
SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 5

DINGYU YANG

1. Lecture 5

Please email yangding@math.hu-berlin.de to be added to the mail list for
possible future announcement. Lectures start at 9:15 AM. Lecture notes up to now
are available at www.mathematik.hu-berlin.de/∼yangding/monopole.html

We continue to follow [KM] closely and at a few places flesh out some details.

1.1. Recall where we were at from last time. We have Seiberg-Witten equa-
tion for (A,Φ) over a compact Riemannian 4-manifold X with ∂X = Y :

1

2
ρX(F+

At)− (ΦΦ∗)0 = 0

D+
AΦ = 0

We have two notions of energies:
Etop(A,Φ) = 1

4

∫
X
FAt∧FAt−

∫
Y
〈Φ|Y , DB(Φ|Y )+

∫
Y
H
2 |Φ|

2, where N(V,W )n :=

(∇V W̃ )⊥ and mean curvature H := trYN .

Ean(A,Φ) := 1
4

∫
X
|FAt |2+

∫
X
|∇AΦ|2+ 1

4

∫
X

(|Φ|2+ s
2 )2−

∫
X

s2

16 , where s = trXRic
and Ric(V,W ) = trXgX(R(·, V )W, ·).

For SW solution (A,Φ), Etop(A,Φ) = Ean(A,Φ).
We stated and proved the (1) and (2)(a) of the following compactness theorem

(interior compactness up to gauge transformation under finite topological energy):

Theorem 1.1. (1) Finiteness of spinc structures admitting SW solutions under a
given E top-bound.

(2) Sequential compactness up to gauge transformation under finite E top-bound:
Let (An,Φn) be a sequence of SW solution with E top(An,Φn) ≤ C <∞. There
exists un : X → S1 such that

(a) a subsequence of (Ãn, Φ̃n) := un(An,Φn)
weakly→
in L2

1

(A,Φ) ∈ L2
1;

(b) If limsupnE top(An,Φn) = E top(A,Φ), then the same subsequence in (a)
converges to (A,Φ) (strongly) in L2

1; and
(c) the subsequence in (a) converges in C∞loc(X\∂X) (namely, in C∞(X ′) for

any open domain X ′ ⊂⊂ X\∂X).

We recalled again what Banach Lkp and weak convergence for Banach/Hilbert
space are.
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1.2. Proof of (2)(b), norm preserving plus weak convergence imply strong
convergence. We prove (2)(b).

Note that Etop(An,Φn) = Ean(An,Φn) = Ean(Ãn, Φ̃n) as

|∇AnΦn| = |un(∇AnΦn)| = |(un ◦ ∇An ◦ u−1
n )(unΦn)| = |∇ÃnΦ̃n|.

Then the hypothesis of (2)(b) means that we have uniform L2-bound of the

following (F+

Ãn
), ∇ÃnΦ̃n, and (Φ̃nΦ̃∗n)0. Recall that L2 norm of the last is a constant

factor of ‖Φ̃n‖L4 as we have seen.
L2 ∼= (L2)∗, by Banach-Alaoglu which says that the unit/bounded ball in dual

space is weakly compact, we have a common subsequence of triples weakly converges
in L2 to some limit. We also have (Ãn, Φ̃n) converges strongly in L2.

We want to establish the weak limit of the triples:

• L2 weak limit of F+

Ãn
is F+

A .

Indeed, we have 〈Ãn − A, d∗b〉 = 〈Ãn − dA, b〉 → 0 for any smooth
b compactly supported away from ∂X. Its self-dual projection says that
〈F+

Ãn
− F+

A , b〉 → 0 for all b.

• Weak limit of ∇ÃnΦ̃n is ∇AΦ.

Let Ãn = A0 + an and A = A0 + a for a base connection A0. We have
∇ÃnΦ̃n = ∇A0

Φ̃n + anΦ̃n. The first term on RHS converges weakly in L2

to ∇A0Φ by an argument similar to the previous item. The second term on
RHS converges in L1 to aΦ in particular weakly converges to aΦ. To see
the L1 convergences, note that both factors converge in L2 to a and Φ, and
we use Cauchy-Schwarz (CS)

∫
|αβ| ≤ (

∫
|α|2)1/2(

∫
|β|2)1/2. So we have

∇ÃnΦ̃n converges weakly in L2 to ∇A0Φ + aΦ = ∇AΦ.

• Similarly, weak limit of (Φ̃nΦ̃∗n) in L2 is (ΦΦ∗)0.

In particular, (A,Φ) is an SW solution.
Recall a lemma, for Hilbert space (here we look at L2), if xn → x weakly in L2

and limn ‖xn‖ exists and equals to ‖x‖L2 , then xn converges strongly to x in L2.
Proof is one line,

‖xn − x‖2 = 〈xn − x, xn − x〉 = ‖xn‖2 + ‖x‖2 − 2〈xn, x〉 → 2‖x‖2 − 2〈x, x〉 = 0.

We have the norm preserving statement for three terms together, we can separate
them because we have ‖x‖ ≤ limsupn‖xn‖.
L2 norm preserving in limit for F+

Ãn
, ∇ÃnΦ̃n and (Φ̃nΦ̃∗n)0 respectively means

strong convergence in L2 to F+
A , ∇AΦ and (ΦΦ∗)0 respectively.

First strong convergence says Ãn → A in L2
1 thus in L4, recall that Sobolev

embedding we went over 2∗ = 4 in this case. Third strong convergence means
Φ̃n → Φ in L4. Putting both together and using CS again, we have (A0 − Ãn)Φ̃n
to (A0−A)Φ in L2 strongly. Together with ∇ÃnΦ̃n → ∇AΦ strongly in L2 before,

∇A0
Φ̃n = ∇ÃnΦ̃n + (A0 − Ãn)Φ̃n converges strongly in L2 to ∇AΦ + (A0 −A)Φ =

∇A0Φ. This finishes (2)(b).

1.3. (2)(c) Two claims and abstract SW with gauge fixing. We can prove
(2)(c) if the following two claims hold.

Claim 1: L2
1-converging sequence of smooth solutions in Coulomb gauge con-

verges in C∞ on every interior domain X ′ ⊂⊂ X\∂X.
Claim 2: On any interior domain, hypothesis in (2)(b) holds.



SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 5 3

So basically, Claim 1 says that we can get the conclusion of (2)(c) from conclusion
of 2(b); and Claim 2 says that we prove starting point of (2)(b) on any interior
domain. Validity of both claims immediately gives (2)(c). (So (2)(b) was a tool in
the proof.)

To prove Claim 1 using elliptic estimate, we first render SW into abstract form,
so that the argument is instructive and transferable to other similar settings.

Denote A = A0 + a. SW+Coulomb gauge fixing is

1

2
ρX(FA+

0
) + ρX(d+a)−(ΦΦ∗)0 = 0

DA0Φ + aΦ = 0

d∗a = 0

Terms are collected into D : Γ(iT ∗X ⊕ S+)→ Γ(iR⊕ isu(S+)⊕ S−),

(a,Φ) 7→ (d∗a, ρ(d+a), DA0Φ).

Write γ := (a,Φ).
Terms can be written as Q(γ, γ) for a symmetric bilinear form

Q(γ, γ̂) := (−1

2
(ΦΦ̂∗ + Φ̂Φ∗),

1

2
(aΦ̂ + âΦ, 0)).

The leftover term is denoted by −b := ( 1
2ρX(FA+

0
), 0, 0). So we have the abstract

expression of the SW under Coulomb gauge. Dγ +Q(γ, γ) = b.

1.4. Elliptic operator and estimate. The key fact is that D is elliptic, which
allows the following elliptic estimate (semi-Fredholm estimate):

Theorem 1.2. (Gårding inequality) Let D be a first order elliptic operator. Let
X(1) ⊂⊂ X. Then there exists constant C and for any smooth γ, we have

‖γ‖Lpk+1(X(1)) ≤ C(‖Dγ‖Lpk(X) + ‖γ‖Lp(X)).

A differential operator D : Γ(E)→ Γ(F ) of order k (over R coefficient) between
sections of bundles E and F over the same base X, if over trivializing neighborhood
U ⊂ Rd, E|U = U×Rm and F |U = U×Rn (so Γ(E|U ) = (C∞(U))m and Γ(E|U ) =
(C∞(U)n)), D is of the form

(f1, · · · , fm) 7→ (
∑

i,|α|≤k

a1iα∂
αfi, · · · ,

∑
i,|α|≤k

aniα∂
αfi),

where ∂α = ∂α1

∂x
α1
1

· · · ∂
αd

∂x
αd
d

for multi-index α = (α1, · · · , αd) and |α| =
∑
j αj .

The symbol of D(x, ξ) : Ex → Fx for ξ ∈ T ∗xX in the above local coordinate is
(v1, · · · , vm) 7→ (

∑
i,|α|=k a1iαξ

αvi, · · · ,
∑
i,|α|=k aniαξ

αvi), where ξα := ξα1
1 · · · ξ

αd
d .

For coordinate-free way, D(x, ξ)(v) is defined by choosing f ∈ C∞(X) with

f(x) = 0 and dxf = ξ, and e ∈ Γ(E) with e(x) = v, then D(x, ξ)(v) := D( f
k

k! e)(x).

We will also write, for η ∈ Ω1(X) and V ∈ Γ(E),

σ(D, η)V := (x 7→ D(x, ηx)Vx) ∈ Γ(F ).

As an example, for d : Γ(∧p(T ∗X))→ Γ(∧p+1(T ∗X)), d(x, ξ)(ηx) = ξ ∧ ηx.
A differential order is elliptic, if for any ξ ∈ T ∗xX\{0}, D(x, ξ) : Ex → Fx is

invertible.
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Exercise 1.3. DA0 : Γ(S+) → Γ(S−) is elliptic. For Γ(E1)
D1→ Γ(E2)

D2→ Γ(E3)
where D1 and D2 are first order operators, such that for ξ ∈ T ∗xX and for any
x ∈ X,

(E1)x
D1(x,ξ)→ (E2)x

D2(x,ξ)→ (E3)x

is exact, then Γ(E2)
D∗1+D2→ Γ(E1)⊕Γ(E3) is elliptic. Show d∗+d+ is elliptic. Thus

D in the SW with Coulomb gauge fixing is Elliptic.

1.5. Proof of Claim 1. For any interior domain X ′ ⊂⊂ X\∂X, choose cut off β
with β|X′ = 1 and compactly supported in X\∂X.

In hypothesis, we have γn → γ in L2
1. So for any ε > 0, there exists i0 such that

‖γi − γi0‖L2
1
≤ ε for all i ≥ i0.

From the abstract expression, we have

0 = D(γi − γj) + (Q(γi, γi)−Q(γj , γj)) = D(γi − γj) +Q(γi − γj , γi + γj).

Then (‡) ‖β(γi−γj)‖Lpk+1(X) ≤ C(‖D(β(γi−γj))‖Lpk(X) + ‖β(γi−γj)‖Lp(X)) by

G̊arding.
First term on RHS inside the norm is βD(γi − γj) + σ(D, dβ)(γi − γj), see the

notation for the second term in the previous subsection, which in Lpk in particular
is bounded multiple of ‖γi − γj‖Lpk (so is ‖β(γi − γj‖Lp).

We have

−βD(γi − γj) = βQ(γi − γj , γi + γj)

= Q(β(γi − γj), γi + γj − 2γi0) +Q(β(γi − γj), 2γi0).

Recall Q here involves no differentiation and is just an algebraic bilinear form and
can be regarded as (the projection with constant weight of) product of the factors.

Now we specialize to Lpk+1 = L3
1 (p = 3, k = 0), we use L3

1×L2
1 → L3, (a, b) 7→ ab

is bounded/continuous. First Q term in L2 ≤ C‖β(γi − γj)‖L3
1
‖γi + γj − 2γi0‖L2

1

whose second factor can be as small as we like (≤ ε) and this term can be moved
to the LHS of (‡) at the expense of increasing C by a factor. Thus we get

‖β(γi − γj)‖L3
1
≤ C‖γi − γj‖L3 .

We increase the regularity by 1 (here X ′ is arbitrary).
Specialize to Lpk+1 = L2

2 and use L2
2×L3

1 → L2
1, we can L2

2 bound in terms of L2
1

bound.
Specialize to L2

3 and use L2
3×L2

2 → L2
2, we can L2

2 bound in terms of L2
2 bound.

Specialize to Lk+1
2 , for k ≥ 3, we have the Banach algebra L2

k × L2
k → L2

k, we
get L2

k+1 bound in terms of L2
k bound.

The above argument of getting increasingly better regularity is called elliptic
bootstrapping.

Sobolve embedding Lpk ⊂ Cm for any 0 ≤ m < k − dimX
p

our case
= k − 4

2 = k − 2.

So we have L2
k+3 ⊂ Ck. This finishes Claim 1.

Exercise 1.4. Using L2
k ⊂ Ck−3 for k ≥ 3 to show Banach algebra property

L2
k × L2

k → L2
k for k ≥ 3.

1.6. Proof of Claim 2. Only show the cylindrical case near ∂X (namely, metri-
cally [−ε, 0] × Y ) which is sufficient for what follows. Denote Xs := X\(s, 0] × Y
with s ∈ [−s, 0]. Define fn(s) := San

Xs
(An,Φn) : [−ε, 0]→ R by integrating over Xs

only.
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(fn) has uniform bound from above and below with f ′n ≥ 0 and with uniformly
bounded integral. Thus, we must have µ({f ′n ≤ M}) ≥ δ > 0 independent of n
where µ is the Lebesgue measure. (Otherwise, for any i, there exists ni → ∞,
δi → 0 such that µ({f ′ni ≤ i}) < δi, so integral ≥ i(ε− δi)→∞, which contradicts
to the uniform boundedness of integral.)

We need a lemma: Let {Sα}α∈A where Sα ⊂ [a, b] and A is an infinite index
set. If µ(Sα) ≥ δ > 0. Then there exists infinite B ⊂ A such that

⋂
α∈B Sα 6= ∅.

(Exercise or see [KM] 5.1.6.)
Apply this lemma to Sn := {f ′n ≤ M} ⊂ [−ε, 0]. There exists s0 ∈ [−ε, 0],

f ′n(s0) ≤M . LHS is − d
dsL(γn|{s}×Y (s0) = ‖∇γn(s0)L‖2L2 .

We need a 3d analogue of Lemma 1.4 in the last Lecture notes, which says:
(Bn,Ψn) := γn(s0) on Y with ‖∇(Bn,Ψn)L‖2L2 ≤ M . Then there exists vn such

that vn(Bn,Ψn) converges in L2
1/2 norm to a L2

1-limit. Here L2
1/2-norm is defined

using Laplacian, which can be taken as a black box or a reading assignment on a
small chapter on pseudo-differential operator on e.g. Wells’ Differential analysis on
complex manifolds (or most books/notes on index theorem). For our purpose, it

means
∫
bn∧dbn and

∫
〈DBnΦ̃n|{s0}×Y , Φ̃n|{s0}×Y 〉 are controlled (which is like 1/2

derivative in L2).
Let S := S+|{s0}×Y the spin bundle.

If c1(S) is torsion, then L is gauge-invariant and continuous in L2
1/2 norm, which

is the starting point of (2)(a).
If c1(S) not torsion, then L is a constant multiple of two L2

1/2-terms above

+ 1
4

∫
bn ∧ FB+

0
, as bn ∈ L2

1/2

compact
⊂ L2, we have starting point of (2)(a) again.

This finishes Claim 2, thus (2)(c) and compactness theorem.
We do not have bubbling phenomenon in the interior (which makes this theory

drastically simpler, this is also why we spent some time on this part explaining some
heavy lifting by analysis to go beyond just story telling), but the theorem does not
discuss about what happens near the boundary Y , where (possibly several levels
of) SW solutions on invariant cylinder break off. We will take a quick look at this
after explaining how to deal with singular SW solution (A, 0) which has stabilizer
group S1 in the configuration space quotiented by gauge group.


	1. Lecture 5
	1.1. Recall where we were at from last time
	1.2. Proof of (2)(b), norm preserving plus weak convergence imply strong convergence
	1.3. (2)(c) Two claims and abstract SW with gauge fixing
	1.4. Elliptic operator and estimate
	1.5. Proof of Claim 1
	1.6. Proof of Claim 2


