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DINGYU YANG

1. LECTURE 6

Please email yangding@math.hu-berlin.de to be added to the mail list for
future announcement, or if having any questions, or to have contents added to the
lectures to make it more self-contained or useful. Lecture notes up to now are
available at www.mathematik.hu-berlin.de/~yangding/monopole.html

In 4d, the configuration space C(X,s) = A x I'(S*) 5 (A4,¢). A is the space of
spin® connections which is an affine space over I'(iT*X) = iQ2}(X), where we have
suppressed - ® Idg, . The gauge group Gx = {u : X — S'} acts with the quotient
B(X,5X> = C(X,Sx)/gx.

(A, ¢) is called irreducible if ¢ # 0. The irreducible configurations are C*(X, s) =
A x (T(ST)\{0}). Gx acts on C* = C*(X,sx).

constant functions —uildu,u‘
We have g1 constent funetions 5 ( " A X (D(SH\{0}) = B*(X,sx), the
latter two-arrow diagram is a principle bundle (with the middle arrow as inclusion
of the fiber). This induces

St P — B*(X,sx)

(namely, P := Ax (D(ST)\{0})/(Gx/S')), and this is an ST bundle over a manifold
(the action being free on the irreducibles). More on this can be found in the next
lecture. This part is to motivate why we are interested in S'-action and the way of
resolving singularity of this action in our setting.

1.1. Toy example. Ultimately, we want to deal with (I'(S™),(-,+)z2) in 4d and
(D(S),{(-,-)r2) in 3d in infinite dimensions. But we consider the toy model first:
(C™,(, )), where the latter is the standard inner product.

Let L be a Hermitian matrix on C"™ (which plays the role of Dp in infinite
dimension later).

Define function A(z) := &£ on C"\{0}, and it is C* := C\{0}-invariant; and

=12
real-valued, as (z, Lz) = (L*z,2) = (Lz,z) = (2, LZ).

So A : C"\{0} — R descends to CP"~! = (C™\{0})/C* — R, mapping from
the complex projective space. For CP" !, we have another sphere model CP" ™1 =
S2n=1 /81 where St = {|| - || = 1}.

Consider function f(z) = 1(z,Lz) on C".

The negative gradient flow equation for f is linear: % =—Lzfor z:R— C".

Claim: The negative gradient flow for 1A on CP" lis z : R — C™\{0} satisfying
4z — _ Lz under the projection « : C"\{0} — CP"~".
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To see this, switch to $?*~! viewpoint where A = f. For w € $?*~1, Vf in C"
has normal component along w (recall ||w| = 1), which is

{

w w

Vf>m

The tangent component is Vf — A(w)w = Lw — A(w)w which is the gradient of
flgzn—1. The image of z satisfying Z—i = —Lzon S?1is % = —Lw+ A(w)w.
On S?"~1, the critical point w is where V., f = Lw is parallel with w, i.e.
Lw = pw, from which we know p = (w, Lw) = A(w). The critical point w is
precisely the eigenvector of L and its eigenvalue is A(w).
For w € §?"~! a critical point of Vf (iff w is an eigenvector of L), f = 3(z, Lz):

= (w, Vfiw = (w, Lw)w = Aw)w.

[w]”

(Hessian, f)(v)
=Vu(Vf)(v)
=V(L — (2,L2)2)|.=w(v) where v € T,,5*" " with (v,w) =0
=Lv — (v, Lw)w — (Lw,v)w — (w, Lw)v recall Lw = \,w with eigenvector A,
=Lv — \yv
=(L — A\y)v.

Let us assume that the critical points of f are isolated, and the eigenspace
for each eigenvalue is 1-dimensional. Order them wq,--- ,w, with corresponding
eigenvectors Ay < -+ < A,. The index i(w;) = dimK~ = dimTy,, Uy, = 2(i—1) and
the unstable manifold U,,, is the subspace in CP"~* generated by [w],-- - , [w;_1].

1.2. Manifold situation with S' action. Let P be a compact manifold with
Riemannian metric (or a tame manifold with bounded geometry like C"). S acts
on the Riemannian manifold P by isometries.

Q = PS' = fixed point set of S!, which we assume is a manifold. Let S! acts
freely P\@, and assume (actually a consequence of next paragraph) @ is of even
codimension in P.

Let N := NoP — @ be the normal bundle with S* action, which then gives a
complex vector bundle structure. Let u : R/27Z x P — P denote the S! action,
then re® - v := ru(9)v.

We want to define P? the (real oriented) blowup along @ with the blow-down
map 7 : P7 — P as follows:

For € small, the disk bundle N¢ 2p diffeomorphic onto the image. Away from
the zero section, N°\{(q,0)},eq = (0,€) x S(N) & P\Q with O(r,v) := exp(rv).

We have P? := ([0,€) x S(N)) Ug P\Q, and we have projection 7 : P — P
which comes from gluing © and Id in two open parts.

w is diffeomorphism over P\Q), and over ¢ € @, the fiber of 7 is S(IN,).

Exercise 1.1. h: R™ — R™ a smooth embedding with h(0) = 0. Then there exists

m\o hU ny\o
(R™)7 —— (R")
smooth A7 : (R™)? — (R™)? such that lw l,r commutes.
m h n

Construct h?, and show that ~A? is a smooth embedding.
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(Hint: on (R™)7 = [0,00) x Sm=L h(rv) :~7‘i~z(r, v) for a (unique) smooth and
everywhere nonzero h, define h? : (r,v) = (r||h(r, v)||, h(r,v)/|[h(r,v)[]), and show
[I2]] is smooth.)

St action on P lifts to an St action on P?, which is free. P7\Q = P\Q. S! acts
on OP? = S(N) freely.

Define B = P?/S' 5 B. Over @, we have B° = @ with fiber over ¢ being
S(Nq)/sl = P(Nq)‘

1.3. Morse function on the blow-up. f : P — R invariant under S! has gradient
V = V/f. V defined on P\Q = P°\@P° extends to smooth V7 on P? and we have
V|aps C TOP?. (Use the above exercise applied to the flow of V). V7 not a
gradient, but as VV? at the zeros of V7 being symmetric with real eigenvalues, we
can still define K* as before.

Example: f(p) = 3(p, Lp), p € P =C", and P =[0,00) x S?"7! 5 (s,¢).

The negative “gradient” equation ¢ = —L¢ 4+ A(@)¢, 5 = —A()s.

Earlier, we have looked at CP™ !, while here we have CP™ ! x [0, 00).

Hessian,, = (L—\y, Ayw), where w is critical point/eigenvector of L. Soif A,, < 0,
index = icpn-1(w) + 1.

1.4. 4d SW. We have C?(X,sx) = A(X,sx) x RZ% x S(I'(ST)) the blow-up
of C(X,sx) = A(X,sx) x T'(ST) along reducible configurations {(A,0)}, where
STST)) :=All- ll> = 1}.

C?(X,sx) = C(X,s), (A,s,¢) — (A, s¢). The fiber over (4,0) is {(A,0,¢)} =
S(I'(ST)). Seiberg-Witten map F : C(X,sx) — T(isu(ST)@® S~) =: V as a section
of the trivial bundle V := C(X,s) x V.

The blowup section F? : C?(X,s) — 7*V is defined as

1 *
F (A7$7¢) = (§pX(Fj\—f) - 82(¢¢ )Oaqus)
This is not a pullback of F. (The pullback section is not Fredholm.)

If s # 0, F7(A,s,¢) = 0 iff F(4,s9) = 0. If s = 0, F7°(A,0,¢) = 0 iff
F(A,0) =0 and D¢ =0. Gx acts on F° equivariantly.

1.5. The restriction map and the blow-up flow equation. Let X' cc X

be an open domain. r : C7(X,sx) --» C°(X',sx|x/). The domain of this map is
dom(r) := {¢|x’ # 0}. Let v7 = (A, s, ¢) € dom(r),
(A787¢) = (A,SH(Z)HLz X’ 77)'
0 ol

The unique continuation (whose detail is covered in the exercise session) ensures
(F2)~1(0) C dom(r). (If a SW solution restricts to X’ and falls out of dom(r),
then it is identically 0 which contradicts to our starting point.)

Exercise 1.2. In a temporal gauge, a solution F?(7?) =0 on X =1 XY can be
written as

LBl =4 Fge —r2p ()0

Ly = —A(B,r,,)

%1/} = 7(DB’¢17A(B’T’1/})¢))’
where A(B,r,1) := (Y, Dpi)r2(y). Here, Dpi plays the role of Lz in the toy
example.



	1. Lecture 6
	1.1. Toy example
	1.2. Manifold situation with S1 action
	1.3. Morse function on the blow-up
	1.4. 4d SW
	1.5. The restriction map and the blow-up flow equation


