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1 Elliptic Curves, the Finiteness

Theorem of SHAFAREVI

�

C

1.1 Elliptic Curves over C

Instead of the introduction we remember to an arithmetic-geometric part of the theory

of elliptic curves. Let ^ be a lattice in C, that means a discrete additive subgroup of

(ZZ)-rank 2. Two lattices ^ and ^

0

in C are said to be equivalent, if there is a complex

number � 6= 0 such that ^

0

= �^. Each of our lattices is equivalent to a lattice ^

�

=

ZZ+ ZZ� with

� 2 IH = fz 2 C; Im z > 0g :

IH is called the POINCAR

�

E upper half plane. The quotient spaces

E

^

= C=^ ; E

�

= C=^

�

are one-dimensional complex tori, that means complete RIEMANN surfaces with abelian

group structures. For equivalent lattices ^;^

0

we have a commutative diagram

0 �! ^ �! C �! E �! 0

#o #

k

#o

0 �! ^

0

�! C �! E

0

�! 0

with obvious notations. The tori E;E

0

are isomorphic. So each E = E

^

is isomorphic to

a complex torus E

�

for a suitable � 2 IH.

Each torus E has a smooth complex projective algebraic structure. More precisely, it

can be analytically embedded into the complex projective plane IP

2

(C). A torus together

with such an embedding is called an elliptic curve over C). For the embeddings we need

elliptic functions on C. A meromorphic function on C is called elliptic, if it is ^-periodic

for a suitable C-lattice ^.

1



2 1. Elliptic Curves, the Finiteness Theorem of SHAFAREVI

�

C

A central role among the elliptic functions play the WEIERSTRASS }-functions. For a

�xed lattice ^ it is de�ned as

}

^

: C �! IP

1

(C) ;

}

^

(z) = 1=z

2

+

X

!2^

�

�

1=(z � !)

2

� 1=!

2

�

;

where ^

�

= ^n0. The �eld of meromorphic function of E

^

is generated by }

^

and }

0

^

.

Both functions are related by a simple algebraic equation producing a di�erential equation

for }

^

:

}

0

^

(z)

2

= 4}

^

(z)

3

� g

2

(^)}

^

(z)� g

3

(^) ;

where

g

2

(^) = 60

X

!2^

�

1=!

4

; g

3

(^) = 140

X

!2^

�

1=!

b

:

On this way we get a projective embedding

h : C=^ ,! IP

2

(C)

z mod ^ 7�! (1 : }(z) : }

0

(z)) (z =2 ^)

Using projective coordinates (w : x : y) the image curve = E(^) is de�ned by the following

equation:

E : WY

2

= 4X

3

� g

2

(^)W

2

X � g

3

(^)W

3

(1.1)

Conversely, if E is a smooth projective curve of degree 3, then there is a projectively

equivalent curve E

0

of equation type

E

0

: WY

2

= 4X

3

� g

2

W

2

X � g

3

W

3

: (1.2)

The equation in (1.2) or the corresponding cubic form is called a WEIERSTRASS normal

form of E. Moreover, there is a C-lattice ^ such that g

2

= g

2

(^), g

3

= g

3

(^). So we get

in any case a uniformization C! C=^

�

! E.

We want to introduce and to explain now the moduli space of elliptic curves.

POINCAR

�

E's upper half plane IH is the simplest non-euclidean model of a homogeneous

(symmetric) space. On IH acts transitively the real special linear group Sl(2; IR) via

fractional linear transformations

� 7! (a� + b)=(c� + d) ; � 2 IH ;

 

a

c

b

d

!

2 Sl(2; IR) :

The quotient space Sl(2;ZZ)nIH has a natural complex structure. It is isomorphic to the

a�ne complex line AA

1

(C) = C. Its natural (smooth) compacti�cation is the projective

complex line IP

1

(C).
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This can be made visible by decomposing IH into in�nitely many Sl(2;ZZ)-fundamental

domains as it has been �rst done by GAUSS. The elements S =

�

0

1

�1

0

�

and T =

�

1

0

1

1

�

generate the unimodular group Sl(2;ZZ). There is a nice central fundamental domain F as

drawn in the �gure (1.3). By identi�cation of equivalent boundary points one gets AA

1

(C)

and the compacti�cation by addition of the external boundary point not lying in IH.

Shifting F by means of products of S; T; S

�1

; T

�1

one obtains a covering of IH consisting

of Sl

2

(2;ZZ)-fundamental domains.

(1.3)

1.3.eps

107 � 59 mm

T

�1
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�1

F F TF

TSS

T

�1
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STS ST

0

1

�1

The geometric imagination can be made precise by means of modular functions. These

are Sl(2;ZZ)-invariant meromorphic functions on IH allowing a meromorphic extension on

Sl(2;ZZ)nIH to the compacti�cation IP

1

(C). For i = 2; 3 we set g

i

(� ) = g

i

(^

�

). Looking

at the discriminant of the polynomial p

3

(X) in the WEIERSTRASS equation

Y

2

= p

3

(X) = 4X

3

� g

2

X � g

3

of E

�

we de�ne

�(� ) = 27g

2

3

(� )� g

3

2

(� ) :

Then g

3

2

(� )=�(� ) is a modular function. The elliptic modular function is de�ned as

j(� ) = 12

3

g

3

2

(� )=�(� ). Especially it is invariant under S : � 7! � + 1. It can be written

as Fourier series:

j(� ) = q

�1

+ 744q

0

+

1

X

n=1

a

n

q

n

; q = e

2�i�

; a

n

2 ZZ :

The elliptic modular function j : IH ! C goes down to an analytic isomorphism

Sl(2;ZZ)nIH! C.

Consider now the elliptic curve family E over IH de�ned by

E = f(w : x : y); � ) 2 IP

2

(C)� IH ; wy

2

= 4x

3

� g

2

(� )w

2

x� g

3

(� )w

3

g:
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�

C

It has a natural projection onto IH. The �bres are the elliptic curves E

�

. The up-

per half plane IH appears as parameter space for (up to isomorphy) all elliptic curves.

This analytic family of curves is denoted by E=IH. The �bres E

�

; E

�

0

, are isomorphic i�

�

0

2 Sl(2;ZZ)� . Therefore we get a bijection

C = Sl(2;ZZ)nIH() fisomorphy classes of elliptic curvesg :

In this (rough) sense we say that IP

1

is the (compacti�ed) moduli space of elliptic curves.

Altogether we have a commutative diagram (1.4) for each � 2 IH.

E

�

,! E ,! IP

2

(C)� IH

# # . projection

f�g ,! IH

# Sl(2;ZZ)

Sl(2;ZZ) n IH

�

=

C � IP

1

(C)

1.2 Elliptic Curves Over Arbitrary Fields

We use the following notations:

K a �eld, L a �eld extension of K,

�

K the algebraic closure of K,

IP

2

K

the projective plane over K,

IP

2

(L) the points of this plane with coordinates in L,

f a homogeneous polynomial in K[W;X; Y ],

IPGl(3;K) the projective linear group Gl(3;K)=K

�

,

C : f = 0 the plane projective curve de�ned by f ,

C(L) the points of C with coordinates in L (L-points).

The group IPGl(3; L) acts on IP

2

(L) and Gl(3; L) on L[W;X; Y ] in obvious manner. For

G 2 Gl(3; L) we de�ne the inverse image curve of C by G

�

C : G

�

f = 0, where G

�

f

denotes the inverse image of f . We have

G

�

C(L) = fP 2 IP

2

(L);G

�

f(P ) = f(G(P )) = 0g :

Two curves C;C

0

are called L-linearly equivalent, if there is a linear transformation G 2

Gl(3; L) such that C

0

= G

�

C.

A point P 2 C(L) is called singular i� the derived polynomials @f=@W , @f=@X, @f=@Y

vanish at P . The curve C is non-singular i� each point P 2 C(

�

K) is non-singular.
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De�nition 1.1 An elliptic curve E=K is a non-singular curve of degree 3 in IP

2

K

together

with a point 0 2 E(K).

We are able to de�ne a commutative group structure on E=K. For this purpose consider

the L-points of E. Denote by PQ the line through two points P;Q 2 E(L). If P = Q,

then it is de�ned as tangent line of E through P . By BEZOUT's, theorem there is a

unique third intersection point R

0

2 IP

2

(L) of E(

�

L) and PQ(

�

L) beside of P;Q. It is easy

to see that it belongs to E(L). We apply the same procedure to OR

0

instead of PQ in

order to receive a third intersection point R. Now de�ne P + Q = R. Then one gets

a commutative group law on E(L), L an arbitrary �eld extension of K (see [41]). The

auxiliary point R

0

is nothing else than �(P + Q) and O is the neutral element of our

addition with �gure (1.4).

(1.4)

1.4.eps

72 � 33 mm

0

R = P +Q

P

R

0

Q

From projective (homogeneous) equations f = 0 we change over to a�ne (inhomogeneous)

equations F = 0, F (X;Y ) = f(1;X; Y ). It de�nes an a�ne curve in AA

2

K

and an a�ne

geometric curve in AA

2

(L) as algebraic set of points. Adding some points at in�nity (W = 0)

we get back C(L), especially C(

�

L), hence C : f = 0, f(W;X; Y ) = F (X=W;Y=W )W

degF

.

In our elliptic cases we keep the distinction between a�ne and projective equations/curves

only in mind.

Two elliptic curves E=K, E

0

=K are K-(linearly) isomorphic, i� there exists an element

� 2 Gl(3;K) such that E = �

�

E

0

and �(O) = O

0

, O

0

the zero point of E

0

.

Each elliptic curve E=K is K-isomorphic to an elliptic curve of type

E

0

=K : Y

2

+ a

1

XY + a

3

Y = X

3

+ a

2

X

2

+ a

4

X + a

6

(1.5)

with 0

0

= (0 : 0 : 1), the point at in�nity of E

0

.

If char K 6= 2; 3, then the above statement remains to be true, if we set a

i

= 0 for

i = 1; 2; 3, that means we substitute (1.5) by

E

0

=K : Y

2

= 4X

3

� g

2

X � g

3

: (1.6)
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�

C

The equations or curves in (1.5) or (1.6) are calledWEIERSTRASS normal forms (of E).

Up to isomorphy it su�ces to investigate elliptic curves given in WEIERSTRASS normal

form. So we assume now that:

(i) char K) 6= 2; 3;

(ii) E=K : Y

2

= 4X

3

� g

2

X � g

3

(iii) O = (0 : 0 : 1);

the same for E

0

=K.

As in the classical (complex) case we look for invariants and their meaning. We set

�(E=K) = 27g

2

3

� g

3

2

; j(E=K) = 12

3

g

3

2

=�(E=K) : (1.7)

Given a plane projective curve C=K : f = 0. We also write C

L

, C

L

=L or simply C=L for

the curve in IP

2

L

de�ned by f = 0. With obvious notations and the assumptions (i), (ii),

(iii) above the following basic facts are well-known:

Proposition 1.2

(i) E=K is non-singular, hence an elliptic curve, i� �(E=K) 6= 0.

(ii) Let E

0

=L be another elliptic curve,

�

L =

�

K. Then E=

�

K and E

0

=

�

K are

�

K-isomorphic

if an only if j(E=K) = j(E

0

=L) in K.

(iii) The elliptic curves E=K and E

0

=K are

�

K-isomorphic i� there exists an element

u 2

p

K

�

= fv 2

�

K; v

2

2 K

�

g such that g

0

2

= u

4

g

2

, g

0

3

= u

6

g

3

.

(iv) The elliptic curves E=K and E

0

=K are K-isomorphic i� there exists u 2 K

�

such

that g

0

2

= u

4

g, g

0

3

= u

6

g

3

.

1.2.1 Reduction of Elliptic Curves

Let R � K be an integral domain (with 1), such that K = Quot R, the quotient �eld

of R. We write E=R instead of E=K, if the coe�cients of the de�ning equation belong

to R, and we say that E is de�ned over R. An R-model of the elliptic curve E

0

=K is an
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elliptic curve E=R such that E=K is K-isomorphic to E

0

=K. It is easy to see that each

elliptic curve E

0

=K has at least one R-model. In fact, there are a lot of them.

Now, let (R;M) be a local ring, M the maximal ideal of R and k = R=M the residue

�eld. We write �g for the residue class of g 2 R modulo M. For an elliptic curve

E=R : Y

2

= X

3

� g

2

X � g

3

we de�ne the reduction E

k

of E=R by

E

k

=k : Y

2

= X

3

� �g

2

X � �g

3

:

We say that E=R has good reduction, if E

k

is smooth, that means that E

k

is an elliptic

curve over k. There is a nice simple criterion:

Lemma 1.3 (local criterion for good reduction) The elliptic curve E=R has good

reduction if and only if its discriminant �(E=R) is a unit in the local ring R.

Now let R be a DEDEKIND domain with quotient �eld K = Quot R, P 2 Spec R a

prime ideal and R

P

the corresponding (local) quotient ring. We say that the elliptic

curve E

0

=K has good reduction at P, if there is an R

P

-model E=R

P

of E

0

with good

reduction. Otherwise we say that E

0

=K has bad reduction at P . In any case E

0

=K has

good reduction at almost all points of Spec R. If T is a subset of Spec R, then we say

that E

0

=K has good reduction on T , if E

0

=K has good reduction at all points of T . In

obvious manner one explains the meaning of: bad reduction outside T , bad reduction on

S � Spec R, good reduction outside S.

In our applications we will work with the ring R = O of integers of a number �eld K.

Fixing these notations we notice

1.2.2 Two Finiteness Theorems of Number Theory

Denote by I = I(O) the semigroup of integral ideals of O, the group of fractional ideals

of K by I

�

= I

�

(O) = I

�

(K) and by H

�

= H

�

(K) its subgroup of principal ideals. The

group Cl(K) = I

�

=H

�

is called the class group of K.

Theorem 1.4 (Finiteness of class group) The class group Cl(K) has �nite order.

The order h(K) = ]Cl(K) is called the class number of K.
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�

C

For a subset S � Spec O the ring of S-integers of K is de�ned by

O

S

= fa=b; a; b 2 O, b 62 P for all P 2 T = Spec OnSg

Take care of the di�erence between the local ring

O

P

= fa=b; a; b 2 O; b =2 Pg

and the global ring O

fPg

.

Corollary 1.5 For each �nite S

0

� Spec O there exists a �nite S � Spec O containing S

0

such that O

S

is a principal domain.

Proof: The semigroup homomorphism

I(O) �! I(O

S

) ; A 7�! A

S

= O

S

A

extends to the exact sequence of group homomorphisms

1 �! hSi �! I

�

(O) �! I

�

(O

S

) ; (1.8)

where hSi denotes the group generated by S.

Now let fA

1

; : : : ;A

h

g be a system of representatives of the class group cl(O) and

S = S

0

[ fprime divisors of A

1

� : : : � A

h

g :

For each ideal A of K we �nd a 2 K and i 2 f1; : : : ; hg such that A

S

= (aA

i

)

S

= aO

S

because of A

i

2 hSi and (1.8).

Theorem 1.6 (DIRICHLET's Unit Theorem) For �nite S � Spec O the group of

units O

�

S

of O

S

is �nitely generated.

Corollary 1.7 For each natural number n the factor group O

�

S

=O

�n

S

is �nite.
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1.2.3 SHAFAREVI

�

C's Finiteness Theorem

Lemma 1.8 (global criterion for good reduction) Let S be a �nite subset of Spec O

S

such that O

S

is a principal domain. The elliptic curve E

0

=K has good reduction outside

of S i� it has an O

S

-model E=O

S

such that �(E=O

S

) 2 O

�

S

.

Proof: The discriminant condition is su�cient by the local criterion 1.3.

Assume conversely that for each P 2 T = Spec OnS there is a model

E

P

=O

P

: Y

2

= 4X

3

� g

2P

X � g

3P

of E

0

=K with �

P

= �(E

P

=O

P

) 2 O

�

P

. With obvious notations we have

g

0

2

= u

4

P

� g

2P

; g

0

3

= u

6

P

� g

3P

;�

0

= u

12

P

�

P

(1.9)

for suitable u

P

2 K, P 2 T . Without loss of generality we can assume that we start

with a model E

0

=O

K

, hence g

0

i

2 O

K

. Let fP

1

; : : : ;P

r

g be the set of prime divisors of

�

0

2 O

K

. Then

u

P

2 O

�

P

for P 2 TnfP

1

; : : :mP

r

g

by the last identities of (1.9) and our assumptions. So (O

P

u

P

)

P2T

belongs to the restricted

product group (with components 1 almost everywhere)

Y

P2T

0

I

�

(O

P

)

�

�! I

�

(O

S

) :

Since O

S

is principal we can represent our tuple by O

S

u, u 2 K; so

u

P

= "

P

u ; "

P

2 O

�

P

for all P 2 T : (1.10)

Now we de�ne the elliptic curve

E=O

S

: Y

2

= X

3

� g

2

X � g

3

setting

g

2

= g

0

2

=u

4

; g

3

= g

0

3

=u

6

(1.11)

The coe�cients of the equation of E di�er from those of E

P

only by local units because of

(1.11), (1.9) and (1.10). This is also true for � = �(E=O

S

) and �

0

for the same reasons.

Therefore � 2 O

�

P

for all P 2 T , hence � 2 O

�

S

.



10 1. Elliptic Curves, the Finiteness Theorem of SHAFAREVI

�

C

Theorem 1.9 (SHAFAREVI

�

C) Let K be a number �eld, O = O

K

its ring of integers

and S a �nite set of prime ideals of O. Then, up to K-isomorphy, there are only �nitely

many elliptic curves E=K with good reduction outside of S.

Proof: Without loss of generality we can assume that all prime divisors of 2 and 3 belong

to S. So we can work locally along T = SpecO n S and also globally withWEIERSTRASS

normal forms in the narrow sense of (1.6). The class of all elliptic curves E=K with good

reduction outside of S is denoted by E(K;S). The domain can be assumed to be principal

by Corollary 1.5. Each member of E(K;S) has models E=O

S

with �(E=O

S

) 2 O

�

S

by

Lemma 1.8. Together with Proposition 1.2 (iv) we see that the map

� : E(K;S) �! O

�

S

=O

�12

S

; E=O

S

7�! �(E=O

S

)mod

�

O

�12

S

is well-de�ned. The image is �nite by Corollary 1.7. So it su�ces to prove that for a

given S-unit D there exist only �nitely many elliptic curves

E=O

S

: Y

2

= X

3

� g

2

X � g

3

with �(E=O

S

) = D. This follows immediately from the de�nition of the discriminant

and the next lemma.

Lemma 1.10 With the above notations the diophantine equation

U

3

� 27V

2

= D

has only �nitely many solutions u; v in O

S

.

1.2.4 Basic References

For an introduction to the classical theory of elliptic and modular functions we refer

to [46]. All we need in I.1 can be found in the �rst chapters there. The omitted proofs of

some basic results on elliptic curves over �nite �elds are contained in [41]. K-isomorphy

of curves needs in general the �ner scheme language. It will be necessarily used later.

Our style of writing is a good preparation. The basic introduction is HARTSHORNE's

book [27]. Proofs of the two basic �niteness theorems 1.4 and 1.6 can be found in [16].

Our proof of SHAFAREVI

�

C's Finiteness Theorem for elliptic curves is a detailed ver-

sion of SERRE's proof in [69]. The theorem was announced by SHAFAREVI

�

C on the
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International Congress in Stockholm 1962, together with a far-reaching conjecture on

algebraic curves over number �elds (SHAFAREVI

�

C-conjecture) proved by FALTINGS

in 1983 together with the MORDELL-conjecture as consequence. The diophantine equa-

tion in Lemma 1.10 can be solved e�ectively by methods of BAKER [4], see also SERRE's

lectures [71]. Altogether one has an e�ective way for �nding up to isomorphy all elliptic

curves over a �xed number �eld with prescribed places of bad reduction. An algorithm

has been established by TATE [88].

Recently ESTRADA-SARLABOUS, see Appendix I, found a way to transfer the methods

and the e�ective result to PICARD curves

C : Y

3

= X

4

+G

2

X

2

+G

3

X +G

4

of genus 3. These curves play a central role in all the following chapters.



2 PICARD Curves

2.1 The Moduli Space of PICARD Curves

De�nition 2.1 Let C

0

be a compact algebraic curve over C. It is called a PICARD

curve, if it is isomorphic to a plane projective curve C=C of the following equation type:

C

0

�

�! C : WY

3

=

4

X

i=0

G

i

W

i

X

4�i

; G

0

6= 0 :

In a�ne coordinates the plane PICARD curve C is described by

C : Y

3

= G

0

X

4

+G

1

X

3

+G

2

X

2

+G

3

X +G

4

:

One has to add the point1 = (0 : 0 : 1) in order to obtain the projective model from the

a�ne one. By means of projective TSCHIRNHAUS transformation one can reduce the

equations to the following normal forms

WY

3

= X

4

+G

2

W

2

X

2

+G

3

W

3

X +G

4

W

4

(projective), (2.1)

Y

3

= X

4

+G

2

X

2

+G

3

X +G

4

= p

4

(X) (a�ne).

The singular locus of

C : F (W;X; Y ) =WY

3

�X

4

�G

2

W

2

X

2

�G

3

W

3

X �G

4

W = 0

can be determined by solving the system of homogeneous equations

F = @F=@W = @F=@X = @F=@Y = 0 : (2.2)

The point 1 is a smooth one because @F=@W (0; 0; 1) = 1. So all singular points of C

lie in the a�ne part. It is easy to see that only the intersection points with the line

L

0

: Y = 0 are possible singularities. These are the points

R

i

= (1 : a

i

: 0) ; i = 1; : : : ; 4 ; (2.3)

12
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where a

1

; : : : ; a

4

are the zeros of p

4

(X). As in the case of elliptic curves we have a

discriminant criterion: �(C) 6= 0. The discriminant of C is de�ned as �(C) =

Q

i 6=j

(a

j

� a

i

). In terms of the coe�cients of F it is described by

�(C) = 16G

4

2

�G

4

� 128G

2

2

�G

2

4

� 4G

3

2

�G

2

3

+ 144G

2

G

2

3

G

4

� 27G

4

3

+ 256G

3

4

The picture (2.4) gives an imagination of (the real part of) a PICARD curve in normal

form with exactly one (real) singularity.

(2.4)

2.4.eps

84 � 38 mm

L

0

: Z = 0

1

C

L

1

:W = 0

The line L

1

touches C at 1 of order (intersection number) 4.

We look now for the moduli space M of PICARD curves in the rough sense: to �nd a

complex-algebraic structure on the set of isomorphy classes of these curves. More precisely,

this will be done for smooth curves, and then we look for a natural compacti�cation and

interpretation:

fsmooth PICARD curvesg/Isom.()M

0

�M

Set

C

4

0

=

n

(z

1

; : : : ; z

4

) 2 C

4

; z

1

+ : : :+ z

4

= 0

o

� C

4

and let C be the following analytic family of PICARD curves:

C =

(

((w : x : y); (a

1

; : : : ; a

4

)) 2 IP

2

(C)�C

4

0

; wy

3

=

4

Y

i=1

(x� a

i

w)

)

Without change of the notation C we omit the special singular �bre with WY

3

= X

4

over 0. All other PICARD curves are represented in C up to isomorphy. We have the

following commutative diagrams

C

a

,! C ,! IP

2

� C

4

0

# # . #

fag ,! C

4

0

n 0 �! IPC

4

0

= IPC

3

= IP

2

(2.5)

with obvious projections and identi�cations.
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The symmetric group S

4

acts on C

4

0

by permutation of coordinates. This action goes

down to IP

2

. The compact quotient surface

^

M = IP

2

=S

4

is normal, algebraic and, by

L

�

UROTH's theorem, rational.

We go back to IP

2

= IP

3

0

:= IPC

4

0

writing the elements as homogeneous quadruples

(a

1

: : : : : a

4

), a

1

+ : : : + a

4

= 0. Now we choose four points in general position. In

order to be explicit we choose

P

1

= (�3 : 1 : 1 : 1) ; P

2

= (1 : �3 : 1 : 1) ; (2.6)

P

3

= (1 : 1 : �3 : 1) ; P

4

= (1 : 1 : 1 : �3) :

The line through P

i

; P

j

is denoted by L

ij

= L

ji

. These six lines form a reduced divisor

4? = L

12

+ L

13

+ L

14

+ L

23

+ L

24

+ L

34

(2.7)

on IP

2

as described in picture (2.8)

(2.8)

2.8.eps

68 � 43 mm

P

4

P

3

P

2

P

1

Obviously the action of the symmetric group S

4

restricts to an action on IP

2

n �. We set

M

0

:=

�

IP

2

n 4?

�

=S

4

�M := IP

2

nfP

1

; : : : ; P

4

g �

^

M := IP

2

=S

4

:

Two plane PICARD curves C;C

0

are called linearly isomorphic, if there is a G 2 Gl

3

(C)

such that G

�

C = C

0


