy-Schwarz), thus ‖Φ̃n‖L2
1

is uniformly bounded.

(L2
1)∗ ∼= L2

1. As unit ball in (L2
1)∗ is weakly compact. We have a subsequence

Φ̃n weakly converging to a limit. This completes (2)(a).
To be continued. �
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