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1 Elliptic Curves, the Finiteness
Theorem of SHAFAREVIC

1.1 Elliptic Curves over C

Instead of the introduction we remember to an arithmetic-geometric part of the theory
of elliptic curves. Let A be a lattice in C, that means a discrete additive subgroup of
(Z)-rank 2. Two lattices A and A’ in C are said to be equivalent, if there is a complex
number o # 0 such that A" = aA. Each of our lattices is equivalent to a lattice A, =
Z + Z7 with

relH={zeC;Imz>0} .

H is called the POINCARE upper half plane. The quotient spaces
Ew/\:@//\7 ET:@//\T

are one-dimensional complex tori, that means complete RIEMANN surfaces with abelian

group structures. For equivalent lattices A, A’ we have a commutative diagram

0— A — ¢ — FE —0

1 1 1

0— AN — ¢ — I —0

with obvious notations. The tori E, £’ are isomorphic. So each E = E, is isomorphic to

a complex torus E; for a suitable 7 € IH.

Each torus E has a smooth complex projective algebraic structure. More precisely, it
can be analytically embedded into the complex projective plane IP*(€'). A torus together
with such an embedding is called an elliptic curve over C). For the embeddings we need
elliptic functions on €. A meromorphic function on € is called elliptic, if it is A-periodic
for a suitable C-lattice A.
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A central role among the elliptic functions play the WEIERSTRASS ¢-functions. For a
fixed lattice A it is defined as

on : C— PY(Q),
orz)=1/22 + 3 (1/(z=w) = 1)),
WEA*
where A* = A\0. The field of meromorphic function of E, is generated by g and ¢/,.
Both functions are related by a simple algebraic equation producing a differential equation
for pa:
Pp(2)? = 4pa(2)” = g2(N)pa(2) — ga(A)
where

g(A) =60 > 1/, ga(A) =140 > 1/w".

WEN* WEN*

On this way we get a projective embedding

h:C/A  — IP*C)
zmod A —— (L:gp(z):¢'(2)) (2¢A)

Using projective coordinates (w : x : y) the image curve = F(A) is defined by the following
equation:

E:WY? =4X° — go(NW?X — g3(MW? (1.1)

Conversely, if F is a smooth projective curve of degree 3, then there is a projectively

equivalent curve £’ of equation type
E - WY? =4X° — g, W2 X — gs W2 (1.2)

The equation in (1.2) or the corresponding cubic form is called a WEIERSTRASS normal
form of E. Moreover, there is a C-lattice A such that g2 = g2(A), g3 = g3(A). So we get

in any case a uniformization ¢ — C/A = E.
We want to introduce and to explain now the moduli space of elliptic curves.

POINCARE’s upper half plane H is the simplest non-euclidean model of a homogeneous
(symmetric) space. On IH acts transitively the real special linear group $/(2,1R) via

fractional linear transformations

T (ar +b)/(ecr+d), TeH, (ZZ) € SI(2,IR) .

The quotient space $1(2,Z)\IH has a natural complex structure. It is isomorphic to the
affine complex line A'(€) = €. Its natural (smooth) compactification is the projective
complex line IP'(C).
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This can be made visible by decomposing IH into infinitely many $/(2, Z)-fundamental
domains as it has been first done by GAUSS. The elements S = ((1) _01) and T = (1 1)

generate the unimodular group $/(2,Z). There is a nice central fundamental domain .7'9 Tas
drawn in the figure (1.3). By identification of equivalent boundary points one gets A'(C)
and the compactification by addition of the external boundary point not lying in IH.
Shifting F by means of products of S, T, 57!, T~ one obtains a covering of IH consisting

of $15(2, Z)-fundamental domains.

(1.3)

STS| ST

—1 0 1

The geometric imagination can be made precise by means of modular functions. These
are $/(2, Z)-invariant meromorphic functions on IH allowing a meromorphic extension on
$/(2,Z)\H to the compactification IP'(C). For i = 2,3 we set ¢;(7) = ¢:(A;). Looking
at the discriminant of the polynomial ps(X) in the WEIERSTRASS equation

Y? = p3(X) =4X? — g2X — g3 of E, we define

A(r) = 27g3(7) — g5(7) .

Then ¢5(7)/A(7) is a modular function. The elliptic modular function is defined as
J(1) = 12°¢5(7)/A(7). Especially it is invariant under S : 7 +— 7+ 1. It can be written

as Fourier series:

j(T):q_1+744q0+Zanq”, g=¢€e""_ a,eZ .

n=1

The elliptic modular function 5 : H — € goes down to an analytic isomorphism

§1(2, Z)\IH — .

Consider now the elliptic curve family £ over IH defined by

E={(w:x:y),7) € P*C) x H; wy® =42 — go(7)wx — g3(7)w’}.
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It has a natural projection onto IH. The fibres are the elliptic curves E.. The up-
per half plane H appears as parameter space for (up to isomorphy) all elliptic curves.
This analytic family of curves is denoted by £/IH. The fibres E,, ., are isomorphic iff
7' € $1(2,Z)7. Therefore we get a bijection

C=5(2,Z)\IH < {isomorphy classes of elliptic curves} .

In this (rough) sense we say that IP' is the (compactified) moduli space of elliptic curves.
Altogether we have a commutative diagram (1.4) for each 7 € IH.

E. — & — P}C)xMH

l 1/ projection
{r} s H
1 $1(2,2)

$1(2,Z) \ = ¢ C PY(C)

1.2 Elliptic Curves Over Arbitrary Fields

We use the following notations:

K a field, L a field extension of K,

K the algebraic closure of K,

P the projective plane over K,

IP*(L) the points of this plane with coordinates in L,
f a homogeneous polynomial in K[W, X, Y],

IPGI(3, K) the projective linear group GI(3, K)/K*,
C:f=0 the plane projective curve defined by f,
C(L) the points of C' with coordinates in L (L-points).

The group IPGI(3, L) acts on IP*(L) and GI(3, L) on L[W, X,Y] in obvious manner. For
G € GI(3, L) we define the inverse image curve of C' by G*C : G*f = 0, where G* f

denotes the inverse image of f. We have
G*C(L) = {P € IP*(L); G"[(P) = [(G(P)) =0} .

Two curves C, C" are called L-linearly equivalent, if there is a linear transformation G €

GI(3, L) such that C' = G*C.

A point P € C(L) is called singular iff the derived polynomials df /oW, df/0X, df /Y

vanish at P. The curve C is non-singular iff each point P € C'(K) is non-singular.
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Definition 1.1 An elliptic curve E/K is a non-singular curve of degree 3 in P together
with a point 0 € F(K).

We are able to define a commutative group structure on F/K. For this purpose consider
the L-points of F. Denote by PQ the line through two points P,Q € F(L). If P = @,
then it is defined as tangent line of £ through P. By BEZOUT’s, theorem there is a
unique third intersection point R’ € IP*(L) of E(L) and PQ(L) beside of P, Q. It is easy
to see that it belongs to E(L). We apply the same procedure to OR' instead of PQ in
order to receive a third intersection point R. Now define P + () = R. Then one gets
a commutative group law on E(L), L an arbitrary field extension of K (see [41]). The
auxiliary point R’ is nothing else than —(P + @) and O is the neutral element of our
addition with figure (1.4).

(1.4)

From projective (homogeneous) equations f = 0 we change over to affine (inhomogeneous)
equations F'' = 0, F(X,Y) = f(1,X,Y). It defines an affine curve in A} and an affine
geometric curve in A’(L) as algebraic set of points. Adding some points at infinity (W = 0)
we get back C'(L), especially C(L), hence C' : f =0, f(W,X,Y) = F(X/W,Y/W)Wdesl",
In our elliptic cases we keep the distinction between affine and projective equations/curves

only in mind.

Two elliptic curves F/K, E'/K are K-(linearly) isomorphic, iff there exists an element
a € GI(3, K) such that £ = o*E'" and «(O) = O', O’ the zero point of E'.

Each elliptic curve E/K is K-isomorphic to an elliptic curve of type
E'JK :Y? 4+ a; XY +a3Y = X2 +auX? + ay X + ag (1.5)
with 0/ = (0: 0: 1), the point at infinity of E’.
If char K # 2,3, then the above statement remains to be true, if we set a; = 0 for
i = 1,2,3, that means we substitute (1.5) by
E'JK :Y?=4X? — g, X — g5 . (1.6)
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The equations or curves in (1.5) or (1.6) are called WEIERSTRASS normal forms (of E).
Up to isomorphy it suffices to investigate elliptic curves given in WEIERSTRASS normal
form. So we assume now that:

(i) char K) # 2,3;
(i) EJK : Y2 =4X® — g, X — go

(iii) O=(0:0:1);

the same for £'/K.

As in the classical (complex) case we look for invariants and their meaning. We set
A(BJK) =21t — g . J(BJK) = 1°G3/A(E/K) | (1.7)

Given a plane projective curve C/K : f = 0. We also write Cr,, C,/L or simply C'/L for
the curve in IP7 defined by f = 0. With obvious notations and the assumptions (i), (ii),
(iii) above the following basic facts are well-known:

Proposition 1.2

(i) E/K is non-singular, hence an elliptic curve, iff A(E/K) # 0.

(ii) Let E'/L be another elliptic curve, L = K. Then E/K and E'/K are K -isomorphic
if an only if j(E/K) =3(E'/L) in K.

(i) The elliptic curves E/K and E'/K are K-isomorphic iff there exists an element
ue VEK* ={ve K;v?e KX} such that ¢ = u'gy, g5 = ubgs.

v € ELIPlLic cuUrves \ an \ are n-isomor 1C 1 ETE ETISIS U E A% Suc
w) The ellipti E/K and E'/K are K -isomorphic iff th st K* such
that g5 = u'g, g4 = ugs.

1.2.1 Reduction of Elliptic Curves

Let R € K be an integral domain (with 1), such that K = Quot R, the quotient field
of R. We write E/R instead of E/K, if the coefficients of the defining equation belong
to R, and we say that F is defined over R. An R-model of the elliptic curve £'/K is an
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elliptic curve /R such that E/K is K-isomorphic to E'/K. It is easy to see that each

elliptic curve £’/ K has at least one R-model. In fact, there are a lot of them.

Now, let (R, M) be a local ring, M the maximal ideal of R and k = R/M the residue
field. We write ¢ for the residue class of ¢ € R modulo M. For an elliptic curve
E/R:Y?=X?— ¢, X — g3 we define the reduction Ey of E/R by

Ek/k:Y2:X3_§2X_§3 .

We say that /R has good reduction, if Fy is smooth, that means that Fy is an elliptic

curve over k. There is a nice simple criterion:

Lemma 1.3 (local criterion for good reduction) The elliptic curve E/R has good
reduction if and only if its discriminant A(F/R) is a unit in the local ring R.

Now let R be a DEDEKIND domain with quotient field X = Quot R, P € Spec R a
prime ideal and Rp the corresponding (local) quotient ring. We say that the elliptic
curve B'/K has good reduction at P, if there is an Rp-model E/Rp of E' with good
reduction. Otherwise we say that E'/K has bad reduction at P. In any case F'/K has
good reduction at almost all points of Spec R. If T'is a subset of Spec R, then we say
that £'/K has good reduction on T, if E'/K has good reduction at all points of T'. In
obvious manner one explains the meaning of: bad reduction outside T', bad reduction on
S C Spec R, good reduction outside S.

In our applications we will work with the ring R = O of integers of a number field K.

Fixing these notations we notice

1.2.2 Two Finiteness Theorems of Number Theory

Denote by I = I(O) the semigroup of integral ideals of O, the group of fractional ideals
of K by I" = I"(O) = I"(K) and by H* = H*(K) its subgroup of principal ideals. The
group CI(K) = I*/H* is called the class group of K.

Theorem 1.4 (Finiteness of class group) The class group CI(K) has finite order.

The order h(K) = §CI(K) is called the class number of K.
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For a subset S C Spec O the ring of S-integers of K is defined by
Os = {a/b;a,be O, b P for all P € T = Spec O\S}
Take care of the difference between the local ring
Op = {a/b; a,bc O, b¢ P}

and the global ring Op;.

Corollary 1.5 For each finite S C Spec O there exists a finite S C Spec O containing S’
such that Og is a principal domain.

Proof: The semigroup homomorphism
1(0) — 1(Os), A— As =0sA
extends to the exact sequence of group homomorphisms
1 — () — I"(0) — I"(Os) , (1.8)
where (5) denotes the group generated by S.
Now let {A1,..., Ay} be a system of representatives of the class group ¢/(O) and
S = S"U {prime divisors of Ay ... - A} .

For each ideal A of K we find @« € K and ¢ € {1,...,h} such that As = (a.4;)s = aOs
because of A; € (5) and (1.8). [ |

Theorem 1.6 (DIRICHLET’s Unit Theorem) For finite S C Spec O the group of
units O of Og is finitely generated. |

Corollary 1.7 For each natural number n the factor group O%/OF" is finite.
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1.2.3 SHAFAREVIC’s Finiteness Theorem

Lemma 1.8 (global criterion for good reduction) Let S be a finite subset of Spec Og
such that Og is a principal domain. The elliptic curve E'/K has good reduction outside

of S iff it has an Og-model E/Og such that A(E/Og) € O%.

Proof: The discriminant condition is sufficient by the local criterion 1.3.

Assume conversely that for each P € T'= Spec O\ S there is a model
Ep/Op :Y? =4X° — g2p X — g3p
of F'/K with Ap = A(Ep/Op) € O3. With obvious notations we have
g5 =up - gap . g5 = up - gap, A = uy Ap (1.9)

for suitable up € K, P € T. Without loss of generality we can assume that we start
with a model E'/Ok, hence ¢. € Ok. Let {Py,...,P,} be the set of prime divisors of
A" € Ok. Then

up € Op for P eT\{Py,...mP,}

by the last identities of (1.9) and our assumptions. So (Opup)per belongs to the restricted
product group (with components 1 almost everywhere)

[/ I"(0Op) = I7(0s) .

PeT

Since Oy is principal we can represent our tuple by Ogsu, u € K; so
up =cpu, e¢p € Op forall Pel . (1.10)
Now we define the elliptic curve
E/Os: Y?2=X°— ¢, X —gs
setting

9 = gy/ut, g3 = gy /u’ (1.11)

The coefficients of the equation of F differ from those of Ep only by local units because of
(1.11), (1.9) and (1.10). This is also true for A = A(E£/Og) and A’ for the same reasons.
Therefore A € O3, for all P € T', hence A € O5. |
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Theorem 1.9 (SHAFAREVIC) Let K be a number field, © = Ok its ring of integers
and S a finite set of prime ideals of O. Then, up to K-isomorphy, there are only finitely
many elliptic curves £ /K with good reduction outside of S.

Proof: Without loss of generality we can assume that all prime divisors of 2 and 3 belong
to S. So we can work locally along 7' = SpecQ \ S and also globally with WEIERSTRASS
normal forms in the narrow sense of (1.6). The class of all elliptic curves £/ K with good
reduction outside of S is denoted by £(K, S). The domain can be assumed to be principal

by Corollary 1.5. Each member of £(K,S) has models £/Ogs with A(FE/Os) € Of by
Lemma 1.8. Together with Proposition 1.2 (iv) we see that the map

§:E(K,S) — 05O E/Os — A(E/Os)mod* 05

is well-defined. The image is finite by Corollary 1.7. So it suffices to prove that for a

given S-unit D there exist only finitely many elliptic curves
E/Os: Y?2=X°— ¢, X —gs

with A(E/Og) = D. This follows immediately from the definition of the discriminant
and the next lemma. |

Lemma 1.10 With the above notations the diophantine equation
U? =27V =D

has only finitely many solutions u,v in Og. |

1.2.4 Basic References

For an introduction to the classical theory of elliptic and modular functions we refer
to [46]. All we need in 1.1 can be found in the first chapters there. The omitted proofs of
some basic results on elliptic curves over finite fields are contained in [41]. K-isomorphy
of curves needs in general the finer scheme language. It will be necessarily used later.
Our style of writing is a good preparation. The basic introduction is HARTSHORNE’s
book [27]. Proofs of the two basic finiteness theorems 1.4 and 1.6 can be found in [16].

Our proof of SHAFAREVIC’s Finiteness Theorem for elliptic curves is a detailed ver-
sion of SERRE’s proof in [69]. The theorem was announced by SHAFAREVIC on the
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International Congress in Stockholm 1962, together with a far-reaching conjecture on
algebraic curves over number fields (SHAFAREVIC—conjecture) proved by FALTINGS
in 1983 together with the MORDELL-conjecture as consequence. The diophantine equa-
tion in Lemma 1.10 can be solved effectively by methods of BAKER [4], see also SERRE’s
lectures [71]. Altogether one has an effective way for finding up to isomorphy all elliptic
curves over a fixed number field with prescribed places of bad reduction. An algorithm

has been established by TATE [88].

Recently ESTRADA-SARLABOUS, see Appendix [, found a way to transfer the methods
and the effective result to PICARD curves

C: Y= X"+ G X?+G3X +Gy

of genus 3. These curves play a central role in all the following chapters.



2 PICARD Curves

2.1 The Moduli Space of PICARD Curves

Definition 2.1 Let C’ be a compact algebraic curve over €. It is called a PICARD

curve, if it is isomorphic to a plane projective curve C'/C of the following equation type:

4
C' - CWYP =Y GWIXTT D G #£0 .
=0
In affine coordinates the plane PICARD curve C' is described by
C . Y3 = G0X4—|—G1X3—|—G2X2 —|—G3X—|—G4 .

One has to add the point oo = (0 : 0 : 1) in order to obtain the projective model from the
affine one. By means of projective TSCHIRNHAUS transformation one can reduce the

equations to the following normal forms

WY? = X'4 GWiX? + GaW3X + G W (projective), (2.1)
Y3 == X4—|—G2X2—|—G3X—|—G4 :p4(X) (aﬂine).

The singular locus of
C:FW, X,Y)=WY? - X* - GW?X? - G5sW’X — GuW =0
can be determined by solving the system of homogeneous equations
F=0F/0W = 0F/0X = 0F/0Y =0 . (2.2)

The point oo is a smooth one because F/dW(0,0,1) = 1. So all singular points of C
lie in the affine part. It is easy to see that only the intersection points with the line

Lo : Y = 0 are possible singularities. These are the points

Ri=1:a;:0), i=1,...,4, (2.3)

12
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where ay,...,aq are the zeros of ps(X). As in the case of elliptic curves we have a

discriminant criterion: A(C') # 0. The discriminant of C' is defined as A(C') =
[T(a; — a;). In terms of the coefficients of F' it is described by

i#J

A(C) =16GS - Gy — 128G - G2 — 4GS - G2 + 144G, GGy — 2TGE + 256G

The picture (2.4) gives an imagination of (the real part of) a PICARD curve in normal

form with exactly one (real) singularity.

(2.4)

The line L., touches C at oo of order (intersection number) 4.

We look now for the moduli space M of PICARD curves in the rough sense: to find a
complex-algebraic structure on the set of isomorphy classes of these curves. More precisely,
this will be done for smooth curves, and then we look for a natural compactification and

interpretation:

smooth PICARD curves}/Isom. < M° c M
{

Set
@3:{(21,...,24)6@4; 21-|-----|-Z4:0}C(D4

and let C be the following analytic family of PICARD curves:

C= {((w cx i y), (ar,. .. aq4)) €IPHC) x € ; wy® = ﬂ(:z; —aiw)}

=1

Without change of the notation C we omit the special singular fibre with WY? = X1
over (. All other PICARD curves are represented in C up to isomorphy. We have the

following commutative diagrams

c, — C — IP? x

l l / l (2.5)
{a} — Co\0 — PC; = IPC° = P?

with obvious projections and identifications.
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The symmetric group Sy acts on € by permutation of coordinates. This action goes
down to IP?. The compact quotient surface M = IP?/S, is normal, algebraic and, by
LUROTH’s theorem, rational.

We go back to IP* = IP; := IPC, writing the elements as homogeneous quadruples
(aq : ... :a4), a1 + ...+ ay = 0. Now we choose four points in general position. In

order to be explicit we choose

P=(-3:1:1:1) , b=(1:-3:1:1), (2.6)
Ps=(1:1:-3:1) , Pp=(1:1:1:-3).

The line through F;, P; is denoted by L;; = L;;. These six lines form a reduced divisor
A= L+ Lis+ Lia+ Loz + Log + Ly (2.7)

on IP? as described in picture (2.8)

(2.8)

Py

n S

Obviously the action of the symmetric group Sy restricts to an action on IP? \ A. We set
M= (P2 \ &) /Sy C M:=P\{P,..., P} C M:=1P?/S, .

Two plane PICARD curves C, C" are called linearly isomorphic, if there is a G € Gl5(C)
such that G*C' = "’



