SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 6

DINGYU YANG

1. Lecture 6

Please email yangding@math.hu-berlin.de to be added to the mail list for future announcement, or if having any questions, or to have contents added to the lectures to make it more self-contained or useful. Lecture notes up to now are available at www.mathematik.hu-berlin.de/~yangding/monopole.html

In 4d, the configuration space $\mathcal{C}(X,\mathfrak{s}) = \mathcal{A} \times \Gamma(S^+) \ni (A,\phi)$. \mathcal{A} is the space of spin^c connections which is an affine space over $\Gamma(iT^*X) = i\Omega^1(X)$, where we have suppressed $\cdot \otimes \operatorname{Id}_{S_X}$. The gauge group $\mathcal{G}_X = \{u : X \to S^1\}$ acts with the quotient $\mathcal{B}(X,\mathfrak{s}_X) := \mathcal{C}(X,\mathfrak{s}_X)/\mathcal{G}_X$.

 (A, ϕ) is called irreducible if $\phi \neq 0$. The irreducible configurations are $\mathcal{C}^*(X, \mathfrak{s}) = \mathcal{A} \times (\Gamma(S^+) \setminus \{0\})$. \mathcal{G}_X acts on $\mathcal{C}^* = \mathcal{C}^*(X, \mathfrak{s}_X)$.

We have $S^1 \xrightarrow{\text{constant functions}} \mathcal{G}_X \xrightarrow{(-u^{-1}du, u \cdot)} \mathcal{A} \times (\Gamma(S^+) \setminus \{0\}) \to \mathcal{B}^*(X, \mathfrak{s}_X)$, the latter two-arrow diagram is a principle bundle (with the middle arrow as inclusion of the fiber). This induces

$$S^1 \hookrightarrow P \to \mathcal{B}^*(X, \mathfrak{s}_X)$$

(namely, $P := \mathcal{A} \times (\Gamma(S^+) \setminus \{0\}) / (\mathcal{G}_X / S^1))$, and this is an S^1 bundle over a manifold (the action being free on the irreducibles). More on this can be found in the next lecture. This part is to motivate why we are interested in S^1 -action and the way of resolving singularity of this action in our setting.

1.1. Toy example. Ultimately, we want to deal with $(\Gamma(S^+), \langle \cdot, \cdot \rangle_{L^2})$ in 4d and $(\Gamma(S), \langle \cdot, \cdot \rangle_{L^2})$ in 3d in infinite dimensions. But we consider the toy model first: $(\mathbb{C}^n, \langle \cdot, \rangle)$, where the latter is the standard inner product.

Let L be a Hermitian matrix on \mathbb{C}^n (which plays the role of D_B in infinite dimension later).

Define function $\Lambda(z) := \frac{\langle z, Lz \rangle}{\|z\|^2}$ on $\mathbb{C}^n \setminus \{0\}$, and it is $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$ -invariant; and real-valued, as $\langle z, Lz \rangle = \langle L^*z, z \rangle = \langle Lz, z \rangle = \overline{\langle z, LZ \rangle}$.

real-valued, as $\langle z, Lz \rangle = \langle L^*z, z \rangle = \langle Lz, z \rangle = \overline{\langle z, LZ \rangle}$. So $\Lambda : \mathbb{C}^n \setminus \{0\} \to \mathbb{R}$ descends to $\mathbb{CP}^{n-1} = (\mathbb{C}^n \setminus \{0\})/\mathbb{C}^* \to \mathbb{R}$, mapping from the complex projective space. For \mathbb{CP}^{n-1} , we have another sphere model $\mathbb{CP}^{n-1} = S^{2n-1}/S^1$ where $S^{n-1} = \{ \| \cdot \| = 1 \}$.

Consider function $f(z) = \frac{1}{2} \langle z, Lz \rangle$ on \mathbb{C}^n .

The negative gradient flow equation for f is linear: $\frac{dz}{dt} = -Lz$ for $z : \mathbb{R} \to \mathbb{C}^n$. **Claim:** The negative gradient flow for $\frac{1}{2}\Lambda$ on \mathbb{CP}^{n-1} is $z : \mathbb{R} \to \mathbb{C}^n \setminus \{0\}$ satisfying $\frac{dz}{dt} = -Lz$ under the projection $\pi : \mathbb{C}^n \setminus \{0\} \to \mathbb{CP}^{n-1}$.

Date: December 11, 2020.

DINGYU YANG

To see this, switch to S^{2n-1} viewpoint where $\frac{1}{2}\Lambda = f$. For $w \in S^{2n-1}$, ∇f in \mathbb{C}^n has normal component along w (recall ||w|| = 1), which is

$$\langle \frac{w}{|w|}, \nabla f \rangle \frac{w}{|w|} = \langle w, \nabla f \rangle w = \langle w, Lw \rangle w = \Lambda(w)w.$$

The tangent component is $\nabla f - \Lambda(w)w = Lw - \Lambda(w)w$ which is the gradient of $f|_{S^{2n-1}}$. The image of z satisfying $\frac{dz}{dt} = -Lz$ on S^{2n-1} is $\frac{dw}{dt} = -Lw + \Lambda(w)w$.

On S^{2n-1} , the critical point w is where $\nabla_w f = Lw$ is parallel with w, i.e. $Lw = \mu w$, from which we know $\mu = \langle w, Lw \rangle = \Lambda(w)$. The critical point w is precisely the eigenvector of L and its eigenvalue is $\Lambda(w)$.

For $w \in S^{2n-1}$ a critical point of ∇f (iff w is an eigenvector of L), $f = \frac{1}{2} \langle z, Lz \rangle$:

$$\begin{aligned} &(\text{Hessian}_w f)(v) \\ &= \nabla_w (\nabla f)(v) \\ &= \nabla (L - \langle z, Lz \rangle z)|_{z=w}(v) \quad \text{where } v \in T_w S^{2n-1} \text{ with } \langle v, w \rangle = 0 \\ &= Lv - \langle v, Lw \rangle w - \langle Lw, v \rangle w - \langle w, Lw \rangle v \quad \text{recall } Lw = \lambda_w w \text{ with eigenvector } \lambda_w \\ &= Lv - \lambda_w v \\ &= (L - \lambda_w)v. \end{aligned}$$

Let us **assume** that the critical points of f are isolated, and the eigenspace for each eigenvalue is 1-dimensional. Order them w_1, \dots, w_n with corresponding eigenvectors $\lambda_1 < \cdots < \lambda_n$. The index $i(w_i) = \dim K^- = \dim T_{w_i} U_{w_i} = 2(i-1)$ and the unstable manifold U_{w_i} is the subspace in \mathbb{CP}^{n-1} generated by $[w_1], \cdots, [w_{i-1}]$.

1.2. Manifold situation with S^1 action. Let P be a compact manifold with Riemannian metric (or a tame manifold with bounded geometry like \mathbb{C}^n). S^1 acts on the Riemannian manifold P by isometries.

 $Q := P^{S^1}$ = fixed point set of S^1 , which we assume is a manifold. Let S^1 acts freely $P \setminus Q$, and assume (actually a consequence of next paragraph) Q is of even codimension in P.

Let $N := N_Q P \to Q$ be the normal bundle with S^1 action, which then gives a complex vector bundle structure. Let $\mu : \mathbb{R}/2\pi\mathbb{Z} \times P \to P$ denote the S^1 action, then $re^{i\theta} \cdot v := r\mu(\theta)v$.

We want to define P^{σ} the (real oriented) blowup along Q with the blow-down map $\pi: P^{\sigma} \to P$ as follows:

For ϵ small, the disk bundle $N^{\epsilon} \stackrel{\text{exp}}{\hookrightarrow} P$ diffeomorphic onto the image. Away from the zero section, $N^{\epsilon} \setminus \{(q,0)\}_{q \in Q} = (0,\epsilon) \times S(N) \stackrel{\Theta}{\hookrightarrow} P \setminus Q$ with $\Theta(r,v) := \exp(rv)$.

We have $P^{\sigma} := ([0,\epsilon) \times S(N)) \cup_{\Theta} P \setminus Q$, and we have projection $\pi : P^{\sigma} \to P$ which comes from gluing Θ and Id in two open parts.

 π is diffeomorphism over $P \setminus Q$, and over $q \in Q$, the fiber of π is $S(N_q)$.

Exercise 1.1. $h: \mathbb{R}^m \to \mathbb{R}^n$ a smooth embedding with h(0) = 0. Then there exists $(\mathbb{R}^m)^{\sigma} \xrightarrow{h^{\sigma}} (\mathbb{R}^n)^{\sigma}$ $\downarrow_{\pi} \qquad \qquad \downarrow_{\pi} \text{ commutes.}$

smooth $h^{\sigma}: (\mathbb{R}^m)^{\sigma} \to (\mathbb{R}^n)^{\sigma}$ such that $\xrightarrow{h} \mathbb{R}^n$ \mathbb{R}^m

Construct h^{σ} , and show that h^{σ} is a smooth embedding.

(Hint: on $(\mathbb{R}^m)^{\sigma} = [0, \infty) \times S^{m-1}$, $h(rv) = r\tilde{h}(r, v)$ for a (unique) smooth and everywhere nonzero \tilde{h} , define $h^{\sigma} : (r, v) \mapsto (r \|\tilde{h}(r, v)\|, \tilde{h}(r, v)/\|\tilde{h}(r, v)\|)$, and show $\|\tilde{h}\|$ is smooth.)

 S^1 action on P lifts to an S^1 action on P^{σ} , which is free. $P^{\sigma} \setminus Q = P \setminus Q$. S^1 acts on $\partial P^{\sigma} = S(N)$ freely.

Define $B^{\sigma} = P^{\sigma}/S^1 \xrightarrow{\pi} B$. Over Q, we have $\partial B^{\sigma} \xrightarrow{\pi} Q$ with fiber over q being $S(N_q)/S^1 = \mathbb{P}(N_q)$.

1.3. Morse function on the blow-up. $\tilde{f}: P \to \mathbb{R}$ invariant under S^1 has gradient $\tilde{V} = \nabla \tilde{f}$. \tilde{V} defined on $P \setminus Q = P^{\sigma} \setminus \partial P^{\sigma}$ extends to smooth \tilde{V}^{σ} on P^{σ} and we have $\tilde{V}^{\sigma}|_{\partial P^{\sigma}} \subset T \partial P^{\sigma}$. (Use the above exercise applied to the flow of \tilde{V}). \tilde{V}^{σ} not a gradient, but as $\nabla \tilde{V}^{\sigma}$ at the zeros of \tilde{V}^{σ} being symmetric with real eigenvalues, we can still define K^{\pm} as before.

Example: $\tilde{f}(p) = \frac{1}{2} \langle p, Lp \rangle, \ p \in P = \mathbb{C}^n$, and $P^{\sigma} = [0, \infty) \times S^{2n-1} \ni (s, \phi)$. The negative "gradient" equation $\dot{\phi} = -L\phi + \Lambda(\phi)\phi, \ \dot{s} = -\Lambda(\phi)s$.

Earlier, we have looked at \mathbb{CP}^{n-1} , while here we have $\mathbb{CP}^{n-1} \times [0, \infty)$.

Hessian_w = $(L - \lambda_w, \lambda_w)$, where w is critical point/eigenvector of L. So if $\lambda_w < 0$, index = $i_{\mathbb{CP}^{n-1}}(w) + 1$.

1.4. **4d SW.** We have $\mathcal{C}^{\sigma}(X, \mathfrak{s}_X) := \mathcal{A}(X, \mathfrak{s}_X) \times \mathbb{R}^{\geq 0} \times \mathbb{S}(\Gamma(S^+))$ the blow-up of $\mathcal{C}(X, \mathfrak{s}_X) = \mathcal{A}(X, \mathfrak{s}_X) \times \Gamma(S^+)$ along reducible configurations $\{(A, 0)\}$, where $\mathbb{S}(\Gamma(S^+)) := \{ \| \cdot \|_{L^2} = 1 \}.$

 $\mathcal{C}^{\sigma}(X,\mathfrak{s}_X) \to \mathcal{C}(X,\mathfrak{s}), (A, s, \phi) \mapsto (A, s\phi).$ The fiber over (A, 0) is $\{(A, 0, \phi)\} \cong \mathbb{S}(\Gamma(S^+)).$ Seiberg-Witten map $\mathcal{F}: \mathcal{C}(X,\mathfrak{s}_X) \to \Gamma(i\mathfrak{su}(S^+) \oplus S^-) =: \mathcal{V}$ as a section of the trivial bundle $\underline{\mathcal{V}}:= \mathcal{C}(X,\mathfrak{s}) \times \mathcal{V}.$

The blowup section $\mathcal{F}^{\sigma}: \mathcal{C}^{\sigma}(X, \mathfrak{s}) \to \pi^* \underline{\mathcal{V}}$ is defined as

$$\mathcal{F}^{\sigma}: (A, s, \phi) \mapsto (\frac{1}{2}\rho_X(F_{A^t}^+) - s^2(\phi\phi^*)_0, D_A^+\phi).$$

This is not a pullback of \mathcal{F} . (The pullback section is not Fredholm.)

If $s \neq 0$, $\mathcal{F}^{\sigma}(A, s, \phi) = 0$ iff $\mathcal{F}(A, s\phi) = 0$. If s = 0, $\mathcal{F}^{\sigma}(A, 0, \phi) = 0$ iff $\mathcal{F}(A, 0) = 0$ and $D_A^+ \phi = 0$. \mathcal{G}_X acts on \mathcal{F}^{σ} equivariantly.

1.5. The restriction map and the blow-up flow equation. Let $X^1 \subset X$ be an open domain. $r : \mathcal{C}^{\sigma}(X, \mathfrak{s}_X) \dashrightarrow \mathcal{C}^{\sigma}(X', \mathfrak{s}_X|_{X'})$. The domain of this map is $\operatorname{dom}(r) := \{\phi|_{X'} \neq 0\}$. Let $\gamma^{\sigma} = (A, s, \phi) \in \operatorname{dom}(r)$,

$$(A, s, \phi) \mapsto (A, s \| \phi \|_{L^2(X')}, \frac{\phi}{\| \phi \|_{L^2(X')}}).$$

The unique continuation (whose detail is covered in the exercise session) ensures $(\mathcal{F}^{\sigma})^{-1}(0) \subset \operatorname{dom}(r)$. (If a SW solution restricts to X' and falls out of dom(r), then it is identically 0 which contradicts to our starting point.)

Exercise 1.2. In a temporal gauge, a solution $\mathcal{F}^{\sigma}(\gamma^{\sigma}) = 0$ on $X = I \times Y$ can be written as

$$\begin{cases} \frac{1}{2} \frac{d}{dt} B^t &= \frac{1}{2} * F_{Bt} - r^2 \rho^{-1} (\psi \psi^*)_0 \\ \frac{d}{dt} r &= -\Lambda(B, r, \psi_r) \\ \frac{d}{dt} \psi &= -(D_B \psi - \Lambda(B, r, \psi) \psi)), \end{cases}$$

where $\Lambda(B, r, \psi) := \langle \psi, D_B \psi \rangle_{L^2(Y)}$. Here, $D_B \psi$ plays the role of Lz in the toy example.