
SEIBERG-WITTEN FLOER HOMOLOGY LECTURE 9

DINGYU YANG

1. Lecture 9

Please email yangding@math.hu-berlin.de if anything. Lecture notes up to
now are available at www.mathematik.hu-berlin.de/∼yangding/monopole.html.
Exercises sprinkled throughout lecture notes have been collected into an exercise
sheet at www.mathematik.hu-berlin.de/∼yangding/Exercise SWF.pdf.

This lecture is about moduli spaces of trajectories and regularity. Exercise ses-
sion fills some details skipped during the lecture and gives the proof for regularity.

We focus on shifting the functional analytic setting from I × Y with compact I
to R× Y =: Z.

We saw in the lecture notes that Cτ (I × Y ) the τ model (instead of σ model)
adapted to the flow picture.
σ model: A typical point in the blow-up configuration space is (A, s, ψ) with

constant s ≥ 0 and ‖ψ‖L2(Z) = 1 in 4d.

We restrict spinor ψ̌(t) := ψ(t, ·) on each slice Y ∼= {t}×Y (unique continuation
property implies that if ψ 6= 0, then ψ̌(t) 6= 0 for all t.)

To make each slice a σ model (with last entry being of unit length), we need
to divide the spinor by its norm and multiply this norm to the middle entry,

(Ǎ(t), s‖ψ̌(t)‖L2(Y ),
ψ̌(t)

‖ψ̌(t)‖L2(Y )

), making it into a non-negative function R → R≥0.

This is τ model.
Cτk (Y ) with the middle function asked to be in L2

k. This is no longer a Hilbert/Banach

manifold with boundary, but a closed subspace of a Hilbert manifold C̃τk (Y ) where
the middle function in the latter is R→ R (no constraint).

For I compact, we have the correspondence between a point in Cτ (I×Y )/G(I×Y )
in 4d and a smooth path in Cσ(Y )/G(Y ) in 3d.

But for I = R, need care: C̃k,loc :=

{(A, s, φ) ∈ A0 + L2
k,loc(iT

∗Z) × L2
k,loc(R,R) × L2

k,loc(S
+) | ‖ψ̌(t)‖L2(Y ;S) = 1},

here Y ∼= {t}×Y and S ∼= S+|{t}×Y . The subscript loc means L2
k norm is bounded

for function/section restricted to compact I × Y .
We also consider the un-tilded version Cτk,loc where s(t) ≥ 0.

The gauge group Gk+1,loc = {u ∈ L2
k+1,loc(Z,C) | |u(·)| = 1}, with quotients

Bτk,loc ⊂ B̃τk,loc.
q ∈ Pres residual part such that zeros of (∇L)σ non-degenerate.

4d SW map is a section Fτq : C̃τk,loc(R × Y ) → Vτk−1,loc(R × Y ), the fiber of the

latter at (A0, s0, φ0) is {(a, s, φ) ∈
L2
k−1,loc(isu(S+))⊕L2

k−1,loc(R,R)⊕L2
k−1,loc(S

−) | Re〈φ̌0(t), φ̌(t)〉L2(Y ) = 0 for all t}.
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This bundle is not a locally trivial vector bundle, but ok if we choose some projec-
tion.

If b is zero of (∇L)σ, b corresponds to a translation-invariant γb ∈ Cτk,loc(Z) s.t.

Fτq (γb) = 0. So γ̌b(·) is constant.

Definition 1.1. [γ] ∈ B̃τk,loc(Z) is asymptotic to [b] as t→ ±∞, if [τ∗t γ]→ [γb] in

B̃τk,loc, where τ∗t γ := γ(·+ t). Written as lim
→
γ = [b] when t→ +∞, and lim

←
[γ] = [b]

when t→ −∞.

Definition 1.2. A moduli of trajectories is
M([a], [b]) = {[γ] ∈ Bτk,loc(Z) | Fτq (γ) = 0, lim

←
γ = [a], lim

→
γ = [b]}. It is indepen-

dent of k due to elliptic regularity before. We also have M̃([a][b]), where we have

[γ] ∈ B̃τk,loc(Z) and with the same other constraints.

[γ] ∈ M([a], [b]) corresponds to [γ̌(·)] in Bσk (Y ) connecting from [a] to [b]. It
determines a relative homotopy class z ∈ π1(Bσk (Y ); [a], [b]) which is an affine space
over H1(Y ; Z), the components of gauge group, via action. So it decomposes into
components, M([a], [b]) =

⊔
zMz([a], [b]). This is most natural way to describe the

moduli space of trajectories.
But we need more direction version for transversality:
Choose lifts a and b in Cσk (Y ) of zeros [a] and [b] of (∇L)σ. Choose smooth

γ0 = (A0, s0, φ0) ∈ Cτk,loc(R × Y ), which is γa near −∞ and γb near +∞ and

[γ̌0] ∈ z.
Define C̃τk (a, b) = {γ ∈ Cτk,loc(Z) | γ − γ0 ∈ L2

k(iT ∗Z) × L2
k(R,R) × L2

k,A0
(S+)},

here L2
k is global, and L2

k,A0
means (higher) covariant derivative are defined using

the connection A0 from γ0.
Sitting inside, we have Cτk (a, b) where we have the middle variable in L2

k(R, [0,∞)).
The gauge group is defined as Gk+1 := {u ∈ Gk+1,loc | u(Cτk (a, b)) ⊂ Cτk (a, b)}. A

fact is Gk+1(Z) = {u ∈ Gk+1,loc | 1− u ∈ L2
k+1(Z; C)}.

Define Bτk,z([a], [b]) = Cτk (a, b)/Gk+1(Z). Bτk ([a], [b]) :=
⊔
z B

τ
k,z([a], [b]). The

tilde version are defined the same way. They are Hausdorff.

Theorem 1.3. Let [γ] ∈ Mz([a], [b]). Choose any lift γ ∈ Cτk,loc(Z), choose lifts

a, b and γ0 such that [γ̌0] ∈ z. Then there exists u ∈ Gk+1,loc s.t. u(γ) ∈ Cτk (a, b)
(namely, there exists a gauge representative that lies in the direct description). Any
two such u and u′, we have u′u−1 ∈ Gk+1(Z). So

γ 7→ [(u(γ))] = [(u′u−1)(u(γ))] = [u′(γ)] ∈ Bτk,τ ([a], [b])

is well-defined independent of choice u. Then actually this map descends to an
injective map from Mz([a], [b]), and this map has the image

{[γ] ∈ Bτk,τ ([a, b]) | Fτq (γ) = 0},
and this bijection is homeomorphism. Similarly, we have the statement for the tilde
version.

1.0.1. Local structure of moduli space of trajectories. We have just realizedMz([a], [b])
as the zero set of Fτq . Now we want to show Fτq to be locally non-linear Fredholm
between Banach manifolds.
L0 + h k-ASAFOE on sections of E → Y as in the last lecture (L0 SAFOE,

h : C∞(E)→ L2(E) extends to bounded h : L2
j (E)→ L2

j (E) for all j with |j| ≤ k).
We pull E → Y back to E → Z = R× Y .
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Consider the translation-invariant D = d
dt+L0+h is bounded L2

j+1(E)→ L2
j (E)

for |j| ≤ k.
Spectrum for an operator on a real Hilbert space means spectrum of its com-

plexification.

Definition 1.4. Let L0 +h be a k-ASAFOE operator. It is hyperbolic, if spectrum
is disjoint from the imaginary axis in C.

Proposition 1.5. L0 + h hyperbolic, then D = d
dt + L0 + h : L2

j+1(E)→ L2
j (E) is

invertible (thus Fredholm).

Now consider time-dependent h. D := d
dt + L0 + h : L2

1 → L2 (independent of k
so we consider lowest k). Family L0 + ht, t ∈ [0, 1], which is a continuous path in
{bounded operator L2 → L2} with L0 + h0 and L0 + h1 hyperbolic.

The spectral flow sf(L0 + ht) = “net number of eigenvalues whose real parts
go from negative to positive”. We make this precise in the exercise session as a
genericity statement.

Proposition 1.6. L0 SAFOE on sections of E → Y , ht bounded L2(E)→ L2(E)
continuous in t in operator norm with h±∞ = h±, and L0 + h± hyperbolic. Then
Q = d

dt+L0+ht : L2(R×Y ;E)→ L2(R×Y ;E) is Fredholm with index = sf(L0+ht).

1.0.2. Slice. T τj denotes the L2
j fiber-completion of the tangent bundle of C̃τk (a, b)

(the latter of which has the constraint Re〈φ0|t, φ|t〉L2(Y ;S) = 0 in its definition),
where φ0 is from the base and φ is from the vector.

Write the derivative of the gauge group action as before as dτγξ = (−dξ, 0, ξφ0)
with γ = (A0, s0, φ0).

Define Sτk,γ := {(A = A0 + a, s, φ) ∈ C̃τk (a, b) | Coulτγ(A0 + a, s, φ) = 0}, where

Coulτγ : C̃τk (a, b)→ L2
k−1(iR),

(A0 + a, s, φ) 7→ −d∗a+ iss0Re〈iφ0, φ〉+ i|φ0|2Re(

∫
Y
〈iφ0, φ〉∫
Y

1
).

The point of this map is its linearization dγCoulτγ extends to dτ,† : T τj → L2
j−1(iR)

has the following property: Kτj,k := ker dτ,†γ and J τj,γ = imdτγ are complementary
closed subspaces spanning T τj,γ which vary smoothly over the base.

Want to show that restricting to the slice denoted by ·|, the equation has Fred-
holm linearization.
Fτq | a section of Vτk−1| → Sτk,γ , where a tame perturbation q chosen s.t. zeros of

(∇L)σ are non-degenerate.
Vτk−1 is not a trivial vector bundle along the path, and we need a projection Πτ

γ

to define linearization (just like differentiating on a sphere), where

Πτ
γ : L2

j (isu(S+))⊕ L2
j (R,R)⊕ L2

j,A0
(S−)→ Vτj,γ ,

(η, r, ψ) 7→ (η, r,Π⊥φ0(t)ψ) where Π⊥φ0(t)ψ = ψ − Re〈φ̌0(t), ψ(t)〉L2(Y ;S)φ0.

dFτq is defined by taking derivative in the ambient Banach space, then projecting.
a = b+ cdt where b is in temporal gauge, and we denote

(a, r, φ) = ((b, r, ψ), c) = (V, c).

dγ0Fτq : (V, c) 7→ d
dtV + d(∇L)σ(V ) + dσγ0(t)c. Here d

dtV :=
(
db
dt ,

dr
dt ,Π

⊥
φ0(t)(

dφ
dt )
)
.

(We used iT ∗Y with isu(S+)).
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We impose the Coulomb gauge fixing condition 0 = dτ,†0 (V, c) = dc
dt + dσ,†γ0(t)(V ).

We also assume γ0 is in temporal gauge for convenience.
SW + gauge fixing, Qγ0 = dγ0Fτq ⊕ dτ,†γ0 . In path notation, (V, c) 7→ d

dt (V, c) +
Lγ0(t)(V, c).

Here, if denoting c := γ0(t), Lc =

(
dc(∇L)σ dσc

dσ,†c 0

)
= Ĥess

σ

q,c before.

Theorem 1.7. Qγ0 is Fredholm for 1 ≤ j ≤ k with index independent of j and
satisfying the semi-Fredholm estimate/Gårding inequality ‖u‖L2

j
≤ C1‖Qγ0u‖L2

j−1
+

C2‖u‖L2
j−1

.

d(Fτq |slice) : Kτj,γ → Vτj−1,γ Fredholm with index same as that of Qγ0 , also called
relative grading

grz([a], [b]) = gr(a, b) = sf(Ĥess
σ

q,γ̂0(t)) = sf(

(
0 dσγ(t)

dσ,†γ0(t) 0

)
⊕Hessσq,γ0(t)) = sf(Hessσq,γ0(t)).

1.0.3. Regularity. Mz([a], [b]) ⊂ M̃z([a], [b]) ⊂ B̃τk,z([a], [b]), where the first one has

s(t) ≥ 0.
A neighborhood of [γ] in Mz([a], [b]) is the zero set of Fτq |Uγ : Uγ → Vτk−1. If

dγFτq | : Kτk,γ → Vτk−1,γ is surjective, then Mz([a], [b]) is a manifold near [γ] of

dimension dim ker dγFτq | = indQγ = grz([a], [b]).
Unique continuation means a SW solution γ = (A, s, φ) has either s ≡ 0 or

s : R→ R\{0}.
In the second case if s > 0, [γ] ∈Mz([a], [b]), so

Mz([a], [b]) = M̃z([a], [b])/(i : [A, s, φ] 7→ [A,−s, φ]).

In the flow form of 4d SW equation, we have appearance of Λq(a), which plays
the eigenvalue role in the finite dimensional case. If a is a reducible zero, a is called
boundary-stable if Λq(a) > 0, and boundary-unstable if Λq(a) < 0.

Lemma 1.8. If Mz([a], [b]) conatins an irreducible trajectory, then a is either ir-
reducible or boundary-unstable, and b is either irreducible or boundary-stable.

Proof. ds
dt = −Λq(γ̌(t))s and s > 0. We have Λq(γ̌(t))→ Λq(a) and to Λq(b).

If a reducible, s→ 0 at −∞, then Λq(a) < 0.
If b reducible, similarly, we have Λq(b) > 0. �

If γ reducible, Qγ = Q∂γ ⊕Qνγ .

Q∂γ = (dγFτq )∂ ⊕ dτ,†γ whose first factor is invariant under involution i, and

Qνγ : L2
k(iR)→ L2

k−1(iR), s 7→ ds
dt + Λ(γ̌)s.

After calculation, one can see (dim kerQνγ ,dimcokQνγ) is (1, 0) if a is ∂-unstable
and b is boundary-stable; (0, 1) if a is boundary-stable and b is boundary-unstable
(this case is said to be boundary-obstructed, this is still ok due to be constant
dimension of cokernel); (0, 0) if both a and b are boundary-stable, or both a and b
are boundary-unstable.

The definition of regular is stated.
The regularity theorem says that there exists a residual q ∈ Pres, (i) all zeros of

(∇L)σ non-degenerate; (ii) Mz([a], [b]) is regular.
The proof is provided in the exercise session.
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